linux/fs/buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50
  51static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  52static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  53                         enum rw_hint hint, struct writeback_control *wbc);
  54
  55#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  56
  57inline void touch_buffer(struct buffer_head *bh)
  58{
  59        trace_block_touch_buffer(bh);
  60        mark_page_accessed(bh->b_page);
  61}
  62EXPORT_SYMBOL(touch_buffer);
  63
  64void __lock_buffer(struct buffer_head *bh)
  65{
  66        wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  67}
  68EXPORT_SYMBOL(__lock_buffer);
  69
  70void unlock_buffer(struct buffer_head *bh)
  71{
  72        clear_bit_unlock(BH_Lock, &bh->b_state);
  73        smp_mb__after_atomic();
  74        wake_up_bit(&bh->b_state, BH_Lock);
  75}
  76EXPORT_SYMBOL(unlock_buffer);
  77
  78/*
  79 * Returns if the page has dirty or writeback buffers. If all the buffers
  80 * are unlocked and clean then the PageDirty information is stale. If
  81 * any of the pages are locked, it is assumed they are locked for IO.
  82 */
  83void buffer_check_dirty_writeback(struct page *page,
  84                                     bool *dirty, bool *writeback)
  85{
  86        struct buffer_head *head, *bh;
  87        *dirty = false;
  88        *writeback = false;
  89
  90        BUG_ON(!PageLocked(page));
  91
  92        if (!page_has_buffers(page))
  93                return;
  94
  95        if (PageWriteback(page))
  96                *writeback = true;
  97
  98        head = page_buffers(page);
  99        bh = head;
 100        do {
 101                if (buffer_locked(bh))
 102                        *writeback = true;
 103
 104                if (buffer_dirty(bh))
 105                        *dirty = true;
 106
 107                bh = bh->b_this_page;
 108        } while (bh != head);
 109}
 110EXPORT_SYMBOL(buffer_check_dirty_writeback);
 111
 112/*
 113 * Block until a buffer comes unlocked.  This doesn't stop it
 114 * from becoming locked again - you have to lock it yourself
 115 * if you want to preserve its state.
 116 */
 117void __wait_on_buffer(struct buffer_head * bh)
 118{
 119        wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 120}
 121EXPORT_SYMBOL(__wait_on_buffer);
 122
 123static void
 124__clear_page_buffers(struct page *page)
 125{
 126        ClearPagePrivate(page);
 127        set_page_private(page, 0);
 128        put_page(page);
 129}
 130
 131static void buffer_io_error(struct buffer_head *bh, char *msg)
 132{
 133        if (!test_bit(BH_Quiet, &bh->b_state))
 134                printk_ratelimited(KERN_ERR
 135                        "Buffer I/O error on dev %pg, logical block %llu%s\n",
 136                        bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 137}
 138
 139/*
 140 * End-of-IO handler helper function which does not touch the bh after
 141 * unlocking it.
 142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 143 * a race there is benign: unlock_buffer() only use the bh's address for
 144 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 145 * itself.
 146 */
 147static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 148{
 149        if (uptodate) {
 150                set_buffer_uptodate(bh);
 151        } else {
 152                /* This happens, due to failed read-ahead attempts. */
 153                clear_buffer_uptodate(bh);
 154        }
 155        unlock_buffer(bh);
 156}
 157
 158/*
 159 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 160 * unlock the buffer. This is what ll_rw_block uses too.
 161 */
 162void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 163{
 164        __end_buffer_read_notouch(bh, uptodate);
 165        put_bh(bh);
 166}
 167EXPORT_SYMBOL(end_buffer_read_sync);
 168
 169void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 170{
 171        if (uptodate) {
 172                set_buffer_uptodate(bh);
 173        } else {
 174                buffer_io_error(bh, ", lost sync page write");
 175                mark_buffer_write_io_error(bh);
 176                clear_buffer_uptodate(bh);
 177        }
 178        unlock_buffer(bh);
 179        put_bh(bh);
 180}
 181EXPORT_SYMBOL(end_buffer_write_sync);
 182
 183/*
 184 * Various filesystems appear to want __find_get_block to be non-blocking.
 185 * But it's the page lock which protects the buffers.  To get around this,
 186 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 187 * private_lock.
 188 *
 189 * Hack idea: for the blockdev mapping, private_lock contention
 190 * may be quite high.  This code could TryLock the page, and if that
 191 * succeeds, there is no need to take private_lock.
 192 */
 193static struct buffer_head *
 194__find_get_block_slow(struct block_device *bdev, sector_t block)
 195{
 196        struct inode *bd_inode = bdev->bd_inode;
 197        struct address_space *bd_mapping = bd_inode->i_mapping;
 198        struct buffer_head *ret = NULL;
 199        pgoff_t index;
 200        struct buffer_head *bh;
 201        struct buffer_head *head;
 202        struct page *page;
 203        int all_mapped = 1;
 204        static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 205
 206        index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 207        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 208        if (!page)
 209                goto out;
 210
 211        spin_lock(&bd_mapping->private_lock);
 212        if (!page_has_buffers(page))
 213                goto out_unlock;
 214        head = page_buffers(page);
 215        bh = head;
 216        do {
 217                if (!buffer_mapped(bh))
 218                        all_mapped = 0;
 219                else if (bh->b_blocknr == block) {
 220                        ret = bh;
 221                        get_bh(bh);
 222                        goto out_unlock;
 223                }
 224                bh = bh->b_this_page;
 225        } while (bh != head);
 226
 227        /* we might be here because some of the buffers on this page are
 228         * not mapped.  This is due to various races between
 229         * file io on the block device and getblk.  It gets dealt with
 230         * elsewhere, don't buffer_error if we had some unmapped buffers
 231         */
 232        ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 233        if (all_mapped && __ratelimit(&last_warned)) {
 234                printk("__find_get_block_slow() failed. block=%llu, "
 235                       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 236                       "device %pg blocksize: %d\n",
 237                       (unsigned long long)block,
 238                       (unsigned long long)bh->b_blocknr,
 239                       bh->b_state, bh->b_size, bdev,
 240                       1 << bd_inode->i_blkbits);
 241        }
 242out_unlock:
 243        spin_unlock(&bd_mapping->private_lock);
 244        put_page(page);
 245out:
 246        return ret;
 247}
 248
 249/*
 250 * I/O completion handler for block_read_full_page() - pages
 251 * which come unlocked at the end of I/O.
 252 */
 253static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 254{
 255        unsigned long flags;
 256        struct buffer_head *first;
 257        struct buffer_head *tmp;
 258        struct page *page;
 259        int page_uptodate = 1;
 260
 261        BUG_ON(!buffer_async_read(bh));
 262
 263        page = bh->b_page;
 264        if (uptodate) {
 265                set_buffer_uptodate(bh);
 266        } else {
 267                clear_buffer_uptodate(bh);
 268                buffer_io_error(bh, ", async page read");
 269                SetPageError(page);
 270        }
 271
 272        /*
 273         * Be _very_ careful from here on. Bad things can happen if
 274         * two buffer heads end IO at almost the same time and both
 275         * decide that the page is now completely done.
 276         */
 277        first = page_buffers(page);
 278        local_irq_save(flags);
 279        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 280        clear_buffer_async_read(bh);
 281        unlock_buffer(bh);
 282        tmp = bh;
 283        do {
 284                if (!buffer_uptodate(tmp))
 285                        page_uptodate = 0;
 286                if (buffer_async_read(tmp)) {
 287                        BUG_ON(!buffer_locked(tmp));
 288                        goto still_busy;
 289                }
 290                tmp = tmp->b_this_page;
 291        } while (tmp != bh);
 292        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 293        local_irq_restore(flags);
 294
 295        /*
 296         * If none of the buffers had errors and they are all
 297         * uptodate then we can set the page uptodate.
 298         */
 299        if (page_uptodate && !PageError(page))
 300                SetPageUptodate(page);
 301        unlock_page(page);
 302        return;
 303
 304still_busy:
 305        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 306        local_irq_restore(flags);
 307        return;
 308}
 309
 310/*
 311 * Completion handler for block_write_full_page() - pages which are unlocked
 312 * during I/O, and which have PageWriteback cleared upon I/O completion.
 313 */
 314void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 315{
 316        unsigned long flags;
 317        struct buffer_head *first;
 318        struct buffer_head *tmp;
 319        struct page *page;
 320
 321        BUG_ON(!buffer_async_write(bh));
 322
 323        page = bh->b_page;
 324        if (uptodate) {
 325                set_buffer_uptodate(bh);
 326        } else {
 327                buffer_io_error(bh, ", lost async page write");
 328                mark_buffer_write_io_error(bh);
 329                clear_buffer_uptodate(bh);
 330                SetPageError(page);
 331        }
 332
 333        first = page_buffers(page);
 334        local_irq_save(flags);
 335        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 336
 337        clear_buffer_async_write(bh);
 338        unlock_buffer(bh);
 339        tmp = bh->b_this_page;
 340        while (tmp != bh) {
 341                if (buffer_async_write(tmp)) {
 342                        BUG_ON(!buffer_locked(tmp));
 343                        goto still_busy;
 344                }
 345                tmp = tmp->b_this_page;
 346        }
 347        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 348        local_irq_restore(flags);
 349        end_page_writeback(page);
 350        return;
 351
 352still_busy:
 353        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 354        local_irq_restore(flags);
 355        return;
 356}
 357EXPORT_SYMBOL(end_buffer_async_write);
 358
 359/*
 360 * If a page's buffers are under async readin (end_buffer_async_read
 361 * completion) then there is a possibility that another thread of
 362 * control could lock one of the buffers after it has completed
 363 * but while some of the other buffers have not completed.  This
 364 * locked buffer would confuse end_buffer_async_read() into not unlocking
 365 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 366 * that this buffer is not under async I/O.
 367 *
 368 * The page comes unlocked when it has no locked buffer_async buffers
 369 * left.
 370 *
 371 * PageLocked prevents anyone starting new async I/O reads any of
 372 * the buffers.
 373 *
 374 * PageWriteback is used to prevent simultaneous writeout of the same
 375 * page.
 376 *
 377 * PageLocked prevents anyone from starting writeback of a page which is
 378 * under read I/O (PageWriteback is only ever set against a locked page).
 379 */
 380static void mark_buffer_async_read(struct buffer_head *bh)
 381{
 382        bh->b_end_io = end_buffer_async_read;
 383        set_buffer_async_read(bh);
 384}
 385
 386static void mark_buffer_async_write_endio(struct buffer_head *bh,
 387                                          bh_end_io_t *handler)
 388{
 389        bh->b_end_io = handler;
 390        set_buffer_async_write(bh);
 391}
 392
 393void mark_buffer_async_write(struct buffer_head *bh)
 394{
 395        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 396}
 397EXPORT_SYMBOL(mark_buffer_async_write);
 398
 399
 400/*
 401 * fs/buffer.c contains helper functions for buffer-backed address space's
 402 * fsync functions.  A common requirement for buffer-based filesystems is
 403 * that certain data from the backing blockdev needs to be written out for
 404 * a successful fsync().  For example, ext2 indirect blocks need to be
 405 * written back and waited upon before fsync() returns.
 406 *
 407 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 408 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 409 * management of a list of dependent buffers at ->i_mapping->private_list.
 410 *
 411 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 412 * from their controlling inode's queue when they are being freed.  But
 413 * try_to_free_buffers() will be operating against the *blockdev* mapping
 414 * at the time, not against the S_ISREG file which depends on those buffers.
 415 * So the locking for private_list is via the private_lock in the address_space
 416 * which backs the buffers.  Which is different from the address_space 
 417 * against which the buffers are listed.  So for a particular address_space,
 418 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 419 * mapping->private_list will always be protected by the backing blockdev's
 420 * ->private_lock.
 421 *
 422 * Which introduces a requirement: all buffers on an address_space's
 423 * ->private_list must be from the same address_space: the blockdev's.
 424 *
 425 * address_spaces which do not place buffers at ->private_list via these
 426 * utility functions are free to use private_lock and private_list for
 427 * whatever they want.  The only requirement is that list_empty(private_list)
 428 * be true at clear_inode() time.
 429 *
 430 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 431 * filesystems should do that.  invalidate_inode_buffers() should just go
 432 * BUG_ON(!list_empty).
 433 *
 434 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 435 * take an address_space, not an inode.  And it should be called
 436 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 437 * queued up.
 438 *
 439 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 440 * list if it is already on a list.  Because if the buffer is on a list,
 441 * it *must* already be on the right one.  If not, the filesystem is being
 442 * silly.  This will save a ton of locking.  But first we have to ensure
 443 * that buffers are taken *off* the old inode's list when they are freed
 444 * (presumably in truncate).  That requires careful auditing of all
 445 * filesystems (do it inside bforget()).  It could also be done by bringing
 446 * b_inode back.
 447 */
 448
 449/*
 450 * The buffer's backing address_space's private_lock must be held
 451 */
 452static void __remove_assoc_queue(struct buffer_head *bh)
 453{
 454        list_del_init(&bh->b_assoc_buffers);
 455        WARN_ON(!bh->b_assoc_map);
 456        bh->b_assoc_map = NULL;
 457}
 458
 459int inode_has_buffers(struct inode *inode)
 460{
 461        return !list_empty(&inode->i_data.private_list);
 462}
 463
 464/*
 465 * osync is designed to support O_SYNC io.  It waits synchronously for
 466 * all already-submitted IO to complete, but does not queue any new
 467 * writes to the disk.
