linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget()
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82        int i;
  83        long sum = 0;
  84        for_each_possible_cpu(i)
  85                sum += per_cpu(nr_inodes, i);
  86        return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91        int i;
  92        long sum = 0;
  93        for_each_possible_cpu(i)
  94                sum += per_cpu(nr_unused, i);
  95        return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100        /* not actually dirty inodes, but a wild approximation */
 101        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102        return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110                   void __user *buffer, size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120        return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure initialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133        static const struct inode_operations empty_iops;
 134        static const struct file_operations no_open_fops = {.open = no_open};
 135        struct address_space *const mapping = &inode->i_data;
 136
 137        inode->i_sb = sb;
 138        inode->i_blkbits = sb->s_blocksize_bits;
 139        inode->i_flags = 0;
 140        atomic_set(&inode->i_count, 1);
 141        inode->i_op = &empty_iops;
 142        inode->i_fop = &no_open_fops;
 143        inode->__i_nlink = 1;
 144        inode->i_opflags = 0;
 145        if (sb->s_xattr)
 146                inode->i_opflags |= IOP_XATTR;
 147        i_uid_write(inode, 0);
 148        i_gid_write(inode, 0);
 149        atomic_set(&inode->i_writecount, 0);
 150        inode->i_size = 0;
 151        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 152        inode->i_blocks = 0;
 153        inode->i_bytes = 0;
 154        inode->i_generation = 0;
 155        inode->i_pipe = NULL;
 156        inode->i_bdev = NULL;
 157        inode->i_cdev = NULL;
 158        inode->i_link = NULL;
 159        inode->i_dir_seq = 0;
 160        inode->i_rdev = 0;
 161        inode->dirtied_when = 0;
 162
 163#ifdef CONFIG_CGROUP_WRITEBACK
 164        inode->i_wb_frn_winner = 0;
 165        inode->i_wb_frn_avg_time = 0;
 166        inode->i_wb_frn_history = 0;
 167#endif
 168
 169        if (security_inode_alloc(inode))
 170                goto out;
 171        spin_lock_init(&inode->i_lock);
 172        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 173
 174        init_rwsem(&inode->i_rwsem);
 175        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 176
 177        atomic_set(&inode->i_dio_count, 0);
 178
 179        mapping->a_ops = &empty_aops;
 180        mapping->host = inode;
 181        mapping->flags = 0;
 182        mapping->wb_err = 0;
 183        atomic_set(&mapping->i_mmap_writable, 0);
 184        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 185        mapping->private_data = NULL;
 186        mapping->writeback_index = 0;
 187        inode->i_private = NULL;
 188        inode->i_mapping = mapping;
 189        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 190#ifdef CONFIG_FS_POSIX_ACL
 191        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 192#endif
 193
 194#ifdef CONFIG_FSNOTIFY
 195        inode->i_fsnotify_mask = 0;
 196#endif
 197        inode->i_flctx = NULL;
 198        this_cpu_inc(nr_inodes);
 199
 200        return 0;
 201out:
 202        return -ENOMEM;
 203}
 204EXPORT_SYMBOL(inode_init_always);
 205
 206void free_inode_nonrcu(struct inode *inode)
 207{
 208        kmem_cache_free(inode_cachep, inode);
 209}
 210EXPORT_SYMBOL(free_inode_nonrcu);
 211
 212static void i_callback(struct rcu_head *head)
 213{
 214        struct inode *inode = container_of(head, struct inode, i_rcu);
 215        if (inode->free_inode)
 216                inode->free_inode(inode);
 217        else
 218                free_inode_nonrcu(inode);
 219}
 220
 221static struct inode *alloc_inode(struct super_block *sb)
 222{
 223        const struct super_operations *ops = sb->s_op;
 224        struct inode *inode;
 225
 226        if (ops->alloc_inode)
 227                inode = ops->alloc_inode(sb);
 228        else
 229                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 230
 231        if (!inode)
 232                return NULL;
 233
 234        if (unlikely(inode_init_always(sb, inode))) {
 235                if (ops->destroy_inode) {
 236                        ops->destroy_inode(inode);
 237                        if (!ops->free_inode)
 238                                return NULL;
 239                }
 240                inode->free_inode = ops->free_inode;
 241                i_callback(&inode->i_rcu);
 242                return NULL;
 243        }
 244
 245        return inode;
 246}
 247
 248void __destroy_inode(struct inode *inode)
 249{
 250        BUG_ON(inode_has_buffers(inode));
 251        inode_detach_wb(inode);
 252        security_inode_free(inode);
 253        fsnotify_inode_delete(inode);
 254        locks_free_lock_context(inode);
 255        if (!inode->i_nlink) {
 256                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 257                atomic_long_dec(&inode->i_sb->s_remove_count);
 258        }
 259
 260#ifdef CONFIG_FS_POSIX_ACL
 261        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 262                posix_acl_release(inode->i_acl);
 263        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 264                posix_acl_release(inode->i_default_acl);
 265#endif
 266        this_cpu_dec(nr_inodes);
 267}
 268EXPORT_SYMBOL(__destroy_inode);
 269
 270static void destroy_inode(struct inode *inode)
 271{
 272        const struct super_operations *ops = inode->i_sb->s_op;
 273
 274        BUG_ON(!list_empty(&inode->i_lru));
 275        __destroy_inode(inode);
 276        if (ops->destroy_inode) {
 277                ops->destroy_inode(inode);
 278                if (!ops->free_inode)
 279                        return;
 280        }
 281        inode->free_inode = ops->free_inode;
 282        call_rcu(&inode->i_rcu, i_callback);
 283}
 284
 285/**
 286 * drop_nlink - directly drop an inode's link count
 287 * @inode: inode
 288 *
 289 * This is a low-level filesystem helper to replace any
 290 * direct filesystem manipulation of i_nlink.  In cases
 291 * where we are attempting to track writes to the
 292 * filesystem, a decrement to zero means an imminent
 293 * write when the file is truncated and actually unlinked
 294 * on the filesystem.
 295 */
 296void drop_nlink(struct inode *inode)
 297{
 298        WARN_ON(inode->i_nlink == 0);
 299        inode->__i_nlink--;
 300        if (!inode->i_nlink)
 301                atomic_long_inc(&inode->i_sb->s_remove_count);
 302}
 303EXPORT_SYMBOL(drop_nlink);
 304
 305/**
 306 * clear_nlink - directly zero an inode's link count
 307 * @inode: inode
 308 *
 309 * This is a low-level filesystem helper to replace any
 310 * direct filesystem manipulation of i_nlink.  See
 311 * drop_nlink() for why we care about i_nlink hitting zero.
 312 */
 313void clear_nlink(struct inode *inode)
 314{
 315        if (inode->i_nlink) {
 316                inode->__i_nlink = 0;
 317                atomic_long_inc(&inode->i_sb->s_remove_count);
 318        }
 319}
 320EXPORT_SYMBOL(clear_nlink);
 321
 322/**
 323 * set_nlink - directly set an inode's link count
 324 * @inode: inode
 325 * @nlink: new nlink (should be non-zero)
 326 *
 327 * This is a low-level filesystem helper to replace any
 328 * direct filesystem manipulation of i_nlink.
 329 */
 330void set_nlink(struct inode *inode, unsigned int nlink)
 331{
 332        if (!nlink) {
 333                clear_nlink(inode);
 334        } else {
 335                /* Yes, some filesystems do change nlink from zero to one */
 336                if (inode->i_nlink == 0)
 337                        atomic_long_dec(&inode->i_sb->s_remove_count);
 338
 339                inode->__i_nlink = nlink;
 340        }
 341}
 342EXPORT_SYMBOL(set_nlink);
 343
 344/**
 345 * inc_nlink - directly increment an inode's link count
 346 * @inode: inode
 347 *
 348 * This is a low-level filesystem helper to replace any
 349 * direct filesystem manipulation of i_nlink.  Currently,
 350 * it is only here for parity with dec_nlink().
