linux/fs/direct-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/direct-io.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * O_DIRECT
   8 *
   9 * 04Jul2002    Andrew Morton
  10 *              Initial version
  11 * 11Sep2002    janetinc@us.ibm.com
  12 *              added readv/writev support.
  13 * 29Oct2002    Andrew Morton
  14 *              rewrote bio_add_page() support.
  15 * 30Oct2002    pbadari@us.ibm.com
  16 *              added support for non-aligned IO.
  17 * 06Nov2002    pbadari@us.ibm.com
  18 *              added asynchronous IO support.
  19 * 21Jul2003    nathans@sgi.com
  20 *              added IO completion notifier.
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/fs.h>
  27#include <linux/mm.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/pagemap.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/bio.h>
  33#include <linux/wait.h>
  34#include <linux/err.h>
  35#include <linux/blkdev.h>
  36#include <linux/buffer_head.h>
  37#include <linux/rwsem.h>
  38#include <linux/uio.h>
  39#include <linux/atomic.h>
  40#include <linux/prefetch.h>
  41
  42/*
  43 * How many user pages to map in one call to get_user_pages().  This determines
  44 * the size of a structure in the slab cache
  45 */
  46#define DIO_PAGES       64
  47
  48/*
  49 * Flags for dio_complete()
  50 */
  51#define DIO_COMPLETE_ASYNC              0x01    /* This is async IO */
  52#define DIO_COMPLETE_INVALIDATE         0x02    /* Can invalidate pages */
  53
  54/*
  55 * This code generally works in units of "dio_blocks".  A dio_block is
  56 * somewhere between the hard sector size and the filesystem block size.  it
  57 * is determined on a per-invocation basis.   When talking to the filesystem
  58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  59 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  60 * to bio_block quantities by shifting left by blkfactor.
  61 *
  62 * If blkfactor is zero then the user's request was aligned to the filesystem's
  63 * blocksize.
  64 */
  65
  66/* dio_state only used in the submission path */
  67
  68struct dio_submit {
  69        struct bio *bio;                /* bio under assembly */
  70        unsigned blkbits;               /* doesn't change */
  71        unsigned blkfactor;             /* When we're using an alignment which
  72                                           is finer than the filesystem's soft
  73                                           blocksize, this specifies how much
  74                                           finer.  blkfactor=2 means 1/4-block
  75                                           alignment.  Does not change */
  76        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  77                                           been performed at the start of a
  78                                           write */
  79        int pages_in_io;                /* approximate total IO pages */
  80        sector_t block_in_file;         /* Current offset into the underlying
  81                                           file in dio_block units. */
  82        unsigned blocks_available;      /* At block_in_file.  changes */
  83        int reap_counter;               /* rate limit reaping */
  84        sector_t final_block_in_request;/* doesn't change */
  85        int boundary;                   /* prev block is at a boundary */
  86        get_block_t *get_block;         /* block mapping function */
  87        dio_submit_t *submit_io;        /* IO submition function */
  88
  89        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  90        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  91        sector_t next_block_for_io;     /* next block to be put under IO,
  92                                           in dio_blocks units */
  93
  94        /*
  95         * Deferred addition of a page to the dio.  These variables are
  96         * private to dio_send_cur_page(), submit_page_section() and
  97         * dio_bio_add_page().
  98         */
  99        struct page *cur_page;          /* The page */
 100        unsigned cur_page_offset;       /* Offset into it, in bytes */
 101        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
 102        sector_t cur_page_block;        /* Where it starts */
 103        loff_t cur_page_fs_offset;      /* Offset in file */
 104
 105        struct iov_iter *iter;
 106        /*
 107         * Page queue.  These variables belong to dio_refill_pages() and
 108         * dio_get_page().
 109         */
 110        unsigned head;                  /* next page to process */
 111        unsigned tail;                  /* last valid page + 1 */
 112        size_t from, to;
 113};
 114
 115/* dio_state communicated between submission path and end_io */
 116struct dio {
 117        int flags;                      /* doesn't change */
 118        int op;
 119        int op_flags;
 120        blk_qc_t bio_cookie;
 121        struct gendisk *bio_disk;
 122        struct inode *inode;
 123        loff_t i_size;                  /* i_size when submitted */
 124        dio_iodone_t *end_io;           /* IO completion function */
 125
 126        void *private;                  /* copy from map_bh.b_private */
 127
 128        /* BIO completion state */
 129        spinlock_t bio_lock;            /* protects BIO fields below */
 130        int page_errors;                /* errno from get_user_pages() */
 131        int is_async;                   /* is IO async ? */
 132        bool defer_completion;          /* defer AIO completion to workqueue? */
 133        bool should_dirty;              /* if pages should be dirtied */
 134        int io_error;                   /* IO error in completion path */
 135        unsigned long refcount;         /* direct_io_worker() and bios */
 136        struct bio *bio_list;           /* singly linked via bi_private */
 137        struct task_struct *waiter;     /* waiting task (NULL if none) */
 138
 139        /* AIO related stuff */
 140        struct kiocb *iocb;             /* kiocb */
 141        ssize_t result;                 /* IO result */
 142
 143        /*
 144         * pages[] (and any fields placed after it) are not zeroed out at
 145         * allocation time.  Don't add new fields after pages[] unless you
 146         * wish that they not be zeroed.
 147         */
 148        union {
 149                struct page *pages[DIO_PAGES];  /* page buffer */
 150                struct work_struct complete_work;/* deferred AIO completion */
 151        };
 152} ____cacheline_aligned_in_smp;
 153
 154static struct kmem_cache *dio_cache __read_mostly;
 155
 156/*
 157 * How many pages are in the queue?
 158 */
 159static inline unsigned dio_pages_present(struct dio_submit *sdio)
 160{
 161        return sdio->tail - sdio->head;
 162}
 163
 164/*
 165 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 166 */
 167static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 168{
 169        ssize_t ret;
 170
 171        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 172                                &sdio->from);
 173
 174        if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
 175                struct page *page = ZERO_PAGE(0);
 176                /*
 177                 * A memory fault, but the filesystem has some outstanding
 178                 * mapped blocks.  We need to use those blocks up to avoid
 179                 * leaking stale data in the file.