 468 *
 469 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 470 * you dirty the buffers, and then use osync_inode_buffers to wait for
 471 * completion.  Any other dirty buffers which are not yet queued for
 472 * write will not be flushed to disk by the osync.
 473 */
 474static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 475{
 476        struct buffer_head *bh;
 477        struct list_head *p;
 478        int err = 0;
 479
 480        spin_lock(lock);
 481repeat:
 482        list_for_each_prev(p, list) {
 483                bh = BH_ENTRY(p);
 484                if (buffer_locked(bh)) {
 485                        get_bh(bh);
 486                        spin_unlock(lock);
 487                        wait_on_buffer(bh);
 488                        if (!buffer_uptodate(bh))
 489                                err = -EIO;
 490                        brelse(bh);
 491                        spin_lock(lock);
 492                        goto repeat;
 493                }
 494        }
 495        spin_unlock(lock);
 496        return err;
 497}
 498
 499void emergency_thaw_bdev(struct super_block *sb)
 500{
 501        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 502                printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 503}
 504
 505/**
 506 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 507 * @mapping: the mapping which wants those buffers written
 508 *
 509 * Starts I/O against the buffers at mapping->private_list, and waits upon
 510 * that I/O.
 511 *
 512 * Basically, this is a convenience function for fsync().
 513 * @mapping is a file or directory which needs those buffers to be written for
 514 * a successful fsync().
 515 */
 516int sync_mapping_buffers(struct address_space *mapping)
 517{
 518        struct address_space *buffer_mapping = mapping->private_data;
 519
 520        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 521                return 0;
 522
 523        return fsync_buffers_list(&buffer_mapping->private_lock,
 524                                        &mapping->private_list);
 525}
 526EXPORT_SYMBOL(sync_mapping_buffers);
 527
 528/*
 529 * Called when we've recently written block `bblock', and it is known that
 530 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 531 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 532 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 533 */
 534void write_boundary_block(struct block_device *bdev,
 535                        sector_t bblock, unsigned blocksize)
 536{
 537        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 538        if (bh) {
 539                if (buffer_dirty(bh))
 540                        ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 541                put_bh(bh);
 542        }
 543}
 544
 545void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 546{
 547        struct address_space *mapping = inode->i_mapping;
 548        struct address_space *buffer_mapping = bh->b_page->mapping;
 549
 550        mark_buffer_dirty(bh);
 551        if (!mapping->private_data) {
 552                mapping->private_data = buffer_mapping;
 553        } else {
 554                BUG_ON(mapping->private_data != buffer_mapping);
 555        }
 556        if (!bh->b_assoc_map) {
 557                spin_lock(&buffer_mapping->private_lock);
 558                list_move_tail(&bh->b_assoc_buffers,
 559                                &mapping->private_list);
 560                bh->b_assoc_map = mapping;
 561                spin_unlock(&buffer_mapping->private_lock);
 562        }
 563}
 564EXPORT_SYMBOL(mark_buffer_dirty_inode);
 565
 566/*
 567 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
 568 * dirty.
 569 *
 570 * If warn is true, then emit a warning if the page is not uptodate and has
 571 * not been truncated.
 572 *
 573 * The caller must hold lock_page_memcg().
 574 */
 575void __set_page_dirty(struct page *page, struct address_space *mapping,
 576                             int warn)
 577{
 578        unsigned long flags;
 579
 580        xa_lock_irqsave(&mapping->i_pages, flags);
 581        if (page->mapping) {    /* Race with truncate? */
 582                WARN_ON_ONCE(warn && !PageUptodate(page));
 583                account_page_dirtied(page, mapping);
 584                __xa_set_mark(&mapping->i_pages, page_index(page),
 585                                PAGECACHE_TAG_DIRTY);
 586        }
 587        xa_unlock_irqrestore(&mapping->i_pages, flags);
 588}
 589EXPORT_SYMBOL_GPL(__set_page_dirty);
 590
 591/*
 592 * Add a page to the dirty page list.
 593 *
 594 * It is a sad fact of life that this function is called from several places
 595 * deeply under spinlocking.  It may not sleep.
 596 *
 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 598 * dirty-state coherency between the page and the buffers.  It the page does
 599 * not have buffers then when they are later attached they will all be set
 600 * dirty.
 601 *
 602 * The buffers are dirtied before the page is dirtied.  There's a small race
 603 * window in which a writepage caller may see the page cleanness but not the
 604 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 605 * before the buffers, a concurrent writepage caller could clear the page dirty
 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 607 * page on the dirty page list.
 608 *
 609 * We use private_lock to lock against try_to_free_buffers while using the
 610 * page's buffer list.  Also use this to protect against clean buffers being
 611 * added to the page after it was set dirty.
 612 *
 613 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 614 * address_space though.
 615 */
 616int __set_page_dirty_buffers(struct page *page)
 617{
 618        int newly_dirty;
 619        struct address_space *mapping = page_mapping(page);
 620
 621        if (unlikely(!mapping))
 622                return !TestSetPageDirty(page);
 623
 624        spin_lock(&mapping->private_lock);
 625        if (page_has_buffers(page)) {
 626                struct buffer_head *head = page_buffers(page);
 627                struct buffer_head *bh = head;
 628
 629                do {
 630                        set_buffer_dirty(bh);
 631                        bh = bh->b_this_page;
 632                } while (bh != head);
 633        }
 634        /*
 635         * Lock out page->mem_cgroup migration to keep PageDirty
 636         * synchronized with per-memcg dirty page counters.
 637         */
 638        lock_page_memcg(page);
 639        newly_dirty = !TestSetPageDirty(page);
 640        spin_unlock(&mapping->private_lock);
 641
 642        if (newly_dirty)
 643                __set_page_dirty(page, mapping, 1);
 644
 645        unlock_page_memcg(page);
 646
 647        if (newly_dirty)
 648                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 649
 650        return newly_dirty;
 651}
 652EXPORT_SYMBOL(__set_page_dirty_buffers);
 653
 654/*
 655 * Write out and wait upon a list of buffers.
 656 *
 657 * We have conflicting pressures: we want to make sure that all
 658 * initially dirty buffers get waited on, but that any subsequently
 659 * dirtied buffers don't.  After all, we don't want fsync to last
 660 * forever if somebody is actively writing to the file.
 661 *
 662 * Do this in two main stages: first we copy dirty buffers to a
 663 * temporary inode list, queueing the writes as we go.  Then we clean
 664 * up, waiting for those writes to complete.
 665 * 
 666 * During this second stage, any subsequent updates to the file may end
 667 * up refiling the buffer on the original inode's dirty list again, so
 668 * there is a chance we will end up with a buffer queued for write but
 669 * not yet completed on that list.  So, as a final cleanup we go through
 670 * the osync code to catch these locked, dirty buffers without requeuing
 671 * any newly dirty buffers for write.
 672 */
 673static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 674{
 675        struct buffer_head *bh;
 676        struct list_head tmp;
 677        struct address_space *mapping;
 678        int err = 0, err2;
 679        struct blk_plug plug;
 680
 681        INIT_LIST_HEAD(&tmp);
 682        blk_start_plug(&plug);
 683
 684        spin_lock(lock);
 685        while (!list_empty(list)) {
 686                bh = BH_ENTRY(list->next);
 687                mapping = bh->b_assoc_map;
 688                __remove_assoc_queue(bh);
 689                /* Avoid race with mark_buffer_dirty_inode() which does
 690                 * a lockless check and we rely on seeing the dirty bit */
 691                smp_mb();
 692                if (buffer_dirty(bh) || buffer_locked(bh)) {
 693                        list_add(&bh->b_assoc_buffers, &tmp);
 694                        bh->b_assoc_map = mapping;
 695                        if (buffer_dirty(bh)) {
 696                                get_bh(bh);
 697                                spin_unlock(lock);
 698                                /*
 699                                 * Ensure any pending I/O completes so that
 700                                 * write_dirty_buffer() actually writes the
 701                                 * current contents - it is a noop if I/O is
 702                                 * still in flight on potentially older
 703                                 * contents.
 704                                 */
 705                                write_dirty_buffer(bh, REQ_SYNC);
 706
 707                                /*
 708                                 * Kick off IO for the previous mapping. Note
 709                                 * that we will not run the very last mapping,
 710                                 * wait_on_buffer() will do that for us
 711                                 * through sync_buffer().
 712                                 */
 713                                brelse(bh);
 714                                spin_lock(lock);
 715                        }
 716                }
 717        }
 718
 719        spin_unlock(lock);
 720        blk_finish_plug(&plug);
 721        spin_lock(lock);
 722
 723        while (!list_empty(&tmp)) {
 724                bh = BH_ENTRY(tmp.prev);
 725                get_bh(bh);
 726                mapping = bh->b_assoc_map;
 727                __remove_assoc_queue(bh);
 728                /* Avoid race with mark_buffer_dirty_inode() which does
 729                 * a lockless check and we rely on seeing the dirty bit */
 730                smp_mb();
 731                if (buffer_dirty(bh)) {
 732                        list_add(&bh->b_assoc_buffers,
 733                                 &mapping->private_list);
 734                        bh->b_assoc_map = mapping;
 735                }
 736                spin_unlock(lock);
 737                wait_on_buffer(bh);
 738                if (!buffer_uptodate(bh))
 739                        err = -EIO;
 740                brelse(bh);
 741                spin_lock(lock);
 742        }
 743        
 744        spin_unlock(lock);
 745        err2 = osync_buffers_list(lock, list);
 746        if (err)
 747                return err;
 748        else
 749                return err2;
 750}
 751
 752/*
 753 * Invalidate any and all dirty buffers on a given inode.  We are
 754 * probably unmounting the fs, but that doesn't mean we have already
 755 * done a sync().  Just drop the buffers from the inode list.
 756 *
 757 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 758 * assumes that all the buffers are against the blockdev.  Not true
 759 * for reiserfs.
 760 */
 761void invalidate_inode_buffers(struct inode *inode)
 762{
 763        if (inode_has_buffers(inode)) {
 764                struct address_space *mapping = &inode->i_data;
 765                struct list_head *list = &mapping->private_list;
 766                struct address_space *buffer_mapping = mapping->private_data;
 767
 768                spin_lock(&buffer_mapping->private_lock);
 769                while (!list_empty(list))
 770                        __remove_assoc_queue(BH_ENTRY(list->next));
 771                spin_unlock(&buffer_mapping->private_lock);
 772        }
 773}
 774EXPORT_SYMBOL(invalidate_inode_buffers);
 775
 776/*
 777 * Remove any clean buffers from the inode's buffer list.  This is called
 778 * when we're trying to free the inode itself.  Those buffers can pin it.
 779 *
 780 * Returns true if all buffers were removed.
 781 */
 782int remove_inode_buffers(struct inode *inode)
 783{
 784        int ret = 1;
 785
 786        if (inode_has_buffers(inode)) {
 787                struct address_space *mapping = &inode->i_data;
 788                struct list_head *list = &mapping->private_list;
 789                struct address_space *buffer_mapping = mapping->private_data;
 790
 791                spin_lock(&buffer_mapping->private_lock);
 792                while (!list_empty(list)) {
 793                        struct buffer_head *bh = BH_ENTRY(list->next);
 794                        if (buffer_dirty(bh)) {
 795                                ret = 0;
 796                                break;
 797                        }
 798                        __remove_assoc_queue(bh);
 799                }
 800                spin_unlock(&buffer_mapping->private_lock);
 801        }
 802        return ret;
 803}
 804
 805/*
 806 * Create the appropriate buffers when given a page for data area and
 807 * the size of each buffer.. Use the bh->b_this_page linked list to
 808 * follow the buffers created.  Return NULL if unable to create more
 809 * buffers.
 810 *
 811 * The retry flag is used to differentiate async IO (paging, swapping)
 812 * which may not fail from ordinary buffer allocations.
 813 */
 814struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 815                bool retry)
 816{
 817        struct buffer_head *bh, *head;
 818        gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 819        long offset;
 820        struct mem_cgroup *memcg;
 821
 822        if (retry)
 823                gfp |= __GFP_NOFAIL;
 824
 825        memcg = get_mem_cgroup_from_page(page);
 826        memalloc_use_memcg(memcg);
 827
 828        head = NULL;
 829        offset = PAGE_SIZE;
 830        while ((offset -= size) >= 0) {
 831                bh = alloc_buffer_head(gfp);
 832                if (!bh)
 833                        goto no_grow;
 834
 835                bh->b_this_page = head;
 836                bh->b_blocknr = -1;
 837                head = bh;
 838
 839                bh->b_size = size;
 840
 841                /* Link the buffer to its page */
 842                set_bh_page(bh, page, offset);
 843        }
 844out:
 845        memalloc_unuse_memcg();
 846        mem_cgroup_put(memcg);
 847        return head;
 848/*
 849 * In case anything failed, we just free everything we got.
 850 */
 851no_grow:
 852        if (head) {
 853                do {
 854                        bh = head;
 855                        head = head->b_this_page;
 856                        free_buffer_head(bh);
 857                } while (head);
 858        }
 859
 860        goto out;
 861}
 862EXPORT_SYMBOL_GPL(alloc_page_buffers);
 863
 864static inline void
 865link_dev_buffers(struct page *page, struct buffer_head *head)
 866{
 867        struct buffer_head *bh, *tail;
 868
 869        bh = head;
 870        do {
 871                tail = bh;
 872                bh = bh->b_this_page;
 873        } while (bh);
 874        tail->b_this_page = head;
 875        attach_page_buffers(page, head);
 876}
 877
 878static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 879{
 880        sector_t retval = ~((sector_t)0);
 881        loff_t sz = i_size_read(bdev->bd_inode);
 882
 883        if (sz) {
 884                unsigned int sizebits = blksize_bits(size);
 885                retval = (sz >> sizebits);
 886        }
 887        return retval;
 888}
 889
 890/*
 891 * Initialise the state of a blockdev page's buffers.