 351 */
 352void inc_nlink(struct inode *inode)
 353{
 354        if (unlikely(inode->i_nlink == 0)) {
 355                WARN_ON(!(inode->i_state & I_LINKABLE));
 356                atomic_long_dec(&inode->i_sb->s_remove_count);
 357        }
 358
 359        inode->__i_nlink++;
 360}
 361EXPORT_SYMBOL(inc_nlink);
 362
 363static void __address_space_init_once(struct address_space *mapping)
 364{
 365        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 366        init_rwsem(&mapping->i_mmap_rwsem);
 367        INIT_LIST_HEAD(&mapping->private_list);
 368        spin_lock_init(&mapping->private_lock);
 369        mapping->i_mmap = RB_ROOT_CACHED;
 370}
 371
 372void address_space_init_once(struct address_space *mapping)
 373{
 374        memset(mapping, 0, sizeof(*mapping));
 375        __address_space_init_once(mapping);
 376}
 377EXPORT_SYMBOL(address_space_init_once);
 378
 379/*
 380 * These are initializations that only need to be done
 381 * once, because the fields are idempotent across use
 382 * of the inode, so let the slab aware of that.
 383 */
 384void inode_init_once(struct inode *inode)
 385{
 386        memset(inode, 0, sizeof(*inode));
 387        INIT_HLIST_NODE(&inode->i_hash);
 388        INIT_LIST_HEAD(&inode->i_devices);
 389        INIT_LIST_HEAD(&inode->i_io_list);
 390        INIT_LIST_HEAD(&inode->i_wb_list);
 391        INIT_LIST_HEAD(&inode->i_lru);
 392        __address_space_init_once(&inode->i_data);
 393        i_size_ordered_init(inode);
 394}
 395EXPORT_SYMBOL(inode_init_once);
 396
 397static void init_once(void *foo)
 398{
 399        struct inode *inode = (struct inode *) foo;
 400
 401        inode_init_once(inode);
 402}
 403
 404/*
 405 * inode->i_lock must be held
 406 */
 407void __iget(struct inode *inode)
 408{
 409        atomic_inc(&inode->i_count);
 410}
 411
 412/*
 413 * get additional reference to inode; caller must already hold one.
 414 */
 415void ihold(struct inode *inode)
 416{
 417        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 418}
 419EXPORT_SYMBOL(ihold);
 420
 421static void inode_lru_list_add(struct inode *inode)
 422{
 423        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 424                this_cpu_inc(nr_unused);
 425        else
 426                inode->i_state |= I_REFERENCED;
 427}
 428
 429/*
 430 * Add inode to LRU if needed (inode is unused and clean).
 431 *
 432 * Needs inode->i_lock held.
 433 */
 434void inode_add_lru(struct inode *inode)
 435{
 436        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 437                                I_FREEING | I_WILL_FREE)) &&
 438            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 439                inode_lru_list_add(inode);
 440}
 441
 442
 443static void inode_lru_list_del(struct inode *inode)
 444{
 445
 446        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 447                this_cpu_dec(nr_unused);
 448}
 449
 450/**
 451 * inode_sb_list_add - add inode to the superblock list of inodes
 452 * @inode: inode to add
 453 */
 454void inode_sb_list_add(struct inode *inode)
 455{
 456        spin_lock(&inode->i_sb->s_inode_list_lock);
 457        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 458        spin_unlock(&inode->i_sb->s_inode_list_lock);
 459}
 460EXPORT_SYMBOL_GPL(inode_sb_list_add);
 461
 462static inline void inode_sb_list_del(struct inode *inode)
 463{
 464        if (!list_empty(&inode->i_sb_list)) {
 465                spin_lock(&inode->i_sb->s_inode_list_lock);
 466                list_del_init(&inode->i_sb_list);
 467                spin_unlock(&inode->i_sb->s_inode_list_lock);
 468        }
 469}
 470
 471static unsigned long hash(struct super_block *sb, unsigned long hashval)
 472{
 473        unsigned long tmp;
 474
 475        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 476                        L1_CACHE_BYTES;
 477        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 478        return tmp & i_hash_mask;
 479}
 480
 481/**
 482 *      __insert_inode_hash - hash an inode
 483 *      @inode: unhashed inode
 484 *      @hashval: unsigned long value used to locate this object in the
 485 *              inode_hashtable.
 486 *
 487 *      Add an inode to the inode hash for this superblock.
 488 */
 489void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 490{
 491        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 492
 493        spin_lock(&inode_hash_lock);
 494        spin_lock(&inode->i_lock);
 495        hlist_add_head(&inode->i_hash, b);
 496        spin_unlock(&inode->i_lock);
 497        spin_unlock(&inode_hash_lock);
 498}
 499EXPORT_SYMBOL(__insert_inode_hash);
 500
 501/**
 502 *      __remove_inode_hash - remove an inode from the hash
 503 *      @inode: inode to unhash
 504 *
 505 *      Remove an inode from the superblock.
 506 */
 507void __remove_inode_hash(struct inode *inode)
 508{
 509        spin_lock(&inode_hash_lock);
 510        spin_lock(&inode->i_lock);
 511        hlist_del_init(&inode->i_hash);
 512        spin_unlock(&inode->i_lock);
 513        spin_unlock(&inode_hash_lock);
 514}
 515EXPORT_SYMBOL(__remove_inode_hash);
 516
 517void clear_inode(struct inode *inode)
 518{
 519        /*
 520         * We have to cycle the i_pages lock here because reclaim can be in the
 521         * process of removing the last page (in __delete_from_page_cache())
 522         * and we must not free the mapping under it.
 523         */
 524        xa_lock_irq(&inode->i_data.i_pages);
 525        BUG_ON(inode->i_data.nrpages);
 526        BUG_ON(inode->i_data.nrexceptional);
 527        xa_unlock_irq(&inode->i_data.i_pages);
 528        BUG_ON(!list_empty(&inode->i_data.private_list));
 529        BUG_ON(!(inode->i_state & I_FREEING));
 530        BUG_ON(inode->i_state & I_CLEAR);
 531        BUG_ON(!list_empty(&inode->i_wb_list));
 532        /* don't need i_lock here, no concurrent mods to i_state */
 533        inode->i_state = I_FREEING | I_CLEAR;
 534}
 535EXPORT_SYMBOL(clear_inode);
 536
 537/*
 538 * Free the inode passed in, removing it from the lists it is still connected
 539 * to. We remove any pages still attached to the inode and wait for any IO that
 540 * is still in progress before finally destroying the inode.
 541 *
 542 * An inode must already be marked I_FREEING so that we avoid the inode being
 543 * moved back onto lists if we race with other code that manipulates the lists
 544 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 545 *
 546 * An inode must already be removed from the LRU list before being evicted from
 547 * the cache. This should occur atomically with setting the I_FREEING state
 548 * flag, so no inodes here should ever be on the LRU when being evicted.
 549 */
 550static void evict(struct inode *inode)
 551{
 552        const struct super_operations *op = inode->i_sb->s_op;
 553
 554        BUG_ON(!(inode->i_state & I_FREEING));
 555        BUG_ON(!list_empty(&inode->i_lru));
 556
 557        if (!list_empty(&inode->i_io_list))
 558                inode_io_list_del(inode);
 559
 560        inode_sb_list_del(inode);
 561
 562        /*
 563         * Wait for flusher thread to be done with the inode so that filesystem
 564         * does not start destroying it while writeback is still running. Since
 565         * the inode has I_FREEING set, flusher thread won't start new work on
 566         * the inode.  We just have to wait for running writeback to finish.
 567         */
 568        inode_wait_for_writeback(inode);
 569
 570        if (op->evict_inode) {
 571                op->evict_inode(inode);
 572        } else {
 573                truncate_inode_pages_final(&inode->i_data);
 574                clear_inode(inode);
 575        }
 576        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 577                bd_forget(inode);
 578        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 579                cd_forget(inode);
 580
 581        remove_inode_hash(inode);
 582
 583        spin_lock(&inode->i_lock);
 584        wake_up_bit(&inode->i_state, __I_NEW);
 585        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 586        spin_unlock(&inode->i_lock);
 587
 588        destroy_inode(inode);
 589}
 590
 591/*
 592 * dispose_list - dispose of the contents of a local list
 593 * @head: the head of the list to free
 594 *
 595 * Dispose-list gets a local list with local inodes in it, so it doesn't
 596 * need to worry about list corruption and SMP locks.
 597 */
 598static void dispose_list(struct list_head *head)
 599{
 600        while (!list_empty(head)) {
 601                struct inode *inode;
 602
 603                inode = list_first_entry(head, struct inode, i_lru);
 604                list_del_init(&inode->i_lru);
 605
 606                evict(inode);
 607                cond_resched();
 608        }
 609}
 610
 611/**
 612 * evict_inodes - evict all evictable inodes for a superblock
 613 * @sb:         superblock to operate on
 614 *
 615 * Make sure that no inodes with zero refcount are retained.  This is
 616 * called by superblock shutdown after having SB_ACTIVE flag removed,
 617 * so any inode reaching zero refcount during or after that call will
 618 * be immediately evicted.
