linux/fs/gfs2/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/spinlock.h>
   9#include <linux/completion.h>
  10#include <linux/buffer_head.h>
  11#include <linux/pagemap.h>
  12#include <linux/uio.h>
  13#include <linux/blkdev.h>
  14#include <linux/mm.h>
  15#include <linux/mount.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/falloc.h>
  19#include <linux/swap.h>
  20#include <linux/crc32.h>
  21#include <linux/writeback.h>
  22#include <linux/uaccess.h>
  23#include <linux/dlm.h>
  24#include <linux/dlm_plock.h>
  25#include <linux/delay.h>
  26#include <linux/backing-dev.h>
  27
  28#include "gfs2.h"
  29#include "incore.h"
  30#include "bmap.h"
  31#include "aops.h"
  32#include "dir.h"
  33#include "glock.h"
  34#include "glops.h"
  35#include "inode.h"
  36#include "log.h"
  37#include "meta_io.h"
  38#include "quota.h"
  39#include "rgrp.h"
  40#include "trans.h"
  41#include "util.h"
  42
  43/**
  44 * gfs2_llseek - seek to a location in a file
  45 * @file: the file
  46 * @offset: the offset
  47 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  48 *
  49 * SEEK_END requires the glock for the file because it references the
  50 * file's size.
  51 *
  52 * Returns: The new offset, or errno
  53 */
  54
  55static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  56{
  57        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  58        struct gfs2_holder i_gh;
  59        loff_t error;
  60
  61        switch (whence) {
  62        case SEEK_END:
  63                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  64                                           &i_gh);
  65                if (!error) {
  66                        error = generic_file_llseek(file, offset, whence);
  67                        gfs2_glock_dq_uninit(&i_gh);
  68                }
  69                break;
  70
  71        case SEEK_DATA:
  72                error = gfs2_seek_data(file, offset);
  73                break;
  74
  75        case SEEK_HOLE:
  76                error = gfs2_seek_hole(file, offset);
  77                break;
  78
  79        case SEEK_CUR:
  80        case SEEK_SET:
  81                /*
  82                 * These don't reference inode->i_size and don't depend on the
  83                 * block mapping, so we don't need the glock.
  84                 */
  85                error = generic_file_llseek(file, offset, whence);
  86                break;
  87        default:
  88                error = -EINVAL;
  89        }
  90
  91        return error;
  92}
  93
  94/**
  95 * gfs2_readdir - Iterator for a directory
  96 * @file: The directory to read from
  97 * @ctx: What to feed directory entries to
  98 *
  99 * Returns: errno
 100 */
 101
 102static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 103{
 104        struct inode *dir = file->f_mapping->host;
 105        struct gfs2_inode *dip = GFS2_I(dir);
 106        struct gfs2_holder d_gh;
 107        int error;
 108
 109        error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 110        if (error)
 111                return error;
 112
 113        error = gfs2_dir_read(dir, ctx, &file->f_ra);
 114
 115        gfs2_glock_dq_uninit(&d_gh);
 116
 117        return error;
 118}
 119
 120/**
 121 * fsflag_gfs2flag
 122 *
 123 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 124 * and to GFS2_DIF_JDATA for non-directories.
 125 */
 126static struct {
 127        u32 fsflag;
 128        u32 gfsflag;
 129} fsflag_gfs2flag[] = {
 130        {FS_SYNC_FL, GFS2_DIF_SYNC},
 131        {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 132        {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 133        {FS_NOATIME_FL, GFS2_DIF_NOATIME},
 134        {FS_INDEX_FL, GFS2_DIF_EXHASH},
 135        {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 136        {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 137};
 138
 139static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 140{
 141        struct inode *inode = file_inode(filp);
 142        struct gfs2_inode *ip = GFS2_I(inode);
 143        struct gfs2_holder gh;
 144        int i, error;
 145        u32 gfsflags, fsflags = 0;
 146
 147        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 148        error = gfs2_glock_nq(&gh);
 149        if (error)
 150                goto out_uninit;
 151
 152        gfsflags = ip->i_diskflags;
 153        if (S_ISDIR(inode->i_mode))
 154                gfsflags &= ~GFS2_DIF_JDATA;
 155        else
 156                gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 157        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 158                if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 159                        fsflags |= fsflag_gfs2flag[i].fsflag;
 160
 161        if (put_user(fsflags, ptr))
 162                error = -EFAULT;
 163
 164        gfs2_glock_dq(&gh);
 165out_uninit:
 166        gfs2_holder_uninit(&gh);
 167        return error;
 168}
 169
 170void gfs2_set_inode_flags(struct inode *inode)
 171{
 172        struct gfs2_inode *ip = GFS2_I(inode);
 173        unsigned int flags = inode->i_flags;
 174
 175        flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 176        if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 177                flags |= S_NOSEC;
 178        if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 179                flags |= S_IMMUTABLE;
 180        if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 181                flags |= S_APPEND;
 182        if (ip->i_diskflags & GFS2_DIF_NOATIME)
 183                flags |= S_NOATIME;
 184        if (ip->i_diskflags & GFS2_DIF_SYNC)
 185                flags |= S_SYNC;
 186        inode->i_flags = flags;
 187}
 188
 189/* Flags that can be set by user space */
 190#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|                    \