 892 */ 
 893static sector_t
 894init_page_buffers(struct page *page, struct block_device *bdev,
 895                        sector_t block, int size)
 896{
 897        struct buffer_head *head = page_buffers(page);
 898        struct buffer_head *bh = head;
 899        int uptodate = PageUptodate(page);
 900        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 901
 902        do {
 903                if (!buffer_mapped(bh)) {
 904                        bh->b_end_io = NULL;
 905                        bh->b_private = NULL;
 906                        bh->b_bdev = bdev;
 907                        bh->b_blocknr = block;
 908                        if (uptodate)
 909                                set_buffer_uptodate(bh);
 910                        if (block < end_block)
 911                                set_buffer_mapped(bh);
 912                }
 913                block++;
 914                bh = bh->b_this_page;
 915        } while (bh != head);
 916
 917        /*
 918         * Caller needs to validate requested block against end of device.
 919         */
 920        return end_block;
 921}
 922
 923/*
 924 * Create the page-cache page that contains the requested block.
 925 *
 926 * This is used purely for blockdev mappings.
 927 */
 928static int
 929grow_dev_page(struct block_device *bdev, sector_t block,
 930              pgoff_t index, int size, int sizebits, gfp_t gfp)
 931{
 932        struct inode *inode = bdev->bd_inode;
 933        struct page *page;
 934        struct buffer_head *bh;
 935        sector_t end_block;
 936        int ret = 0;            /* Will call free_more_memory() */
 937        gfp_t gfp_mask;
 938
 939        gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 940
 941        /*
 942         * XXX: __getblk_slow() can not really deal with failure and
 943         * will endlessly loop on improvised global reclaim.  Prefer
 944         * looping in the allocator rather than here, at least that
 945         * code knows what it's doing.
 946         */
 947        gfp_mask |= __GFP_NOFAIL;
 948
 949        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 950
 951        BUG_ON(!PageLocked(page));
 952
 953        if (page_has_buffers(page)) {
 954                bh = page_buffers(page);
 955                if (bh->b_size == size) {
 956                        end_block = init_page_buffers(page, bdev,
 957                                                (sector_t)index << sizebits,
 958                                                size);
 959                        goto done;
 960                }
 961                if (!try_to_free_buffers(page))
 962                        goto failed;
 963        }
 964
 965        /*
 966         * Allocate some buffers for this page
 967         */
 968        bh = alloc_page_buffers(page, size, true);
 969
 970        /*
 971         * Link the page to the buffers and initialise them.  Take the
 972         * lock to be atomic wrt __find_get_block(), which does not
 973         * run under the page lock.
 974         */
 975        spin_lock(&inode->i_mapping->private_lock);
 976        link_dev_buffers(page, bh);
 977        end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 978                        size);
 979        spin_unlock(&inode->i_mapping->private_lock);
 980done:
 981        ret = (block < end_block) ? 1 : -ENXIO;
 982failed:
 983        unlock_page(page);
 984        put_page(page);
 985        return ret;
 986}
 987
 988/*
 989 * Create buffers for the specified block device block's page.  If
 990 * that page was dirty, the buffers are set dirty also.
 991 */
 992static int
 993grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 994{
 995        pgoff_t index;
 996        int sizebits;
 997
 998        sizebits = -1;
 999        do {
1000                sizebits++;
1001        } while ((size << sizebits) < PAGE_SIZE);
1002
1003        index = block >> sizebits;
1004
1005        /*
1006         * Check for a block which wants to lie outside our maximum possible
1007         * pagecache index.  (this comparison is done using sector_t types).
1008         */
1009        if (unlikely(index != block >> sizebits)) {
1010                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1011                        "device %pg\n",
1012                        __func__, (unsigned long long)block,
1013                        bdev);
1014                return -EIO;
1015        }
1016
1017        /* Create a page with the proper size buffers.. */
1018        return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1019}
1020
1021static struct buffer_head *
1022__getblk_slow(struct block_device *bdev, sector_t block,
1023             unsigned size, gfp_t gfp)
1024{
1025        /* Size must be multiple of hard sectorsize */
1026        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1027                        (size < 512 || size > PAGE_SIZE))) {
1028                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029                                        size);
1030                printk(KERN_ERR "logical block size: %d\n",
1031                                        bdev_logical_block_size(bdev));
1032
1033                dump_stack();
1034                return NULL;
1035        }
1036
1037        for (;;) {
1038                struct buffer_head *bh;
1039                int ret;
1040
1041                bh = __find_get_block(bdev, block, size);
1042                if (bh)
1043                        return bh;
1044
1045                ret = grow_buffers(bdev, block, size, gfp);
1046                if (ret < 0)
1047                        return NULL;
1048        }
1049}
1050
1051/*
1052 * The relationship between dirty buffers and dirty pages:
1053 *
1054 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1055 * the page is tagged dirty in the page cache.
1056 *
1057 * At all times, the dirtiness of the buffers represents the dirtiness of
1058 * subsections of the page.  If the page has buffers, the page dirty bit is
1059 * merely a hint about the true dirty state.
1060 *
1061 * When a page is set dirty in its entirety, all its buffers are marked dirty
1062 * (if the page has buffers).
1063 *
1064 * When a buffer is marked dirty, its page is dirtied, but the page's other
1065 * buffers are not.
1066 *
1067 * Also.  When blockdev buffers are explicitly read with bread(), they
1068 * individually become uptodate.  But their backing page remains not
1069 * uptodate - even if all of its buffers are uptodate.  A subsequent
1070 * block_read_full_page() against that page will discover all the uptodate
1071 * buffers, will set the page uptodate and will perform no I/O.
1072 */
1073
1074/**
1075 * mark_buffer_dirty - mark a buffer_head as needing writeout
1076 * @bh: the buffer_head to mark dirty
1077 *
1078 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079 * its backing page dirty, then tag the page as dirty in the page cache
1080 * and then attach the address_space's inode to its superblock's dirty
1081 * inode list.
1082 *
1083 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1084 * i_pages lock and mapping->host->i_lock.
1085 */
1086void mark_buffer_dirty(struct buffer_head *bh)
1087{
1088        WARN_ON_ONCE(!buffer_uptodate(bh));
1089
1090        trace_block_dirty_buffer(bh);
1091
1092        /*
1093         * Very *carefully* optimize the it-is-already-dirty case.
1094         *
1095         * Don't let the final "is it dirty" escape to before we
1096         * perhaps modified the buffer.
1097         */
1098        if (buffer_dirty(bh)) {
1099                smp_mb();
1100                if (buffer_dirty(bh))
1101                        return;
1102        }
1103
1104        if (!test_set_buffer_dirty(bh)) {
1105                struct page *page = bh->b_page;
1106                struct address_space *mapping = NULL;
1107
1108                lock_page_memcg(page);
1109                if (!TestSetPageDirty(page)) {
1110                        mapping = page_mapping(page);
1111                        if (mapping)
1112                                __set_page_dirty(page, mapping, 0);
1113                }
1114                unlock_page_memcg(page);
1115                if (mapping)
1116                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1117        }
1118}
1119EXPORT_SYMBOL(mark_buffer_dirty);
1120
1121void mark_buffer_write_io_error(struct buffer_head *bh)
1122{
1123        set_buffer_write_io_error(bh);
1124        /* FIXME: do we need to set this in both places? */
1125        if (bh->b_page && bh->b_page->mapping)
1126                mapping_set_error(bh->b_page->mapping, -EIO);
1127        if (bh->b_assoc_map)
1128                mapping_set_error(bh->b_assoc_map, -EIO);
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132/*
1133 * Decrement a buffer_head's reference count.  If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141        if (atomic_read(&buf->b_count)) {
1142                put_bh(buf);
1143                return;
1144        }
1145        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146}
1147EXPORT_SYMBOL(__brelse);
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155        clear_buffer_dirty(bh);
1156        if (bh->b_assoc_map) {
1157                struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159                spin_lock(&buffer_mapping->private_lock);
1160                list_del_init(&bh->b_assoc_buffers);
1161                bh->b_assoc_map = NULL;
1162                spin_unlock(&buffer_mapping->private_lock);
1163        }
1164        __brelse(bh);
1165}
1166EXPORT_SYMBOL(__bforget);
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170        lock_buffer(bh);
1171        if (buffer_uptodate(bh)) {
1172                unlock_buffer(bh);
1173                return bh;
1174        } else {
1175                get_bh(bh);
1176                bh->b_end_io = end_buffer_read_sync;
1177                submit_bh(REQ_OP_READ, 0, bh);
1178                wait_on_buffer(bh);
1179                if (buffer_uptodate(bh))
1180                        return bh;
1181        }
1182        brelse(bh);
1183        return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197 * a local interrupt disable for that.
1198 */
1199
1200#define BH_LRU_SIZE     16
1201
1202struct bh_lru {
1203        struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock()   local_irq_disable()
1210#define bh_lru_unlock() local_irq_enable()
1211#else
1212#define bh_lru_lock()   preempt_disable()
1213#define bh_lru_unlock() preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219        BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
1224 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
1230        struct buffer_head *evictee = bh;
1231        struct bh_lru *b;
1232        int i;
1233
1234        check_irqs_on();
1235        bh_lru_lock();
1236
1237        b = this_cpu_ptr(&bh_lrus);
1238        for (i = 0; i < BH_LRU_SIZE; i++) {
1239                swap(evictee, b->bhs[i]);
1240                if (evictee == bh) {
1241                        bh_lru_unlock();
1242                        return;
1243                }
1244        }
1245
1246        get_bh(bh);
1247        bh_lru_unlock();
1248        brelse(evictee);
1249}
1250
1251/*
1252 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1253 */
1254static struct buffer_head *
1255lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1256{
1257        struct buffer_head *ret = NULL;
1258        unsigned int i;
1259
1260        check_irqs_on();
1261        bh_lru_lock();
1262        for (i = 0; i < BH_LRU_SIZE; i++) {
1263                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1264
1265                if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266                    bh->b_size == size) {
1267                        if (i) {
1268                                while (i) {
1269                                        __this_cpu_write(bh_lrus.bhs[i],
1270                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1271                                        i--;
1272                                }
1273                                __this_cpu_write(bh_lrus.bhs[0], bh);
1274                        }
1275                        get_bh(bh);
1276                        ret = bh;
1277                        break;
1278                }
1279        }
1280        bh_lru_unlock();
1281        return ret;
1282}
1283
1284/*
1285 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1286 * it in the LRU and mark it as accessed.  If it is not present then return
1287 * NULL
1288 */
1289struct buffer_head *
1290__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1291{
1292        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293
1294        if (bh == NULL) {
1295                /* __find_get_block_slow will mark the page accessed */
1296                bh = __find_get_block_slow(bdev, block);
1297                if (bh)
1298                        bh_lru_install(bh);
1299        } else
1300                touch_buffer(bh);
1301
1302        return bh;
1303}
1304EXPORT_SYMBOL(__find_get_block);
1305
1306/*
1307 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1308 * which corresponds to the passed block_device, block and size. The
1309 * returned buffer has its reference count incremented.
1310 *
1311 * __getblk_gfp() will lock up the machine if grow_dev_page's
1312 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1313 */
1314struct buffer_head *
1315__getblk_gfp(struct block_device *bdev, sector_t block,
1316             unsigned size, gfp_t gfp)
1317{
1318        struct buffer_head *bh = __find_get_block(bdev, block, size);
1319
1320        might_sleep();
1321        if (bh == NULL)
1322                bh = __getblk_slow(bdev, block, size, gfp);
1323        return bh;
1324}
1325EXPORT_SYMBOL(__getblk_gfp);
1326
1327/*
1328 * Do async read-ahead on a buffer..
1329 */
1330void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1331{
1332        struct buffer_head *bh = __getblk(bdev, block, size);
1333        if (likely(bh)) {
1334                ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1335                brelse(bh);
1336        }
1337}
1338EXPORT_SYMBOL(__breadahead);
1339
1340/**
1341 *  __bread_gfp() - reads a specified block and returns the bh
1342 *  @bdev: the block_device to read from
1343 *  @block: number of block
1344 *  @size: size (in bytes) to read
1345 *  @gfp: page allocation flag
1346 *
1347 *  Reads a specified block, and returns buffer head that contains it.
1348 *  The page cache can be allocated from non-movable area
1349 *  not to prevent page migration if you set gfp to zero.
1350 *  It returns NULL if the block was unreadable.
1351 */
1352struct buffer_head *
1353__bread_gfp(struct block_device *bdev, sector_t block,
1354                   unsigned size, gfp_t gfp)
1355{
1356        struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1357
1358        if (likely(bh) && !buffer_uptodate(bh))
1359                bh = __bread_slow(bh);
1360        return bh;
1361}
1362EXPORT_SYMBOL(__bread_gfp);
1363
1364/*
1365 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366 * This doesn't race because it runs in each cpu either in irq
1367 * or with preempt disabled.