 619 */
 620void evict_inodes(struct super_block *sb)
 621{
 622        struct inode *inode, *next;
 623        LIST_HEAD(dispose);
 624
 625again:
 626        spin_lock(&sb->s_inode_list_lock);
 627        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 628                if (atomic_read(&inode->i_count))
 629                        continue;
 630
 631                spin_lock(&inode->i_lock);
 632                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 633                        spin_unlock(&inode->i_lock);
 634                        continue;
 635                }
 636
 637                inode->i_state |= I_FREEING;
 638                inode_lru_list_del(inode);
 639                spin_unlock(&inode->i_lock);
 640                list_add(&inode->i_lru, &dispose);
 641
 642                /*
 643                 * We can have a ton of inodes to evict at unmount time given
 644                 * enough memory, check to see if we need to go to sleep for a
 645                 * bit so we don't livelock.
 646                 */
 647                if (need_resched()) {
 648                        spin_unlock(&sb->s_inode_list_lock);
 649                        cond_resched();
 650                        dispose_list(&dispose);
 651                        goto again;
 652                }
 653        }
 654        spin_unlock(&sb->s_inode_list_lock);
 655
 656        dispose_list(&dispose);
 657}
 658EXPORT_SYMBOL_GPL(evict_inodes);
 659
 660/**
 661 * invalidate_inodes    - attempt to free all inodes on a superblock
 662 * @sb:         superblock to operate on
 663 * @kill_dirty: flag to guide handling of dirty inodes
 664 *
 665 * Attempts to free all inodes for a given superblock.  If there were any
 666 * busy inodes return a non-zero value, else zero.
 667 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 668 * them as busy.
 669 */
 670int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 671{
 672        int busy = 0;
 673        struct inode *inode, *next;
 674        LIST_HEAD(dispose);
 675
 676        spin_lock(&sb->s_inode_list_lock);
 677        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 678                spin_lock(&inode->i_lock);
 679                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 680                        spin_unlock(&inode->i_lock);
 681                        continue;
 682                }
 683                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 684                        spin_unlock(&inode->i_lock);
 685                        busy = 1;
 686                        continue;
 687                }
 688                if (atomic_read(&inode->i_count)) {
 689                        spin_unlock(&inode->i_lock);
 690                        busy = 1;
 691                        continue;
 692                }
 693
 694                inode->i_state |= I_FREEING;
 695                inode_lru_list_del(inode);
 696                spin_unlock(&inode->i_lock);
 697                list_add(&inode->i_lru, &dispose);
 698        }
 699        spin_unlock(&sb->s_inode_list_lock);
 700
 701        dispose_list(&dispose);
 702
 703        return busy;
 704}
 705
 706/*
 707 * Isolate the inode from the LRU in preparation for freeing it.
 708 *
 709 * Any inodes which are pinned purely because of attached pagecache have their
 710 * pagecache removed.  If the inode has metadata buffers attached to
 711 * mapping->private_list then try to remove them.
 712 *
 713 * If the inode has the I_REFERENCED flag set, then it means that it has been
 714 * used recently - the flag is set in iput_final(). When we encounter such an
 715 * inode, clear the flag and move it to the back of the LRU so it gets another
 716 * pass through the LRU before it gets reclaimed. This is necessary because of
 717 * the fact we are doing lazy LRU updates to minimise lock contention so the
 718 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 719 * with this flag set because they are the inodes that are out of order.
 720 */
 721static enum lru_status inode_lru_isolate(struct list_head *item,
 722                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 723{
 724        struct list_head *freeable = arg;
 725        struct inode    *inode = container_of(item, struct inode, i_lru);
 726
 727        /*
 728         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 729         * If we fail to get the lock, just skip it.
 730         */
 731        if (!spin_trylock(&inode->i_lock))
 732                return LRU_SKIP;
 733
 734        /*
 735         * Referenced or dirty inodes are still in use. Give them another pass
 736         * through the LRU as we canot reclaim them now.
 737         */
 738        if (atomic_read(&inode->i_count) ||
 739            (inode->i_state & ~I_REFERENCED)) {
 740                list_lru_isolate(lru, &inode->i_lru);
 741                spin_unlock(&inode->i_lock);
 742                this_cpu_dec(nr_unused);
 743                return LRU_REMOVED;
 744        }
 745
 746        /* recently referenced inodes get one more pass */
 747        if (inode->i_state & I_REFERENCED) {
 748                inode->i_state &= ~I_REFERENCED;
 749                spin_unlock(&inode->i_lock);
 750                return LRU_ROTATE;
 751        }
 752
 753        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 754                __iget(inode);
 755                spin_unlock(&inode->i_lock);
 756                spin_unlock(lru_lock);
 757                if (remove_inode_buffers(inode)) {
 758                        unsigned long reap;
 759                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 760                        if (current_is_kswapd())
 761                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 762                        else
 763                                __count_vm_events(PGINODESTEAL, reap);
 764                        if (current->reclaim_state)
 765                                current->reclaim_state->reclaimed_slab += reap;
 766                }
 767                iput(inode);
 768                spin_lock(lru_lock);
 769                return LRU_RETRY;
 770        }
 771
 772        WARN_ON(inode->i_state & I_NEW);
 773        inode->i_state |= I_FREEING;
 774        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 775        spin_unlock(&inode->i_lock);
 776
 777        this_cpu_dec(nr_unused);
 778        return LRU_REMOVED;
 779}
 780
 781/*
 782 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 783 * This is called from the superblock shrinker function with a number of inodes
 784 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 785 * then are freed outside inode_lock by dispose_list().
 786 */
 787long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 788{
 789        LIST_HEAD(freeable);
 790        long freed;
 791
 792        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 793                                     inode_lru_isolate, &freeable);
 794        dispose_list(&freeable);
 795        return freed;
 796}
 797
 798static void __wait_on_freeing_inode(struct inode *inode);
 799/*
 800 * Called with the inode lock held.
 801 */
 802static struct inode *find_inode(struct super_block *sb,
 803                                struct hlist_head *head,
 804                                int (*test)(struct inode *, void *),
 805                                void *data)
 806{
 807        struct inode *inode = NULL;
 808
 809repeat:
 810        hlist_for_each_entry(inode, head, i_hash) {
 811                if (inode->i_sb != sb)
 812                        continue;
 813                if (!test(inode, data))
 814                        continue;
 815                spin_lock(&inode->i_lock);
 816                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 817                        __wait_on_freeing_inode(inode);
 818                        goto repeat;
 819                }
 820                if (unlikely(inode->i_state & I_CREATING)) {
 821                        spin_unlock(&inode->i_lock);
 822                        return ERR_PTR(-ESTALE);
 823                }
 824                __iget(inode);
 825                spin_unlock(&inode->i_lock);
 826                return inode;
 827        }
 828        return NULL;
 829}
 830
 831/*
 832 * find_inode_fast is the fast path version of find_inode, see the comment at
 833 * iget_locked for details.
 834 */
 835static struct inode *find_inode_fast(struct super_block *sb,
 836                                struct hlist_head *head, unsigned long ino)
 837{
 838        struct inode *inode = NULL;
 839
 840repeat:
 841        hlist_for_each_entry(inode, head, i_hash) {
 842                if (inode->i_ino != ino)
 843                        continue;
 844                if (inode->i_sb != sb)
 845                        continue;
 846                spin_lock(&inode->i_lock);
 847                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 848                        __wait_on_freeing_inode(inode);
 849                        goto repeat;
 850                }
 851                if (unlikely(inode->i_state & I_CREATING)) {
 852                        spin_unlock(&inode->i_lock);
 853                        return ERR_PTR(-ESTALE);
 854                }
 855                __iget(inode);
 856                spin_unlock(&inode->i_lock);
 857                return inode;
 858        }
 859        return NULL;
 860}
 861
 862/*
 863 * Each cpu owns a range of LAST_INO_BATCH numbers.
 864 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 865 * to renew the exhausted range.
 866 *
 867 * This does not significantly increase overflow rate because every CPU can
 868 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 869 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 870 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 871 * overflow rate by 2x, which does not seem too significant.
 872 *
 873 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 874 * error if st_ino won't fit in target struct field. Use 32bit counter
 875 * here to attempt to avoid that.