 180                 */
 181                if (dio->page_errors == 0)
 182                        dio->page_errors = ret;
 183                get_page(page);
 184                dio->pages[0] = page;
 185                sdio->head = 0;
 186                sdio->tail = 1;
 187                sdio->from = 0;
 188                sdio->to = PAGE_SIZE;
 189                return 0;
 190        }
 191
 192        if (ret >= 0) {
 193                iov_iter_advance(sdio->iter, ret);
 194                ret += sdio->from;
 195                sdio->head = 0;
 196                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 197                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 198                return 0;
 199        }
 200        return ret;     
 201}
 202
 203/*
 204 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 205 * buffered inside the dio so that we can call get_user_pages() against a
 206 * decent number of pages, less frequently.  To provide nicer use of the
 207 * L1 cache.
 208 */
 209static inline struct page *dio_get_page(struct dio *dio,
 210                                        struct dio_submit *sdio)
 211{
 212        if (dio_pages_present(sdio) == 0) {
 213                int ret;
 214
 215                ret = dio_refill_pages(dio, sdio);
 216                if (ret)
 217                        return ERR_PTR(ret);
 218                BUG_ON(dio_pages_present(sdio) == 0);
 219        }
 220        return dio->pages[sdio->head];
 221}
 222
 223/*
 224 * Warn about a page cache invalidation failure during a direct io write.
 225 */
 226void dio_warn_stale_pagecache(struct file *filp)
 227{
 228        static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
 229        char pathname[128];
 230        struct inode *inode = file_inode(filp);
 231        char *path;
 232
 233        errseq_set(&inode->i_mapping->wb_err, -EIO);
 234        if (__ratelimit(&_rs)) {
 235                path = file_path(filp, pathname, sizeof(pathname));
 236                if (IS_ERR(path))
 237                        path = "(unknown)";
 238                pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
 239                pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
 240                        current->comm);
 241        }
 242}
 243
 244/**
 245 * dio_complete() - called when all DIO BIO I/O has been completed
 246 * @offset: the byte offset in the file of the completed operation
 247 *
 248 * This drops i_dio_count, lets interested parties know that a DIO operation
 249 * has completed, and calculates the resulting return code for the operation.
 250 *
 251 * It lets the filesystem know if it registered an interest earlier via
 252 * get_block.  Pass the private field of the map buffer_head so that
 253 * filesystems can use it to hold additional state between get_block calls and
 254 * dio_complete.
 255 */
 256static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
 257{
 258        loff_t offset = dio->iocb->ki_pos;
 259        ssize_t transferred = 0;
 260        int err;
 261
 262        /*
 263         * AIO submission can race with bio completion to get here while
 264         * expecting to have the last io completed by bio completion.
 265         * In that case -EIOCBQUEUED is in fact not an error we want
 266         * to preserve through this call.
 267         */
 268        if (ret == -EIOCBQUEUED)
 269                ret = 0;
 270
 271        if (dio->result) {
 272                transferred = dio->result;
 273
 274                /* Check for short read case */
 275                if ((dio->op == REQ_OP_READ) &&
 276                    ((offset + transferred) > dio->i_size))
 277                        transferred = dio->i_size - offset;
 278                /* ignore EFAULT if some IO has been done */
 279                if (unlikely(ret == -EFAULT) && transferred)
 280                        ret = 0;
 281        }
 282
 283        if (ret == 0)
 284                ret = dio->page_errors;
 285        if (ret == 0)
 286                ret = dio->io_error;
 287        if (ret == 0)
 288                ret = transferred;
 289
 290        if (dio->end_io) {
 291                // XXX: ki_pos??
 292                err = dio->end_io(dio->iocb, offset, ret, dio->private);
 293                if (err)
 294                        ret = err;
 295        }
 296
 297        /*
 298         * Try again to invalidate clean pages which might have been cached by
 299         * non-direct readahead, or faulted in by get_user_pages() if the source
 300         * of the write was an mmap'ed region of the file we're writing.  Either
 301         * one is a pretty crazy thing to do, so we don't support it 100%.  If
 302         * this invalidation fails, tough, the write still worked...
 303         *
 304         * And this page cache invalidation has to be after dio->end_io(), as
 305         * some filesystems convert unwritten extents to real allocations in
 306         * end_io() when necessary, otherwise a racing buffer read would cache
 307         * zeros from unwritten extents.
 308         */
 309        if (flags & DIO_COMPLETE_INVALIDATE &&
 310            ret > 0 && dio->op == REQ_OP_WRITE &&
 311            dio->inode->i_mapping->nrpages) {
 312                err = invalidate_inode_pages2_range(dio->inode->i_mapping,
 313                                        offset >> PAGE_SHIFT,
 314                                        (offset + ret - 1) >> PAGE_SHIFT);
 315                if (err)
 316                        dio_warn_stale_pagecache(dio->iocb->ki_filp);
 317        }
 318
 319        inode_dio_end(dio->inode);
 320
 321        if (flags & DIO_COMPLETE_ASYNC) {
 322                /*
 323                 * generic_write_sync expects ki_pos to have been updated
 324                 * already, but the submission path only does this for
 325                 * synchronous I/O.
 326                 */
 327                dio->iocb->ki_pos += transferred;
 328
 329                if (ret > 0 && dio->op == REQ_OP_WRITE)
 330                        ret = generic_write_sync(dio->iocb, ret);
 331                dio->iocb->ki_complete(dio->iocb, ret, 0);
 332        }
 333
 334        kmem_cache_free(dio_cache, dio);
 335        return ret;
 336}
 337
 338static void dio_aio_complete_work(struct work_struct *work)
 339{
 340        struct dio *dio = container_of(work, struct dio, complete_work);
 341
 342        dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
 343}
 344
 345static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
 346
 347/*
 348 * Asynchronous IO callback. 
