linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20
  21#include <linux/uaccess.h>
  22
  23#include "internal.h"
  24
  25int simple_getattr(const struct path *path, struct kstat *stat,
  26                   u32 request_mask, unsigned int query_flags)
  27{
  28        struct inode *inode = d_inode(path->dentry);
  29        generic_fillattr(inode, stat);
  30        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  31        return 0;
  32}
  33EXPORT_SYMBOL(simple_getattr);
  34
  35int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  36{
  37        buf->f_type = dentry->d_sb->s_magic;
  38        buf->f_bsize = PAGE_SIZE;
  39        buf->f_namelen = NAME_MAX;
  40        return 0;
  41}
  42EXPORT_SYMBOL(simple_statfs);
  43
  44/*
  45 * Retaining negative dentries for an in-memory filesystem just wastes
  46 * memory and lookup time: arrange for them to be deleted immediately.
  47 */
  48int always_delete_dentry(const struct dentry *dentry)
  49{
  50        return 1;
  51}
  52EXPORT_SYMBOL(always_delete_dentry);
  53
  54const struct dentry_operations simple_dentry_operations = {
  55        .d_delete = always_delete_dentry,
  56};
  57EXPORT_SYMBOL(simple_dentry_operations);
  58
  59/*
  60 * Lookup the data. This is trivial - if the dentry didn't already
  61 * exist, we know it is negative.  Set d_op to delete negative dentries.
  62 */
  63struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  64{
  65        if (dentry->d_name.len > NAME_MAX)
  66                return ERR_PTR(-ENAMETOOLONG);
  67        if (!dentry->d_sb->s_d_op)
  68                d_set_d_op(dentry, &simple_dentry_operations);
  69        d_add(dentry, NULL);
  70        return NULL;
  71}
  72EXPORT_SYMBOL(simple_lookup);
  73
  74int dcache_dir_open(struct inode *inode, struct file *file)
  75{
  76        file->private_data = d_alloc_cursor(file->f_path.dentry);
  77
  78        return file->private_data ? 0 : -ENOMEM;
  79}
  80EXPORT_SYMBOL(dcache_dir_open);
  81
  82int dcache_dir_close(struct inode *inode, struct file *file)
  83{
  84        dput(file->private_data);
  85        return 0;
  86}
  87EXPORT_SYMBOL(dcache_dir_close);
  88
  89/* parent is locked at least shared */
  90static struct dentry *next_positive(struct dentry *parent,
  91                                    struct list_head *from,
  92                                    int count)
  93{
  94        unsigned *seq = &parent->d_inode->i_dir_seq, n;
  95        struct dentry *res;
  96        struct list_head *p;
  97        bool skipped;
  98        int i;
  99
 100retry:
 101        i = count;
 102        skipped = false;
 103        n = smp_load_acquire(seq) & ~1;
 104        res = NULL;
 105        rcu_read_lock();
 106        for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 107                struct dentry *d = list_entry(p, struct dentry, d_child);
 108                if (!simple_positive(d)) {
 109                        skipped = true;
 110                } else if (!--i) {
 111                        res = d;
 112                        break;
 113                }
 114        }
 115        rcu_read_unlock();
 116        if (skipped) {
 117                smp_rmb();
 118                if (unlikely(*seq != n))
 119                        goto retry;
 120        }
 121        return res;
 122}
 123
 124static void move_cursor(struct dentry *cursor, struct list_head *after)
 125{
 126        struct dentry *parent = cursor->d_parent;
 127        unsigned n, *seq = &parent->d_inode->i_dir_seq;
 128        spin_lock(&parent->d_lock);
 129        for (;;) {
 130                n = *seq;
 131                if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 132                        break;
 133                cpu_relax();
 134        }
 135        __list_del(cursor->d_child.prev, cursor->d_child.next);
 136        if (after)
 137                list_add(&cursor->d_child, after);
 138        else
 139                list_add_tail(&cursor->d_child, &parent->d_subdirs);
 140        smp_store_release(seq, n + 2);
 141        spin_unlock(&parent->d_lock);
 142}
 143
 144loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 145{
 146        struct dentry *dentry = file->f_path.dentry;
 147        switch (whence) {
 148                case 1:
 149                        offset += file->f_pos;
 150                        /* fall through */
 151                case 0:
 152                        if (offset >= 0)
 153                                break;
 154                        /* fall through */
 155                default:
 156                        return -EINVAL;
 157        }
 158        if (offset != file->f_pos) {
 159                file->f_pos = offset;
 160                if (file->f_pos >= 2) {
 161                        struct dentry *cursor = file->private_data;
 162                        struct dentry *to;
 163                        loff_t n = file->f_pos - 2;
 164
 165                        inode_lock_shared(dentry->d_inode);
 166                        to = next_positive(dentry, &dentry->d_subdirs, n);
 167                        move_cursor(cursor, to ? &to->d_child : NULL);
 168                        inode_unlock_shared(dentry->d_inode);
 169                }
 170        }
 171        return offset;
 172}
 173EXPORT_SYMBOL(dcache_dir_lseek);
 174
 175/* Relationship between i_mode and the DT_xxx types */
 176static inline unsigned char dt_type(struct inode *inode)
 177{
 178        return (inode->i_mode >> 12) & 15;
 179}
 180
 181/*
 182 * Directory is locked and all positive dentries in it are safe, since
 183 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 184 * both impossible due to the lock on directory.