 876 */
 877#define LAST_INO_BATCH 1024
 878static DEFINE_PER_CPU(unsigned int, last_ino);
 879
 880unsigned int get_next_ino(void)
 881{
 882        unsigned int *p = &get_cpu_var(last_ino);
 883        unsigned int res = *p;
 884
 885#ifdef CONFIG_SMP
 886        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 887                static atomic_t shared_last_ino;
 888                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 889
 890                res = next - LAST_INO_BATCH;
 891        }
 892#endif
 893
 894        res++;
 895        /* get_next_ino should not provide a 0 inode number */
 896        if (unlikely(!res))
 897                res++;
 898        *p = res;
 899        put_cpu_var(last_ino);
 900        return res;
 901}
 902EXPORT_SYMBOL(get_next_ino);
 903
 904/**
 905 *      new_inode_pseudo        - obtain an inode
 906 *      @sb: superblock
 907 *
 908 *      Allocates a new inode for given superblock.
 909 *      Inode wont be chained in superblock s_inodes list
 910 *      This means :
 911 *      - fs can't be unmount
 912 *      - quotas, fsnotify, writeback can't work
 913 */
 914struct inode *new_inode_pseudo(struct super_block *sb)
 915{
 916        struct inode *inode = alloc_inode(sb);
 917
 918        if (inode) {
 919                spin_lock(&inode->i_lock);
 920                inode->i_state = 0;
 921                spin_unlock(&inode->i_lock);
 922                INIT_LIST_HEAD(&inode->i_sb_list);
 923        }
 924        return inode;
 925}
 926
 927/**
 928 *      new_inode       - obtain an inode
 929 *      @sb: superblock
 930 *
 931 *      Allocates a new inode for given superblock. The default gfp_mask
 932 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 933 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 934 *      for the page cache are not reclaimable or migratable,
 935 *      mapping_set_gfp_mask() must be called with suitable flags on the
 936 *      newly created inode's mapping
 937 *
 938 */
 939struct inode *new_inode(struct super_block *sb)
 940{
 941        struct inode *inode;
 942
 943        spin_lock_prefetch(&sb->s_inode_list_lock);
 944
 945        inode = new_inode_pseudo(sb);
 946        if (inode)
 947                inode_sb_list_add(inode);
 948        return inode;
 949}
 950EXPORT_SYMBOL(new_inode);
 951
 952#ifdef CONFIG_DEBUG_LOCK_ALLOC
 953void lockdep_annotate_inode_mutex_key(struct inode *inode)
 954{
 955        if (S_ISDIR(inode->i_mode)) {
 956                struct file_system_type *type = inode->i_sb->s_type;
 957
 958                /* Set new key only if filesystem hasn't already changed it */
 959                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 960                        /*
 961                         * ensure nobody is actually holding i_mutex
 962                         */
 963                        // mutex_destroy(&inode->i_mutex);
 964                        init_rwsem(&inode->i_rwsem);
 965                        lockdep_set_class(&inode->i_rwsem,
 966                                          &type->i_mutex_dir_key);
 967                }
 968        }
 969}
 970EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 971#endif
 972
 973/**
 974 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 975 * @inode:      new inode to unlock
 976 *
 977 * Called when the inode is fully initialised to clear the new state of the
 978 * inode and wake up anyone waiting for the inode to finish initialisation.
 979 */
 980void unlock_new_inode(struct inode *inode)
 981{
 982        lockdep_annotate_inode_mutex_key(inode);
 983        spin_lock(&inode->i_lock);
 984        WARN_ON(!(inode->i_state & I_NEW));
 985        inode->i_state &= ~I_NEW & ~I_CREATING;
 986        smp_mb();
 987        wake_up_bit(&inode->i_state, __I_NEW);
 988        spin_unlock(&inode->i_lock);
 989}
 990EXPORT_SYMBOL(unlock_new_inode);
 991
 992void discard_new_inode(struct inode *inode)
 993{
 994        lockdep_annotate_inode_mutex_key(inode);
 995        spin_lock(&inode->i_lock);
 996        WARN_ON(!(inode->i_state & I_NEW));
 997        inode->i_state &= ~I_NEW;
 998        smp_mb();
 999        wake_up_bit(&inode->i_state, __I_NEW);
1000        spin_unlock(&inode->i_lock);
1001        iput(inode);
1002}
1003EXPORT_SYMBOL(discard_new_inode);
1004
1005/**
1006 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1007 *
1008 * Lock any non-NULL argument that is not a directory.
1009 * Zero, one or two objects may be locked by this function.
1010 *
1011 * @inode1: first inode to lock
1012 * @inode2: second inode to lock
1013 */
1014void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1015{
1016        if (inode1 > inode2)
1017                swap(inode1, inode2);
1018
1019        if (inode1 && !S_ISDIR(inode1->i_mode))
1020                inode_lock(inode1);
1021        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1022                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1023}
1024EXPORT_SYMBOL(lock_two_nondirectories);
1025
1026/**
1027 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1028 * @inode1: first inode to unlock
1029 * @inode2: second inode to unlock
1030 */
1031void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1032{
1033        if (inode1 && !S_ISDIR(inode1->i_mode))
1034                inode_unlock(inode1);
1035        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036                inode_unlock(inode2);
1037}
1038EXPORT_SYMBOL(unlock_two_nondirectories);
1039
1040/**
1041 * inode_insert5 - obtain an inode from a mounted file system
1042 * @inode:      pre-allocated inode to use for insert to cache
1043 * @hashval:    hash value (usually inode number) to get
1044 * @test:       callback used for comparisons between inodes
1045 * @set:        callback used to initialize a new struct inode
1046 * @data:       opaque data pointer to pass to @test and @set
1047 *
1048 * Search for the inode specified by @hashval and @data in the inode cache,
1049 * and if present it is return it with an increased reference count. This is
1050 * a variant of iget5_locked() for callers that don't want to fail on memory
1051 * allocation of inode.
1052 *
1053 * If the inode is not in cache, insert the pre-allocated inode to cache and
1054 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1055 * to fill it in before unlocking it via unlock_new_inode().
1056 *
1057 * Note both @test and @set are called with the inode_hash_lock held, so can't
1058 * sleep.
1059 */
1060struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1061                            int (*test)(struct inode *, void *),
1062                            int (*set)(struct inode *, void *), void *data)
1063{
1064        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1065        struct inode *old;
1066        bool creating = inode->i_state & I_CREATING;
1067
1068again:
1069        spin_lock(&inode_hash_lock);
1070        old = find_inode(inode->i_sb, head, test, data);
1071        if (unlikely(old)) {
1072                /*
1073                 * Uhhuh, somebody else created the same inode under us.
1074                 * Use the old inode instead of the preallocated one.
1075                 */
1076                spin_unlock(&inode_hash_lock);
1077                if (IS_ERR(old))
1078                        return NULL;
1079                wait_on_inode(old);
1080                if (unlikely(inode_unhashed(old))) {
1081                        iput(old);
1082                        goto again;
1083                }
1084                return old;
1085        }
1086
1087        if (set && unlikely(set(inode, data))) {
1088                inode = NULL;
1089                goto unlock;
1090        }
1091
1092        /*
1093         * Return the locked inode with I_NEW set, the
1094         * caller is responsible for filling in the contents
1095         */
1096        spin_lock(&inode->i_lock);
1097        inode->i_state |= I_NEW;
1098        hlist_add_head(&inode->i_hash, head);
1099        spin_unlock(&inode->i_lock);
1100        if (!creating)
1101                inode_sb_list_add(inode);
1102unlock:
1103        spin_unlock(&inode_hash_lock);
1104
1105        return inode;
1106}
1107EXPORT_SYMBOL(inode_insert5);
1108
1109/**
1110 * iget5_locked - obtain an inode from a mounted file system
1111 * @sb:         super block of file system
1112 * @hashval:    hash value (usually inode number) to get
1113 * @test:       callback used for comparisons between inodes
1114 * @set:        callback used to initialize a new struct inode
1115 * @data:       opaque data pointer to pass to @test and @set
1116 *
1117 * Search for the inode specified by @hashval and @data in the inode cache,
1118 * and if present it is return it with an increased reference count. This is
1119 * a generalized version of iget_locked() for file systems where the inode
1120 * number is not sufficient for unique identification of an inode.
1121 *
1122 * If the inode is not in cache, allocate a new inode and return it locked,
1123 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1124 * before unlocking it via unlock_new_inode().