 349 */
 350static void dio_bio_end_aio(struct bio *bio)
 351{
 352        struct dio *dio = bio->bi_private;
 353        unsigned long remaining;
 354        unsigned long flags;
 355        bool defer_completion = false;
 356
 357        /* cleanup the bio */
 358        dio_bio_complete(dio, bio);
 359
 360        spin_lock_irqsave(&dio->bio_lock, flags);
 361        remaining = --dio->refcount;
 362        if (remaining == 1 && dio->waiter)
 363                wake_up_process(dio->waiter);
 364        spin_unlock_irqrestore(&dio->bio_lock, flags);
 365
 366        if (remaining == 0) {
 367                /*
 368                 * Defer completion when defer_completion is set or
 369                 * when the inode has pages mapped and this is AIO write.
 370                 * We need to invalidate those pages because there is a
 371                 * chance they contain stale data in the case buffered IO
 372                 * went in between AIO submission and completion into the
 373                 * same region.
 374                 */
 375                if (dio->result)
 376                        defer_completion = dio->defer_completion ||
 377                                           (dio->op == REQ_OP_WRITE &&
 378                                            dio->inode->i_mapping->nrpages);
 379                if (defer_completion) {
 380                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 381                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 382                                   &dio->complete_work);
 383                } else {
 384                        dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
 385                }
 386        }
 387}
 388
 389/*
 390 * The BIO completion handler simply queues the BIO up for the process-context
 391 * handler.
 392 *
 393 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 395 */
 396static void dio_bio_end_io(struct bio *bio)
 397{
 398        struct dio *dio = bio->bi_private;
 399        unsigned long flags;
 400
 401        spin_lock_irqsave(&dio->bio_lock, flags);
 402        bio->bi_private = dio->bio_list;
 403        dio->bio_list = bio;
 404        if (--dio->refcount == 1 && dio->waiter)
 405                wake_up_process(dio->waiter);
 406        spin_unlock_irqrestore(&dio->bio_lock, flags);
 407}
 408
 409/**
 410 * dio_end_io - handle the end io action for the given bio
 411 * @bio: The direct io bio thats being completed
 412 *
 413 * This is meant to be called by any filesystem that uses their own dio_submit_t
 414 * so that the DIO specific endio actions are dealt with after the filesystem
 415 * has done it's completion work.
 416 */
 417void dio_end_io(struct bio *bio)
 418{
 419        struct dio *dio = bio->bi_private;
 420
 421        if (dio->is_async)
 422                dio_bio_end_aio(bio);
 423        else
 424                dio_bio_end_io(bio);
 425}
 426EXPORT_SYMBOL_GPL(dio_end_io);
 427
 428static inline void
 429dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 430              struct block_device *bdev,
 431              sector_t first_sector, int nr_vecs)
 432{
 433        struct bio *bio;
 434
 435        /*
 436         * bio_alloc() is guaranteed to return a bio when allowed to sleep and
 437         * we request a valid number of vectors.
 438         */
 439        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 440
 441        bio_set_dev(bio, bdev);
 442        bio->bi_iter.bi_sector = first_sector;
 443        bio_set_op_attrs(bio, dio->op, dio->op_flags);
 444        if (dio->is_async)
 445                bio->bi_end_io = dio_bio_end_aio;
 446        else
 447                bio->bi_end_io = dio_bio_end_io;
 448
 449        bio->bi_write_hint = dio->iocb->ki_hint;
 450
 451        sdio->bio = bio;
 452        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 453}
 454
 455/*
 456 * In the AIO read case we speculatively dirty the pages before starting IO.
 457 * During IO completion, any of these pages which happen to have been written
 458 * back will be redirtied by bio_check_pages_dirty().
 459 *
 460 * bios hold a dio reference between submit_bio and ->end_io.
 461 */
 462static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 463{
 464        struct bio *bio = sdio->bio;
 465        unsigned long flags;
 466
 467        bio->bi_private = dio;
 468
 469        spin_lock_irqsave(&dio->bio_lock, flags);
 470        dio->refcount++;
 471        spin_unlock_irqrestore(&dio->bio_lock, flags);
 472
 473        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
 474                bio_set_pages_dirty(bio);
 475
 476        dio->bio_disk = bio->bi_disk;
 477
 478        if (sdio->submit_io) {
 479                sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
 480                dio->bio_cookie = BLK_QC_T_NONE;
 481        } else
 482                dio->bio_cookie = submit_bio(bio);
 483
 484        sdio->bio = NULL;
 485        sdio->boundary = 0;
 486        sdio->logical_offset_in_bio = 0;
 487}
 488
 489/*
 490 * Release any resources in case of a failure
 491 */
 492static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 493{
 494        while (sdio->head < sdio->tail)
 495                put_page(dio->pages[sdio->head++]);
 496}
 497
 498/*
 499 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 500 * returned once all BIOs have been completed.  This must only be called once
 501 * all bios have been issued so that dio->refcount can only decrease.  This
 502 * requires that that the caller hold a reference on the dio.
 503 */
 504static struct bio *dio_await_one(struct dio *dio)
 505{
 506        unsigned long flags;
 507        struct bio *bio = NULL;
 508
 509        spin_lock_irqsave(&dio->bio_lock, flags);
 510
 511        /*
 512         * Wait as long as the list is empty and there are bios in flight.  bio
 513         * completion drops the count, maybe adds to the list, and wakes while
 514         * holding the bio_lock so we don't need set_current_state()'s barrier
 515         * and can call it after testing our condition.
 516         */
 517        while (dio->refcount > 1 && dio->bio_list == NULL) {
 518                __set_current_state(TASK_UNINTERRUPTIBLE);
 519                dio->waiter = current;
 520                spin_unlock_irqrestore(&dio->bio_lock, flags);
 521                if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
 522                    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
 523                        io_schedule();
 524                /* wake up sets us TASK_RUNNING */
 525                spin_lock_irqsave(&dio->bio_lock, flags);
 526                dio->waiter = NULL;
 527        }
 528        if (dio->bio_list) {
 529                bio = dio->bio_list;
 530                dio->bio_list = bio->bi_private;
 531        }
 532        spin_unlock_irqrestore(&dio->bio_lock, flags);
 533        return bio;
 534}
 535
 536/*
 537 * Process one completed BIO.  No locks are held.
