linux/fs/namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32
  33#include "pnode.h"
  34#include "internal.h"
  35
  36/* Maximum number of mounts in a mount namespace */
  37unsigned int sysctl_mount_max __read_mostly = 100000;
  38
  39static unsigned int m_hash_mask __read_mostly;
  40static unsigned int m_hash_shift __read_mostly;
  41static unsigned int mp_hash_mask __read_mostly;
  42static unsigned int mp_hash_shift __read_mostly;
  43
  44static __initdata unsigned long mhash_entries;
  45static int __init set_mhash_entries(char *str)
  46{
  47        if (!str)
  48                return 0;
  49        mhash_entries = simple_strtoul(str, &str, 0);
  50        return 1;
  51}
  52__setup("mhash_entries=", set_mhash_entries);
  53
  54static __initdata unsigned long mphash_entries;
  55static int __init set_mphash_entries(char *str)
  56{
  57        if (!str)
  58                return 0;
  59        mphash_entries = simple_strtoul(str, &str, 0);
  60        return 1;
  61}
  62__setup("mphash_entries=", set_mphash_entries);
  63
  64static u64 event;
  65static DEFINE_IDA(mnt_id_ida);
  66static DEFINE_IDA(mnt_group_ida);
  67
  68static struct hlist_head *mount_hashtable __read_mostly;
  69static struct hlist_head *mountpoint_hashtable __read_mostly;
  70static struct kmem_cache *mnt_cache __read_mostly;
  71static DECLARE_RWSEM(namespace_sem);
  72
  73/* /sys/fs */
  74struct kobject *fs_kobj;
  75EXPORT_SYMBOL_GPL(fs_kobj);
  76
  77/*
  78 * vfsmount lock may be taken for read to prevent changes to the
  79 * vfsmount hash, ie. during mountpoint lookups or walking back
  80 * up the tree.
  81 *
  82 * It should be taken for write in all cases where the vfsmount
  83 * tree or hash is modified or when a vfsmount structure is modified.
  84 */
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  86
  87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  88{
  89        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  90        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  91        tmp = tmp + (tmp >> m_hash_shift);
  92        return &mount_hashtable[tmp & m_hash_mask];
  93}
  94
  95static inline struct hlist_head *mp_hash(struct dentry *dentry)
  96{
  97        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  98        tmp = tmp + (tmp >> mp_hash_shift);
  99        return &mountpoint_hashtable[tmp & mp_hash_mask];
 100}
 101
 102static int mnt_alloc_id(struct mount *mnt)
 103{
 104        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 105
 106        if (res < 0)
 107                return res;
 108        mnt->mnt_id = res;
 109        return 0;
 110}
 111
 112static void mnt_free_id(struct mount *mnt)
 113{
 114        ida_free(&mnt_id_ida, mnt->mnt_id);
 115}
 116
 117/*
 118 * Allocate a new peer group ID
 119 */
 120static int mnt_alloc_group_id(struct mount *mnt)
 121{
 122        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 123
 124        if (res < 0)
 125                return res;
 126        mnt->mnt_group_id = res;
 127        return 0;
 128}
 129
 130/*
 131 * Release a peer group ID
 132 */
 133void mnt_release_group_id(struct mount *mnt)
 134{
 135        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 136        mnt->mnt_group_id = 0;
 137}
 138
 139/*
 140 * vfsmount lock must be held for read
 141 */
 142static inline void mnt_add_count(struct mount *mnt, int n)
 143{
 144#ifdef CONFIG_SMP
 145        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 146#else
 147        preempt_disable();
 148        mnt->mnt_count += n;
 149        preempt_enable();
 150#endif
 151}
 152
 153/*
 154 * vfsmount lock must be held for write
 155 */
 156unsigned int mnt_get_count(struct mount *mnt)
 157{
 158#ifdef CONFIG_SMP
 159        unsigned int count = 0;
 160        int cpu;
 161
 162        for_each_possible_cpu(cpu) {
 163                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 164        }
 165
 166        return count;
 167#else
 168        return mnt->mnt_count;
 169#endif
 170}
 171
 172static void drop_mountpoint(struct fs_pin *p)
 173{
 174        struct mount *m = container_of(p, struct mount, mnt_umount);
 175        dput(m->mnt_ex_mountpoint);
 176        pin_remove(p);