1125 *
1126 * Note both @test and @set are called with the inode_hash_lock held, so can't
1127 * sleep.
1128 */
1129struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1130                int (*test)(struct inode *, void *),
1131                int (*set)(struct inode *, void *), void *data)
1132{
1133        struct inode *inode = ilookup5(sb, hashval, test, data);
1134
1135        if (!inode) {
1136                struct inode *new = alloc_inode(sb);
1137
1138                if (new) {
1139                        new->i_state = 0;
1140                        inode = inode_insert5(new, hashval, test, set, data);
1141                        if (unlikely(inode != new))
1142                                destroy_inode(new);
1143                }
1144        }
1145        return inode;
1146}
1147EXPORT_SYMBOL(iget5_locked);
1148
1149/**
1150 * iget_locked - obtain an inode from a mounted file system
1151 * @sb:         super block of file system
1152 * @ino:        inode number to get
1153 *
1154 * Search for the inode specified by @ino in the inode cache and if present
1155 * return it with an increased reference count. This is for file systems
1156 * where the inode number is sufficient for unique identification of an inode.
1157 *
1158 * If the inode is not in cache, allocate a new inode and return it locked,
1159 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1160 * before unlocking it via unlock_new_inode().
1161 */
1162struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1163{
1164        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1165        struct inode *inode;
1166again:
1167        spin_lock(&inode_hash_lock);
1168        inode = find_inode_fast(sb, head, ino);
1169        spin_unlock(&inode_hash_lock);
1170        if (inode) {
1171                if (IS_ERR(inode))
1172                        return NULL;
1173                wait_on_inode(inode);
1174                if (unlikely(inode_unhashed(inode))) {
1175                        iput(inode);
1176                        goto again;
1177                }
1178                return inode;
1179        }
1180
1181        inode = alloc_inode(sb);
1182        if (inode) {
1183                struct inode *old;
1184
1185                spin_lock(&inode_hash_lock);
1186                /* We released the lock, so.. */
1187                old = find_inode_fast(sb, head, ino);
1188                if (!old) {
1189                        inode->i_ino = ino;
1190                        spin_lock(&inode->i_lock);
1191                        inode->i_state = I_NEW;
1192                        hlist_add_head(&inode->i_hash, head);
1193                        spin_unlock(&inode->i_lock);
1194                        inode_sb_list_add(inode);
1195                        spin_unlock(&inode_hash_lock);
1196
1197                        /* Return the locked inode with I_NEW set, the
1198                         * caller is responsible for filling in the contents
1199                         */
1200                        return inode;
1201                }
1202
1203                /*
1204                 * Uhhuh, somebody else created the same inode under
1205                 * us. Use the old inode instead of the one we just
1206                 * allocated.
1207                 */
1208                spin_unlock(&inode_hash_lock);
1209                destroy_inode(inode);
1210                if (IS_ERR(old))
1211                        return NULL;
1212                inode = old;
1213                wait_on_inode(inode);
1214                if (unlikely(inode_unhashed(inode))) {
1215                        iput(inode);
1216                        goto again;
1217                }
1218        }
1219        return inode;
1220}
1221EXPORT_SYMBOL(iget_locked);
1222
1223/*
1224 * search the inode cache for a matching inode number.
1225 * If we find one, then the inode number we are trying to
1226 * allocate is not unique and so we should not use it.
1227 *
1228 * Returns 1 if the inode number is unique, 0 if it is not.
1229 */
1230static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1231{
1232        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1233        struct inode *inode;
1234
1235        spin_lock(&inode_hash_lock);
1236        hlist_for_each_entry(inode, b, i_hash) {
1237                if (inode->i_ino == ino && inode->i_sb == sb) {
1238                        spin_unlock(&inode_hash_lock);
1239                        return 0;
1240                }
1241        }
1242        spin_unlock(&inode_hash_lock);
1243
1244        return 1;
1245}
1246
1247/**
1248 *      iunique - get a unique inode number
1249 *      @sb: superblock
1250 *      @max_reserved: highest reserved inode number
1251 *
1252 *      Obtain an inode number that is unique on the system for a given
1253 *      superblock. This is used by file systems that have no natural
1254 *      permanent inode numbering system. An inode number is returned that
1255 *      is higher than the reserved limit but unique.
1256 *
1257 *      BUGS:
1258 *      With a large number of inodes live on the file system this function
1259 *      currently becomes quite slow.
1260 */
1261ino_t iunique(struct super_block *sb, ino_t max_reserved)
1262{
1263        /*
1264         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1265         * error if st_ino won't fit in target struct field. Use 32bit counter
1266         * here to attempt to avoid that.
1267         */
1268        static DEFINE_SPINLOCK(iunique_lock);
1269        static unsigned int counter;
1270        ino_t res;
1271
1272        spin_lock(&iunique_lock);
1273        do {
1274                if (counter <= max_reserved)
1275                        counter = max_reserved + 1;
1276                res = counter++;
1277        } while (!test_inode_iunique(sb, res));
1278        spin_unlock(&iunique_lock);
1279
1280        return res;
1281}
1282EXPORT_SYMBOL(iunique);
1283
1284struct inode *igrab(struct inode *inode)
1285{
1286        spin_lock(&inode->i_lock);
1287        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1288                __iget(inode);
1289                spin_unlock(&inode->i_lock);
1290        } else {
1291                spin_unlock(&inode->i_lock);
1292                /*
1293                 * Handle the case where s_op->clear_inode is not been
1294                 * called yet, and somebody is calling igrab
1295                 * while the inode is getting freed.
1296                 */
1297                inode = NULL;
1298        }
1299        return inode;
1300}
1301EXPORT_SYMBOL(igrab);
1302
1303/**
1304 * ilookup5_nowait - search for an inode in the inode cache
1305 * @sb:         super block of file system to search
1306 * @hashval:    hash value (usually inode number) to search for
1307 * @test:       callback used for comparisons between inodes
1308 * @data:       opaque data pointer to pass to @test
1309 *
1310 * Search for the inode specified by @hashval and @data in the inode cache.
1311 * If the inode is in the cache, the inode is returned with an incremented
1312 * reference count.
1313 *
1314 * Note: I_NEW is not waited upon so you have to be very careful what you do
1315 * with the returned inode.  You probably should be using ilookup5() instead.
1316 *
1317 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1318 */
1319struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1320                int (*test)(struct inode *, void *), void *data)
1321{
1322        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1323        struct inode *inode;
1324
1325        spin_lock(&inode_hash_lock);
1326        inode = find_inode(sb, head, test, data);
1327        spin_unlock(&inode_hash_lock);
1328
1329        return IS_ERR(inode) ? NULL : inode;
1330}
1331EXPORT_SYMBOL(ilookup5_nowait);
1332
1333/**
1334 * ilookup5 - search for an inode in the inode cache
1335 * @sb:         super block of file system to search
1336 * @hashval:    hash value (usually inode number) to search for
1337 * @test:       callback used for comparisons between inodes
1338 * @data:       opaque data pointer to pass to @test
1339 *
1340 * Search for the inode specified by @hashval and @data in the inode cache,
1341 * and if the inode is in the cache, return the inode with an incremented
1342 * reference count.  Waits on I_NEW before returning the inode.
1343 * returned with an incremented reference count.
1344 *
1345 * This is a generalized version of ilookup() for file systems where the
1346 * inode number is not sufficient for unique identification of an inode.
1347 *
1348 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1349 */
1350struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1351                int (*test)(struct inode *, void *), void *data)
1352{
1353        struct inode *inode;
1354again:
1355        inode = ilookup5_nowait(sb, hashval, test, data);
1356        if (inode) {
1357                wait_on_inode(inode);
1358                if (unlikely(inode_unhashed(inode))) {
1359                        iput(inode);
1360                        goto again;
1361                }
1362        }
1363        return inode;
1364}
1365EXPORT_SYMBOL(ilookup5);
1366
1367/**
1368 * ilookup - search for an inode in the inode cache
1369 * @sb:         super block of file system to search
1370 * @ino:        inode number to search for
1371 *
1372 * Search for the inode @ino in the inode cache, and if the inode is in the
1373 * cache, the inode is returned with an incremented reference count.