 185 */
 186
 187int dcache_readdir(struct file *file, struct dir_context *ctx)
 188{
 189        struct dentry *dentry = file->f_path.dentry;
 190        struct dentry *cursor = file->private_data;
 191        struct list_head *p = &cursor->d_child;
 192        struct dentry *next;
 193        bool moved = false;
 194
 195        if (!dir_emit_dots(file, ctx))
 196                return 0;
 197
 198        if (ctx->pos == 2)
 199                p = &dentry->d_subdirs;
 200        while ((next = next_positive(dentry, p, 1)) != NULL) {
 201                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 202                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 203                        break;
 204                moved = true;
 205                p = &next->d_child;
 206                ctx->pos++;
 207        }
 208        if (moved)
 209                move_cursor(cursor, p);
 210        return 0;
 211}
 212EXPORT_SYMBOL(dcache_readdir);
 213
 214ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 215{
 216        return -EISDIR;
 217}
 218EXPORT_SYMBOL(generic_read_dir);
 219
 220const struct file_operations simple_dir_operations = {
 221        .open           = dcache_dir_open,
 222        .release        = dcache_dir_close,
 223        .llseek         = dcache_dir_lseek,
 224        .read           = generic_read_dir,
 225        .iterate_shared = dcache_readdir,
 226        .fsync          = noop_fsync,
 227};
 228EXPORT_SYMBOL(simple_dir_operations);
 229
 230const struct inode_operations simple_dir_inode_operations = {
 231        .lookup         = simple_lookup,
 232};
 233EXPORT_SYMBOL(simple_dir_inode_operations);
 234
 235static const struct super_operations simple_super_operations = {
 236        .statfs         = simple_statfs,
 237};
 238
 239/*
 240 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 241 * will never be mountable)
 242 */
 243struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 244        const struct super_operations *ops, const struct xattr_handler **xattr,
 245        const struct dentry_operations *dops, unsigned long magic)
 246{
 247        struct super_block *s;
 248        struct dentry *dentry;
 249        struct inode *root;
 250        struct qstr d_name = QSTR_INIT(name, strlen(name));
 251
 252        s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
 253                        &init_user_ns, NULL);
 254        if (IS_ERR(s))
 255                return ERR_CAST(s);
 256
 257        s->s_maxbytes = MAX_LFS_FILESIZE;
 258        s->s_blocksize = PAGE_SIZE;
 259        s->s_blocksize_bits = PAGE_SHIFT;
 260        s->s_magic = magic;
 261        s->s_op = ops ? ops : &simple_super_operations;
 262        s->s_xattr = xattr;
 263        s->s_time_gran = 1;
 264        root = new_inode(s);
 265        if (!root)
 266                goto Enomem;
 267        /*
 268         * since this is the first inode, make it number 1. New inodes created
 269         * after this must take care not to collide with it (by passing
 270         * max_reserved of 1 to iunique).
 271         */
 272        root->i_ino = 1;
 273        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 274        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 275        dentry = __d_alloc(s, &d_name);
 276        if (!dentry) {
 277                iput(root);
 278                goto Enomem;
 279        }
 280        d_instantiate(dentry, root);
 281        s->s_root = dentry;
 282        s->s_d_op = dops;
 283        s->s_flags |= SB_ACTIVE;
 284        return dget(s->s_root);
 285
 286Enomem:
 287        deactivate_locked_super(s);
 288        return ERR_PTR(-ENOMEM);
 289}
 290EXPORT_SYMBOL(mount_pseudo_xattr);
 291
 292int simple_open(struct inode *inode, struct file *file)
 293{
 294        if (inode->i_private)
 295                file->private_data = inode->i_private;
 296        return 0;
 297}
 298EXPORT_SYMBOL(simple_open);
 299
 300int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 301{
 302        struct inode *inode = d_inode(old_dentry);
 303
 304        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 305        inc_nlink(inode);
 306        ihold(inode);
 307        dget(dentry);
 308        d_instantiate(dentry, inode);
 309        return 0;
 310}
 311EXPORT_SYMBOL(simple_link);
 312
 313int simple_empty(struct dentry *dentry)
 314{
 315        struct dentry *child;
 316        int ret = 0;
 317
 318        spin_lock(&dentry->d_lock);
 319        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 320                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 321                if (simple_positive(child)) {
 322                        spin_unlock(&child->d_lock);
 323                        goto out;
 324                }
 325                spin_unlock(&child->d_lock);
 326        }
 327        ret = 1;
 328out:
 329        spin_unlock(&dentry->d_lock);
 330        return ret;
 331}
 332EXPORT_SYMBOL(simple_empty);
 333
 334int simple_unlink(struct inode *dir, struct dentry *dentry)
 335{
 336        struct inode *inode = d_inode(dentry);
 337
 338        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 339        drop_nlink(inode);
 340        dput(dentry);
 341        return 0;
 342}
 343EXPORT_SYMBOL(simple_unlink);
 344
 345int simple_rmdir(struct inode *dir, struct dentry *dentry)
 346{
 347        if (!simple_empty(dentry))
 348                return -ENOTEMPTY;
 349
 350        drop_nlink(d_inode(dentry));
 351        simple_unlink(dir, dentry);
 352        drop_nlink(dir);
 353        return 0;
 354}
 355EXPORT_SYMBOL(simple_rmdir);
 356
 357int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 358                  struct inode *new_dir, struct dentry *new_dentry,
 359                  unsigned int flags)
 360{
 361        struct inode *inode = d_inode(old_dentry);
 362        int they_are_dirs = d_is_dir(old_dentry);
 363
 364        if (flags & ~RENAME_NOREPLACE)
 365                return -EINVAL;
 366
 367        if (!simple_empty(new_dentry))
 368                return -ENOTEMPTY;
 369
 370        if (d_really_is_positive(new_dentry)) {
 371                simple_unlink(new_dir, new_dentry);
 372                if (they_are_dirs) {
 373                        drop_nlink(d_inode(new_dentry));
 374                        drop_nlink(old_dir);
 375                }
 376        } else if (they_are_dirs) {
 377                drop_nlink(old_dir);
 378                inc_nlink(new_dir);
 379        }
 380
 381        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 382                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 383
 384        return 0;
 385}
 386EXPORT_SYMBOL(simple_rename);
 387
 388/**
 389 * simple_setattr - setattr for simple filesystem
 390 * @dentry: dentry
 391 * @iattr: iattr structure
 392 *
 393 * Returns 0 on success, -error on failure.
 394 *
 395 * simple_setattr is a simple ->setattr implementation without a proper
 396 * implementation of size changes.
 397 *
 398 * It can either be used for in-memory filesystems or special files
 399 * on simple regular filesystems.  Anything that needs to change on-disk
 400 * or wire state on size changes needs its own setattr method.
 401 */
 402int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 403{
 404        struct inode *inode = d_inode(dentry);
 405        int error;
 406
 407        error = setattr_prepare(dentry, iattr);
 408        if (error)
 409                return error;
 410
 411        if (iattr->ia_valid & ATTR_SIZE)
 412                truncate_setsize(inode, iattr->ia_size);
 413        setattr_copy(inode, iattr);
 414        mark_inode_dirty(inode);
 415        return 0;
 416}
 417EXPORT_SYMBOL(simple_setattr);
 418
 419int simple_readpage(struct file *file, struct page *page)
 420{
 421        clear_highpage(page);
 422        flush_dcache_page(page);
 423        SetPageUptodate(page);
 424        unlock_page(page);
 425        return 0;
 426}
 427EXPORT_SYMBOL(simple_readpage);
 428
 429int simple_write_begin(struct file *file, struct address_space *mapping,
 430                        loff_t pos, unsigned len, unsigned flags,
 431                        struct page **pagep, void **fsdata)
 432{
 433        struct page *page;
 434        pgoff_t index;
 435
 436        index = pos >> PAGE_SHIFT;
 437
 438        page = grab_cache_page_write_begin(mapping, index, flags);
 439        if (!page)
 440                return -ENOMEM;
 441
 442        *pagep = page;
 443
 444        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 445                unsigned from = pos & (PAGE_SIZE - 1);
 446
 447                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 448        }
 449        return 0;
 450}
 451EXPORT_SYMBOL(simple_write_begin);
 452
 453/**
 454 * simple_write_end - .write_end helper for non-block-device FSes
 455 * @available: See .write_end of address_space_operations
 456 * @file:               "
 457 * @mapping:            "
 458 * @pos:                "
 459 * @len:                "
 460 * @copied:             "
 461 * @page:               "
 462 * @fsdata:             "
 463 *
 464 * simple_write_end does the minimum needed for updating a page after writing is
 465 * done. It has the same API signature as the .write_end of
 466 * address_space_operations vector. So it can just be set onto .write_end for
 467 * FSes that don't need any other processing. i_mutex is assumed to be held.
 468 * Block based filesystems should use generic_write_end().
 469 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 470 * is not called, so a filesystem that actually does store data in .write_inode
 471 * should extend on what's done here with a call to mark_inode_dirty() in the
 472 * case that i_size has changed.