 177        mntput(&m->mnt);
 178}
 179
 180static struct mount *alloc_vfsmnt(const char *name)
 181{
 182        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 183        if (mnt) {
 184                int err;
 185
 186                err = mnt_alloc_id(mnt);
 187                if (err)
 188                        goto out_free_cache;
 189
 190                if (name) {
 191                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 192                        if (!mnt->mnt_devname)
 193                                goto out_free_id;
 194                }
 195
 196#ifdef CONFIG_SMP
 197                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 198                if (!mnt->mnt_pcp)
 199                        goto out_free_devname;
 200
 201                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 202#else
 203                mnt->mnt_count = 1;
 204                mnt->mnt_writers = 0;
 205#endif
 206
 207                INIT_HLIST_NODE(&mnt->mnt_hash);
 208                INIT_LIST_HEAD(&mnt->mnt_child);
 209                INIT_LIST_HEAD(&mnt->mnt_mounts);
 210                INIT_LIST_HEAD(&mnt->mnt_list);
 211                INIT_LIST_HEAD(&mnt->mnt_expire);
 212                INIT_LIST_HEAD(&mnt->mnt_share);
 213                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 214                INIT_LIST_HEAD(&mnt->mnt_slave);
 215                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 216                INIT_LIST_HEAD(&mnt->mnt_umounting);
 217                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 218        }
 219        return mnt;
 220
 221#ifdef CONFIG_SMP
 222out_free_devname:
 223        kfree_const(mnt->mnt_devname);
 224#endif
 225out_free_id:
 226        mnt_free_id(mnt);
 227out_free_cache:
 228        kmem_cache_free(mnt_cache, mnt);
 229        return NULL;
 230}
 231
 232/*
 233 * Most r/o checks on a fs are for operations that take
 234 * discrete amounts of time, like a write() or unlink().
 235 * We must keep track of when those operations start
 236 * (for permission checks) and when they end, so that
 237 * we can determine when writes are able to occur to
 238 * a filesystem.
 239 */
 240/*
 241 * __mnt_is_readonly: check whether a mount is read-only
 242 * @mnt: the mount to check for its write status
 243 *
 244 * This shouldn't be used directly ouside of the VFS.
 245 * It does not guarantee that the filesystem will stay
 246 * r/w, just that it is right *now*.  This can not and
 247 * should not be used in place of IS_RDONLY(inode).
 248 * mnt_want/drop_write() will _keep_ the filesystem
 249 * r/w.
 250 */
 251bool __mnt_is_readonly(struct vfsmount *mnt)
 252{
 253        return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 254}
 255EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 256
 257static inline void mnt_inc_writers(struct mount *mnt)
 258{
 259#ifdef CONFIG_SMP
 260        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 261#else
 262        mnt->mnt_writers++;
 263#endif
 264}
 265
 266static inline void mnt_dec_writers(struct mount *mnt)
 267{
 268#ifdef CONFIG_SMP
 269        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 270#else
 271        mnt->mnt_writers--;
 272#endif
 273}
 274
 275static unsigned int mnt_get_writers(struct mount *mnt)
 276{
 277#ifdef CONFIG_SMP
 278        unsigned int count = 0;
 279        int cpu;
 280
 281        for_each_possible_cpu(cpu) {
 282                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 283        }
 284
 285        return count;
 286#else
 287        return mnt->mnt_writers;
 288#endif
 289}
 290
 291static int mnt_is_readonly(struct vfsmount *mnt)
 292{
 293        if (mnt->mnt_sb->s_readonly_remount)
 294                return 1;
 295        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 296        smp_rmb();
 297        return __mnt_is_readonly(mnt);
 298}
 299
 300/*
 301 * Most r/o & frozen checks on a fs are for operations that take discrete
 302 * amounts of time, like a write() or unlink().  We must keep track of when
 303 * those operations start (for permission checks) and when they end, so that we
 304 * can determine when writes are able to occur to a filesystem.