 191                             GFS2_DIF_IMMUTABLE|                \
 192                             GFS2_DIF_APPENDONLY|               \
 193                             GFS2_DIF_NOATIME|                  \
 194                             GFS2_DIF_SYNC|                     \
 195                             GFS2_DIF_TOPDIR|                   \
 196                             GFS2_DIF_INHERIT_JDATA)
 197
 198/**
 199 * do_gfs2_set_flags - set flags on an inode
 200 * @filp: file pointer
 201 * @reqflags: The flags to set
 202 * @mask: Indicates which flags are valid
 203 *
 204 */
 205static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
 206{
 207        struct inode *inode = file_inode(filp);
 208        struct gfs2_inode *ip = GFS2_I(inode);
 209        struct gfs2_sbd *sdp = GFS2_SB(inode);
 210        struct buffer_head *bh;
 211        struct gfs2_holder gh;
 212        int error;
 213        u32 new_flags, flags;
 214
 215        error = mnt_want_write_file(filp);
 216        if (error)
 217                return error;
 218
 219        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 220        if (error)
 221                goto out_drop_write;
 222
 223        error = -EACCES;
 224        if (!inode_owner_or_capable(inode))
 225                goto out;
 226
 227        error = 0;
 228        flags = ip->i_diskflags;
 229        new_flags = (flags & ~mask) | (reqflags & mask);
 230        if ((new_flags ^ flags) == 0)
 231                goto out;
 232
 233        error = -EPERM;
 234        if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 235                goto out;
 236        if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 237                goto out;
 238        if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 239            !capable(CAP_LINUX_IMMUTABLE))
 240                goto out;
 241        if (!IS_IMMUTABLE(inode)) {
 242                error = gfs2_permission(inode, MAY_WRITE);
 243                if (error)
 244                        goto out;
 245        }
 246        if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 247                if (new_flags & GFS2_DIF_JDATA)
 248                        gfs2_log_flush(sdp, ip->i_gl,
 249                                       GFS2_LOG_HEAD_FLUSH_NORMAL |
 250                                       GFS2_LFC_SET_FLAGS);
 251                error = filemap_fdatawrite(inode->i_mapping);
 252                if (error)
 253                        goto out;
 254                error = filemap_fdatawait(inode->i_mapping);
 255                if (error)
 256                        goto out;
 257                if (new_flags & GFS2_DIF_JDATA)
 258                        gfs2_ordered_del_inode(ip);
 259        }
 260        error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 261        if (error)
 262                goto out;
 263        error = gfs2_meta_inode_buffer(ip, &bh);
 264        if (error)
 265                goto out_trans_end;
 266        inode->i_ctime = current_time(inode);
 267        gfs2_trans_add_meta(ip->i_gl, bh);
 268        ip->i_diskflags = new_flags;
 269        gfs2_dinode_out(ip, bh->b_data);
 270        brelse(bh);
 271        gfs2_set_inode_flags(inode);
 272        gfs2_set_aops(inode);
 273out_trans_end:
 274        gfs2_trans_end(sdp);
 275out:
 276        gfs2_glock_dq_uninit(&gh);
 277out_drop_write:
 278        mnt_drop_write_file(filp);
 279        return error;
 280}
 281
 282static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 283{
 284        struct inode *inode = file_inode(filp);
 285        u32 fsflags, gfsflags = 0;
 286        u32 mask;
 287        int i;
 288
 289        if (get_user(fsflags, ptr))
 290                return -EFAULT;
 291
 292        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 293                if (fsflags & fsflag_gfs2flag[i].fsflag) {
 294                        fsflags &= ~fsflag_gfs2flag[i].fsflag;
 295                        gfsflags |= fsflag_gfs2flag[i].gfsflag;
 296                }
 297        }
 298        if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 299                return -EINVAL;
 300
 301        mask = GFS2_FLAGS_USER_SET;
 302        if (S_ISDIR(inode->i_mode)) {
 303                mask &= ~GFS2_DIF_JDATA;
 304        } else {
 305                /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 306                if (gfsflags & GFS2_DIF_TOPDIR)
 307                        return -EINVAL;
 308                mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 309        }
 310
 311        return do_gfs2_set_flags(filp, gfsflags, mask);
 312}
 313
 314static int gfs2_getlabel(struct file *filp, char __user *label)
 315{
 316        struct inode *inode = file_inode(filp);
 317        struct gfs2_sbd *sdp = GFS2_SB(inode);
 318
 319        if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
 320                return -EFAULT;
 321
 322        return 0;
 323}
 324
 325static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 326{
 327        switch(cmd) {
 328        case FS_IOC_GETFLAGS:
 329                return gfs2_get_flags(filp, (u32 __user *)arg);
 330        case FS_IOC_SETFLAGS:
 331                return gfs2_set_flags(filp, (u32 __user *)arg);
 332        case FITRIM:
 333                return gfs2_fitrim(filp, (void __user *)arg);
 334        case FS_IOC_GETFSLABEL:
 335                return gfs2_getlabel(filp, (char __user *)arg);
 336        }
 337
 338        return -ENOTTY;
 339}
 340
 341/**
 342 * gfs2_size_hint - Give a hint to the size of a write request
 343 * @filep: The struct file
 344 * @offset: The file offset of the write
 345 * @size: The length of the write
 346 *
 347 * When we are about to do a write, this function records the total
 348 * write size in order to provide a suitable hint to the lower layers
 349 * about how many blocks will be required.