 538 */
 539static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
 540{
 541        struct bio_vec *bvec;
 542        blk_status_t err = bio->bi_status;
 543
 544        if (err) {
 545                if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
 546                        dio->io_error = -EAGAIN;
 547                else
 548                        dio->io_error = -EIO;
 549        }
 550
 551        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
 552                bio_check_pages_dirty(bio);     /* transfers ownership */
 553        } else {
 554                struct bvec_iter_all iter_all;
 555
 556                bio_for_each_segment_all(bvec, bio, iter_all) {
 557                        struct page *page = bvec->bv_page;
 558
 559                        if (dio->op == REQ_OP_READ && !PageCompound(page) &&
 560                                        dio->should_dirty)
 561                                set_page_dirty_lock(page);
 562                        put_page(page);
 563                }
 564                bio_put(bio);
 565        }
 566        return err;
 567}
 568
 569/*
 570 * Wait on and process all in-flight BIOs.  This must only be called once
 571 * all bios have been issued so that the refcount can only decrease.
 572 * This just waits for all bios to make it through dio_bio_complete.  IO
 573 * errors are propagated through dio->io_error and should be propagated via
 574 * dio_complete().
 575 */
 576static void dio_await_completion(struct dio *dio)
 577{
 578        struct bio *bio;
 579        do {
 580                bio = dio_await_one(dio);
 581                if (bio)
 582                        dio_bio_complete(dio, bio);
 583        } while (bio);
 584}
 585
 586/*
 587 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 588 * to keep the memory consumption sane we periodically reap any completed BIOs
 589 * during the BIO generation phase.
 590 *
 591 * This also helps to limit the peak amount of pinned userspace memory.
 592 */
 593static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 594{
 595        int ret = 0;
 596
 597        if (sdio->reap_counter++ >= 64) {
 598                while (dio->bio_list) {
 599                        unsigned long flags;
 600                        struct bio *bio;
 601                        int ret2;
 602
 603                        spin_lock_irqsave(&dio->bio_lock, flags);
 604                        bio = dio->bio_list;
 605                        dio->bio_list = bio->bi_private;
 606                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 607                        ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
 608                        if (ret == 0)
 609                                ret = ret2;
 610                }
 611                sdio->reap_counter = 0;
 612        }
 613        return ret;
 614}
 615
 616/*
 617 * Create workqueue for deferred direct IO completions. We allocate the
 618 * workqueue when it's first needed. This avoids creating workqueue for
 619 * filesystems that don't need it and also allows us to create the workqueue
 620 * late enough so the we can include s_id in the name of the workqueue.
 621 */
 622int sb_init_dio_done_wq(struct super_block *sb)
 623{
 624        struct workqueue_struct *old;
 625        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 626                                                      WQ_MEM_RECLAIM, 0,
 627                                                      sb->s_id);
 628        if (!wq)
 629                return -ENOMEM;
 630        /*
 631         * This has to be atomic as more DIOs can race to create the workqueue
 632         */
 633        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 634        /* Someone created workqueue before us? Free ours... */
 635        if (old)
 636                destroy_workqueue(wq);
 637        return 0;
 638}
 639
 640static int dio_set_defer_completion(struct dio *dio)
 641{
 642        struct super_block *sb = dio->inode->i_sb;
 643
 644        if (dio->defer_completion)
 645                return 0;
 646        dio->defer_completion = true;
 647        if (!sb->s_dio_done_wq)
 648                return sb_init_dio_done_wq(sb);
 649        return 0;
 650}
 651
 652/*
 653 * Call into the fs to map some more disk blocks.  We record the current number
 654 * of available blocks at sdio->blocks_available.  These are in units of the
 655 * fs blocksize, i_blocksize(inode).
 656 *
 657 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 658 * it uses the passed inode-relative block number as the file offset, as usual.
 659 *
 660 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 661 * has remaining to do.  The fs should not map more than this number of blocks.
 662 *
 663 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 664 * indicate how much contiguous disk space has been made available at
 665 * bh->b_blocknr.
 666 *
 667 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 668 * This isn't very efficient...
 669 *
 670 * In the case of filesystem holes: the fs may return an arbitrarily-large
 671 * hole by returning an appropriate value in b_size and by clearing
 672 * buffer_mapped().  However the direct-io code will only process holes one
 673 * block at a time - it will repeatedly call get_block() as it walks the hole.
 674 */
 675static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 676                           struct buffer_head *map_bh)
 677{
 678        int ret;
 679        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 680        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 681        unsigned long fs_count; /* Number of filesystem-sized blocks */
 682        int create;
 683        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 684        loff_t i_size;
 685
 686        /*
 687         * If there was a memory error and we've overwritten all the
 688         * mapped blocks then we can now return that memory error
 689         */
 690        ret = dio->page_errors;
 691        if (ret == 0) {
 692                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 693                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 694                fs_endblk = (sdio->final_block_in_request - 1) >>
 695                                        sdio->blkfactor;
 696                fs_count = fs_endblk - fs_startblk + 1;
 697
 698                map_bh->b_state = 0;
 699                map_bh->b_size = fs_count << i_blkbits;
 700
 701                /*
 702                 * For writes that could fill holes inside i_size on a
 703                 * DIO_SKIP_HOLES filesystem we forbid block creations: only
 704                 * overwrites are permitted. We will return early to the caller
 705                 * once we see an unmapped buffer head returned, and the caller
 706                 * will fall back to buffered I/O.
 707                 *
 708                 * Otherwise the decision is left to the get_blocks method,
 709                 * which may decide to handle it or also return an unmapped
 710                 * buffer head.