 305 */
 306/**
 307 * __mnt_want_write - get write access to a mount without freeze protection
 308 * @m: the mount on which to take a write
 309 *
 310 * This tells the low-level filesystem that a write is about to be performed to
 311 * it, and makes sure that writes are allowed (mnt it read-write) before
 312 * returning success. This operation does not protect against filesystem being
 313 * frozen. When the write operation is finished, __mnt_drop_write() must be
 314 * called. This is effectively a refcount.
 315 */
 316int __mnt_want_write(struct vfsmount *m)
 317{
 318        struct mount *mnt = real_mount(m);
 319        int ret = 0;
 320
 321        preempt_disable();
 322        mnt_inc_writers(mnt);
 323        /*
 324         * The store to mnt_inc_writers must be visible before we pass
 325         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 326         * incremented count after it has set MNT_WRITE_HOLD.
 327         */
 328        smp_mb();
 329        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 330                cpu_relax();
 331        /*
 332         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 333         * be set to match its requirements. So we must not load that until
 334         * MNT_WRITE_HOLD is cleared.
 335         */
 336        smp_rmb();
 337        if (mnt_is_readonly(m)) {
 338                mnt_dec_writers(mnt);
 339                ret = -EROFS;
 340        }
 341        preempt_enable();
 342
 343        return ret;
 344}
 345
 346/**
 347 * mnt_want_write - get write access to a mount
 348 * @m: the mount on which to take a write
 349 *
 350 * This tells the low-level filesystem that a write is about to be performed to
 351 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 352 * is not frozen) before returning success.  When the write operation is
 353 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 354 */
 355int mnt_want_write(struct vfsmount *m)
 356{
 357        int ret;
 358
 359        sb_start_write(m->mnt_sb);
 360        ret = __mnt_want_write(m);
 361        if (ret)
 362                sb_end_write(m->mnt_sb);
 363        return ret;
 364}
 365EXPORT_SYMBOL_GPL(mnt_want_write);
 366
 367/**
 368 * mnt_clone_write - get write access to a mount
 369 * @mnt: the mount on which to take a write
 370 *
 371 * This is effectively like mnt_want_write, except
 372 * it must only be used to take an extra write reference
 373 * on a mountpoint that we already know has a write reference
 374 * on it. This allows some optimisation.
 375 *
 376 * After finished, mnt_drop_write must be called as usual to
 377 * drop the reference.
 378 */
 379int mnt_clone_write(struct vfsmount *mnt)
 380{
 381        /* superblock may be r/o */
 382        if (__mnt_is_readonly(mnt))
 383                return -EROFS;
 384        preempt_disable();
 385        mnt_inc_writers(real_mount(mnt));
 386        preempt_enable();
 387        return 0;
 388}
 389EXPORT_SYMBOL_GPL(mnt_clone_write);
 390
 391/**
 392 * __mnt_want_write_file - get write access to a file's mount
 393 * @file: the file who's mount on which to take a write
 394 *
 395 * This is like __mnt_want_write, but it takes a file and can
 396 * do some optimisations if the file is open for write already
 397 */
 398int __mnt_want_write_file(struct file *file)
 399{
 400        if (!(file->f_mode & FMODE_WRITER))
 401                return __mnt_want_write(file->f_path.mnt);
 402        else
 403                return mnt_clone_write(file->f_path.mnt);
 404}
 405
 406/**
 407 * mnt_want_write_file - get write access to a file's mount
 408 * @file: the file who's mount on which to take a write
 409 *
 410 * This is like mnt_want_write, but it takes a file and can
 411 * do some optimisations if the file is open for write already
 412 */
 413int mnt_want_write_file(struct file *file)
 414{
 415        int ret;
 416
 417        sb_start_write(file_inode(file)->i_sb);
 418        ret = __mnt_want_write_file(file);
 419        if (ret)
 420                sb_end_write(file_inode(file)->i_sb);
 421        return ret;
 422}
 423EXPORT_SYMBOL_GPL(mnt_want_write_file);
 424
 425/**
 426 * __mnt_drop_write - give up write access to a mount
 427 * @mnt: the mount on which to give up write access
 428 *
 429 * Tells the low-level filesystem that we are done
 430 * performing writes to it.  Must be matched with
 431 * __mnt_want_write() call above.