 350 *
 351 */
 352
 353static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 354{
 355        struct inode *inode = file_inode(filep);
 356        struct gfs2_sbd *sdp = GFS2_SB(inode);
 357        struct gfs2_inode *ip = GFS2_I(inode);
 358        size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 359        int hint = min_t(size_t, INT_MAX, blks);
 360
 361        if (hint > atomic_read(&ip->i_sizehint))
 362                atomic_set(&ip->i_sizehint, hint);
 363}
 364
 365/**
 366 * gfs2_allocate_page_backing - Use bmap to allocate blocks
 367 * @page: The (locked) page to allocate backing for
 368 *
 369 * We try to allocate all the blocks required for the page in
 370 * one go. This might fail for various reasons, so we keep
 371 * trying until all the blocks to back this page are allocated.
 372 * If some of the blocks are already allocated, thats ok too.
 373 */
 374
 375static int gfs2_allocate_page_backing(struct page *page)
 376{
 377        struct inode *inode = page->mapping->host;
 378        struct buffer_head bh;
 379        unsigned long size = PAGE_SIZE;
 380        u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
 381
 382        do {
 383                bh.b_state = 0;
 384                bh.b_size = size;
 385                gfs2_block_map(inode, lblock, &bh, 1);
 386                if (!buffer_mapped(&bh))
 387                        return -EIO;
 388                size -= bh.b_size;
 389                lblock += (bh.b_size >> inode->i_blkbits);
 390        } while(size > 0);
 391        return 0;
 392}
 393
 394/**
 395 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 396 * @vma: The virtual memory area
 397 * @vmf: The virtual memory fault containing the page to become writable
 398 *
 399 * When the page becomes writable, we need to ensure that we have
 400 * blocks allocated on disk to back that page.
 401 */
 402
 403static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
 404{
 405        struct page *page = vmf->page;
 406        struct inode *inode = file_inode(vmf->vma->vm_file);
 407        struct gfs2_inode *ip = GFS2_I(inode);
 408        struct gfs2_sbd *sdp = GFS2_SB(inode);
 409        struct gfs2_alloc_parms ap = { .aflags = 0, };
 410        unsigned long last_index;
 411        u64 pos = page->index << PAGE_SHIFT;
 412        unsigned int data_blocks, ind_blocks, rblocks;
 413        struct gfs2_holder gh;
 414        loff_t size;
 415        int ret;
 416
 417        sb_start_pagefault(inode->i_sb);
 418
 419        ret = gfs2_rsqa_alloc(ip);
 420        if (ret)
 421                goto out;
 422
 423        gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
 424
 425        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 426        ret = gfs2_glock_nq(&gh);
 427        if (ret)
 428                goto out_uninit;
 429
 430        /* Update file times before taking page lock */
 431        file_update_time(vmf->vma->vm_file);
 432
 433        set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 434        set_bit(GIF_SW_PAGED, &ip->i_flags);
 435
 436        if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
 437                lock_page(page);
 438                if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 439                        ret = -EAGAIN;
 440                        unlock_page(page);
 441                }
 442                goto out_unlock;
 443        }
 444
 445        ret = gfs2_rindex_update(sdp);
 446        if (ret)
 447                goto out_unlock;
 448
 449        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 450        ap.target = data_blocks + ind_blocks;
 451        ret = gfs2_quota_lock_check(ip, &ap);
 452        if (ret)
 453                goto out_unlock;
 454        ret = gfs2_inplace_reserve(ip, &ap);
 455        if (ret)
 456                goto out_quota_unlock;
 457
 458        rblocks = RES_DINODE + ind_blocks;
 459        if (gfs2_is_jdata(ip))
 460                rblocks += data_blocks ? data_blocks : 1;
 461        if (ind_blocks || data_blocks) {
 462                rblocks += RES_STATFS + RES_QUOTA;
 463                rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 464        }
 465        ret = gfs2_trans_begin(sdp, rblocks, 0);
 466        if (ret)
 467                goto out_trans_fail;
 468
 469        lock_page(page);
 470        ret = -EINVAL;
 471        size = i_size_read(inode);
 472        last_index = (size - 1) >> PAGE_SHIFT;
 473        /* Check page index against inode size */
 474        if (size == 0 || (page->index > last_index))
 475                goto out_trans_end;
 476
 477        ret = -EAGAIN;
 478        /* If truncated, we must retry the operation, we may have raced
 479         * with the glock demotion code.