 473 *
 474 * Use *ONLY* with simple_readpage()
 475 */
 476int simple_write_end(struct file *file, struct address_space *mapping,
 477                        loff_t pos, unsigned len, unsigned copied,
 478                        struct page *page, void *fsdata)
 479{
 480        struct inode *inode = page->mapping->host;
 481        loff_t last_pos = pos + copied;
 482
 483        /* zero the stale part of the page if we did a short copy */
 484        if (!PageUptodate(page)) {
 485                if (copied < len) {
 486                        unsigned from = pos & (PAGE_SIZE - 1);
 487
 488                        zero_user(page, from + copied, len - copied);
 489                }
 490                SetPageUptodate(page);
 491        }
 492        /*
 493         * No need to use i_size_read() here, the i_size
 494         * cannot change under us because we hold the i_mutex.
 495         */
 496        if (last_pos > inode->i_size)
 497                i_size_write(inode, last_pos);
 498
 499        set_page_dirty(page);
 500        unlock_page(page);
 501        put_page(page);
 502
 503        return copied;
 504}
 505EXPORT_SYMBOL(simple_write_end);
 506
 507/*
 508 * the inodes created here are not hashed. If you use iunique to generate
 509 * unique inode values later for this filesystem, then you must take care
 510 * to pass it an appropriate max_reserved value to avoid collisions.
 511 */
 512int simple_fill_super(struct super_block *s, unsigned long magic,
 513                      const struct tree_descr *files)
 514{
 515        struct inode *inode;
 516        struct dentry *root;
 517        struct dentry *dentry;
 518        int i;
 519
 520        s->s_blocksize = PAGE_SIZE;
 521        s->s_blocksize_bits = PAGE_SHIFT;
 522        s->s_magic = magic;
 523        s->s_op = &simple_super_operations;
 524        s->s_time_gran = 1;
 525
 526        inode = new_inode(s);
 527        if (!inode)
 528                return -ENOMEM;
 529        /*
 530         * because the root inode is 1, the files array must not contain an
 531         * entry at index 1
 532         */
 533        inode->i_ino = 1;
 534        inode->i_mode = S_IFDIR | 0755;
 535        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 536        inode->i_op = &simple_dir_inode_operations;
 537        inode->i_fop = &simple_dir_operations;
 538        set_nlink(inode, 2);
 539        root = d_make_root(inode);
 540        if (!root)
 541                return -ENOMEM;
 542        for (i = 0; !files->name || files->name[0]; i++, files++) {
 543                if (!files->name)
 544                        continue;
 545
 546                /* warn if it tries to conflict with the root inode */
 547                if (unlikely(i == 1))
 548                        printk(KERN_WARNING "%s: %s passed in a files array"
 549                                "with an index of 1!\n", __func__,
 550                                s->s_type->name);
 551
 552                dentry = d_alloc_name(root, files->name);
 553                if (!dentry)
 554                        goto out;
 555                inode = new_inode(s);
 556                if (!inode) {
 557                        dput(dentry);
 558                        goto out;
 559                }
 560                inode->i_mode = S_IFREG | files->mode;
 561                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 562                inode->i_fop = files->ops;
 563                inode->i_ino = i;
 564                d_add(dentry, inode);
 565        }
 566        s->s_root = root;
 567        return 0;
 568out:
 569        d_genocide(root);
 570        shrink_dcache_parent(root);
 571        dput(root);
 572        return -ENOMEM;
 573}
 574EXPORT_SYMBOL(simple_fill_super);
 575
 576static DEFINE_SPINLOCK(pin_fs_lock);
 577
 578int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 579{
 580        struct vfsmount *mnt = NULL;
 581        spin_lock(&pin_fs_lock);
 582        if (unlikely(!*mount)) {
 583                spin_unlock(&pin_fs_lock);
 584                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 585                if (IS_ERR(mnt))
 586                        return PTR_ERR(mnt);
 587                spin_lock(&pin_fs_lock);
 588                if (!*mount)
 589                        *mount = mnt;
 590        }
 591        mntget(*mount);
 592        ++*count;
 593        spin_unlock(&pin_fs_lock);
 594        mntput(mnt);
 595        return 0;
 596}
 597EXPORT_SYMBOL(simple_pin_fs);
 598
 599void simple_release_fs(struct vfsmount **mount, int *count)
 600{
 601        struct vfsmount *mnt;
 602        spin_lock(&pin_fs_lock);
 603        mnt = *mount;
 604        if (!--*count)
 605                *mount = NULL;
 606        spin_unlock(&pin_fs_lock);
 607        mntput(mnt);
 608}
 609EXPORT_SYMBOL(simple_release_fs);
 610
 611/**
 612 * simple_read_from_buffer - copy data from the buffer to user space
 613 * @to: the user space buffer to read to
 614 * @count: the maximum number of bytes to read
 615 * @ppos: the current position in the buffer
 616 * @from: the buffer to read from
 617 * @available: the size of the buffer
 618 *
 619 * The simple_read_from_buffer() function reads up to @count bytes from the
 620 * buffer @from at offset @ppos into the user space address starting at @to.
 621 *
 622 * On success, the number of bytes read is returned and the offset @ppos is
 623 * advanced by this number, or negative value is returned on error.