 711                 */
 712                create = dio->op == REQ_OP_WRITE;
 713                if (dio->flags & DIO_SKIP_HOLES) {
 714                        i_size = i_size_read(dio->inode);
 715                        if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
 716                                create = 0;
 717                }
 718
 719                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 720                                                map_bh, create);
 721
 722                /* Store for completion */
 723                dio->private = map_bh->b_private;
 724
 725                if (ret == 0 && buffer_defer_completion(map_bh))
 726                        ret = dio_set_defer_completion(dio);
 727        }
 728        return ret;
 729}
 730
 731/*
 732 * There is no bio.  Make one now.
 733 */
 734static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 735                sector_t start_sector, struct buffer_head *map_bh)
 736{
 737        sector_t sector;
 738        int ret, nr_pages;
 739
 740        ret = dio_bio_reap(dio, sdio);
 741        if (ret)
 742                goto out;
 743        sector = start_sector << (sdio->blkbits - 9);
 744        nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
 745        BUG_ON(nr_pages <= 0);
 746        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 747        sdio->boundary = 0;
 748out:
 749        return ret;
 750}
 751
 752/*
 753 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 754 * that was successful then update final_block_in_bio and take a ref against
 755 * the just-added page.
 756 *
 757 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 758 */
 759static inline int dio_bio_add_page(struct dio_submit *sdio)
 760{
 761        int ret;
 762
 763        ret = bio_add_page(sdio->bio, sdio->cur_page,
 764                        sdio->cur_page_len, sdio->cur_page_offset);
 765        if (ret == sdio->cur_page_len) {
 766                /*
 767                 * Decrement count only, if we are done with this page
 768                 */
 769                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 770                        sdio->pages_in_io--;
 771                get_page(sdio->cur_page);
 772                sdio->final_block_in_bio = sdio->cur_page_block +
 773                        (sdio->cur_page_len >> sdio->blkbits);
 774                ret = 0;
 775        } else {
 776                ret = 1;
 777        }
 778        return ret;
 779}
 780                
 781/*
 782 * Put cur_page under IO.  The section of cur_page which is described by
 783 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 784 * starts on-disk at cur_page_block.
 785 *
 786 * We take a ref against the page here (on behalf of its presence in the bio).
 787 *
 788 * The caller of this function is responsible for removing cur_page from the
 789 * dio, and for dropping the refcount which came from that presence.
 790 */
 791static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 792                struct buffer_head *map_bh)
 793{
 794        int ret = 0;
 795
 796        if (sdio->bio) {
 797                loff_t cur_offset = sdio->cur_page_fs_offset;
 798                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 799                        sdio->bio->bi_iter.bi_size;
 800
 801                /*
 802                 * See whether this new request is contiguous with the old.
 803                 *
 804                 * Btrfs cannot handle having logically non-contiguous requests
 805                 * submitted.  For example if you have
 806                 *
 807                 * Logical:  [0-4095][HOLE][8192-12287]
 808                 * Physical: [0-4095]      [4096-8191]
 809                 *
 810                 * We cannot submit those pages together as one BIO.  So if our
 811                 * current logical offset in the file does not equal what would
 812                 * be the next logical offset in the bio, submit the bio we
 813                 * have.
 814                 */
 815                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 816                    cur_offset != bio_next_offset)
 817                        dio_bio_submit(dio, sdio);
 818        }
 819
 820        if (sdio->bio == NULL) {
 821                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 822                if (ret)
 823                        goto out;
 824        }
 825
 826        if (dio_bio_add_page(sdio) != 0) {
 827                dio_bio_submit(dio, sdio);
 828                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 829                if (ret == 0) {
 830                        ret = dio_bio_add_page(sdio);
 831                        BUG_ON(ret != 0);
 832                }
 833        }
 834out:
 835        return ret;
 836}
 837
 838/*
 839 * An autonomous function to put a chunk of a page under deferred IO.
 840 *
 841 * The caller doesn't actually know (or care) whether this piece of page is in
 842 * a BIO, or is under IO or whatever.  We just take care of all possible 
 843 * situations here.  The separation between the logic of do_direct_IO() and
 844 * that of submit_page_section() is important for clarity.  Please don't break.
 845 *
 846 * The chunk of page starts on-disk at blocknr.
 847 *
 848 * We perform deferred IO, by recording the last-submitted page inside our
 849 * private part of the dio structure.  If possible, we just expand the IO
 850 * across that page here.
 851 *
 852 * If that doesn't work out then we put the old page into the bio and add this
 853 * page to the dio instead.
 854 */
 855static inline int
 856submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 857                    unsigned offset, unsigned len, sector_t blocknr,
 858                    struct buffer_head *map_bh)
 859{
 860        int ret = 0;
 861
 862        if (dio->op == REQ_OP_WRITE) {
 863                /*
 864                 * Read accounting is performed in submit_bio()
 865                 */
 866                task_io_account_write(len);
 867        }
 868
 869        /*
 870         * Can we just grow the current page's presence in the dio?
 871         */
 872        if (sdio->cur_page == page &&
 873            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 874            sdio->cur_page_block +
 875            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 876                sdio->cur_page_len += len;
 877                goto out;
 878        }
 879
 880        /*
 881         * If there's a deferred page already there then send it.
 882         */
 883        if (sdio->cur_page) {
 884                ret = dio_send_cur_page(dio, sdio, map_bh);
 885                put_page(sdio->cur_page);
 886                sdio->cur_page = NULL;
 887                if (ret)
 888                        return ret;
 889        }
 890
 891        get_page(page);         /* It is in dio */
 892        sdio->cur_page = page;
 893        sdio->cur_page_offset = offset;
 894        sdio->cur_page_len = len;
 895        sdio->cur_page_block = blocknr;
 896        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 897out:
 898        /*
 899         * If sdio->boundary then we want to schedule the IO now to
 900         * avoid metadata seeks.