 480         */
 481        if (!PageUptodate(page) || page->mapping != inode->i_mapping)
 482                goto out_trans_end;
 483
 484        /* Unstuff, if required, and allocate backing blocks for page */
 485        ret = 0;
 486        if (gfs2_is_stuffed(ip))
 487                ret = gfs2_unstuff_dinode(ip, page);
 488        if (ret == 0)
 489                ret = gfs2_allocate_page_backing(page);
 490
 491out_trans_end:
 492        if (ret)
 493                unlock_page(page);
 494        gfs2_trans_end(sdp);
 495out_trans_fail:
 496        gfs2_inplace_release(ip);
 497out_quota_unlock:
 498        gfs2_quota_unlock(ip);
 499out_unlock:
 500        gfs2_glock_dq(&gh);
 501out_uninit:
 502        gfs2_holder_uninit(&gh);
 503        if (ret == 0) {
 504                set_page_dirty(page);
 505                wait_for_stable_page(page);
 506        }
 507out:
 508        sb_end_pagefault(inode->i_sb);
 509        return block_page_mkwrite_return(ret);
 510}
 511
 512static const struct vm_operations_struct gfs2_vm_ops = {
 513        .fault = filemap_fault,
 514        .map_pages = filemap_map_pages,
 515        .page_mkwrite = gfs2_page_mkwrite,
 516};
 517
 518/**
 519 * gfs2_mmap -
 520 * @file: The file to map
 521 * @vma: The VMA which described the mapping
 522 *
 523 * There is no need to get a lock here unless we should be updating
 524 * atime. We ignore any locking errors since the only consequence is
 525 * a missed atime update (which will just be deferred until later).
 526 *
 527 * Returns: 0
 528 */
 529
 530static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 531{
 532        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 533
 534        if (!(file->f_flags & O_NOATIME) &&
 535            !IS_NOATIME(&ip->i_inode)) {
 536                struct gfs2_holder i_gh;
 537                int error;
 538
 539                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 540                                           &i_gh);
 541                if (error)
 542                        return error;
 543                /* grab lock to update inode */
 544                gfs2_glock_dq_uninit(&i_gh);
 545                file_accessed(file);
 546        }
 547        vma->vm_ops = &gfs2_vm_ops;
 548
 549        return 0;
 550}
 551
 552/**
 553 * gfs2_open_common - This is common to open and atomic_open
 554 * @inode: The inode being opened
 555 * @file: The file being opened
 556 *
 557 * This maybe called under a glock or not depending upon how it has
 558 * been called. We must always be called under a glock for regular
 559 * files, however. For other file types, it does not matter whether
 560 * we hold the glock or not.
 561 *
 562 * Returns: Error code or 0 for success
 563 */
 564
 565int gfs2_open_common(struct inode *inode, struct file *file)
 566{
 567        struct gfs2_file *fp;
 568        int ret;
 569
 570        if (S_ISREG(inode->i_mode)) {
 571                ret = generic_file_open(inode, file);
 572                if (ret)
 573                        return ret;
 574        }
 575
 576        fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 577        if (!fp)
 578                return -ENOMEM;
 579
 580        mutex_init(&fp->f_fl_mutex);
 581
 582        gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 583        file->private_data = fp;
 584        return 0;
 585}
 586
 587/**
 588 * gfs2_open - open a file
 589 * @inode: the inode to open
 590 * @file: the struct file for this opening
 591 *
 592 * After atomic_open, this function is only used for opening files
 593 * which are already cached. We must still get the glock for regular
 594 * files to ensure that we have the file size uptodate for the large
 595 * file check which is in the common code. That is only an issue for
 596 * regular files though.
 597 *
 598 * Returns: errno
 599 */
 600
 601static int gfs2_open(struct inode *inode, struct file *file)
 602{
 603        struct gfs2_inode *ip = GFS2_I(inode);
 604        struct gfs2_holder i_gh;
 605        int error;
 606        bool need_unlock = false;
 607
 608        if (S_ISREG(ip->i_inode.i_mode)) {
 609                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 610                                           &i_gh);
 611                if (error)
 612                        return error;
 613                need_unlock = true;
 614        }
 615
 616        error = gfs2_open_common(inode, file);
 617
 618        if (need_unlock)
 619                gfs2_glock_dq_uninit(&i_gh);
 620
 621        return error;
 622}
 623
 624/**
 625 * gfs2_release - called to close a struct file
 626 * @inode: the inode the struct file belongs to
 627 * @file: the struct file being closed
 628 *
 629 * Returns: errno
 630 */
 631
 632static int gfs2_release(struct inode *inode, struct file *file)
 633{
 634        struct gfs2_inode *ip = GFS2_I(inode);
 635
 636        kfree(file->private_data);
 637        file->private_data = NULL;
 638
 639        if (!(file->f_mode & FMODE_WRITE))
 640                return 0;
 641
 642        gfs2_rsqa_delete(ip, &inode->i_writecount);
 643        return 0;
 644}
 645
 646/**
 647 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 648 * @file: the file that points to the dentry
 649 * @start: the start position in the file to sync
 650 * @end: the end position in the file to sync
 651 * @datasync: set if we can ignore timestamp changes
 652 *
 653 * We split the data flushing here so that we don't wait for the data
 654 * until after we've also sent the metadata to disk. Note that for
 655 * data=ordered, we will write & wait for the data at the log flush
 656 * stage anyway, so this is unlikely to make much of a difference
 657 * except in the data=writeback case.
 658 *
 659 * If the fdatawrite fails due to any reason except -EIO, we will
 660 * continue the remainder of the fsync, although we'll still report
 661 * the error at the end. This is to match filemap_write_and_wait_range()
 662 * behaviour.