1374 */
1375struct inode *ilookup(struct super_block *sb, unsigned long ino)
1376{
1377        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1378        struct inode *inode;
1379again:
1380        spin_lock(&inode_hash_lock);
1381        inode = find_inode_fast(sb, head, ino);
1382        spin_unlock(&inode_hash_lock);
1383
1384        if (inode) {
1385                if (IS_ERR(inode))
1386                        return NULL;
1387                wait_on_inode(inode);
1388                if (unlikely(inode_unhashed(inode))) {
1389                        iput(inode);
1390                        goto again;
1391                }
1392        }
1393        return inode;
1394}
1395EXPORT_SYMBOL(ilookup);
1396
1397/**
1398 * find_inode_nowait - find an inode in the inode cache
1399 * @sb:         super block of file system to search
1400 * @hashval:    hash value (usually inode number) to search for
1401 * @match:      callback used for comparisons between inodes
1402 * @data:       opaque data pointer to pass to @match
1403 *
1404 * Search for the inode specified by @hashval and @data in the inode
1405 * cache, where the helper function @match will return 0 if the inode
1406 * does not match, 1 if the inode does match, and -1 if the search
1407 * should be stopped.  The @match function must be responsible for
1408 * taking the i_lock spin_lock and checking i_state for an inode being
1409 * freed or being initialized, and incrementing the reference count
1410 * before returning 1.  It also must not sleep, since it is called with
1411 * the inode_hash_lock spinlock held.
1412 *
1413 * This is a even more generalized version of ilookup5() when the
1414 * function must never block --- find_inode() can block in
1415 * __wait_on_freeing_inode() --- or when the caller can not increment
1416 * the reference count because the resulting iput() might cause an
1417 * inode eviction.  The tradeoff is that the @match funtion must be
1418 * very carefully implemented.
1419 */
1420struct inode *find_inode_nowait(struct super_block *sb,
1421                                unsigned long hashval,
1422                                int (*match)(struct inode *, unsigned long,
1423                                             void *),
1424                                void *data)
1425{
1426        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1427        struct inode *inode, *ret_inode = NULL;
1428        int mval;
1429
1430        spin_lock(&inode_hash_lock);
1431        hlist_for_each_entry(inode, head, i_hash) {
1432                if (inode->i_sb != sb)
1433                        continue;
1434                mval = match(inode, hashval, data);
1435                if (mval == 0)
1436                        continue;
1437                if (mval == 1)
1438                        ret_inode = inode;
1439                goto out;
1440        }
1441out:
1442        spin_unlock(&inode_hash_lock);
1443        return ret_inode;
1444}
1445EXPORT_SYMBOL(find_inode_nowait);
1446
1447int insert_inode_locked(struct inode *inode)
1448{
1449        struct super_block *sb = inode->i_sb;
1450        ino_t ino = inode->i_ino;
1451        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1452
1453        while (1) {
1454                struct inode *old = NULL;
1455                spin_lock(&inode_hash_lock);
1456                hlist_for_each_entry(old, head, i_hash) {
1457                        if (old->i_ino != ino)
1458                                continue;
1459                        if (old->i_sb != sb)
1460                                continue;
1461                        spin_lock(&old->i_lock);
1462                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1463                                spin_unlock(&old->i_lock);
1464                                continue;
1465                        }
1466                        break;
1467                }
1468                if (likely(!old)) {
1469                        spin_lock(&inode->i_lock);
1470                        inode->i_state |= I_NEW | I_CREATING;
1471                        hlist_add_head(&inode->i_hash, head);
1472                        spin_unlock(&inode->i_lock);
1473                        spin_unlock(&inode_hash_lock);
1474                        return 0;
1475                }
1476                if (unlikely(old->i_state & I_CREATING)) {
1477                        spin_unlock(&old->i_lock);
1478                        spin_unlock(&inode_hash_lock);
1479                        return -EBUSY;
1480                }
1481                __iget(old);
1482                spin_unlock(&old->i_lock);
1483                spin_unlock(&inode_hash_lock);
1484                wait_on_inode(old);
1485                if (unlikely(!inode_unhashed(old))) {
1486                        iput(old);
1487                        return -EBUSY;
1488                }
1489                iput(old);
1490        }
1491}
1492EXPORT_SYMBOL(insert_inode_locked);
1493
1494int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1495                int (*test)(struct inode *, void *), void *data)
1496{
1497        struct inode *old;
1498
1499        inode->i_state |= I_CREATING;
1500        old = inode_insert5(inode, hashval, test, NULL, data);
1501
1502        if (old != inode) {
1503                iput(old);
1504                return -EBUSY;
1505        }
1506        return 0;
1507}
1508EXPORT_SYMBOL(insert_inode_locked4);
1509
1510
1511int generic_delete_inode(struct inode *inode)
1512{
1513        return 1;
1514}
1515EXPORT_SYMBOL(generic_delete_inode);
1516
1517/*
1518 * Called when we're dropping the last reference
1519 * to an inode.
1520 *
1521 * Call the FS "drop_inode()" function, defaulting to
1522 * the legacy UNIX filesystem behaviour.  If it tells
1523 * us to evict inode, do so.  Otherwise, retain inode
1524 * in cache if fs is alive, sync and evict if fs is
1525 * shutting down.
1526 */
1527static void iput_final(struct inode *inode)
1528{
1529        struct super_block *sb = inode->i_sb;
1530        const struct super_operations *op = inode->i_sb->s_op;
1531        int drop;
1532
1533        WARN_ON(inode->i_state & I_NEW);
1534
1535        if (op->drop_inode)
1536                drop = op->drop_inode(inode);
1537        else
1538                drop = generic_drop_inode(inode);
1539
1540        if (!drop && (sb->s_flags & SB_ACTIVE)) {
1541                inode_add_lru(inode);
1542                spin_unlock(&inode->i_lock);
1543                return;
1544        }
1545
1546        if (!drop) {
1547                inode->i_state |= I_WILL_FREE;
1548                spin_unlock(&inode->i_lock);
1549                write_inode_now(inode, 1);
1550                spin_lock(&inode->i_lock);
1551                WARN_ON(inode->i_state & I_NEW);
1552                inode->i_state &= ~I_WILL_FREE;
1553        }
1554
1555        inode->i_state |= I_FREEING;
1556        if (!list_empty(&inode->i_lru))
1557                inode_lru_list_del(inode);
1558        spin_unlock(&inode->i_lock);
1559
1560        evict(inode);
1561}
1562
1563/**
1564 *      iput    - put an inode
1565 *      @inode: inode to put
1566 *
1567 *      Puts an inode, dropping its usage count. If the inode use count hits
1568 *      zero, the inode is then freed and may also be destroyed.
1569 *
1570 *      Consequently, iput() can sleep.
1571 */
1572void iput(struct inode *inode)
1573{
1574        if (!inode)
1575                return;
1576        BUG_ON(inode->i_state & I_CLEAR);
1577retry:
1578        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1579                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1580                        atomic_inc(&inode->i_count);
1581                        spin_unlock(&inode->i_lock);
1582                        trace_writeback_lazytime_iput(inode);
1583                        mark_inode_dirty_sync(inode);
1584                        goto retry;
1585                }
1586                iput_final(inode);
1587        }
1588}
1589EXPORT_SYMBOL(iput);
1590
1591/**
1592 *      bmap    - find a block number in a file
1593 *      @inode: inode of file
1594 *      @block: block to find
1595 *
1596 *      Returns the block number on the device holding the inode that
1597 *      is the disk block number for the block of the file requested.
1598 *      That is, asked for block 4 of inode 1 the function will return the
1599 *      disk block relative to the disk start that holds that block of the
1600 *      file.
1601 */
1602sector_t bmap(struct inode *inode, sector_t block)
1603{
1604        sector_t res = 0;
1605        if (inode->i_mapping->a_ops->bmap)
1606                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1607        return res;
1608}
1609EXPORT_SYMBOL(bmap);
1610
1611/*
1612 * With relative atime, only update atime if the previous atime is
1613 * earlier than either the ctime or mtime or if at least a day has
1614 * passed since the last atime update.