 432 */
 433void __mnt_drop_write(struct vfsmount *mnt)
 434{
 435        preempt_disable();
 436        mnt_dec_writers(real_mount(mnt));
 437        preempt_enable();
 438}
 439
 440/**
 441 * mnt_drop_write - give up write access to a mount
 442 * @mnt: the mount on which to give up write access
 443 *
 444 * Tells the low-level filesystem that we are done performing writes to it and
 445 * also allows filesystem to be frozen again.  Must be matched with
 446 * mnt_want_write() call above.
 447 */
 448void mnt_drop_write(struct vfsmount *mnt)
 449{
 450        __mnt_drop_write(mnt);
 451        sb_end_write(mnt->mnt_sb);
 452}
 453EXPORT_SYMBOL_GPL(mnt_drop_write);
 454
 455void __mnt_drop_write_file(struct file *file)
 456{
 457        __mnt_drop_write(file->f_path.mnt);
 458}
 459
 460void mnt_drop_write_file(struct file *file)
 461{
 462        __mnt_drop_write_file(file);
 463        sb_end_write(file_inode(file)->i_sb);
 464}
 465EXPORT_SYMBOL(mnt_drop_write_file);
 466
 467static int mnt_make_readonly(struct mount *mnt)
 468{
 469        int ret = 0;
 470
 471        lock_mount_hash();
 472        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 473        /*
 474         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 475         * should be visible before we do.
 476         */
 477        smp_mb();
 478
 479        /*
 480         * With writers on hold, if this value is zero, then there are
 481         * definitely no active writers (although held writers may subsequently
 482         * increment the count, they'll have to wait, and decrement it after
 483         * seeing MNT_READONLY).
 484         *
 485         * It is OK to have counter incremented on one CPU and decremented on
 486         * another: the sum will add up correctly. The danger would be when we
 487         * sum up each counter, if we read a counter before it is incremented,
 488         * but then read another CPU's count which it has been subsequently
 489         * decremented from -- we would see more decrements than we should.
 490         * MNT_WRITE_HOLD protects against this scenario, because
 491         * mnt_want_write first increments count, then smp_mb, then spins on
 492         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 493         * we're counting up here.
 494         */
 495        if (mnt_get_writers(mnt) > 0)
 496                ret = -EBUSY;
 497        else
 498                mnt->mnt.mnt_flags |= MNT_READONLY;
 499        /*
 500         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 501         * that become unheld will see MNT_READONLY.
 502         */
 503        smp_wmb();
 504        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 505        unlock_mount_hash();
 506        return ret;
 507}
 508
 509static int __mnt_unmake_readonly(struct mount *mnt)
 510{
 511        lock_mount_hash();
 512        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 513        unlock_mount_hash();
 514        return 0;
 515}
 516
 517int sb_prepare_remount_readonly(struct super_block *sb)
 518{
 519        struct mount *mnt;
 520        int err = 0;
 521
 522        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 523        if (atomic_long_read(&sb->s_remove_count))
 524                return -EBUSY;
 525
 526        lock_mount_hash();
 527        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 528                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 529                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 530                        smp_mb();
 531                        if (mnt_get_writers(mnt) > 0) {
 532                                err = -EBUSY;
 533                                break;
 534                        }
 535                }
 536        }
 537        if (!err && atomic_long_read(&sb->s_remove_count))
 538                err = -EBUSY;
 539
 540        if (!err) {
 541                sb->s_readonly_remount = 1;
 542                smp_wmb();
 543        }
 544        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 545                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 546                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 547        }
 548        unlock_mount_hash();
 549
 550        return err;
 551}
 552
 553static void free_vfsmnt(struct mount *mnt)
 554{
 555        kfree_const(mnt->mnt_devname);
 556#ifdef CONFIG_SMP
 557        free_percpu(mnt->mnt_pcp);
 558#endif
 559        kmem_cache_free(mnt_cache, mnt);
 560}
 561
 562static void delayed_free_vfsmnt(struct rcu_head *head)
 563{
 564        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 565}
 566
 567/* call under rcu_read_lock */
 568int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 569{
 570        struct mount *mnt;
 571        if (read_seqretry(&mount_lock, seq))
 572                return 1;
 573        if (bastard == NULL)
 574                return 0;
 575        mnt = real_mount(bastard);
 576        mnt_add_count(mnt, 1);
 577        smp_mb();                       // see mntput_no_expire()
 578        if (likely(!read_seqretry(&mount_lock, seq)))
 579                return 0;
 580        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 581                mnt_add_count(mnt, -1);
 582                return 1;
 583        }
 584        lock_mount_hash();
 585        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 586                mnt_add_count(mnt, -1);
 587                unlock_mount_hash();
 588                return 1;
 589        }
 590        unlock_mount_hash();
 591        /* caller will mntput() */
 592        return -1;
 593}
 594
 595/* call under rcu_read_lock */
 596bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 597{
 598        int res = __legitimize_mnt(bastard, seq);
 599        if (likely(!res))
 600                return true;
 601        if (unlikely(res < 0)) {
 602                rcu_read_unlock();
 603                mntput(bastard);
 604                rcu_read_lock();
 605        }
 606        return false;
 607}
 608
 609/*
 610 * find the first mount at @dentry on vfsmount @mnt.