 663 *
 664 * Returns: errno
 665 */
 666
 667static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 668                      int datasync)
 669{
 670        struct address_space *mapping = file->f_mapping;
 671        struct inode *inode = mapping->host;
 672        int sync_state = inode->i_state & I_DIRTY_ALL;
 673        struct gfs2_inode *ip = GFS2_I(inode);
 674        int ret = 0, ret1 = 0;
 675
 676        if (mapping->nrpages) {
 677                ret1 = filemap_fdatawrite_range(mapping, start, end);
 678                if (ret1 == -EIO)
 679                        return ret1;
 680        }
 681
 682        if (!gfs2_is_jdata(ip))
 683                sync_state &= ~I_DIRTY_PAGES;
 684        if (datasync)
 685                sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
 686
 687        if (sync_state) {
 688                ret = sync_inode_metadata(inode, 1);
 689                if (ret)
 690                        return ret;
 691                if (gfs2_is_jdata(ip))
 692                        ret = file_write_and_wait(file);
 693                if (ret)
 694                        return ret;
 695                gfs2_ail_flush(ip->i_gl, 1);
 696        }
 697
 698        if (mapping->nrpages)
 699                ret = file_fdatawait_range(file, start, end);
 700
 701        return ret ? ret : ret1;
 702}
 703
 704static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
 705{
 706        struct file *file = iocb->ki_filp;
 707        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 708        size_t count = iov_iter_count(to);
 709        struct gfs2_holder gh;
 710        ssize_t ret;
 711
 712        if (!count)
 713                return 0; /* skip atime */
 714
 715        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 716        ret = gfs2_glock_nq(&gh);
 717        if (ret)
 718                goto out_uninit;
 719
 720        ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
 721
 722        gfs2_glock_dq(&gh);
 723out_uninit:
 724        gfs2_holder_uninit(&gh);
 725        return ret;
 726}
 727
 728static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 729{
 730        struct file *file = iocb->ki_filp;
 731        struct inode *inode = file->f_mapping->host;
 732        struct gfs2_inode *ip = GFS2_I(inode);
 733        size_t len = iov_iter_count(from);
 734        loff_t offset = iocb->ki_pos;
 735        struct gfs2_holder gh;
 736        ssize_t ret;
 737
 738        /*
 739         * Deferred lock, even if its a write, since we do no allocation on
 740         * this path. All we need to change is the atime, and this lock mode
 741         * ensures that other nodes have flushed their buffered read caches
 742         * (i.e. their page cache entries for this inode). We do not,
 743         * unfortunately, have the option of only flushing a range like the
 744         * VFS does.
 745         */
 746        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 747        ret = gfs2_glock_nq(&gh);
 748        if (ret)
 749                goto out_uninit;
 750
 751        /* Silently fall back to buffered I/O when writing beyond EOF */
 752        if (offset + len > i_size_read(&ip->i_inode))
 753                goto out;
 754
 755        ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
 756
 757out:
 758        gfs2_glock_dq(&gh);
 759out_uninit:
 760        gfs2_holder_uninit(&gh);
 761        return ret;
 762}
 763
 764static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 765{
 766        ssize_t ret;
 767
 768        if (iocb->ki_flags & IOCB_DIRECT) {
 769                ret = gfs2_file_direct_read(iocb, to);
 770                if (likely(ret != -ENOTBLK))
 771                        return ret;
 772                iocb->ki_flags &= ~IOCB_DIRECT;
 773        }
 774        return generic_file_read_iter(iocb, to);
 775}
 776
 777/**
 778 * gfs2_file_write_iter - Perform a write to a file
 779 * @iocb: The io context
 780 * @from: The data to write
 781 *
 782 * We have to do a lock/unlock here to refresh the inode size for
 783 * O_APPEND writes, otherwise we can land up writing at the wrong
 784 * offset. There is still a race, but provided the app is using its
 785 * own file locking, this will make O_APPEND work as expected.
 786 *
 787 */
 788
 789static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 790{
 791        struct file *file = iocb->ki_filp;
 792        struct inode *inode = file_inode(file);
 793        struct gfs2_inode *ip = GFS2_I(inode);
 794        ssize_t written = 0, ret;
 795
 796        ret = gfs2_rsqa_alloc(ip);
 797        if (ret)
 798                return ret;
 799
 800        gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 801
 802        if (iocb->ki_flags & IOCB_APPEND) {
 803                struct gfs2_holder gh;
 804
 805                ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 806                if (ret)
 807                        return ret;
 808                gfs2_glock_dq_uninit(&gh);
 809        }
 810
 811        inode_lock(inode);
 812        ret = generic_write_checks(iocb, from);
 813        if (ret <= 0)
 814                goto out;
 815
 816        /* We can write back this queue in page reclaim */
 817        current->backing_dev_info = inode_to_bdi(inode);
 818
 819        ret = file_remove_privs(file);
 820        if (ret)
 821                goto out2;
 822
 823        ret = file_update_time(file);
 824        if (ret)
 825                goto out2;
 826
 827        if (iocb->ki_flags & IOCB_DIRECT) {
 828                struct address_space *mapping = file->f_mapping;
 829                loff_t pos, endbyte;
 830                ssize_t buffered;
 831
 832                written = gfs2_file_direct_write(iocb, from);
 833                if (written < 0 || !iov_iter_count(from))
 834                        goto out2;
 835
 836                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 837                if (unlikely(ret < 0))
 838                        goto out2;
 839                buffered = ret;
 840
 841                /*
 842                 * We need to ensure that the page cache pages are written to
 843                 * disk and invalidated to preserve the expected O_DIRECT
 844                 * semantics.