 624 **/
 625ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 626                                const void *from, size_t available)
 627{
 628        loff_t pos = *ppos;
 629        size_t ret;
 630
 631        if (pos < 0)
 632                return -EINVAL;
 633        if (pos >= available || !count)
 634                return 0;
 635        if (count > available - pos)
 636                count = available - pos;
 637        ret = copy_to_user(to, from + pos, count);
 638        if (ret == count)
 639                return -EFAULT;
 640        count -= ret;
 641        *ppos = pos + count;
 642        return count;
 643}
 644EXPORT_SYMBOL(simple_read_from_buffer);
 645
 646/**
 647 * simple_write_to_buffer - copy data from user space to the buffer
 648 * @to: the buffer to write to
 649 * @available: the size of the buffer
 650 * @ppos: the current position in the buffer
 651 * @from: the user space buffer to read from
 652 * @count: the maximum number of bytes to read
 653 *
 654 * The simple_write_to_buffer() function reads up to @count bytes from the user
 655 * space address starting at @from into the buffer @to at offset @ppos.
 656 *
 657 * On success, the number of bytes written is returned and the offset @ppos is
 658 * advanced by this number, or negative value is returned on error.
 659 **/
 660ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 661                const void __user *from, size_t count)
 662{
 663        loff_t pos = *ppos;
 664        size_t res;
 665
 666        if (pos < 0)
 667                return -EINVAL;
 668        if (pos >= available || !count)
 669                return 0;
 670        if (count > available - pos)
 671                count = available - pos;
 672        res = copy_from_user(to + pos, from, count);
 673        if (res == count)
 674                return -EFAULT;
 675        count -= res;
 676        *ppos = pos + count;
 677        return count;
 678}
 679EXPORT_SYMBOL(simple_write_to_buffer);
 680
 681/**
 682 * memory_read_from_buffer - copy data from the buffer
 683 * @to: the kernel space buffer to read to
 684 * @count: the maximum number of bytes to read
 685 * @ppos: the current position in the buffer
 686 * @from: the buffer to read from
 687 * @available: the size of the buffer
 688 *
 689 * The memory_read_from_buffer() function reads up to @count bytes from the
 690 * buffer @from at offset @ppos into the kernel space address starting at @to.
 691 *
 692 * On success, the number of bytes read is returned and the offset @ppos is
 693 * advanced by this number, or negative value is returned on error.
 694 **/
 695ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 696                                const void *from, size_t available)
 697{
 698        loff_t pos = *ppos;
 699
 700        if (pos < 0)
 701                return -EINVAL;
 702        if (pos >= available)
 703                return 0;
 704        if (count > available - pos)
 705                count = available - pos;
 706        memcpy(to, from + pos, count);
 707        *ppos = pos + count;
 708
 709        return count;
 710}
 711EXPORT_SYMBOL(memory_read_from_buffer);
 712
 713/*
 714 * Transaction based IO.
 715 * The file expects a single write which triggers the transaction, and then
 716 * possibly a read which collects the result - which is stored in a
 717 * file-local buffer.
 718 */
 719
 720void simple_transaction_set(struct file *file, size_t n)
 721{
 722        struct simple_transaction_argresp *ar = file->private_data;
 723
 724        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 725
 726        /*
 727         * The barrier ensures that ar->size will really remain zero until
 728         * ar->data is ready for reading.
 729         */
 730        smp_mb();
 731        ar->size = n;
 732}
 733EXPORT_SYMBOL(simple_transaction_set);
 734
 735char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 736{
 737        struct simple_transaction_argresp *ar;
 738        static DEFINE_SPINLOCK(simple_transaction_lock);
 739
 740        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 741                return ERR_PTR(-EFBIG);
 742
 743        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 744        if (!ar)
 745                return ERR_PTR(-ENOMEM);
 746
 747        spin_lock(&simple_transaction_lock);
 748
 749        /* only one write allowed per open */
 750        if (file->private_data) {
 751                spin_unlock(&simple_transaction_lock);
 752                free_page((unsigned long)ar);
 753                return ERR_PTR(-EBUSY);
 754        }
 755
 756        file->private_data = ar;
 757
 758        spin_unlock(&simple_transaction_lock);
 759
 760        if (copy_from_user(ar->data, buf, size))
 761                return ERR_PTR(-EFAULT);
 762
 763        return ar->data;
 764}
 765EXPORT_SYMBOL(simple_transaction_get);
 766
 767ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 768{
 769        struct simple_transaction_argresp *ar = file->private_data;
 770
 771        if (!ar)
 772                return 0;
 773        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 774}
 775EXPORT_SYMBOL(simple_transaction_read);
 776
 777int simple_transaction_release(struct inode *inode, struct file *file)
 778{
 779        free_page((unsigned long)file->private_data);
 780        return 0;
 781}
 782EXPORT_SYMBOL(simple_transaction_release);
 783
 784/* Simple attribute files */
 785
 786struct simple_attr {