1368 */
1369static void invalidate_bh_lru(void *arg)
1370{
1371        struct bh_lru *b = &get_cpu_var(bh_lrus);
1372        int i;
1373
1374        for (i = 0; i < BH_LRU_SIZE; i++) {
1375                brelse(b->bhs[i]);
1376                b->bhs[i] = NULL;
1377        }
1378        put_cpu_var(bh_lrus);
1379}
1380
1381static bool has_bh_in_lru(int cpu, void *dummy)
1382{
1383        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1384        int i;
1385        
1386        for (i = 0; i < BH_LRU_SIZE; i++) {
1387                if (b->bhs[i])
1388                        return 1;
1389        }
1390
1391        return 0;
1392}
1393
1394void invalidate_bh_lrus(void)
1395{
1396        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1397}
1398EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1399
1400void set_bh_page(struct buffer_head *bh,
1401                struct page *page, unsigned long offset)
1402{
1403        bh->b_page = page;
1404        BUG_ON(offset >= PAGE_SIZE);
1405        if (PageHighMem(page))
1406                /*
1407                 * This catches illegal uses and preserves the offset:
1408                 */
1409                bh->b_data = (char *)(0 + offset);
1410        else
1411                bh->b_data = page_address(page) + offset;
1412}
1413EXPORT_SYMBOL(set_bh_page);
1414
1415/*
1416 * Called when truncating a buffer on a page completely.
1417 */
1418
1419/* Bits that are cleared during an invalidate */
1420#define BUFFER_FLAGS_DISCARD \
1421        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1422         1 << BH_Delay | 1 << BH_Unwritten)
1423
1424static void discard_buffer(struct buffer_head * bh)
1425{
1426        unsigned long b_state, b_state_old;
1427
1428        lock_buffer(bh);
1429        clear_buffer_dirty(bh);
1430        bh->b_bdev = NULL;
1431        b_state = bh->b_state;
1432        for (;;) {
1433                b_state_old = cmpxchg(&bh->b_state, b_state,
1434                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1435                if (b_state_old == b_state)
1436                        break;
1437                b_state = b_state_old;
1438        }
1439        unlock_buffer(bh);
1440}
1441
1442/**
1443 * block_invalidatepage - invalidate part or all of a buffer-backed page
1444 *
1445 * @page: the page which is affected
1446 * @offset: start of the range to invalidate
1447 * @length: length of the range to invalidate
1448 *
1449 * block_invalidatepage() is called when all or part of the page has become
1450 * invalidated by a truncate operation.
1451 *
1452 * block_invalidatepage() does not have to release all buffers, but it must
1453 * ensure that no dirty buffer is left outside @offset and that no I/O
1454 * is underway against any of the blocks which are outside the truncation
1455 * point.  Because the caller is about to free (and possibly reuse) those
1456 * blocks on-disk.
1457 */
1458void block_invalidatepage(struct page *page, unsigned int offset,
1459                          unsigned int length)
1460{
1461        struct buffer_head *head, *bh, *next;
1462        unsigned int curr_off = 0;
1463        unsigned int stop = length + offset;
1464
1465        BUG_ON(!PageLocked(page));
1466        if (!page_has_buffers(page))
1467                goto out;
1468
1469        /*
1470         * Check for overflow
1471         */
1472        BUG_ON(stop > PAGE_SIZE || stop < length);
1473
1474        head = page_buffers(page);
1475        bh = head;
1476        do {
1477                unsigned int next_off = curr_off + bh->b_size;
1478                next = bh->b_this_page;
1479
1480                /*
1481                 * Are we still fully in range ?
1482                 */
1483                if (next_off > stop)
1484                        goto out;
1485
1486                /*
1487                 * is this block fully invalidated?
1488                 */
1489                if (offset <= curr_off)
1490                        discard_buffer(bh);
1491                curr_off = next_off;
1492                bh = next;
1493        } while (bh != head);
1494
1495        /*
1496         * We release buffers only if the entire page is being invalidated.
1497         * The get_block cached value has been unconditionally invalidated,
1498         * so real IO is not possible anymore.
1499         */
1500        if (length == PAGE_SIZE)
1501                try_to_release_page(page, 0);
1502out:
1503        return;
1504}
1505EXPORT_SYMBOL(block_invalidatepage);
1506
1507
1508/*
1509 * We attach and possibly dirty the buffers atomically wrt
1510 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1511 * is already excluded via the page lock.
1512 */
1513void create_empty_buffers(struct page *page,
1514                        unsigned long blocksize, unsigned long b_state)
1515{
1516        struct buffer_head *bh, *head, *tail;
1517
1518        head = alloc_page_buffers(page, blocksize, true);
1519        bh = head;
1520        do {
1521                bh->b_state |= b_state;
1522                tail = bh;
1523                bh = bh->b_this_page;
1524        } while (bh);
1525        tail->b_this_page = head;
1526
1527        spin_lock(&page->mapping->private_lock);
1528        if (PageUptodate(page) || PageDirty(page)) {
1529                bh = head;
1530                do {
1531                        if (PageDirty(page))
1532                                set_buffer_dirty(bh);
1533                        if (PageUptodate(page))
1534                                set_buffer_uptodate(bh);
1535                        bh = bh->b_this_page;
1536                } while (bh != head);
1537        }
1538        attach_page_buffers(page, head);
1539        spin_unlock(&page->mapping->private_lock);
1540}
1541EXPORT_SYMBOL(create_empty_buffers);
1542
1543/**
1544 * clean_bdev_aliases: clean a range of buffers in block device
1545 * @bdev: Block device to clean buffers in
1546 * @block: Start of a range of blocks to clean
1547 * @len: Number of blocks to clean
1548 *
1549 * We are taking a range of blocks for data and we don't want writeback of any
1550 * buffer-cache aliases starting from return from this function and until the
1551 * moment when something will explicitly mark the buffer dirty (hopefully that
1552 * will not happen until we will free that block ;-) We don't even need to mark
1553 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1554 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1555 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1556 * would confuse anyone who might pick it with bread() afterwards...
1557 *
1558 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1559 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1560 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1561 * need to.  That happens here.
1562 */
1563void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1564{
1565        struct inode *bd_inode = bdev->bd_inode;
1566        struct address_space *bd_mapping = bd_inode->i_mapping;
1567        struct pagevec pvec;
1568        pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1569        pgoff_t end;
1570        int i, count;
1571        struct buffer_head *bh;
1572        struct buffer_head *head;
1573
1574        end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1575        pagevec_init(&pvec);
1576        while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1577                count = pagevec_count(&pvec);
1578                for (i = 0; i < count; i++) {
1579                        struct page *page = pvec.pages[i];
1580
1581                        if (!page_has_buffers(page))
1582                                continue;
1583                        /*
1584                         * We use page lock instead of bd_mapping->private_lock
1585                         * to pin buffers here since we can afford to sleep and
1586                         * it scales better than a global spinlock lock.
1587                         */
1588                        lock_page(page);
1589                        /* Recheck when the page is locked which pins bhs */
1590                        if (!page_has_buffers(page))
1591                                goto unlock_page;
1592                        head = page_buffers(page);
1593                        bh = head;
1594                        do {
1595                                if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1596                                        goto next;
1597                                if (bh->b_blocknr >= block + len)
1598                                        break;
1599                                clear_buffer_dirty(bh);
1600                                wait_on_buffer(bh);
1601                                clear_buffer_req(bh);
1602next:
1603                                bh = bh->b_this_page;
1604                        } while (bh != head);
1605unlock_page:
1606                        unlock_page(page);
1607                }
1608                pagevec_release(&pvec);
1609                cond_resched();
1610                /* End of range already reached? */
1611                if (index > end || !index)
1612                        break;
1613        }
1614}
1615EXPORT_SYMBOL(clean_bdev_aliases);
1616
1617/*
1618 * Size is a power-of-two in the range 512..PAGE_SIZE,
1619 * and the case we care about most is PAGE_SIZE.
1620 *
1621 * So this *could* possibly be written with those
1622 * constraints in mind (relevant mostly if some
1623 * architecture has a slow bit-scan instruction)
1624 */
1625static inline int block_size_bits(unsigned int blocksize)
1626{
1627        return ilog2(blocksize);
1628}
1629
1630static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1631{
1632        BUG_ON(!PageLocked(page));
1633
1634        if (!page_has_buffers(page))
1635                create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1636                                     b_state);
1637        return page_buffers(page);
1638}
1639
1640/*
1641 * NOTE! All mapped/uptodate combinations are valid:
1642 *
1643 *      Mapped  Uptodate        Meaning
1644 *
1645 *      No      No              "unknown" - must do get_block()
1646 *      No      Yes             "hole" - zero-filled
1647 *      Yes     No              "allocated" - allocated on disk, not read in
1648 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1649 *
1650 * "Dirty" is valid only with the last case (mapped+uptodate).
1651 */
1652
1653/*
1654 * While block_write_full_page is writing back the dirty buffers under
1655 * the page lock, whoever dirtied the buffers may decide to clean them
1656 * again at any time.  We handle that by only looking at the buffer
1657 * state inside lock_buffer().
1658 *
1659 * If block_write_full_page() is called for regular writeback
1660 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1661 * locked buffer.   This only can happen if someone has written the buffer
1662 * directly, with submit_bh().  At the address_space level PageWriteback
1663 * prevents this contention from occurring.
1664 *
1665 * If block_write_full_page() is called with wbc->sync_mode ==
1666 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1667 * causes the writes to be flagged as synchronous writes.
1668 */
1669int __block_write_full_page(struct inode *inode, struct page *page,
1670                        get_block_t *get_block, struct writeback_control *wbc,
1671                        bh_end_io_t *handler)
1672{
1673        int err;
1674        sector_t block;
1675        sector_t last_block;
1676        struct buffer_head *bh, *head;
1677        unsigned int blocksize, bbits;
1678        int nr_underway = 0;
1679        int write_flags = wbc_to_write_flags(wbc);
1680
1681        head = create_page_buffers(page, inode,
1682                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1683
1684        /*
1685         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1686         * here, and the (potentially unmapped) buffers may become dirty at
1687         * any time.  If a buffer becomes dirty here after we've inspected it
1688         * then we just miss that fact, and the page stays dirty.
1689         *
1690         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1691         * handle that here by just cleaning them.
1692         */
1693
1694        bh = head;
1695        blocksize = bh->b_size;
1696        bbits = block_size_bits(blocksize);
1697
1698        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1699        last_block = (i_size_read(inode) - 1) >> bbits;
1700
1701        /*
1702         * Get all the dirty buffers mapped to disk addresses and
1703         * handle any aliases from the underlying blockdev's mapping.
1704         */
1705        do {
1706                if (block > last_block) {
1707                        /*
1708                         * mapped buffers outside i_size will occur, because
1709                         * this page can be outside i_size when there is a
1710                         * truncate in progress.
1711                         */
1712                        /*
1713                         * The buffer was zeroed by block_write_full_page()
1714                         */
1715                        clear_buffer_dirty(bh);
1716                        set_buffer_uptodate(bh);
1717                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1718                           buffer_dirty(bh)) {
1719                        WARN_ON(bh->b_size != blocksize);
1720                        err = get_block(inode, block, bh, 1);
1721                        if (err)
1722                                goto recover;
1723                        clear_buffer_delay(bh);
1724                        if (buffer_new(bh)) {
1725                                /* blockdev mappings never come here */
1726                                clear_buffer_new(bh);
1727                                clean_bdev_bh_alias(bh);
1728                        }
1729                }
1730                bh = bh->b_this_page;
1731                block++;
1732        } while (bh != head);
1733
1734        do {
1735                if (!buffer_mapped(bh))
1736                        continue;
1737                /*
1738                 * If it's a fully non-blocking write attempt and we cannot
1739                 * lock the buffer then redirty the page.  Note that this can
1740                 * potentially cause a busy-wait loop from writeback threads
1741                 * and kswapd activity, but those code paths have their own
1742                 * higher-level throttling.
1743                 */
1744                if (wbc->sync_mode != WB_SYNC_NONE) {
1745                        lock_buffer(bh);
1746                } else if (!trylock_buffer(bh)) {
1747                        redirty_page_for_writepage(wbc, page);
1748                        continue;
1749                }
1750                if (test_clear_buffer_dirty(bh)) {
1751                        mark_buffer_async_write_endio(bh, handler);
1752                } else {
1753                        unlock_buffer(bh);
1754                }
1755        } while ((bh = bh->b_this_page) != head);
1756
1757        /*
1758         * The page and its buffers are protected by PageWriteback(), so we can
1759         * drop the bh refcounts early.
1760         */
1761        BUG_ON(PageWriteback(page));
1762        set_page_writeback(page);
1763
1764        do {
1765                struct buffer_head *next = bh->b_this_page;
1766                if (buffer_async_write(bh)) {
1767                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1768                                        inode->i_write_hint, wbc);
1769                        nr_underway++;
1770                }
1771                bh = next;
1772        } while (bh != head);
1773        unlock_page(page);
1774
1775        err = 0;
1776done:
1777        if (nr_underway == 0) {
1778                /*
1779                 * The page was marked dirty, but the buffers were
1780                 * clean.  Someone wrote them back by hand with
1781                 * ll_rw_block/submit_bh.  A rare case.
1782                 */
1783                end_page_writeback(page);
1784
1785                /*
1786                 * The page and buffer_heads can be released at any time from
1787                 * here on.
1788                 */
1789        }
1790        return err;
1791
1792recover:
1793        /*
1794         * ENOSPC, or some other error.  We may already have added some
1795         * blocks to the file, so we need to write these out to avoid
1796         * exposing stale data.