 611 * call under rcu_read_lock()
 612 */
 613struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 614{
 615        struct hlist_head *head = m_hash(mnt, dentry);
 616        struct mount *p;
 617
 618        hlist_for_each_entry_rcu(p, head, mnt_hash)
 619                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 620                        return p;
 621        return NULL;
 622}
 623
 624/*
 625 * lookup_mnt - Return the first child mount mounted at path
 626 *
 627 * "First" means first mounted chronologically.  If you create the
 628 * following mounts:
 629 *
 630 * mount /dev/sda1 /mnt
 631 * mount /dev/sda2 /mnt
 632 * mount /dev/sda3 /mnt
 633 *
 634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 635 * return successively the root dentry and vfsmount of /dev/sda1, then
 636 * /dev/sda2, then /dev/sda3, then NULL.
 637 *
 638 * lookup_mnt takes a reference to the found vfsmount.
 639 */
 640struct vfsmount *lookup_mnt(const struct path *path)
 641{
 642        struct mount *child_mnt;
 643        struct vfsmount *m;
 644        unsigned seq;
 645
 646        rcu_read_lock();
 647        do {
 648                seq = read_seqbegin(&mount_lock);
 649                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 650                m = child_mnt ? &child_mnt->mnt : NULL;
 651        } while (!legitimize_mnt(m, seq));
 652        rcu_read_unlock();
 653        return m;
 654}
 655
 656/*
 657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 658 *                         current mount namespace.
 659 *
 660 * The common case is dentries are not mountpoints at all and that
 661 * test is handled inline.  For the slow case when we are actually
 662 * dealing with a mountpoint of some kind, walk through all of the
 663 * mounts in the current mount namespace and test to see if the dentry
 664 * is a mountpoint.
 665 *
 666 * The mount_hashtable is not usable in the context because we
 667 * need to identify all mounts that may be in the current mount
 668 * namespace not just a mount that happens to have some specified
 669 * parent mount.