 787        int (*get)(void *, u64 *);
 788        int (*set)(void *, u64);
 789        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 790        char set_buf[24];
 791        void *data;
 792        const char *fmt;        /* format for read operation */
 793        struct mutex mutex;     /* protects access to these buffers */
 794};
 795
 796/* simple_attr_open is called by an actual attribute open file operation
 797 * to set the attribute specific access operations. */
 798int simple_attr_open(struct inode *inode, struct file *file,
 799                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 800                     const char *fmt)
 801{
 802        struct simple_attr *attr;
 803
 804        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 805        if (!attr)
 806                return -ENOMEM;
 807
 808        attr->get = get;
 809        attr->set = set;
 810        attr->data = inode->i_private;
 811        attr->fmt = fmt;
 812        mutex_init(&attr->mutex);
 813
 814        file->private_data = attr;
 815
 816        return nonseekable_open(inode, file);
 817}
 818EXPORT_SYMBOL_GPL(simple_attr_open);
 819
 820int simple_attr_release(struct inode *inode, struct file *file)
 821{
 822        kfree(file->private_data);
 823        return 0;
 824}
 825EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 826
 827/* read from the buffer that is filled with the get function */
 828ssize_t simple_attr_read(struct file *file, char __user *buf,
 829                         size_t len, loff_t *ppos)
 830{
 831        struct simple_attr *attr;
 832        size_t size;
 833        ssize_t ret;
 834
 835        attr = file->private_data;
 836
 837        if (!attr->get)
 838                return -EACCES;
 839
 840        ret = mutex_lock_interruptible(&attr->mutex);
 841        if (ret)
 842                return ret;
 843
 844        if (*ppos) {            /* continued read */
 845                size = strlen(attr->get_buf);
 846        } else {                /* first read */
 847                u64 val;
 848                ret = attr->get(attr->data, &val);
 849                if (ret)
 850                        goto out;
 851
 852                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 853                                 attr->fmt, (unsigned long long)val);
 854        }
 855
 856        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 857out:
 858        mutex_unlock(&attr->mutex);
 859        return ret;
 860}
 861EXPORT_SYMBOL_GPL(simple_attr_read);
 862
 863/* interpret the buffer as a number to call the set function with */
 864ssize_t simple_attr_write(struct file *file, const char __user *buf,
 865                          size_t len, loff_t *ppos)
 866{
 867        struct simple_attr *attr;
 868        u64 val;
 869        size_t size;
 870        ssize_t ret;
 871
 872        attr = file->private_data;
 873        if (!attr->set)
 874                return -EACCES;
 875
 876        ret = mutex_lock_interruptible(&attr->mutex);
 877        if (ret)
 878                return ret;
 879
 880        ret = -EFAULT;
 881        size = min(sizeof(attr->set_buf) - 1, len);
 882        if (copy_from_user(attr->set_buf, buf, size))
 883                goto out;
 884
 885        attr->set_buf[size] = '\0';
 886        val = simple_strtoll(attr->set_buf, NULL, 0);
 887        ret = attr->set(attr->data, val);
 888        if (ret == 0)
 889                ret = len; /* on success, claim we got the whole input */
 890out:
 891        mutex_unlock(&attr->mutex);
 892        return ret;
 893}
 894EXPORT_SYMBOL_GPL(simple_attr_write);
 895
 896/**
 897 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 898 * @sb:         filesystem to do the file handle conversion on
 899 * @fid:        file handle to convert
 900 * @fh_len:     length of the file handle in bytes
 901 * @fh_type:    type of file handle
 902 * @get_inode:  filesystem callback to retrieve inode
 903 *
 904 * This function decodes @fid as long as it has one of the well-known
 905 * Linux filehandle types and calls @get_inode on it to retrieve the
 906 * inode for the object specified in the file handle.
 907 */
 908struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 909                int fh_len, int fh_type, struct inode *(*get_inode)
 910                        (struct super_block *sb, u64 ino, u32 gen))
 911{
 912        struct inode *inode = NULL;
 913
 914        if (fh_len < 2)
 915                return NULL;
 916
 917        switch (fh_type) {
 918        case FILEID_INO32_GEN:
 919        case FILEID_INO32_GEN_PARENT:
 920                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 921                break;
 922        }
 923
 924        return d_obtain_alias(inode);
 925}
 926EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 927
 928/**
 929 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 930 * @sb:         filesystem to do the file handle conversion on
 931 * @fid:        file handle to convert
 932 * @fh_len:     length of the file handle in bytes
 933 * @fh_type:    type of file handle
 934 * @get_inode:  filesystem callback to retrieve inode
 935 *
 936 * This function decodes @fid as long as it has one of the well-known
 937 * Linux filehandle types and calls @get_inode on it to retrieve the
 938 * inode for the _parent_ object specified in the file handle if it
 939 * is specified in the file handle, or NULL otherwise.