1797         * The page is currently locked and not marked for writeback
1798         */
1799        bh = head;
1800        /* Recovery: lock and submit the mapped buffers */
1801        do {
1802                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1803                    !buffer_delay(bh)) {
1804                        lock_buffer(bh);
1805                        mark_buffer_async_write_endio(bh, handler);
1806                } else {
1807                        /*
1808                         * The buffer may have been set dirty during
1809                         * attachment to a dirty page.
1810                         */
1811                        clear_buffer_dirty(bh);
1812                }
1813        } while ((bh = bh->b_this_page) != head);
1814        SetPageError(page);
1815        BUG_ON(PageWriteback(page));
1816        mapping_set_error(page->mapping, err);
1817        set_page_writeback(page);
1818        do {
1819                struct buffer_head *next = bh->b_this_page;
1820                if (buffer_async_write(bh)) {
1821                        clear_buffer_dirty(bh);
1822                        submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1823                                        inode->i_write_hint, wbc);
1824                        nr_underway++;
1825                }
1826                bh = next;
1827        } while (bh != head);
1828        unlock_page(page);
1829        goto done;
1830}
1831EXPORT_SYMBOL(__block_write_full_page);
1832
1833/*
1834 * If a page has any new buffers, zero them out here, and mark them uptodate
1835 * and dirty so they'll be written out (in order to prevent uninitialised
1836 * block data from leaking). And clear the new bit.
1837 */
1838void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1839{
1840        unsigned int block_start, block_end;
1841        struct buffer_head *head, *bh;
1842
1843        BUG_ON(!PageLocked(page));
1844        if (!page_has_buffers(page))
1845                return;
1846
1847        bh = head = page_buffers(page);
1848        block_start = 0;
1849        do {
1850                block_end = block_start + bh->b_size;
1851
1852                if (buffer_new(bh)) {
1853                        if (block_end > from && block_start < to) {
1854                                if (!PageUptodate(page)) {
1855                                        unsigned start, size;
1856
1857                                        start = max(from, block_start);
1858                                        size = min(to, block_end) - start;
1859
1860                                        zero_user(page, start, size);
1861                                        set_buffer_uptodate(bh);
1862                                }
1863
1864                                clear_buffer_new(bh);
1865                                mark_buffer_dirty(bh);
1866                        }
1867                }
1868
1869                block_start = block_end;
1870                bh = bh->b_this_page;
1871        } while (bh != head);
1872}
1873EXPORT_SYMBOL(page_zero_new_buffers);
1874
1875static void
1876iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1877                struct iomap *iomap)
1878{
1879        loff_t offset = block << inode->i_blkbits;
1880
1881        bh->b_bdev = iomap->bdev;
1882
1883        /*
1884         * Block points to offset in file we need to map, iomap contains
1885         * the offset at which the map starts. If the map ends before the
1886         * current block, then do not map the buffer and let the caller
1887         * handle it.
1888         */
1889        BUG_ON(offset >= iomap->offset + iomap->length);
1890
1891        switch (iomap->type) {
1892        case IOMAP_HOLE:
1893                /*
1894                 * If the buffer is not up to date or beyond the current EOF,
1895                 * we need to mark it as new to ensure sub-block zeroing is
1896                 * executed if necessary.
1897                 */
1898                if (!buffer_uptodate(bh) ||
1899                    (offset >= i_size_read(inode)))
1900                        set_buffer_new(bh);
1901                break;
1902        case IOMAP_DELALLOC:
1903                if (!buffer_uptodate(bh) ||
1904                    (offset >= i_size_read(inode)))
1905                        set_buffer_new(bh);
1906                set_buffer_uptodate(bh);
1907                set_buffer_mapped(bh);
1908                set_buffer_delay(bh);
1909                break;
1910        case IOMAP_UNWRITTEN:
1911                /*
1912                 * For unwritten regions, we always need to ensure that regions
1913                 * in the block we are not writing to are zeroed. Mark the
1914                 * buffer as new to ensure this.
1915                 */
1916                set_buffer_new(bh);
1917                set_buffer_unwritten(bh);
1918                /* FALLTHRU */
1919        case IOMAP_MAPPED:
1920                if ((iomap->flags & IOMAP_F_NEW) ||
1921                    offset >= i_size_read(inode))
1922                        set_buffer_new(bh);
1923                bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1924                                inode->i_blkbits;
1925                set_buffer_mapped(bh);
1926                break;
1927        }
1928}
1929
1930int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1931                get_block_t *get_block, struct iomap *iomap)
1932{
1933        unsigned from = pos & (PAGE_SIZE - 1);
1934        unsigned to = from + len;
1935        struct inode *inode = page->mapping->host;
1936        unsigned block_start, block_end;
1937        sector_t block;
1938        int err = 0;
1939        unsigned blocksize, bbits;
1940        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1941
1942        BUG_ON(!PageLocked(page));
1943        BUG_ON(from > PAGE_SIZE);
1944        BUG_ON(to > PAGE_SIZE);
1945        BUG_ON(from > to);
1946
1947        head = create_page_buffers(page, inode, 0);
1948        blocksize = head->b_size;
1949        bbits = block_size_bits(blocksize);
1950
1951        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1952
1953        for(bh = head, block_start = 0; bh != head || !block_start;
1954            block++, block_start=block_end, bh = bh->b_this_page) {
1955                block_end = block_start + blocksize;
1956                if (block_end <= from || block_start >= to) {
1957                        if (PageUptodate(page)) {
1958                                if (!buffer_uptodate(bh))
1959                                        set_buffer_uptodate(bh);
1960                        }
1961                        continue;
1962                }
1963                if (buffer_new(bh))
1964                        clear_buffer_new(bh);
1965                if (!buffer_mapped(bh)) {
1966                        WARN_ON(bh->b_size != blocksize);
1967                        if (get_block) {
1968                                err = get_block(inode, block, bh, 1);
1969                                if (err)
1970                                        break;
1971                        } else {
1972                                iomap_to_bh(inode, block, bh, iomap);
1973                        }
1974
1975                        if (buffer_new(bh)) {
1976                                clean_bdev_bh_alias(bh);
1977                                if (PageUptodate(page)) {
1978                                        clear_buffer_new(bh);
1979                                        set_buffer_uptodate(bh);
1980                                        mark_buffer_dirty(bh);
1981                                        continue;
1982                                }
1983                                if (block_end > to || block_start < from)
1984                                        zero_user_segments(page,
1985                                                to, block_end,
1986                                                block_start, from);
1987                                continue;
1988                        }
1989                }
1990                if (PageUptodate(page)) {
1991                        if (!buffer_uptodate(bh))
1992                                set_buffer_uptodate(bh);
1993                        continue; 
1994                }
1995                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1996                    !buffer_unwritten(bh) &&
1997                     (block_start < from || block_end > to)) {
1998                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1999                        *wait_bh++=bh;
2000                }
2001        }
2002        /*
2003         * If we issued read requests - let them complete.
2004         */
2005        while(wait_bh > wait) {
2006                wait_on_buffer(*--wait_bh);
2007                if (!buffer_uptodate(*wait_bh))
2008                        err = -EIO;
2009        }
2010        if (unlikely(err))
2011                page_zero_new_buffers(page, from, to);
2012        return err;
2013}
2014
2015int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2016                get_block_t *get_block)
2017{
2018        return __block_write_begin_int(page, pos, len, get_block, NULL);
2019}
2020EXPORT_SYMBOL(__block_write_begin);
2021
2022static int __block_commit_write(struct inode *inode, struct page *page,
2023                unsigned from, unsigned to)
2024{
2025        unsigned block_start, block_end;
2026        int partial = 0;
2027        unsigned blocksize;
2028        struct buffer_head *bh, *head;
2029
2030        bh = head = page_buffers(page);
2031        blocksize = bh->b_size;
2032
2033        block_start = 0;
2034        do {
2035                block_end = block_start + blocksize;
2036                if (block_end <= from || block_start >= to) {
2037                        if (!buffer_uptodate(bh))
2038                                partial = 1;
2039                } else {
2040                        set_buffer_uptodate(bh);
2041                        mark_buffer_dirty(bh);
2042                }
2043                clear_buffer_new(bh);
2044
2045                block_start = block_end;
2046                bh = bh->b_this_page;
2047        } while (bh != head);
2048
2049        /*
2050         * If this is a partial write which happened to make all buffers
2051         * uptodate then we can optimize away a bogus readpage() for
2052         * the next read(). Here we 'discover' whether the page went
2053         * uptodate as a result of this (potentially partial) write.
2054         */
2055        if (!partial)
2056                SetPageUptodate(page);
2057        return 0;
2058}
2059
2060/*
2061 * block_write_begin takes care of the basic task of block allocation and
2062 * bringing partial write blocks uptodate first.
2063 *
2064 * The filesystem needs to handle block truncation upon failure.
2065 */
2066int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2067                unsigned flags, struct page **pagep, get_block_t *get_block)
2068{
2069        pgoff_t index = pos >> PAGE_SHIFT;
2070        struct page *page;
2071        int status;
2072
2073        page = grab_cache_page_write_begin(mapping, index, flags);
2074        if (!page)
2075                return -ENOMEM;
2076
2077        status = __block_write_begin(page, pos, len, get_block);
2078        if (unlikely(status)) {
2079                unlock_page(page);
2080                put_page(page);
2081                page = NULL;
2082        }
2083
2084        *pagep = page;
2085        return status;
2086}
2087EXPORT_SYMBOL(block_write_begin);
2088
2089void __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2090                struct page *page)
2091{
2092        loff_t old_size = inode->i_size;
2093        bool i_size_changed = false;
2094
2095        /*
2096         * No need to use i_size_read() here, the i_size cannot change under us
2097         * because we hold i_rwsem.
2098         *
2099         * But it's important to update i_size while still holding page lock:
2100         * page writeout could otherwise come in and zero beyond i_size.
2101         */
2102        if (pos + copied > inode->i_size) {
2103                i_size_write(inode, pos + copied);
2104                i_size_changed = true;
2105        }
2106
2107        unlock_page(page);
2108
2109        if (old_size < pos)
2110                pagecache_isize_extended(inode, old_size, pos);
2111        /*
2112         * Don't mark the inode dirty under page lock. First, it unnecessarily
2113         * makes the holding time of page lock longer. Second, it forces lock
2114         * ordering of page lock and transaction start for journaling
2115         * filesystems.
2116         */
2117        if (i_size_changed)
2118                mark_inode_dirty(inode);
2119}
2120
2121int block_write_end(struct file *file, struct address_space *mapping,
2122                        loff_t pos, unsigned len, unsigned copied,
2123                        struct page *page, void *fsdata)
2124{
2125        struct inode *inode = mapping->host;
2126        unsigned start;
2127
2128        start = pos & (PAGE_SIZE - 1);
2129
2130        if (unlikely(copied < len)) {
2131                /*
2132                 * The buffers that were written will now be uptodate, so we
2133                 * don't have to worry about a readpage reading them and
2134                 * overwriting a partial write. However if we have encountered
2135                 * a short write and only partially written into a buffer, it
2136                 * will not be marked uptodate, so a readpage might come in and
2137                 * destroy our partial write.
2138                 *
2139                 * Do the simplest thing, and just treat any short write to a
2140                 * non uptodate page as a zero-length write, and force the
2141                 * caller to redo the whole thing.
2142                 */
2143                if (!PageUptodate(page))
2144                        copied = 0;
2145
2146                page_zero_new_buffers(page, start+copied, start+len);
2147        }
2148        flush_dcache_page(page);
2149
2150        /* This could be a short (even 0-length) commit */
2151        __block_commit_write(inode, page, start, start+copied);
2152
2153        return copied;
2154}
2155EXPORT_SYMBOL(block_write_end);
2156
2157int generic_write_end(struct file *file, struct address_space *mapping,
2158                        loff_t pos, unsigned len, unsigned copied,
2159                        struct page *page, void *fsdata)
2160{
2161        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2162        __generic_write_end(mapping->host, pos, copied, page);
2163        put_page(page);
2164        return copied;
2165}
2166EXPORT_SYMBOL(generic_write_end);
2167
2168/*
2169 * block_is_partially_uptodate checks whether buffers within a page are
2170 * uptodate or not.
2171 *
2172 * Returns true if all buffers which correspond to a file portion
2173 * we want to read are uptodate.
2174 */
2175int block_is_partially_uptodate(struct page *page, unsigned long from,
2176                                        unsigned long count)
2177{
2178        unsigned block_start, block_end, blocksize;
2179        unsigned to;
2180        struct buffer_head *bh, *head;
2181        int ret = 1;
2182
2183        if (!page_has_buffers(page))
2184                return 0;
2185
2186        head = page_buffers(page);
2187        blocksize = head->b_size;
2188        to = min_t(unsigned, PAGE_SIZE - from, count);
2189        to = from + to;
2190        if (from < blocksize && to > PAGE_SIZE - blocksize)
2191                return 0;
2192
2193        bh = head;
2194        block_start = 0;
2195        do {
2196                block_end = block_start + blocksize;
2197                if (block_end > from && block_start < to) {
2198                        if (!buffer_uptodate(bh)) {
2199                                ret = 0;
2200                                break;
2201                        }
2202                        if (block_end >= to)
2203                                break;
2204                }
2205                block_start = block_end;
2206                bh = bh->b_this_page;
2207        } while (bh != head);
2208
2209        return ret;
2210}
2211EXPORT_SYMBOL(block_is_partially_uptodate);
2212
2213/*
2214 * Generic "read page" function for block devices that have the normal
2215 * get_block functionality. This is most of the block device filesystems.