 901         */
 902        if (sdio->boundary) {
 903                ret = dio_send_cur_page(dio, sdio, map_bh);
 904                if (sdio->bio)
 905                        dio_bio_submit(dio, sdio);
 906                put_page(sdio->cur_page);
 907                sdio->cur_page = NULL;
 908        }
 909        return ret;
 910}
 911
 912/*
 913 * If we are not writing the entire block and get_block() allocated
 914 * the block for us, we need to fill-in the unused portion of the
 915 * block with zeros. This happens only if user-buffer, fileoffset or
 916 * io length is not filesystem block-size multiple.
 917 *
 918 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 919 * IO.
 920 */
 921static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 922                int end, struct buffer_head *map_bh)
 923{
 924        unsigned dio_blocks_per_fs_block;
 925        unsigned this_chunk_blocks;     /* In dio_blocks */
 926        unsigned this_chunk_bytes;
 927        struct page *page;
 928
 929        sdio->start_zero_done = 1;
 930        if (!sdio->blkfactor || !buffer_new(map_bh))
 931                return;
 932
 933        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 934        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 935
 936        if (!this_chunk_blocks)
 937                return;
 938
 939        /*
 940         * We need to zero out part of an fs block.  It is either at the
 941         * beginning or the end of the fs block.
 942         */
 943        if (end) 
 944                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 945
 946        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 947
 948        page = ZERO_PAGE(0);
 949        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 950                                sdio->next_block_for_io, map_bh))
 951                return;
 952
 953        sdio->next_block_for_io += this_chunk_blocks;
 954}
 955
 956/*
 957 * Walk the user pages, and the file, mapping blocks to disk and generating
 958 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 959 * into submit_page_section(), which takes care of the next stage of submission
 960 *
 961 * Direct IO against a blockdev is different from a file.  Because we can
 962 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 963 * blockdev IO be able to have fine alignment and large sizes.
 964 *
 965 * So what we do is to permit the ->get_block function to populate bh.b_size
 966 * with the size of IO which is permitted at this offset and this i_blkbits.
 967 *
 968 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 969 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 970 * fine alignment but still allows this function to work in PAGE_SIZE units.
 971 */
 972static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 973                        struct buffer_head *map_bh)
 974{
 975        const unsigned blkbits = sdio->blkbits;
 976        const unsigned i_blkbits = blkbits + sdio->blkfactor;
 977        int ret = 0;
 978
 979        while (sdio->block_in_file < sdio->final_block_in_request) {
 980                struct page *page;
 981                size_t from, to;
 982
 983                page = dio_get_page(dio, sdio);
 984                if (IS_ERR(page)) {
 985                        ret = PTR_ERR(page);
 986                        goto out;
 987                }
 988                from = sdio->head ? 0 : sdio->from;
 989                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 990                sdio->head++;
 991
 992                while (from < to) {
 993                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 994                        unsigned this_chunk_blocks;     /* # of blocks */
 995                        unsigned u;
 996
 997                        if (sdio->blocks_available == 0) {
 998                                /*
 999                                 * Need to go and map some more disk
1000                                 */
1001                                unsigned long blkmask;
1002                                unsigned long dio_remainder;
1003
1004                                ret = get_more_blocks(dio, sdio, map_bh);
1005                                if (ret) {
1006                                        put_page(page);
1007                                        goto out;
1008                                }
1009                                if (!buffer_mapped(map_bh))
1010                                        goto do_holes;
1011
1012                                sdio->blocks_available =
1013                                                map_bh->b_size >> blkbits;
1014                                sdio->next_block_for_io =
1015                                        map_bh->b_blocknr << sdio->blkfactor;
1016                                if (buffer_new(map_bh)) {
1017                                        clean_bdev_aliases(
1018                                                map_bh->b_bdev,
1019                                                map_bh->b_blocknr,
1020                                                map_bh->b_size >> i_blkbits);
1021                                }
1022
1023                                if (!sdio->blkfactor)
1024                                        goto do_holes;
1025
1026                                blkmask = (1 << sdio->blkfactor) - 1;
1027                                dio_remainder = (sdio->block_in_file & blkmask);
1028
1029                                /*
1030                                 * If we are at the start of IO and that IO
1031                                 * starts partway into a fs-block,
1032                                 * dio_remainder will be non-zero.  If the IO
1033                                 * is a read then we can simply advance the IO
1034                                 * cursor to the first block which is to be
1035                                 * read.  But if the IO is a write and the
1036                                 * block was newly allocated we cannot do that;
1037                                 * the start of the fs block must be zeroed out
1038                                 * on-disk
1039                                 */
1040                                if (!buffer_new(map_bh))
1041                                        sdio->next_block_for_io += dio_remainder;
1042                                sdio->blocks_available -= dio_remainder;
1043                        }
1044do_holes:
1045                        /* Handle holes */
1046                        if (!buffer_mapped(map_bh)) {
1047                                loff_t i_size_aligned;
1048
1049                                /* AKPM: eargh, -ENOTBLK is a hack */
1050                                if (dio->op == REQ_OP_WRITE) {
1051                                        put_page(page);
1052                                        return -ENOTBLK;
1053                                }
1054
1055                                /*
1056                                 * Be sure to account for a partial block as the
1057                                 * last block in the file
1058                                 */
1059                                i_size_aligned = ALIGN(i_size_read(dio->inode),
1060                                                        1 << blkbits);
1061                                if (sdio->block_in_file >=
1062                                                i_size_aligned >> blkbits) {
1063                                        /* We hit eof */
1064                                        put_page(page);
1065                                        goto out;
1066                                }
1067                                zero_user(page, from, 1 << blkbits);
1068                                sdio->block_in_file++;
1069                                from += 1 << blkbits;
1070                                dio->result += 1 << blkbits;
1071                                goto next_block;
1072                        }
1073
1074                        /*
1075                         * If we're performing IO which has an alignment which
1076                         * is finer than the underlying fs, go check to see if
1077                         * we must zero out the start of this block.