1615 */
1616static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1617                             struct timespec64 now)
1618{
1619
1620        if (!(mnt->mnt_flags & MNT_RELATIME))
1621                return 1;
1622        /*
1623         * Is mtime younger than atime? If yes, update atime:
1624         */
1625        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1626                return 1;
1627        /*
1628         * Is ctime younger than atime? If yes, update atime:
1629         */
1630        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1631                return 1;
1632
1633        /*
1634         * Is the previous atime value older than a day? If yes,
1635         * update atime:
1636         */
1637        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1638                return 1;
1639        /*
1640         * Good, we can skip the atime update:
1641         */
1642        return 0;
1643}
1644
1645int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1646{
1647        int iflags = I_DIRTY_TIME;
1648        bool dirty = false;
1649
1650        if (flags & S_ATIME)
1651                inode->i_atime = *time;
1652        if (flags & S_VERSION)
1653                dirty = inode_maybe_inc_iversion(inode, false);
1654        if (flags & S_CTIME)
1655                inode->i_ctime = *time;
1656        if (flags & S_MTIME)
1657                inode->i_mtime = *time;
1658        if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1659            !(inode->i_sb->s_flags & SB_LAZYTIME))
1660                dirty = true;
1661
1662        if (dirty)
1663                iflags |= I_DIRTY_SYNC;
1664        __mark_inode_dirty(inode, iflags);
1665        return 0;
1666}
1667EXPORT_SYMBOL(generic_update_time);
1668
1669/*
1670 * This does the actual work of updating an inodes time or version.  Must have
1671 * had called mnt_want_write() before calling this.
1672 */
1673static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1674{
1675        int (*update_time)(struct inode *, struct timespec64 *, int);
1676
1677        update_time = inode->i_op->update_time ? inode->i_op->update_time :
1678                generic_update_time;
1679
1680        return update_time(inode, time, flags);
1681}
1682
1683/**
1684 *      touch_atime     -       update the access time
1685 *      @path: the &struct path to update
1686 *      @inode: inode to update
1687 *
1688 *      Update the accessed time on an inode and mark it for writeback.
1689 *      This function automatically handles read only file systems and media,
1690 *      as well as the "noatime" flag and inode specific "noatime" markers.
1691 */
1692bool atime_needs_update(const struct path *path, struct inode *inode)
1693{
1694        struct vfsmount *mnt = path->mnt;
1695        struct timespec64 now;
1696
1697        if (inode->i_flags & S_NOATIME)
1698                return false;
1699
1700        /* Atime updates will likely cause i_uid and i_gid to be written
1701         * back improprely if their true value is unknown to the vfs.
1702         */
1703        if (HAS_UNMAPPED_ID(inode))
1704                return false;
1705
1706        if (IS_NOATIME(inode))
1707                return false;
1708        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1709                return false;
1710
1711        if (mnt->mnt_flags & MNT_NOATIME)
1712                return false;
1713        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1714                return false;
1715
1716        now = current_time(inode);
1717
1718        if (!relatime_need_update(mnt, inode, now))
1719                return false;
1720
1721        if (timespec64_equal(&inode->i_atime, &now))
1722                return false;
1723
1724        return true;
1725}
1726
1727void touch_atime(const struct path *path)
1728{
1729        struct vfsmount *mnt = path->mnt;
1730        struct inode *inode = d_inode(path->dentry);
1731        struct timespec64 now;
1732
1733        if (!atime_needs_update(path, inode))
1734                return;
1735
1736        if (!sb_start_write_trylock(inode->i_sb))
1737                return;
1738
1739        if (__mnt_want_write(mnt) != 0)
1740                goto skip_update;
1741        /*
1742         * File systems can error out when updating inodes if they need to
1743         * allocate new space to modify an inode (such is the case for
1744         * Btrfs), but since we touch atime while walking down the path we
1745         * really don't care if we failed to update the atime of the file,
1746         * so just ignore the return value.
1747         * We may also fail on filesystems that have the ability to make parts
1748         * of the fs read only, e.g. subvolumes in Btrfs.
1749         */
1750        now = current_time(inode);
1751        update_time(inode, &now, S_ATIME);
1752        __mnt_drop_write(mnt);
1753skip_update:
1754        sb_end_write(inode->i_sb);
1755}
1756EXPORT_SYMBOL(touch_atime);
1757
1758/*
1759 * The logic we want is
1760 *
1761 *      if suid or (sgid and xgrp)
1762 *              remove privs
1763 */
1764int should_remove_suid(struct dentry *dentry)
1765{
1766        umode_t mode = d_inode(dentry)->i_mode;
1767        int kill = 0;
1768
1769        /* suid always must be killed */
1770        if (unlikely(mode & S_ISUID))
1771                kill = ATTR_KILL_SUID;
1772
1773        /*
1774         * sgid without any exec bits is just a mandatory locking mark; leave
1775         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1776         */
1777        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1778                kill |= ATTR_KILL_SGID;
1779
1780        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1781                return kill;
1782
1783        return 0;
1784}
1785EXPORT_SYMBOL(should_remove_suid);
1786
1787/*
1788 * Return mask of changes for notify_change() that need to be done as a
1789 * response to write or truncate. Return 0 if nothing has to be changed.
1790 * Negative value on error (change should be denied).
1791 */
1792int dentry_needs_remove_privs(struct dentry *dentry)
1793{
1794        struct inode *inode = d_inode(dentry);
1795        int mask = 0;
1796        int ret;
1797
1798        if (IS_NOSEC(inode))
1799                return 0;
1800
1801        mask = should_remove_suid(dentry);
1802        ret = security_inode_need_killpriv(dentry);
1803        if (ret < 0)
1804                return ret;
1805        if (ret)
1806                mask |= ATTR_KILL_PRIV;
1807        return mask;
1808}
1809
1810static int __remove_privs(struct dentry *dentry, int kill)
1811{
1812        struct iattr newattrs;
1813
1814        newattrs.ia_valid = ATTR_FORCE | kill;
1815        /*
1816         * Note we call this on write, so notify_change will not
1817         * encounter any conflicting delegations:
1818         */
1819        return notify_change(dentry, &newattrs, NULL);
1820}
1821
1822/*
1823 * Remove special file priviledges (suid, capabilities) when file is written
1824 * to or truncated.
1825 */
1826int file_remove_privs(struct file *file)
1827{
1828        struct dentry *dentry = file_dentry(file);
1829        struct inode *inode = file_inode(file);
1830        int kill;
1831        int error = 0;
1832
1833        /*
1834         * Fast path for nothing security related.
1835         * As well for non-regular files, e.g. blkdev inodes.
1836         * For example, blkdev_write_iter() might get here
1837         * trying to remove privs which it is not allowed to.
1838         */
1839        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1840                return 0;
1841
1842        kill = dentry_needs_remove_privs(dentry);
1843        if (kill < 0)
1844                return kill;
1845        if (kill)
1846                error = __remove_privs(dentry, kill);
1847        if (!error)
1848                inode_has_no_xattr(inode);
1849
1850        return error;
1851}
1852EXPORT_SYMBOL(file_remove_privs);
1853
1854/**
1855 *      file_update_time        -       update mtime and ctime time
1856 *      @file: file accessed
1857 *
1858 *      Update the mtime and ctime members of an inode and mark the inode
1859 *      for writeback.  Note that this function is meant exclusively for
1860 *      usage in the file write path of filesystems, and filesystems may
1861 *      choose to explicitly ignore update via this function with the
1862 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1863 *      timestamps are handled by the server.  This can return an error for
1864 *      file systems who need to allocate space in order to update an inode.
1865 */
1866
1867int file_update_time(struct file *file)
1868{
1869        struct inode *inode = file_inode(file);
1870        struct timespec64 now;
1871        int sync_it = 0;
1872        int ret;
1873
1874        /* First try to exhaust all avenues to not sync */
1875        if (IS_NOCMTIME(inode))
1876                return 0;
1877
1878        now = current_time(inode);
1879        if (!timespec64_equal(&inode->i_mtime, &now))
1880                sync_it = S_MTIME;
1881
1882        if (!timespec64_equal(&inode->i_ctime, &now))
1883                sync_it |= S_CTIME;
1884
1885        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1886                sync_it |= S_VERSION;
1887
1888        if (!sync_it)
1889                return 0;
1890
1891        /* Finally allowed to write? Takes lock. */
1892        if (__mnt_want_write_file(file))
1893                return 0;
1894
1895        ret = update_time(inode, &now, sync_it);
1896        __mnt_drop_write_file(file);
1897
1898        return ret;
1899}
1900EXPORT_SYMBOL(file_update_time);
1901
1902int inode_needs_sync(struct inode *inode)
1903{
1904        if (IS_SYNC(inode))
1905                return 1;
1906        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1907                return 1;
1908        return 0;
1909}
1910EXPORT_SYMBOL(inode_needs_sync);
1911
1912/*
1913 * If we try to find an inode in the inode hash while it is being
1914 * deleted, we have to wait until the filesystem completes its
1915 * deletion before reporting that it isn't found.  This function waits
1916 * until the deletion _might_ have completed.  Callers are responsible
1917 * to recheck inode state.