 940 */
 941struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 942                int fh_len, int fh_type, struct inode *(*get_inode)
 943                        (struct super_block *sb, u64 ino, u32 gen))
 944{
 945        struct inode *inode = NULL;
 946
 947        if (fh_len <= 2)
 948                return NULL;
 949
 950        switch (fh_type) {
 951        case FILEID_INO32_GEN_PARENT:
 952                inode = get_inode(sb, fid->i32.parent_ino,
 953                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 954                break;
 955        }
 956
 957        return d_obtain_alias(inode);
 958}
 959EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 960
 961/**
 962 * __generic_file_fsync - generic fsync implementation for simple filesystems
 963 *
 964 * @file:       file to synchronize
 965 * @start:      start offset in bytes
 966 * @end:        end offset in bytes (inclusive)
 967 * @datasync:   only synchronize essential metadata if true
 968 *
 969 * This is a generic implementation of the fsync method for simple
 970 * filesystems which track all non-inode metadata in the buffers list
 971 * hanging off the address_space structure.
 972 */
 973int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 974                                 int datasync)
 975{
 976        struct inode *inode = file->f_mapping->host;
 977        int err;
 978        int ret;
 979
 980        err = file_write_and_wait_range(file, start, end);
 981        if (err)
 982                return err;
 983
 984        inode_lock(inode);
 985        ret = sync_mapping_buffers(inode->i_mapping);
 986        if (!(inode->i_state & I_DIRTY_ALL))
 987                goto out;
 988        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 989                goto out;
 990
 991        err = sync_inode_metadata(inode, 1);
 992        if (ret == 0)
 993                ret = err;
 994
 995out:
 996        inode_unlock(inode);
 997        /* check and advance again to catch errors after syncing out buffers */
 998        err = file_check_and_advance_wb_err(file);
 999        if (ret == 0)
1000                ret = err;
1001        return ret;
1002}
1003EXPORT_SYMBOL(__generic_file_fsync);
1004
1005/**
1006 * generic_file_fsync - generic fsync implementation for simple filesystems
1007 *                      with flush
1008 * @file:       file to synchronize
1009 * @start:      start offset in bytes
1010 * @end:        end offset in bytes (inclusive)
1011 * @datasync:   only synchronize essential metadata if true
1012 *
1013 */
1014
1015int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1016                       int datasync)
1017{
1018        struct inode *inode = file->f_mapping->host;
1019        int err;
1020
1021        err = __generic_file_fsync(file, start, end, datasync);
1022        if (err)
1023                return err;
1024        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1025}
1026EXPORT_SYMBOL(generic_file_fsync);
1027
1028/**
1029 * generic_check_addressable - Check addressability of file system
1030 * @blocksize_bits:     log of file system block size
1031 * @num_blocks:         number of blocks in file system
1032 *
1033 * Determine whether a file system with @num_blocks blocks (and a
1034 * block size of 2**@blocksize_bits) is addressable by the sector_t
1035 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1036 */
1037int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1038{
1039        u64 last_fs_block = num_blocks - 1;
1040        u64 last_fs_page =
1041                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1042
1043        if (unlikely(num_blocks == 0))
1044                return 0;
1045
1046        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1047                return -EINVAL;
1048
1049        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1050            (last_fs_page > (pgoff_t)(~0ULL))) {
1051                return -EFBIG;
1052        }
1053        return 0;
1054}
1055EXPORT_SYMBOL(generic_check_addressable);
1056
1057/*
1058 * No-op implementation of ->fsync for in-memory filesystems.
1059 */
1060int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1061{
1062        return 0;
1063}
1064EXPORT_SYMBOL(noop_fsync);
1065
1066int noop_set_page_dirty(struct page *page)
1067{
1068        /*
1069         * Unlike __set_page_dirty_no_writeback that handles dirty page
1070         * tracking in the page object, dax does all dirty tracking in
1071         * the inode address_space in response to mkwrite faults. In the
1072         * dax case we only need to worry about potentially dirty CPU
1073         * caches, not dirty page cache pages to write back.
1074         *
1075         * This callback is defined to prevent fallback to
1076         * __set_page_dirty_buffers() in set_page_dirty().
1077         */
1078        return 0;
1079}
1080EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1081
1082void noop_invalidatepage(struct page *page, unsigned int offset,
1083                unsigned int length)
1084{
1085        /*
1086         * There is no page cache to invalidate in the dax case, however
1087         * we need this callback defined to prevent falling back to
1088         * block_invalidatepage() in do_invalidatepage().
1089         */
1090}
1091EXPORT_SYMBOL_GPL(noop_invalidatepage);
1092
1093ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1094{
1095        /*
1096         * iomap based filesystems support direct I/O without need for
1097         * this callback. However, it still needs to be set in
1098         * inode->a_ops so that open/fcntl know that direct I/O is
1099         * generally supported.
1100         */
1101        return -EINVAL;
1102}
1103EXPORT_SYMBOL_GPL(noop_direct_IO);
1104
1105/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1106void kfree_link(void *p)
1107{
1108        kfree(p);
1109}
1110EXPORT_SYMBOL(kfree_link);
1111
1112/*
1113 * nop .set_page_dirty method so that people can use .page_mkwrite on
1114 * anon inodes.