1078                         */
1079                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1080                                dio_zero_block(dio, sdio, 0, map_bh);
1081
1082                        /*
1083                         * Work out, in this_chunk_blocks, how much disk we
1084                         * can add to this page
1085                         */
1086                        this_chunk_blocks = sdio->blocks_available;
1087                        u = (to - from) >> blkbits;
1088                        if (this_chunk_blocks > u)
1089                                this_chunk_blocks = u;
1090                        u = sdio->final_block_in_request - sdio->block_in_file;
1091                        if (this_chunk_blocks > u)
1092                                this_chunk_blocks = u;
1093                        this_chunk_bytes = this_chunk_blocks << blkbits;
1094                        BUG_ON(this_chunk_bytes == 0);
1095
1096                        if (this_chunk_blocks == sdio->blocks_available)
1097                                sdio->boundary = buffer_boundary(map_bh);
1098                        ret = submit_page_section(dio, sdio, page,
1099                                                  from,
1100                                                  this_chunk_bytes,
1101                                                  sdio->next_block_for_io,
1102                                                  map_bh);
1103                        if (ret) {
1104                                put_page(page);
1105                                goto out;
1106                        }
1107                        sdio->next_block_for_io += this_chunk_blocks;
1108
1109                        sdio->block_in_file += this_chunk_blocks;
1110                        from += this_chunk_bytes;
1111                        dio->result += this_chunk_bytes;
1112                        sdio->blocks_available -= this_chunk_blocks;
1113next_block:
1114                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1115                        if (sdio->block_in_file == sdio->final_block_in_request)
1116                                break;
1117                }
1118
1119                /* Drop the ref which was taken in get_user_pages() */
1120                put_page(page);
1121        }
1122out:
1123        return ret;
1124}
1125
1126static inline int drop_refcount(struct dio *dio)
1127{
1128        int ret2;
1129        unsigned long flags;
1130
1131        /*
1132         * Sync will always be dropping the final ref and completing the
1133         * operation.  AIO can if it was a broken operation described above or
1134         * in fact if all the bios race to complete before we get here.  In
1135         * that case dio_complete() translates the EIOCBQUEUED into the proper
1136         * return code that the caller will hand to ->complete().
1137         *
1138         * This is managed by the bio_lock instead of being an atomic_t so that
1139         * completion paths can drop their ref and use the remaining count to
1140         * decide to wake the submission path atomically.
1141         */
1142        spin_lock_irqsave(&dio->bio_lock, flags);
1143        ret2 = --dio->refcount;
1144        spin_unlock_irqrestore(&dio->bio_lock, flags);
1145        return ret2;
1146}
1147
1148/*
1149 * This is a library function for use by filesystem drivers.
1150 *
1151 * The locking rules are governed by the flags parameter:
1152 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1153 *    scheme for dumb filesystems.
1154 *    For writes this function is called under i_mutex and returns with
1155 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1156 *    taken and dropped again before returning.
1157 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1158 *    internal locking but rather rely on the filesystem to synchronize
1159 *    direct I/O reads/writes versus each other and truncate.
1160 *
1161 * To help with locking against truncate we incremented the i_dio_count
1162 * counter before starting direct I/O, and decrement it once we are done.
1163 * Truncate can wait for it to reach zero to provide exclusion.  It is
1164 * expected that filesystem provide exclusion between new direct I/O
1165 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1166 * but other filesystems need to take care of this on their own.
1167 *
1168 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1169 * is always inlined. Otherwise gcc is unable to split the structure into
1170 * individual fields and will generate much worse code. This is important
1171 * for the whole file.
1172 */
1173static inline ssize_t
1174do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1175                      struct block_device *bdev, struct iov_iter *iter,
1176                      get_block_t get_block, dio_iodone_t end_io,
1177                      dio_submit_t submit_io, int flags)
1178{
1179        unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1180        unsigned blkbits = i_blkbits;
1181        unsigned blocksize_mask = (1 << blkbits) - 1;
1182        ssize_t retval = -EINVAL;
1183        const size_t count = iov_iter_count(iter);
1184        loff_t offset = iocb->ki_pos;
1185        const loff_t end = offset + count;
1186        struct dio *dio;
1187        struct dio_submit sdio = { 0, };
1188        struct buffer_head map_bh = { 0, };
1189        struct blk_plug plug;
1190        unsigned long align = offset | iov_iter_alignment(iter);
1191
1192        /*
1193         * Avoid references to bdev if not absolutely needed to give
1194         * the early prefetch in the caller enough time.
1195         */
1196
1197        if (align & blocksize_mask) {
1198                if (bdev)
1199                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1200                blocksize_mask = (1 << blkbits) - 1;
1201                if (align & blocksize_mask)
1202                        goto out;
1203        }
1204
1205        /* watch out for a 0 len io from a tricksy fs */
1206        if (iov_iter_rw(iter) == READ && !count)
1207                return 0;
1208
1209        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1210        retval = -ENOMEM;
1211        if (!dio)
1212                goto out;
1213        /*
1214         * Believe it or not, zeroing out the page array caused a .5%
1215         * performance regression in a database benchmark.  So, we take
1216         * care to only zero out what's needed.
1217         */
1218        memset(dio, 0, offsetof(struct dio, pages));
1219
1220        dio->flags = flags;
1221        if (dio->flags & DIO_LOCKING) {
1222                if (iov_iter_rw(iter) == READ) {
1223                        struct address_space *mapping =
1224                                        iocb->ki_filp->f_mapping;
1225
1226                        /* will be released by direct_io_worker */
1227                        inode_lock(inode);
1228
1229                        retval = filemap_write_and_wait_range(mapping, offset,
1230                                                              end - 1);
1231                        if (retval) {
1232                                inode_unlock(inode);
1233                                kmem_cache_free(dio_cache, dio);
1234                                goto out;
1235                        }
1236                }
1237        }
1238
1239        /* Once we sampled i_size check for reads beyond EOF */
1240        dio->i_size = i_size_read(inode);
1241        if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1242                if (dio->flags & DIO_LOCKING)
1243                        inode_unlock(inode);
1244                kmem_cache_free(dio_cache, dio);
1245                retval = 0;
1246                goto out;
1247        }
1248
1249        /*
1250         * For file extending writes updating i_size before data writeouts
1251         * complete can expose uninitialized blocks in dumb filesystems.