2216 * Reads the page asynchronously --- the unlock_buffer() and
2217 * set/clear_buffer_uptodate() functions propagate buffer state into the
2218 * page struct once IO has completed.
2219 */
2220int block_read_full_page(struct page *page, get_block_t *get_block)
2221{
2222        struct inode *inode = page->mapping->host;
2223        sector_t iblock, lblock;
2224        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2225        unsigned int blocksize, bbits;
2226        int nr, i;
2227        int fully_mapped = 1;
2228
2229        head = create_page_buffers(page, inode, 0);
2230        blocksize = head->b_size;
2231        bbits = block_size_bits(blocksize);
2232
2233        iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2234        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2235        bh = head;
2236        nr = 0;
2237        i = 0;
2238
2239        do {
2240                if (buffer_uptodate(bh))
2241                        continue;
2242
2243                if (!buffer_mapped(bh)) {
2244                        int err = 0;
2245
2246                        fully_mapped = 0;
2247                        if (iblock < lblock) {
2248                                WARN_ON(bh->b_size != blocksize);
2249                                err = get_block(inode, iblock, bh, 0);
2250                                if (err)
2251                                        SetPageError(page);
2252                        }
2253                        if (!buffer_mapped(bh)) {
2254                                zero_user(page, i * blocksize, blocksize);
2255                                if (!err)
2256                                        set_buffer_uptodate(bh);
2257                                continue;
2258                        }
2259                        /*
2260                         * get_block() might have updated the buffer
2261                         * synchronously
2262                         */
2263                        if (buffer_uptodate(bh))
2264                                continue;
2265                }
2266                arr[nr++] = bh;
2267        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2268
2269        if (fully_mapped)
2270                SetPageMappedToDisk(page);
2271
2272        if (!nr) {
2273                /*
2274                 * All buffers are uptodate - we can set the page uptodate
2275                 * as well. But not if get_block() returned an error.
2276                 */
2277                if (!PageError(page))
2278                        SetPageUptodate(page);
2279                unlock_page(page);
2280                return 0;
2281        }
2282
2283        /* Stage two: lock the buffers */
2284        for (i = 0; i < nr; i++) {
2285                bh = arr[i];
2286                lock_buffer(bh);
2287                mark_buffer_async_read(bh);
2288        }
2289
2290        /*
2291         * Stage 3: start the IO.  Check for uptodateness
2292         * inside the buffer lock in case another process reading
2293         * the underlying blockdev brought it uptodate (the sct fix).
2294         */
2295        for (i = 0; i < nr; i++) {
2296                bh = arr[i];
2297                if (buffer_uptodate(bh))
2298                        end_buffer_async_read(bh, 1);
2299                else
2300                        submit_bh(REQ_OP_READ, 0, bh);
2301        }
2302        return 0;
2303}
2304EXPORT_SYMBOL(block_read_full_page);
2305
2306/* utility function for filesystems that need to do work on expanding
2307 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2308 * deal with the hole.  
2309 */
2310int generic_cont_expand_simple(struct inode *inode, loff_t size)
2311{
2312        struct address_space *mapping = inode->i_mapping;
2313        struct page *page;
2314        void *fsdata;
2315        int err;
2316
2317        err = inode_newsize_ok(inode, size);
2318        if (err)
2319                goto out;
2320
2321        err = pagecache_write_begin(NULL, mapping, size, 0,
2322                                    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2323        if (err)
2324                goto out;
2325
2326        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2327        BUG_ON(err > 0);
2328
2329out:
2330        return err;
2331}
2332EXPORT_SYMBOL(generic_cont_expand_simple);
2333
2334static int cont_expand_zero(struct file *file, struct address_space *mapping,
2335                            loff_t pos, loff_t *bytes)
2336{
2337        struct inode *inode = mapping->host;
2338        unsigned int blocksize = i_blocksize(inode);
2339        struct page *page;
2340        void *fsdata;
2341        pgoff_t index, curidx;
2342        loff_t curpos;
2343        unsigned zerofrom, offset, len;
2344        int err = 0;
2345
2346        index = pos >> PAGE_SHIFT;
2347        offset = pos & ~PAGE_MASK;
2348
2349        while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2350                zerofrom = curpos & ~PAGE_MASK;
2351                if (zerofrom & (blocksize-1)) {
2352                        *bytes |= (blocksize-1);
2353                        (*bytes)++;
2354                }
2355                len = PAGE_SIZE - zerofrom;
2356
2357                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2358                                            &page, &fsdata);
2359                if (err)
2360                        goto out;
2361                zero_user(page, zerofrom, len);
2362                err = pagecache_write_end(file, mapping, curpos, len, len,
2363                                                page, fsdata);
2364                if (err < 0)
2365                        goto out;
2366                BUG_ON(err != len);
2367                err = 0;
2368
2369                balance_dirty_pages_ratelimited(mapping);
2370
2371                if (fatal_signal_pending(current)) {
2372                        err = -EINTR;
2373                        goto out;
2374                }
2375        }
2376
2377        /* page covers the boundary, find the boundary offset */
2378        if (index == curidx) {
2379                zerofrom = curpos & ~PAGE_MASK;
2380                /* if we will expand the thing last block will be filled */
2381                if (offset <= zerofrom) {
2382                        goto out;
2383                }
2384                if (zerofrom & (blocksize-1)) {
2385                        *bytes |= (blocksize-1);
2386                        (*bytes)++;
2387                }
2388                len = offset - zerofrom;
2389
2390                err = pagecache_write_begin(file, mapping, curpos, len, 0,
2391                                            &page, &fsdata);
2392                if (err)
2393                        goto out;
2394                zero_user(page, zerofrom, len);
2395                err = pagecache_write_end(file, mapping, curpos, len, len,
2396                                                page, fsdata);
2397                if (err < 0)
2398                        goto out;
2399                BUG_ON(err != len);
2400                err = 0;
2401        }
2402out:
2403        return err;
2404}
2405
2406/*
2407 * For moronic filesystems that do not allow holes in file.
2408 * We may have to extend the file.
2409 */
2410int cont_write_begin(struct file *file, struct address_space *mapping,
2411                        loff_t pos, unsigned len, unsigned flags,
2412                        struct page **pagep, void **fsdata,
2413                        get_block_t *get_block, loff_t *bytes)
2414{
2415        struct inode *inode = mapping->host;
2416        unsigned int blocksize = i_blocksize(inode);
2417        unsigned int zerofrom;
2418        int err;
2419
2420        err = cont_expand_zero(file, mapping, pos, bytes);
2421        if (err)
2422                return err;
2423
2424        zerofrom = *bytes & ~PAGE_MASK;
2425        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2426                *bytes |= (blocksize-1);
2427                (*bytes)++;
2428        }
2429
2430        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2431}
2432EXPORT_SYMBOL(cont_write_begin);
2433
2434int block_commit_write(struct page *page, unsigned from, unsigned to)
2435{
2436        struct inode *inode = page->mapping->host;
2437        __block_commit_write(inode,page,from,to);
2438        return 0;
2439}
2440EXPORT_SYMBOL(block_commit_write);
2441
2442/*
2443 * block_page_mkwrite() is not allowed to change the file size as it gets
2444 * called from a page fault handler when a page is first dirtied. Hence we must
2445 * be careful to check for EOF conditions here. We set the page up correctly
2446 * for a written page which means we get ENOSPC checking when writing into
2447 * holes and correct delalloc and unwritten extent mapping on filesystems that
2448 * support these features.
2449 *
2450 * We are not allowed to take the i_mutex here so we have to play games to
2451 * protect against truncate races as the page could now be beyond EOF.  Because
2452 * truncate writes the inode size before removing pages, once we have the
2453 * page lock we can determine safely if the page is beyond EOF. If it is not
2454 * beyond EOF, then the page is guaranteed safe against truncation until we
2455 * unlock the page.
2456 *
2457 * Direct callers of this function should protect against filesystem freezing
2458 * using sb_start_pagefault() - sb_end_pagefault() functions.
2459 */
2460int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2461                         get_block_t get_block)
2462{
2463        struct page *page = vmf->page;
2464        struct inode *inode = file_inode(vma->vm_file);
2465        unsigned long end;
2466        loff_t size;
2467        int ret;
2468
2469        lock_page(page);
2470        size = i_size_read(inode);
2471        if ((page->mapping != inode->i_mapping) ||
2472            (page_offset(page) > size)) {
2473                /* We overload EFAULT to mean page got truncated */
2474                ret = -EFAULT;
2475                goto out_unlock;
2476        }
2477
2478        /* page is wholly or partially inside EOF */
2479        if (((page->index + 1) << PAGE_SHIFT) > size)
2480                end = size & ~PAGE_MASK;
2481        else
2482                end = PAGE_SIZE;
2483
2484        ret = __block_write_begin(page, 0, end, get_block);
2485        if (!ret)
2486                ret = block_commit_write(page, 0, end);
2487
2488        if (unlikely(ret < 0))
2489                goto out_unlock;
2490        set_page_dirty(page);
2491        wait_for_stable_page(page);
2492        return 0;
2493out_unlock:
2494        unlock_page(page);
2495        return ret;
2496}
2497EXPORT_SYMBOL(block_page_mkwrite);
2498
2499/*
2500 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2501 * immediately, while under the page lock.  So it needs a special end_io
2502 * handler which does not touch the bh after unlocking it.
2503 */
2504static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2505{
2506        __end_buffer_read_notouch(bh, uptodate);
2507}
2508
2509/*
2510 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2511 * the page (converting it to circular linked list and taking care of page
2512 * dirty races).
2513 */
2514static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2515{
2516        struct buffer_head *bh;
2517
2518        BUG_ON(!PageLocked(page));
2519
2520        spin_lock(&page->mapping->private_lock);
2521        bh = head;
2522        do {
2523                if (PageDirty(page))
2524                        set_buffer_dirty(bh);
2525                if (!bh->b_this_page)
2526                        bh->b_this_page = head;
2527                bh = bh->b_this_page;
2528        } while (bh != head);
2529        attach_page_buffers(page, head);
2530        spin_unlock(&page->mapping->private_lock);
2531}
2532
2533/*
2534 * On entry, the page is fully not uptodate.
2535 * On exit the page is fully uptodate in the areas outside (from,to)
2536 * The filesystem needs to handle block truncation upon failure.
2537 */
2538int nobh_write_begin(struct address_space *mapping,
2539                        loff_t pos, unsigned len, unsigned flags,
2540                        struct page **pagep, void **fsdata,
2541                        get_block_t *get_block)
2542{
2543        struct inode *inode = mapping->host;
2544        const unsigned blkbits = inode->i_blkbits;
2545        const unsigned blocksize = 1 << blkbits;
2546        struct buffer_head *head, *bh;
2547        struct page *page;
2548        pgoff_t index;
2549        unsigned from, to;
2550        unsigned block_in_page;
2551        unsigned block_start, block_end;
2552        sector_t block_in_file;
2553        int nr_reads = 0;
2554        int ret = 0;
2555        int is_mapped_to_disk = 1;
2556
2557        index = pos >> PAGE_SHIFT;
2558        from = pos & (PAGE_SIZE - 1);
2559        to = from + len;
2560
2561        page = grab_cache_page_write_begin(mapping, index, flags);
2562        if (!page)
2563                return -ENOMEM;
2564        *pagep = page;
2565        *fsdata = NULL;
2566
2567        if (page_has_buffers(page)) {
2568                ret = __block_write_begin(page, pos, len, get_block);
2569                if (unlikely(ret))
2570                        goto out_release;
2571                return ret;
2572        }
2573
2574        if (PageMappedToDisk(page))
2575                return 0;
2576
2577        /*
2578         * Allocate buffers so that we can keep track of state, and potentially
2579         * attach them to the page if an error occurs. In the common case of
2580         * no error, they will just be freed again without ever being attached
2581         * to the page (which is all OK, because we're under the page lock).
2582         *
2583         * Be careful: the buffer linked list is a NULL terminated one, rather
2584         * than the circular one we're used to.
2585         */
2586        head = alloc_page_buffers(page, blocksize, false);
2587        if (!head) {
2588                ret = -ENOMEM;
2589                goto out_release;
2590        }
2591
2592        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2593
2594        /*
2595         * We loop across all blocks in the page, whether or not they are
2596         * part of the affected region.  This is so we can discover if the
2597         * page is fully mapped-to-disk.
2598         */
2599        for (block_start = 0, block_in_page = 0, bh = head;
2600                  block_start < PAGE_SIZE;
2601                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2602                int create;
2603
2604                block_end = block_start + blocksize;
2605                bh->b_state = 0;
2606                create = 1;
2607                if (block_start >= to)
2608                        create = 0;
2609                ret = get_block(inode, block_in_file + block_in_page,
2610                                        bh, create);
2611                if (ret)
2612                        goto failed;
2613                if (!buffer_mapped(bh))
2614                        is_mapped_to_disk = 0;
2615                if (buffer_new(bh))
2616                        clean_bdev_bh_alias(bh);
2617                if (PageUptodate(page)) {
2618                        set_buffer_uptodate(bh);
2619                        continue;
2620                }
2621                if (buffer_new(bh) || !buffer_mapped(bh)) {
2622                        zero_user_segments(page, block_start, from,
2623                                                        to, block_end);
2624                        continue;
2625                }
2626                if (buffer_uptodate(bh))
2627                        continue;       /* reiserfs does this */
2628                if (block_start < from || block_end > to) {
2629                        lock_buffer(bh);
2630                        bh->b_end_io = end_buffer_read_nobh;
2631                        submit_bh(REQ_OP_READ, 0, bh);
2632                        nr_reads++;
2633                }
2634        }
2635
2636        if (nr_reads) {
2637                /*
2638                 * The page is locked, so these buffers are protected from
2639                 * any VM or truncate activity.  Hence we don't need to care
2640                 * for the buffer_head refcounts.