1115 */
1116static int anon_set_page_dirty(struct page *page)
1117{
1118        return 0;
1119};
1120
1121/*
1122 * A single inode exists for all anon_inode files. Contrary to pipes,
1123 * anon_inode inodes have no associated per-instance data, so we need
1124 * only allocate one of them.
1125 */
1126struct inode *alloc_anon_inode(struct super_block *s)
1127{
1128        static const struct address_space_operations anon_aops = {
1129                .set_page_dirty = anon_set_page_dirty,
1130        };
1131        struct inode *inode = new_inode_pseudo(s);
1132
1133        if (!inode)
1134                return ERR_PTR(-ENOMEM);
1135
1136        inode->i_ino = get_next_ino();
1137        inode->i_mapping->a_ops = &anon_aops;
1138
1139        /*
1140         * Mark the inode dirty from the very beginning,
1141         * that way it will never be moved to the dirty
1142         * list because mark_inode_dirty() will think
1143         * that it already _is_ on the dirty list.
1144         */
1145        inode->i_state = I_DIRTY;
1146        inode->i_mode = S_IRUSR | S_IWUSR;
1147        inode->i_uid = current_fsuid();
1148        inode->i_gid = current_fsgid();
1149        inode->i_flags |= S_PRIVATE;
1150        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1151        return inode;
1152}
1153EXPORT_SYMBOL(alloc_anon_inode);
1154
1155/**
1156 * simple_nosetlease - generic helper for prohibiting leases
1157 * @filp: file pointer
1158 * @arg: type of lease to obtain
1159 * @flp: new lease supplied for insertion
1160 * @priv: private data for lm_setup operation
1161 *
1162 * Generic helper for filesystems that do not wish to allow leases to be set.
1163 * All arguments are ignored and it just returns -EINVAL.
1164 */
1165int
1166simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1167                  void **priv)
1168{
1169        return -EINVAL;
1170}
1171EXPORT_SYMBOL(simple_nosetlease);
1172
1173/**
1174 * simple_get_link - generic helper to get the target of "fast" symlinks
1175 * @dentry: not used here
1176 * @inode: the symlink inode
1177 * @done: not used here
1178 *
1179 * Generic helper for filesystems to use for symlink inodes where a pointer to
1180 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1181 * since as an optimization the path lookup code uses any non-NULL ->i_link
1182 * directly, without calling ->get_link().  But ->get_link() still must be set,
1183 * to mark the inode_operations as being for a symlink.
1184 *
1185 * Return: the symlink target
1186 */
1187const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1188                            struct delayed_call *done)
1189{
1190        return inode->i_link;
1191}
1192EXPORT_SYMBOL(simple_get_link);
1193
1194const struct inode_operations simple_symlink_inode_operations = {
1195        .get_link = simple_get_link,
1196};
1197EXPORT_SYMBOL(simple_symlink_inode_operations);
1198
1199/*
1200 * Operations for a permanently empty directory.
1201 */
1202static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1203{
1204        return ERR_PTR(-ENOENT);
1205}
1206
1207static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1208                             u32 request_mask, unsigned int query_flags)
1209{
1210        struct inode *inode = d_inode(path->dentry);
1211        generic_fillattr(inode, stat);
1212        return 0;
1213}
1214
1215static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1216{
1217        return -EPERM;
1218}
1219
1220static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1221{
1222        return -EOPNOTSUPP;
1223}
1224
1225static const struct inode_operations empty_dir_inode_operations = {
1226        .lookup         = empty_dir_lookup,
1227        .permission     = generic_permission,
1228        .setattr        = empty_dir_setattr,
1229        .getattr        = empty_dir_getattr,
1230        .listxattr      = empty_dir_listxattr,
1231};
1232
1233static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1234{
1235        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1236        return generic_file_llseek_size(file, offset, whence, 2, 2);
1237}
1238
1239static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1240{
1241        dir_emit_dots(file, ctx);
1242        return 0;
1243}
1244
1245static const struct file_operations empty_dir_operations = {
1246        .llseek         = empty_dir_llseek,
1247        .read           = generic_read_dir,
1248        .iterate_shared = empty_dir_readdir,
1249        .fsync          = noop_fsync,
1250};
1251
1252
1253void make_empty_dir_inode(struct inode *inode)
1254{
1255        set_nlink(inode, 2);
1256        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1257        inode->i_uid = GLOBAL_ROOT_UID;
1258        inode->i_gid = GLOBAL_ROOT_GID;
1259        inode->i_rdev = 0;
1260        inode->i_size = 0;
1261        inode->i_blkbits = PAGE_SHIFT;
1262        inode->i_blocks = 0;
1263
1264        inode->i_op = &empty_dir_inode_operations;
1265        inode->i_opflags &= ~IOP_XATTR;
1266        inode->i_fop = &empty_dir_operations;
1267}
1268
1269bool is_empty_dir_inode(struct inode *inode)
1270{
1271        return (inode->i_fop == &empty_dir_operations) &&
1272                (inode->i_op == &empty_dir_inode_operations);
1273}
1274