1252         * In that case we need to wait for I/O completion even if asked
1253         * for an asynchronous write.
1254         */
1255        if (is_sync_kiocb(iocb))
1256                dio->is_async = false;
1257        else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1258                dio->is_async = false;
1259        else
1260                dio->is_async = true;
1261
1262        dio->inode = inode;
1263        if (iov_iter_rw(iter) == WRITE) {
1264                dio->op = REQ_OP_WRITE;
1265                dio->op_flags = REQ_SYNC | REQ_IDLE;
1266                if (iocb->ki_flags & IOCB_NOWAIT)
1267                        dio->op_flags |= REQ_NOWAIT;
1268        } else {
1269                dio->op = REQ_OP_READ;
1270        }
1271        if (iocb->ki_flags & IOCB_HIPRI)
1272                dio->op_flags |= REQ_HIPRI;
1273
1274        /*
1275         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1276         * so that we can call ->fsync.
1277         */
1278        if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1279                retval = 0;
1280                if (iocb->ki_flags & IOCB_DSYNC)
1281                        retval = dio_set_defer_completion(dio);
1282                else if (!dio->inode->i_sb->s_dio_done_wq) {
1283                        /*
1284                         * In case of AIO write racing with buffered read we
1285                         * need to defer completion. We can't decide this now,
1286                         * however the workqueue needs to be initialized here.
1287                         */
1288                        retval = sb_init_dio_done_wq(dio->inode->i_sb);
1289                }
1290                if (retval) {
1291                        /*
1292                         * We grab i_mutex only for reads so we don't have
1293                         * to release it here
1294                         */
1295                        kmem_cache_free(dio_cache, dio);
1296                        goto out;
1297                }
1298        }
1299
1300        /*
1301         * Will be decremented at I/O completion time.
1302         */
1303        inode_dio_begin(inode);
1304
1305        retval = 0;
1306        sdio.blkbits = blkbits;
1307        sdio.blkfactor = i_blkbits - blkbits;
1308        sdio.block_in_file = offset >> blkbits;
1309
1310        sdio.get_block = get_block;
1311        dio->end_io = end_io;
1312        sdio.submit_io = submit_io;
1313        sdio.final_block_in_bio = -1;
1314        sdio.next_block_for_io = -1;
1315
1316        dio->iocb = iocb;
1317
1318        spin_lock_init(&dio->bio_lock);
1319        dio->refcount = 1;
1320
1321        dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1322        sdio.iter = iter;
1323        sdio.final_block_in_request = end >> blkbits;
1324
1325        /*
1326         * In case of non-aligned buffers, we may need 2 more
1327         * pages since we need to zero out first and last block.
1328         */
1329        if (unlikely(sdio.blkfactor))
1330                sdio.pages_in_io = 2;
1331
1332        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1333
1334        blk_start_plug(&plug);
1335
1336        retval = do_direct_IO(dio, &sdio, &map_bh);
1337        if (retval)
1338                dio_cleanup(dio, &sdio);
1339
1340        if (retval == -ENOTBLK) {
1341                /*
1342                 * The remaining part of the request will be
1343                 * be handled by buffered I/O when we return
1344                 */
1345                retval = 0;
1346        }
1347        /*
1348         * There may be some unwritten disk at the end of a part-written
1349         * fs-block-sized block.  Go zero that now.
1350         */
1351        dio_zero_block(dio, &sdio, 1, &map_bh);
1352
1353        if (sdio.cur_page) {
1354                ssize_t ret2;
1355
1356                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1357                if (retval == 0)
1358                        retval = ret2;
1359                put_page(sdio.cur_page);
1360                sdio.cur_page = NULL;
1361        }
1362        if (sdio.bio)
1363                dio_bio_submit(dio, &sdio);
1364
1365        blk_finish_plug(&plug);
1366
1367        /*
1368         * It is possible that, we return short IO due to end of file.
1369         * In that case, we need to release all the pages we got hold on.
1370         */
1371        dio_cleanup(dio, &sdio);
1372
1373        /*
1374         * All block lookups have been performed. For READ requests
1375         * we can let i_mutex go now that its achieved its purpose
1376         * of protecting us from looking up uninitialized blocks.
1377         */
1378        if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1379                inode_unlock(dio->inode);
1380
1381        /*
1382         * The only time we want to leave bios in flight is when a successful
1383         * partial aio read or full aio write have been setup.  In that case
1384         * bio completion will call aio_complete.  The only time it's safe to
1385         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1386         * This had *better* be the only place that raises -EIOCBQUEUED.
1387         */
1388        BUG_ON(retval == -EIOCBQUEUED);
1389        if (dio->is_async && retval == 0 && dio->result &&
1390            (iov_iter_rw(iter) == READ || dio->result == count))
1391                retval = -EIOCBQUEUED;
1392        else
1393                dio_await_completion(dio);
1394
1395        if (drop_refcount(dio) == 0) {
1396                retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1397        } else
1398                BUG_ON(retval != -EIOCBQUEUED);
1399
1400out:
1401        return retval;
1402}
1403
1404ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1405                             struct block_device *bdev, struct iov_iter *iter,
1406                             get_block_t get_block,
1407                             dio_iodone_t end_io, dio_submit_t submit_io,
1408                             int flags)
1409{
1410        /*
1411         * The block device state is needed in the end to finally
1412         * submit everything.  Since it's likely to be cache cold
1413         * prefetch it here as first thing to hide some of the
1414         * latency.
1415         *
1416         * Attempt to prefetch the pieces we likely need later.
1417         */
1418        prefetch(&bdev->bd_disk->part_tbl);
1419        prefetch(bdev->bd_queue);
1420        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1421
1422        return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1423                                     end_io, submit_io, flags);
1424}
1425
1426EXPORT_SYMBOL(__blockdev_direct_IO);
1427
1428static __init int dio_init(void)
1429{
1430        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1431        return 0;
1432}
1433module_init(dio_init)
1434