2641                 */
2642                for (bh = head; bh; bh = bh->b_this_page) {
2643                        wait_on_buffer(bh);
2644                        if (!buffer_uptodate(bh))
2645                                ret = -EIO;
2646                }
2647                if (ret)
2648                        goto failed;
2649        }
2650
2651        if (is_mapped_to_disk)
2652                SetPageMappedToDisk(page);
2653
2654        *fsdata = head; /* to be released by nobh_write_end */
2655
2656        return 0;
2657
2658failed:
2659        BUG_ON(!ret);
2660        /*
2661         * Error recovery is a bit difficult. We need to zero out blocks that
2662         * were newly allocated, and dirty them to ensure they get written out.
2663         * Buffers need to be attached to the page at this point, otherwise
2664         * the handling of potential IO errors during writeout would be hard
2665         * (could try doing synchronous writeout, but what if that fails too?)
2666         */
2667        attach_nobh_buffers(page, head);
2668        page_zero_new_buffers(page, from, to);
2669
2670out_release:
2671        unlock_page(page);
2672        put_page(page);
2673        *pagep = NULL;
2674
2675        return ret;
2676}
2677EXPORT_SYMBOL(nobh_write_begin);
2678
2679int nobh_write_end(struct file *file, struct address_space *mapping,
2680                        loff_t pos, unsigned len, unsigned copied,
2681                        struct page *page, void *fsdata)
2682{
2683        struct inode *inode = page->mapping->host;
2684        struct buffer_head *head = fsdata;
2685        struct buffer_head *bh;
2686        BUG_ON(fsdata != NULL && page_has_buffers(page));
2687
2688        if (unlikely(copied < len) && head)
2689                attach_nobh_buffers(page, head);
2690        if (page_has_buffers(page))
2691                return generic_write_end(file, mapping, pos, len,
2692                                        copied, page, fsdata);
2693
2694        SetPageUptodate(page);
2695        set_page_dirty(page);
2696        if (pos+copied > inode->i_size) {
2697                i_size_write(inode, pos+copied);
2698                mark_inode_dirty(inode);
2699        }
2700
2701        unlock_page(page);
2702        put_page(page);
2703
2704        while (head) {
2705                bh = head;
2706                head = head->b_this_page;
2707                free_buffer_head(bh);
2708        }
2709
2710        return copied;
2711}
2712EXPORT_SYMBOL(nobh_write_end);
2713
2714/*
2715 * nobh_writepage() - based on block_full_write_page() except
2716 * that it tries to operate without attaching bufferheads to
2717 * the page.
2718 */
2719int nobh_writepage(struct page *page, get_block_t *get_block,
2720                        struct writeback_control *wbc)
2721{
2722        struct inode * const inode = page->mapping->host;
2723        loff_t i_size = i_size_read(inode);
2724        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2725        unsigned offset;
2726        int ret;
2727
2728        /* Is the page fully inside i_size? */
2729        if (page->index < end_index)
2730                goto out;
2731
2732        /* Is the page fully outside i_size? (truncate in progress) */
2733        offset = i_size & (PAGE_SIZE-1);
2734        if (page->index >= end_index+1 || !offset) {
2735                /*
2736                 * The page may have dirty, unmapped buffers.  For example,
2737                 * they may have been added in ext3_writepage().  Make them
2738                 * freeable here, so the page does not leak.
2739                 */
2740#if 0
2741                /* Not really sure about this  - do we need this ? */
2742                if (page->mapping->a_ops->invalidatepage)
2743                        page->mapping->a_ops->invalidatepage(page, offset);
2744#endif
2745                unlock_page(page);
2746                return 0; /* don't care */
2747        }
2748
2749        /*
2750         * The page straddles i_size.  It must be zeroed out on each and every
2751         * writepage invocation because it may be mmapped.  "A file is mapped
2752         * in multiples of the page size.  For a file that is not a multiple of
2753         * the  page size, the remaining memory is zeroed when mapped, and
2754         * writes to that region are not written out to the file."
2755         */
2756        zero_user_segment(page, offset, PAGE_SIZE);
2757out:
2758        ret = mpage_writepage(page, get_block, wbc);
2759        if (ret == -EAGAIN)
2760                ret = __block_write_full_page(inode, page, get_block, wbc,
2761                                              end_buffer_async_write);
2762        return ret;
2763}
2764EXPORT_SYMBOL(nobh_writepage);
2765
2766int nobh_truncate_page(struct address_space *mapping,
2767                        loff_t from, get_block_t *get_block)
2768{
2769        pgoff_t index = from >> PAGE_SHIFT;
2770        unsigned offset = from & (PAGE_SIZE-1);
2771        unsigned blocksize;
2772        sector_t iblock;
2773        unsigned length, pos;
2774        struct inode *inode = mapping->host;
2775        struct page *page;
2776        struct buffer_head map_bh;
2777        int err;
2778
2779        blocksize = i_blocksize(inode);
2780        length = offset & (blocksize - 1);
2781
2782        /* Block boundary? Nothing to do */
2783        if (!length)
2784                return 0;
2785
2786        length = blocksize - length;
2787        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2788
2789        page = grab_cache_page(mapping, index);
2790        err = -ENOMEM;
2791        if (!page)
2792                goto out;
2793
2794        if (page_has_buffers(page)) {
2795has_buffers:
2796                unlock_page(page);
2797                put_page(page);
2798                return block_truncate_page(mapping, from, get_block);
2799        }
2800
2801        /* Find the buffer that contains "offset" */
2802        pos = blocksize;
2803        while (offset >= pos) {
2804                iblock++;
2805                pos += blocksize;
2806        }
2807
2808        map_bh.b_size = blocksize;
2809        map_bh.b_state = 0;
2810        err = get_block(inode, iblock, &map_bh, 0);
2811        if (err)
2812                goto unlock;
2813        /* unmapped? It's a hole - nothing to do */
2814        if (!buffer_mapped(&map_bh))
2815                goto unlock;
2816
2817        /* Ok, it's mapped. Make sure it's up-to-date */
2818        if (!PageUptodate(page)) {
2819                err = mapping->a_ops->readpage(NULL, page);
2820                if (err) {
2821                        put_page(page);
2822                        goto out;
2823                }
2824                lock_page(page);
2825                if (!PageUptodate(page)) {
2826                        err = -EIO;
2827                        goto unlock;
2828                }
2829                if (page_has_buffers(page))
2830                        goto has_buffers;
2831        }
2832        zero_user(page, offset, length);
2833        set_page_dirty(page);
2834        err = 0;
2835
2836unlock:
2837        unlock_page(page);
2838        put_page(page);
2839out:
2840        return err;
2841}
2842EXPORT_SYMBOL(nobh_truncate_page);
2843
2844int block_truncate_page(struct address_space *mapping,
2845                        loff_t from, get_block_t *get_block)
2846{
2847        pgoff_t index = from >> PAGE_SHIFT;
2848        unsigned offset = from & (PAGE_SIZE-1);
2849        unsigned blocksize;
2850        sector_t iblock;
2851        unsigned length, pos;
2852        struct inode *inode = mapping->host;
2853        struct page *page;
2854        struct buffer_head *bh;
2855        int err;
2856
2857        blocksize = i_blocksize(inode);
2858        length = offset & (blocksize - 1);
2859
2860        /* Block boundary? Nothing to do */
2861        if (!length)
2862                return 0;
2863
2864        length = blocksize - length;
2865        iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2866        
2867        page = grab_cache_page(mapping, index);
2868        err = -ENOMEM;
2869        if (!page)
2870                goto out;
2871
2872        if (!page_has_buffers(page))
2873                create_empty_buffers(page, blocksize, 0);
2874
2875        /* Find the buffer that contains "offset" */
2876        bh = page_buffers(page);
2877        pos = blocksize;
2878        while (offset >= pos) {
2879                bh = bh->b_this_page;
2880                iblock++;
2881                pos += blocksize;
2882        }
2883
2884        err = 0;
2885        if (!buffer_mapped(bh)) {
2886                WARN_ON(bh->b_size != blocksize);
2887                err = get_block(inode, iblock, bh, 0);
2888                if (err)
2889                        goto unlock;
2890                /* unmapped? It's a hole - nothing to do */
2891                if (!buffer_mapped(bh))
2892                        goto unlock;
2893        }
2894
2895        /* Ok, it's mapped. Make sure it's up-to-date */
2896        if (PageUptodate(page))
2897                set_buffer_uptodate(bh);
2898
2899        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900                err = -EIO;
2901                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2902                wait_on_buffer(bh);
2903                /* Uhhuh. Read error. Complain and punt. */
2904                if (!buffer_uptodate(bh))
2905                        goto unlock;
2906        }
2907
2908        zero_user(page, offset, length);
2909        mark_buffer_dirty(bh);
2910        err = 0;
2911
2912unlock:
2913        unlock_page(page);
2914        put_page(page);
2915out:
2916        return err;
2917}
2918EXPORT_SYMBOL(block_truncate_page);
2919
2920/*
2921 * The generic ->writepage function for buffer-backed address_spaces
2922 */
2923int block_write_full_page(struct page *page, get_block_t *get_block,
2924                        struct writeback_control *wbc)
2925{
2926        struct inode * const inode = page->mapping->host;
2927        loff_t i_size = i_size_read(inode);
2928        const pgoff_t end_index = i_size >> PAGE_SHIFT;
2929        unsigned offset;
2930
2931        /* Is the page fully inside i_size? */
2932        if (page->index < end_index)
2933                return __block_write_full_page(inode, page, get_block, wbc,
2934                                               end_buffer_async_write);
2935
2936        /* Is the page fully outside i_size? (truncate in progress) */
2937        offset = i_size & (PAGE_SIZE-1);
2938        if (page->index >= end_index+1 || !offset) {
2939                /*
2940                 * The page may have dirty, unmapped buffers.  For example,
2941                 * they may have been added in ext3_writepage().  Make them
2942                 * freeable here, so the page does not leak.
2943                 */
2944                do_invalidatepage(page, 0, PAGE_SIZE);
2945                unlock_page(page);
2946                return 0; /* don't care */
2947        }
2948
2949        /*
2950         * The page straddles i_size.  It must be zeroed out on each and every
2951         * writepage invocation because it may be mmapped.  "A file is mapped
2952         * in multiples of the page size.  For a file that is not a multiple of
2953         * the  page size, the remaining memory is zeroed when mapped, and
2954         * writes to that region are not written out to the file."
2955         */
2956        zero_user_segment(page, offset, PAGE_SIZE);
2957        return __block_write_full_page(inode, page, get_block, wbc,
2958                                                        end_buffer_async_write);
2959}
2960EXPORT_SYMBOL(block_write_full_page);
2961
2962sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2963                            get_block_t *get_block)
2964{
2965        struct inode *inode = mapping->host;
2966        struct buffer_head tmp = {
2967                .b_size = i_blocksize(inode),
2968        };
2969
2970        get_block(inode, block, &tmp, 0);
2971        return tmp.b_blocknr;
2972}
2973EXPORT_SYMBOL(generic_block_bmap);
2974
2975static void end_bio_bh_io_sync(struct bio *bio)
2976{
2977        struct buffer_head *bh = bio->bi_private;
2978
2979        if (unlikely(bio_flagged(bio, BIO_QUIET)))
2980                set_bit(BH_Quiet, &bh->b_state);
2981
2982        bh->b_end_io(bh, !bio->bi_status);
2983        bio_put(bio);
2984}
2985
2986/*
2987 * This allows us to do IO even on the odd last sectors
2988 * of a device, even if the block size is some multiple
2989 * of the physical sector size.
2990 *
2991 * We'll just truncate the bio to the size of the device,
2992 * and clear the end of the buffer head manually.
2993 *
2994 * Truly out-of-range accesses will turn into actual IO
2995 * errors, this only handles the "we need to be able to
2996 * do IO at the final sector" case.
2997 */
2998void guard_bio_eod(int op, struct bio *bio)
2999{
3000        sector_t maxsector;
3001        struct bio_vec *bvec = bio_last_bvec_all(bio);
3002        unsigned truncated_bytes;
3003        struct hd_struct *part;
3004
3005        rcu_read_lock();
3006        part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3007        if (part)
3008                maxsector = part_nr_sects_read(part);
3009        else
3010                maxsector = get_capacity(bio->bi_disk);
3011        rcu_read_unlock();
3012
3013        if (!maxsector)
3014                return;
3015
3016        /*
3017         * If the *whole* IO is past the end of the device,
3018         * let it through, and the IO layer will turn it into
3019         * an EIO.