 845                 */
 846                pos = iocb->ki_pos;
 847                endbyte = pos + buffered - 1;
 848                ret = filemap_write_and_wait_range(mapping, pos, endbyte);
 849                if (!ret) {
 850                        iocb->ki_pos += buffered;
 851                        written += buffered;
 852                        invalidate_mapping_pages(mapping,
 853                                                 pos >> PAGE_SHIFT,
 854                                                 endbyte >> PAGE_SHIFT);
 855                } else {
 856                        /*
 857                         * We don't know how much we wrote, so just return
 858                         * the number of bytes which were direct-written
 859                         */
 860                }
 861        } else {
 862                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 863                if (likely(ret > 0))
 864                        iocb->ki_pos += ret;
 865        }
 866
 867out2:
 868        current->backing_dev_info = NULL;
 869out:
 870        inode_unlock(inode);
 871        if (likely(ret > 0)) {
 872                /* Handle various SYNC-type writes */
 873                ret = generic_write_sync(iocb, ret);
 874        }
 875        return written ? written : ret;
 876}
 877
 878static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 879                           int mode)
 880{
 881        struct super_block *sb = inode->i_sb;
 882        struct gfs2_inode *ip = GFS2_I(inode);
 883        loff_t end = offset + len;
 884        struct buffer_head *dibh;
 885        int error;
 886
 887        error = gfs2_meta_inode_buffer(ip, &dibh);
 888        if (unlikely(error))
 889                return error;
 890
 891        gfs2_trans_add_meta(ip->i_gl, dibh);
 892
 893        if (gfs2_is_stuffed(ip)) {
 894                error = gfs2_unstuff_dinode(ip, NULL);
 895                if (unlikely(error))
 896                        goto out;
 897        }
 898
 899        while (offset < end) {
 900                struct iomap iomap = { };
 901
 902                error = gfs2_iomap_get_alloc(inode, offset, end - offset,
 903                                             &iomap);
 904                if (error)
 905                        goto out;
 906                offset = iomap.offset + iomap.length;
 907                if (!(iomap.flags & IOMAP_F_NEW))
 908                        continue;
 909                error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
 910                                         iomap.length >> inode->i_blkbits,
 911                                         GFP_NOFS);
 912                if (error) {
 913                        fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
 914                        goto out;
 915                }
 916        }
 917out:
 918        brelse(dibh);
 919        return error;
 920}
 921/**
 922 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
 923 *                     blocks, determine how many bytes can be written.
 924 * @ip:          The inode in question.
 925 * @len:         Max cap of bytes. What we return in *len must be <= this.
 926 * @data_blocks: Compute and return the number of data blocks needed
 927 * @ind_blocks:  Compute and return the number of indirect blocks needed
 928 * @max_blocks:  The total blocks available to work with.
 929 *
 930 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
 931 */
 932static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
 933                            unsigned int *data_blocks, unsigned int *ind_blocks,
 934                            unsigned int max_blocks)
 935{
 936        loff_t max = *len;
 937        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 938        unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
 939
 940        for (tmp = max_data; tmp > sdp->sd_diptrs;) {
 941                tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
 942                max_data -= tmp;
 943        }
 944
 945        *data_blocks = max_data;
 946        *ind_blocks = max_blocks - max_data;
 947        *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
 948        if (*len > max) {
 949                *len = max;
 950                gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
 951        }
 952}
 953
 954static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 955{
 956        struct inode *inode = file_inode(file);
 957        struct gfs2_sbd *sdp = GFS2_SB(inode);
 958        struct gfs2_inode *ip = GFS2_I(inode);
 959        struct gfs2_alloc_parms ap = { .aflags = 0, };
 960        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 961        loff_t bytes, max_bytes, max_blks;
 962        int error;
 963        const loff_t pos = offset;
 964        const loff_t count = len;
 965        loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
 966        loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
 967        loff_t max_chunk_size = UINT_MAX & bsize_mask;
 968
 969        next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 970
 971        offset &= bsize_mask;
 972
 973        len = next - offset;
 974        bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
 975        if (!bytes)
 976                bytes = UINT_MAX;
 977        bytes &= bsize_mask;
 978        if (bytes == 0)
 979                bytes = sdp->sd_sb.sb_bsize;
 980
 981        gfs2_size_hint(file, offset, len);
 982
 983        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 984        ap.min_target = data_blocks + ind_blocks;
 985
 986        while (len > 0) {
 987                if (len < bytes)
 988                        bytes = len;
 989                if (!gfs2_write_alloc_required(ip, offset, bytes)) {
 990                        len -= bytes;
 991                        offset += bytes;
 992                        continue;
 993                }
 994
 995                /* We need to determine how many bytes we can actually
 996                 * fallocate without exceeding quota or going over the
 997                 * end of the fs. We start off optimistically by assuming
 998                 * we can write max_bytes */