1918 *
1919 * It doesn't matter if I_NEW is not set initially, a call to
1920 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1921 * will DTRT.
1922 */
1923static void __wait_on_freeing_inode(struct inode *inode)
1924{
1925        wait_queue_head_t *wq;
1926        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1927        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1928        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1929        spin_unlock(&inode->i_lock);
1930        spin_unlock(&inode_hash_lock);
1931        schedule();
1932        finish_wait(wq, &wait.wq_entry);
1933        spin_lock(&inode_hash_lock);
1934}
1935
1936static __initdata unsigned long ihash_entries;
1937static int __init set_ihash_entries(char *str)
1938{
1939        if (!str)
1940                return 0;
1941        ihash_entries = simple_strtoul(str, &str, 0);
1942        return 1;
1943}
1944__setup("ihash_entries=", set_ihash_entries);
1945
1946/*
1947 * Initialize the waitqueues and inode hash table.
1948 */
1949void __init inode_init_early(void)
1950{
1951        /* If hashes are distributed across NUMA nodes, defer
1952         * hash allocation until vmalloc space is available.
1953         */
1954        if (hashdist)
1955                return;
1956
1957        inode_hashtable =
1958                alloc_large_system_hash("Inode-cache",
1959                                        sizeof(struct hlist_head),
1960                                        ihash_entries,
1961                                        14,
1962                                        HASH_EARLY | HASH_ZERO,
1963                                        &i_hash_shift,
1964                                        &i_hash_mask,
1965                                        0,
1966                                        0);
1967}
1968
1969void __init inode_init(void)
1970{
1971        /* inode slab cache */
1972        inode_cachep = kmem_cache_create("inode_cache",
1973                                         sizeof(struct inode),
1974                                         0,
1975                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1976                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1977                                         init_once);
1978
1979        /* Hash may have been set up in inode_init_early */
1980        if (!hashdist)
1981                return;
1982
1983        inode_hashtable =
1984                alloc_large_system_hash("Inode-cache",
1985                                        sizeof(struct hlist_head),
1986                                        ihash_entries,
1987                                        14,
1988                                        HASH_ZERO,
1989                                        &i_hash_shift,
1990                                        &i_hash_mask,
1991                                        0,
1992                                        0);
1993}
1994
1995void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1996{
1997        inode->i_mode = mode;
1998        if (S_ISCHR(mode)) {
1999                inode->i_fop = &def_chr_fops;
2000                inode->i_rdev = rdev;
2001        } else if (S_ISBLK(mode)) {
2002                inode->i_fop = &def_blk_fops;
2003                inode->i_rdev = rdev;
2004        } else if (S_ISFIFO(mode))
2005                inode->i_fop = &pipefifo_fops;
2006        else if (S_ISSOCK(mode))
2007                ;       /* leave it no_open_fops */
2008        else
2009                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2010                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2011                                  inode->i_ino);
2012}
2013EXPORT_SYMBOL(init_special_inode);
2014
2015/**
2016 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2017 * @inode: New inode
2018 * @dir: Directory inode
2019 * @mode: mode of the new inode
2020 */
2021void inode_init_owner(struct inode *inode, const struct inode *dir,
2022                        umode_t mode)
2023{
2024        inode->i_uid = current_fsuid();
2025        if (dir && dir->i_mode & S_ISGID) {
2026                inode->i_gid = dir->i_gid;
2027
2028                /* Directories are special, and always inherit S_ISGID */
2029                if (S_ISDIR(mode))
2030                        mode |= S_ISGID;
2031                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2032                         !in_group_p(inode->i_gid) &&
2033                         !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2034                        mode &= ~S_ISGID;
2035        } else
2036                inode->i_gid = current_fsgid();
2037        inode->i_mode = mode;
2038}
2039EXPORT_SYMBOL(inode_init_owner);
2040
2041/**
2042 * inode_owner_or_capable - check current task permissions to inode
2043 * @inode: inode being checked
2044 *
2045 * Return true if current either has CAP_FOWNER in a namespace with the
2046 * inode owner uid mapped, or owns the file.
2047 */
2048bool inode_owner_or_capable(const struct inode *inode)
2049{
2050        struct user_namespace *ns;
2051
2052        if (uid_eq(current_fsuid(), inode->i_uid))
2053                return true;
2054
2055        ns = current_user_ns();
2056        if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2057                return true;
2058        return false;
2059}
2060EXPORT_SYMBOL(inode_owner_or_capable);
2061
2062/*
2063 * Direct i/o helper functions
2064 */
2065static void __inode_dio_wait(struct inode *inode)
2066{
2067        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2068        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2069
2070        do {
2071                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2072                if (atomic_read(&inode->i_dio_count))
2073                        schedule();
2074        } while (atomic_read(&inode->i_dio_count));
2075        finish_wait(wq, &q.wq_entry);
2076}
2077
2078/**
2079 * inode_dio_wait - wait for outstanding DIO requests to finish
2080 * @inode: inode to wait for
2081 *
2082 * Waits for all pending direct I/O requests to finish so that we can
2083 * proceed with a truncate or equivalent operation.
2084 *
2085 * Must be called under a lock that serializes taking new references
2086 * to i_dio_count, usually by inode->i_mutex.
2087 */
2088void inode_dio_wait(struct inode *inode)
2089{
2090        if (atomic_read(&inode->i_dio_count))
2091                __inode_dio_wait(inode);
2092}
2093EXPORT_SYMBOL(inode_dio_wait);
2094
2095/*
2096 * inode_set_flags - atomically set some inode flags
2097 *
2098 * Note: the caller should be holding i_mutex, or else be sure that
2099 * they have exclusive access to the inode structure (i.e., while the
2100 * inode is being instantiated).  The reason for the cmpxchg() loop
2101 * --- which wouldn't be necessary if all code paths which modify
2102 * i_flags actually followed this rule, is that there is at least one
2103 * code path which doesn't today so we use cmpxchg() out of an abundance
2104 * of caution.
2105 *
2106 * In the long run, i_mutex is overkill, and we should probably look
2107 * at using the i_lock spinlock to protect i_flags, and then make sure
2108 * it is so documented in include/linux/fs.h and that all code follows
2109 * the locking convention!!
2110 */
2111void inode_set_flags(struct inode *inode, unsigned int flags,
2112                     unsigned int mask)
2113{
2114        WARN_ON_ONCE(flags & ~mask);
2115        set_mask_bits(&inode->i_flags, mask, flags);
2116}
2117EXPORT_SYMBOL(inode_set_flags);
2118
2119void inode_nohighmem(struct inode *inode)
2120{
2121        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2122}
2123EXPORT_SYMBOL(inode_nohighmem);
2124
2125/**
2126 * timespec64_trunc - Truncate timespec64 to a granularity
2127 * @t: Timespec64
2128 * @gran: Granularity in ns.
2129 *
2130 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2131 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2132 */
2133struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2134{
2135        /* Avoid division in the common cases 1 ns and 1 s. */
2136        if (gran == 1) {
2137                /* nothing */
2138        } else if (gran == NSEC_PER_SEC) {
2139                t.tv_nsec = 0;
2140        } else if (gran > 1 && gran < NSEC_PER_SEC) {
2141                t.tv_nsec -= t.tv_nsec % gran;
2142        } else {
2143                WARN(1, "illegal file time granularity: %u", gran);
2144        }
2145        return t;
2146}
2147EXPORT_SYMBOL(timespec64_trunc);
2148
2149/**
2150 * current_time - Return FS time
2151 * @inode: inode.
2152 *
2153 * Return the current time truncated to the time granularity supported by
2154 * the fs.
2155 *
2156 * Note that inode and inode->sb cannot be NULL.
2157 * Otherwise, the function warns and returns time without truncation.
2158 */
2159struct timespec64 current_time(struct inode *inode)
2160{
2161        struct timespec64 now;
2162
2163        ktime_get_coarse_real_ts64(&now);
2164
2165        if (unlikely(!inode->i_sb)) {
2166                WARN(1, "current_time() called with uninitialized super_block in the inode");
2167                return now;
2168        }
2169
2170        return timespec64_trunc(now, inode->i_sb->s_time_gran);
2171}
2172EXPORT_SYMBOL(current_time);
2173