3020         */
3021        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3022                return;
3023
3024        maxsector -= bio->bi_iter.bi_sector;
3025        if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3026                return;
3027
3028        /* Uhhuh. We've got a bio that straddles the device size! */
3029        truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3030
3031        /*
3032         * The bio contains more than one segment which spans EOD, just return
3033         * and let IO layer turn it into an EIO
3034         */
3035        if (truncated_bytes > bvec->bv_len)
3036                return;
3037
3038        /* Truncate the bio.. */
3039        bio->bi_iter.bi_size -= truncated_bytes;
3040        bvec->bv_len -= truncated_bytes;
3041
3042        /* ..and clear the end of the buffer for reads */
3043        if (op == REQ_OP_READ) {
3044                struct bio_vec bv;
3045
3046                mp_bvec_last_segment(bvec, &bv);
3047                zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3048                                truncated_bytes);
3049        }
3050}
3051
3052static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3053                         enum rw_hint write_hint, struct writeback_control *wbc)
3054{
3055        struct bio *bio;
3056
3057        BUG_ON(!buffer_locked(bh));
3058        BUG_ON(!buffer_mapped(bh));
3059        BUG_ON(!bh->b_end_io);
3060        BUG_ON(buffer_delay(bh));
3061        BUG_ON(buffer_unwritten(bh));
3062
3063        /*
3064         * Only clear out a write error when rewriting
3065         */
3066        if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3067                clear_buffer_write_io_error(bh);
3068
3069        /*
3070         * from here on down, it's all bio -- do the initial mapping,
3071         * submit_bio -> generic_make_request may further map this bio around
3072         */
3073        bio = bio_alloc(GFP_NOIO, 1);
3074
3075        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3076        bio_set_dev(bio, bh->b_bdev);
3077        bio->bi_write_hint = write_hint;
3078
3079        bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3080        BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3081
3082        bio->bi_end_io = end_bio_bh_io_sync;
3083        bio->bi_private = bh;
3084
3085        /* Take care of bh's that straddle the end of the device */
3086        guard_bio_eod(op, bio);
3087
3088        if (buffer_meta(bh))
3089                op_flags |= REQ_META;
3090        if (buffer_prio(bh))
3091                op_flags |= REQ_PRIO;
3092        bio_set_op_attrs(bio, op, op_flags);
3093
3094        if (wbc) {
3095                wbc_init_bio(wbc, bio);
3096                wbc_account_io(wbc, bh->b_page, bh->b_size);
3097        }
3098
3099        submit_bio(bio);
3100        return 0;
3101}
3102
3103int submit_bh(int op, int op_flags, struct buffer_head *bh)
3104{
3105        return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3106}
3107EXPORT_SYMBOL(submit_bh);
3108
3109/**
3110 * ll_rw_block: low-level access to block devices (DEPRECATED)
3111 * @op: whether to %READ or %WRITE
3112 * @op_flags: req_flag_bits
3113 * @nr: number of &struct buffer_heads in the array
3114 * @bhs: array of pointers to &struct buffer_head
3115 *
3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3119 * %REQ_RAHEAD.
3120 *
3121 * This function drops any buffer that it cannot get a lock on (with the
3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123 * request, and any buffer that appears to be up-to-date when doing read
3124 * request.  Further it marks as clean buffers that are processed for
3125 * writing (the buffer cache won't assume that they are actually clean
3126 * until the buffer gets unlocked).
3127 *
3128 * ll_rw_block sets b_end_io to simple completion handler that marks
3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3130 * any waiters. 
3131 *
3132 * All of the buffers must be for the same device, and must also be a
3133 * multiple of the current approved size for the device.
3134 */
3135void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3136{
3137        int i;
3138
3139        for (i = 0; i < nr; i++) {
3140                struct buffer_head *bh = bhs[i];
3141
3142                if (!trylock_buffer(bh))
3143                        continue;
3144                if (op == WRITE) {
3145                        if (test_clear_buffer_dirty(bh)) {
3146                                bh->b_end_io = end_buffer_write_sync;
3147                                get_bh(bh);
3148                                submit_bh(op, op_flags, bh);
3149                                continue;
3150                        }
3151                } else {
3152                        if (!buffer_uptodate(bh)) {
3153                                bh->b_end_io = end_buffer_read_sync;
3154                                get_bh(bh);
3155                                submit_bh(op, op_flags, bh);
3156                                continue;
3157                        }
3158                }
3159                unlock_buffer(bh);
3160        }
3161}
3162EXPORT_SYMBOL(ll_rw_block);
3163
3164void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3165{
3166        lock_buffer(bh);
3167        if (!test_clear_buffer_dirty(bh)) {
3168                unlock_buffer(bh);
3169                return;
3170        }
3171        bh->b_end_io = end_buffer_write_sync;
3172        get_bh(bh);
3173        submit_bh(REQ_OP_WRITE, op_flags, bh);
3174}
3175EXPORT_SYMBOL(write_dirty_buffer);
3176
3177/*
3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179 * and then start new I/O and then wait upon it.  The caller must have a ref on
3180 * the buffer_head.
3181 */
3182int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3183{
3184        int ret = 0;
3185
3186        WARN_ON(atomic_read(&bh->b_count) < 1);
3187        lock_buffer(bh);
3188        if (test_clear_buffer_dirty(bh)) {
3189                get_bh(bh);
3190                bh->b_end_io = end_buffer_write_sync;
3191                ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192                wait_on_buffer(bh);
3193                if (!ret && !buffer_uptodate(bh))
3194                        ret = -EIO;
3195        } else {
3196                unlock_buffer(bh);
3197        }
3198        return ret;
3199}
3200EXPORT_SYMBOL(__sync_dirty_buffer);
3201
3202int sync_dirty_buffer(struct buffer_head *bh)
3203{
3204        return __sync_dirty_buffer(bh, REQ_SYNC);
3205}
3206EXPORT_SYMBOL(sync_dirty_buffer);
3207
3208/*
3209 * try_to_free_buffers() checks if all the buffers on this particular page
3210 * are unused, and releases them if so.
3211 *
3212 * Exclusion against try_to_free_buffers may be obtained by either
3213 * locking the page or by holding its mapping's private_lock.
3214 *
3215 * If the page is dirty but all the buffers are clean then we need to
3216 * be sure to mark the page clean as well.  This is because the page
3217 * may be against a block device, and a later reattachment of buffers
3218 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3219 * filesystem data on the same device.
3220 *
3221 * The same applies to regular filesystem pages: if all the buffers are
3222 * clean then we set the page clean and proceed.  To do that, we require
3223 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3224 * private_lock.
3225 *
3226 * try_to_free_buffers() is non-blocking.
3227 */
3228static inline int buffer_busy(struct buffer_head *bh)
3229{
3230        return atomic_read(&bh->b_count) |
3231                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232}
3233
3234static int
3235drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236{
3237        struct buffer_head *head = page_buffers(page);
3238        struct buffer_head *bh;
3239
3240        bh = head;
3241        do {
3242                if (buffer_busy(bh))
3243                        goto failed;
3244                bh = bh->b_this_page;
3245        } while (bh != head);
3246
3247        do {
3248                struct buffer_head *next = bh->b_this_page;
3249
3250                if (bh->b_assoc_map)
3251                        __remove_assoc_queue(bh);
3252                bh = next;
3253        } while (bh != head);
3254        *buffers_to_free = head;
3255        __clear_page_buffers(page);
3256        return 1;
3257failed:
3258        return 0;
3259}
3260
3261int try_to_free_buffers(struct page *page)
3262{
3263        struct address_space * const mapping = page->mapping;
3264        struct buffer_head *buffers_to_free = NULL;
3265        int ret = 0;
3266
3267        BUG_ON(!PageLocked(page));
3268        if (PageWriteback(page))
3269                return 0;
3270
3271        if (mapping == NULL) {          /* can this still happen? */
3272                ret = drop_buffers(page, &buffers_to_free);
3273                goto out;
3274        }
3275
3276        spin_lock(&mapping->private_lock);
3277        ret = drop_buffers(page, &buffers_to_free);
3278
3279        /*
3280         * If the filesystem writes its buffers by hand (eg ext3)
3281         * then we can have clean buffers against a dirty page.  We
3282         * clean the page here; otherwise the VM will never notice
3283         * that the filesystem did any IO at all.
3284         *
3285         * Also, during truncate, discard_buffer will have marked all
3286         * the page's buffers clean.  We discover that here and clean
3287         * the page also.
3288         *
3289         * private_lock must be held over this entire operation in order
3290         * to synchronise against __set_page_dirty_buffers and prevent the
3291         * dirty bit from being lost.
3292         */
3293        if (ret)
3294                cancel_dirty_page(page);
3295        spin_unlock(&mapping->private_lock);
3296out:
3297        if (buffers_to_free) {
3298                struct buffer_head *bh = buffers_to_free;
3299
3300                do {
3301                        struct buffer_head *next = bh->b_this_page;
3302                        free_buffer_head(bh);
3303                        bh = next;
3304                } while (bh != buffers_to_free);
3305        }
3306        return ret;
3307}
3308EXPORT_SYMBOL(try_to_free_buffers);
3309
3310/*
3311 * There are no bdflush tunables left.  But distributions are
3312 * still running obsolete flush daemons, so we terminate them here.
3313 *
3314 * Use of bdflush() is deprecated and will be removed in a future kernel.
3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316 */
3317SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318{
3319        static int msg_count;
3320
3321        if (!capable(CAP_SYS_ADMIN))
3322                return -EPERM;
3323
3324        if (msg_count < 5) {
3325                msg_count++;
3326                printk(KERN_INFO
3327                        "warning: process `%s' used the obsolete bdflush"
3328                        " system call\n", current->comm);
3329                printk(KERN_INFO "Fix your initscripts?\n");
3330        }
3331
3332        if (func == 1)
3333                do_exit(0);
3334        return 0;
3335}
3336
3337/*
3338 * Buffer-head allocation
3339 */
3340static struct kmem_cache *bh_cachep __read_mostly;
3341
3342/*
3343 * Once the number of bh's in the machine exceeds this level, we start
3344 * stripping them in writeback.
3345 */
3346static unsigned long max_buffer_heads;
3347
3348int buffer_heads_over_limit;
3349
3350struct bh_accounting {
3351        int nr;                 /* Number of live bh's */
3352        int ratelimit;          /* Limit cacheline bouncing */
3353};
3354
3355static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356
3357static void recalc_bh_state(void)
3358{
3359        int i;
3360        int tot = 0;
3361
3362        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363                return;
3364        __this_cpu_write(bh_accounting.ratelimit, 0);
3365        for_each_online_cpu(i)
3366                tot += per_cpu(bh_accounting, i).nr;
3367        buffer_heads_over_limit = (tot > max_buffer_heads);
3368}
3369
3370struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371{
3372        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373        if (ret) {
3374                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375                preempt_disable();
3376                __this_cpu_inc(bh_accounting.nr);
3377                recalc_bh_state();
3378                preempt_enable();
3379        }
3380        return ret;
3381}
3382EXPORT_SYMBOL(alloc_buffer_head);
3383
3384void free_buffer_head(struct buffer_head *bh)
3385{
3386        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387        kmem_cache_free(bh_cachep, bh);
3388        preempt_disable();
3389        __this_cpu_dec(bh_accounting.nr);
3390        recalc_bh_state();
3391        preempt_enable();
3392}
3393EXPORT_SYMBOL(free_buffer_head);
3394
3395static int buffer_exit_cpu_dead(unsigned int cpu)
3396{
3397        int i;
3398        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399
3400        for (i = 0; i < BH_LRU_SIZE; i++) {
3401                brelse(b->bhs[i]);
3402                b->bhs[i] = NULL;
3403        }
3404        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405        per_cpu(bh_accounting, cpu).nr = 0;
3406        return 0;
3407}
3408
3409/**
3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411 * @bh: struct buffer_head
3412 *
3413 * Return true if the buffer is up-to-date and false,
3414 * with the buffer locked, if not.
3415 */
3416int bh_uptodate_or_lock(struct buffer_head *bh)
3417{
3418        if (!buffer_uptodate(bh)) {
3419                lock_buffer(bh);
3420                if (!buffer_uptodate(bh))
3421                        return 0;
3422                unlock_buffer(bh);
3423        }
3424        return 1;
3425}
3426EXPORT_SYMBOL(bh_uptodate_or_lock);
3427
3428/**
3429 * bh_submit_read - Submit a locked buffer for reading
3430 * @bh: struct buffer_head
3431 *
3432 * Returns zero on success and -EIO on error.
3433 */
3434int bh_submit_read(struct buffer_head *bh)
3435{
3436        BUG_ON(!buffer_locked(bh));
3437
3438        if (buffer_uptodate(bh)) {
3439                unlock_buffer(bh);
3440                return 0;
3441        }
3442
3443        get_bh(bh);
3444        bh->b_end_io = end_buffer_read_sync;
3445        submit_bh(REQ_OP_READ, 0, bh);
3446        wait_on_buffer(bh);
3447        if (buffer_uptodate(bh))
3448                return 0;
3449        return -EIO;
3450}
3451EXPORT_SYMBOL(bh_submit_read);
3452
3453void __init buffer_init(void)
3454{
3455        unsigned long nrpages;
3456        int ret;
3457
3458        bh_cachep = kmem_cache_create("buffer_head",
3459                        sizeof(struct buffer_head), 0,
3460                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3461                                SLAB_MEM_SPREAD),
3462                                NULL);
3463
3464        /*
3465         * Limit the bh occupancy to 10% of ZONE_NORMAL
3466         */
3467        nrpages = (nr_free_buffer_pages() * 10) / 100;
3468        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3469        ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3470                                        NULL, buffer_exit_cpu_dead);
3471        WARN_ON(ret < 0);
3472}
3473