 999                max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1000
1001                /* Since max_bytes is most likely a theoretical max, we
1002                 * calculate a more realistic 'bytes' to serve as a good
1003                 * starting point for the number of bytes we may be able
1004                 * to write */
1005                gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1006                ap.target = data_blocks + ind_blocks;
1007
1008                error = gfs2_quota_lock_check(ip, &ap);
1009                if (error)
1010                        return error;
1011                /* ap.allowed tells us how many blocks quota will allow
1012                 * us to write. Check if this reduces max_blks */
1013                max_blks = UINT_MAX;
1014                if (ap.allowed)
1015                        max_blks = ap.allowed;
1016
1017                error = gfs2_inplace_reserve(ip, &ap);
1018                if (error)
1019                        goto out_qunlock;
1020
1021                /* check if the selected rgrp limits our max_blks further */
1022                if (ap.allowed && ap.allowed < max_blks)
1023                        max_blks = ap.allowed;
1024
1025                /* Almost done. Calculate bytes that can be written using
1026                 * max_blks. We also recompute max_bytes, data_blocks and
1027                 * ind_blocks */
1028                calc_max_reserv(ip, &max_bytes, &data_blocks,
1029                                &ind_blocks, max_blks);
1030
1031                rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1032                          RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1033                if (gfs2_is_jdata(ip))
1034                        rblocks += data_blocks ? data_blocks : 1;
1035
1036                error = gfs2_trans_begin(sdp, rblocks,
1037                                         PAGE_SIZE/sdp->sd_sb.sb_bsize);
1038                if (error)
1039                        goto out_trans_fail;
1040
1041                error = fallocate_chunk(inode, offset, max_bytes, mode);
1042                gfs2_trans_end(sdp);
1043
1044                if (error)
1045                        goto out_trans_fail;
1046
1047                len -= max_bytes;
1048                offset += max_bytes;
1049                gfs2_inplace_release(ip);
1050                gfs2_quota_unlock(ip);
1051        }
1052
1053        if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1054                i_size_write(inode, pos + count);
1055                file_update_time(file);
1056                mark_inode_dirty(inode);
1057        }
1058
1059        if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1060                return vfs_fsync_range(file, pos, pos + count - 1,
1061                               (file->f_flags & __O_SYNC) ? 0 : 1);
1062        return 0;
1063
1064out_trans_fail:
1065        gfs2_inplace_release(ip);
1066out_qunlock:
1067        gfs2_quota_unlock(ip);
1068        return error;
1069}
1070
1071static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1072{
1073        struct inode *inode = file_inode(file);
1074        struct gfs2_sbd *sdp = GFS2_SB(inode);
1075        struct gfs2_inode *ip = GFS2_I(inode);
1076        struct gfs2_holder gh;
1077        int ret;
1078
1079        if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1080                return -EOPNOTSUPP;
1081        /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1082        if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1083                return -EOPNOTSUPP;
1084
1085        inode_lock(inode);
1086
1087        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1088        ret = gfs2_glock_nq(&gh);
1089        if (ret)
1090                goto out_uninit;
1091
1092        if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1093            (offset + len) > inode->i_size) {
1094                ret = inode_newsize_ok(inode, offset + len);
1095                if (ret)
1096                        goto out_unlock;
1097        }
1098
1099        ret = get_write_access(inode);
1100        if (ret)
1101                goto out_unlock;
1102
1103        if (mode & FALLOC_FL_PUNCH_HOLE) {
1104                ret = __gfs2_punch_hole(file, offset, len);
1105        } else {
1106                ret = gfs2_rsqa_alloc(ip);
1107                if (ret)
1108                        goto out_putw;
1109
1110                ret = __gfs2_fallocate(file, mode, offset, len);
1111
1112                if (ret)
1113                        gfs2_rs_deltree(&ip->i_res);
1114        }
1115
1116out_putw:
1117        put_write_access(inode);
1118out_unlock:
1119        gfs2_glock_dq(&gh);
1120out_uninit:
1121        gfs2_holder_uninit(&gh);
1122        inode_unlock(inode);
1123        return ret;
1124}
1125
1126static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1127                                      struct file *out, loff_t *ppos,
1128                                      size_t len, unsigned int flags)
1129{
1130        int error;
1131        struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1132
1133        error = gfs2_rsqa_alloc(ip);
1134        if (error)
1135                return (ssize_t)error;
1136
1137        gfs2_size_hint(out, *ppos, len);
1138
1139        return iter_file_splice_write(pipe, out, ppos, len, flags);
1140}
1141
1142#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1143
1144/**
1145 * gfs2_lock - acquire/release a posix lock on a file
1146 * @file: the file pointer
1147 * @cmd: either modify or retrieve lock state, possibly wait
1148 * @fl: type and range of lock
1149 *
1150 * Returns: errno
1151 */
1152
1153static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1154{
1155        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1156        struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1157        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1158
1159        if (!(fl->fl_flags & FL_POSIX))
1160                return -ENOLCK;
1161        if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1162                return -ENOLCK;
1163
1164        if (cmd == F_CANCELLK) {
1165                /* Hack: */
1166                cmd = F_SETLK;
1167                fl->fl_type = F_UNLCK;
1168        }
1169        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1170                if (fl->fl_type == F_UNLCK)
1171                        locks_lock_file_wait(file, fl);
1172                return -EIO;
1173        }
1174        if (IS_GETLK(cmd))
1175                return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1176        else if (fl->fl_type == F_UNLCK)
1177                return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1178        else
1179                return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1180}
1181
1182static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1183{
1184        struct gfs2_file *fp = file->private_data;
1185        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1186        struct gfs2_inode *ip = GFS2_I(file_inode(file));
1187        struct gfs2_glock *gl;
1188        unsigned int state;
1189        u16 flags;
1190        int error = 0;
1191        int sleeptime;
1192
1193        state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1194        flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1195
1196        mutex_lock(&fp->f_fl_mutex);
1197
1198        if (gfs2_holder_initialized(fl_gh)) {
1199                struct file_lock request;
1200                if (fl_gh->gh_state == state)
1201                        goto out;
1202                locks_init_lock(&request);
1203                request.fl_type = F_UNLCK;
1204                request.fl_flags = FL_FLOCK;
1205                locks_lock_file_wait(file, &request);
1206                gfs2_glock_dq(fl_gh);
1207                gfs2_holder_reinit(state, flags, fl_gh);
1208        } else {
1209                error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1210                                       &gfs2_flock_glops, CREATE, &gl);
1211                if (error)
1212                        goto out;
1213                gfs2_holder_init(gl, state, flags, fl_gh);
1214                gfs2_glock_put(gl);
1215        }
1216        for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1217                error = gfs2_glock_nq(fl_gh);
1218                if (error != GLR_TRYFAILED)
1219                        break;
1220                fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1221                fl_gh->gh_error = 0;
1222                msleep(sleeptime);
1223        }
1224        if (error) {
1225                gfs2_holder_uninit(fl_gh);
1226                if (error == GLR_TRYFAILED)
1227                        error = -EAGAIN;
1228        } else {
1229                error = locks_lock_file_wait(file, fl);
1230                gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1231        }
1232
1233out:
1234        mutex_unlock(&fp->f_fl_mutex);
1235        return error;
1236}
1237
1238static void do_unflock(struct file *file, struct file_lock *fl)
1239{
1240        struct gfs2_file *fp = file->private_data;
1241        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1242
1243        mutex_lock(&fp->f_fl_mutex);
1244        locks_lock_file_wait(file, fl);
1245        if (gfs2_holder_initialized(fl_gh)) {
1246                gfs2_glock_dq(fl_gh);
1247                gfs2_holder_uninit(fl_gh);
1248        }
1249        mutex_unlock(&fp->f_fl_mutex);
1250}
1251
1252/**
1253 * gfs2_flock - acquire/release a flock lock on a file
1254 * @file: the file pointer
1255 * @cmd: either modify or retrieve lock state, possibly wait
1256 * @fl: type and range of lock
1257 *
1258 * Returns: errno
1259 */
1260
1261static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1262{
1263        if (!(fl->fl_flags & FL_FLOCK))
1264                return -ENOLCK;
1265        if (fl->fl_type & LOCK_MAND)
1266                return -EOPNOTSUPP;
1267
1268        if (fl->fl_type == F_UNLCK) {
1269                do_unflock(file, fl);
1270                return 0;
1271        } else {
1272                return do_flock(file, cmd, fl);
1273        }
1274}
1275
1276const struct file_operations gfs2_file_fops = {
1277        .llseek         = gfs2_llseek,
1278        .read_iter      = gfs2_file_read_iter,
1279        .write_iter     = gfs2_file_write_iter,
1280        .iopoll         = iomap_dio_iopoll,
1281        .unlocked_ioctl = gfs2_ioctl,
1282        .mmap           = gfs2_mmap,
1283        .open           = gfs2_open,
1284        .release        = gfs2_release,
1285        .fsync          = gfs2_fsync,
1286        .lock           = gfs2_lock,
1287        .flock          = gfs2_flock,
1288        .splice_read    = generic_file_splice_read,
1289        .splice_write   = gfs2_file_splice_write,
1290        .setlease       = simple_nosetlease,
1291        .fallocate      = gfs2_fallocate,
1292};
1293
1294const struct file_operations gfs2_dir_fops = {
1295        .iterate_shared = gfs2_readdir,
1296        .unlocked_ioctl = gfs2_ioctl,
1297        .open           = gfs2_open,
1298        .release        = gfs2_release,
1299        .fsync          = gfs2_fsync,
1300        .lock           = gfs2_lock,
1301        .flock          = gfs2_flock,
1302        .llseek         = default_llseek,
1303};
1304
1305#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1306
1307const struct file_operations gfs2_file_fops_nolock = {
1308        .llseek         = gfs2_llseek,
1309        .read_iter      = gfs2_file_read_iter,
1310        .write_iter     = gfs2_file_write_iter,
1311        .iopoll         = iomap_dio_iopoll,
1312        .unlocked_ioctl = gfs2_ioctl,
1313        .mmap           = gfs2_mmap,
1314        .open           = gfs2_open,
1315        .release        = gfs2_release,
1316        .fsync          = gfs2_fsync,
1317        .splice_read    = generic_file_splice_read,
1318        .splice_write   = gfs2_file_splice_write,
1319        .setlease       = generic_setlease,
1320        .fallocate      = gfs2_fallocate,
1321};
1322
1323const struct file_operations gfs2_dir_fops_nolock = {
1324        .iterate_shared = gfs2_readdir,
1325        .unlocked_ioctl = gfs2_ioctl,
1326        .open           = gfs2_open,
1327        .release        = gfs2_release,
1328        .fsync          = gfs2_fsync,
1329        .llseek         = default_llseek,
1330};
1331
1332