 670 */
 671bool __is_local_mountpoint(struct dentry *dentry)
 672{
 673        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 674        struct mount *mnt;
 675        bool is_covered = false;
 676
 677        if (!d_mountpoint(dentry))
 678                goto out;
 679
 680        down_read(&namespace_sem);
 681        list_for_each_entry(mnt, &ns->list, mnt_list) {
 682                is_covered = (mnt->mnt_mountpoint == dentry);
 683                if (is_covered)
 684                        break;
 685        }
 686        up_read(&namespace_sem);
 687out:
 688        return is_covered;
 689}
 690
 691static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 692{
 693        struct hlist_head *chain = mp_hash(dentry);
 694        struct mountpoint *mp;
 695
 696        hlist_for_each_entry(mp, chain, m_hash) {
 697                if (mp->m_dentry == dentry) {
 698                        mp->m_count++;
 699                        return mp;
 700                }
 701        }
 702        return NULL;
 703}
 704
 705static struct mountpoint *get_mountpoint(struct dentry *dentry)
 706{
 707        struct mountpoint *mp, *new = NULL;
 708        int ret;
 709
 710        if (d_mountpoint(dentry)) {
 711                /* might be worth a WARN_ON() */
 712                if (d_unlinked(dentry))
 713                        return ERR_PTR(-ENOENT);
 714mountpoint:
 715                read_seqlock_excl(&mount_lock);
 716                mp = lookup_mountpoint(dentry);
 717                read_sequnlock_excl(&mount_lock);
 718                if (mp)
 719                        goto done;
 720        }
 721
 722        if (!new)
 723                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 724        if (!new)
 725                return ERR_PTR(-ENOMEM);
 726
 727
 728        /* Exactly one processes may set d_mounted */
 729        ret = d_set_mounted(dentry);
 730
 731        /* Someone else set d_mounted? */
 732        if (ret == -EBUSY)
 733                goto mountpoint;
 734
 735        /* The dentry is not available as a mountpoint? */
 736        mp = ERR_PTR(ret);
 737        if (ret)
 738                goto done;
 739
 740        /* Add the new mountpoint to the hash table */
 741        read_seqlock_excl(&mount_lock);
 742        new->m_dentry = dentry;
 743        new->m_count = 1;
 744        hlist_add_head(&new->m_hash, mp_hash(dentry));
 745        INIT_HLIST_HEAD(&new->m_list);
 746        read_sequnlock_excl(&mount_lock);
 747
 748        mp = new;
 749        new = NULL;
 750done:
 751        kfree(new);
 752        return mp;
 753}
 754
 755static void put_mountpoint(struct mountpoint *mp)
 756{
 757        if (!--mp->m_count) {
 758                struct dentry *dentry = mp->m_dentry;
 759                BUG_ON(!hlist_empty(&mp->m_list));
 760                spin_lock(&dentry->d_lock);
 761                dentry->d_flags &= ~DCACHE_MOUNTED;
 762                spin_unlock(&dentry->d_lock);
 763                hlist_del(&mp->m_hash);
 764                kfree(mp);
 765        }
 766}
 767
 768static inline int check_mnt(struct mount *mnt)
 769{
 770        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 771}
 772
 773/*
 774 * vfsmount lock must be held for write
 775 */
 776static void touch_mnt_namespace(struct mnt_namespace *ns)
 777{
 778        if (ns) {
 779                ns->event = ++event;
 780                wake_up_interruptible(&ns->poll);
 781        }
 782}
 783
 784/*
 785 * vfsmount lock must be held for write
 786 */
 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
 788{
 789        if (ns && ns->event != event) {
 790                ns->event = event;
 791                wake_up_interruptible(&ns->poll);
 792        }
 793}
 794
 795/*
 796 * vfsmount lock must be held for write
 797 */
 798static void unhash_mnt(struct mount *mnt)
 799{
 800        mnt->mnt_parent = mnt;
 801        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 802        list_del_init(&mnt->mnt_child);
 803        hlist_del_init_rcu(&mnt->mnt_hash);
 804        hlist_del_init(&mnt->mnt_mp_list);
 805        put_mountpoint(mnt->mnt_mp);
 806        mnt->mnt_mp = NULL;
 807}
 808
 809/*
 810 * vfsmount lock must be held for write
 811 */
 812static void detach_mnt(struct mount *mnt, struct path *old_path)
 813{
 814        old_path->dentry = mnt->mnt_mountpoint;
 815        old_path->mnt = &mnt->mnt_parent->mnt;
 816        unhash_mnt(mnt);
 817}
 818
 819/*
 820 * vfsmount lock must be held for write
 821 */
 822static void umount_mnt(struct mount *mnt)
 823{
 824        /* old mountpoint will be dropped when we can do that */
 825        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 826        unhash_mnt(mnt);
 827}
 828
 829/*
 830 * vfsmount lock must be held for write
 831 */
 832void mnt_set_mountpoint(struct mount *mnt,
 833                        struct mountpoint *mp,
 834                        struct mount *child_mnt)
 835{
 836        mp->m_count++;
 837        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 838        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 839        child_mnt->mnt_parent = mnt;
 840        child_mnt->mnt_mp = mp;
 841        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 842}
 843
 844static void __attach_mnt(struct mount *mnt, struct mount *parent)
 845{
 846        hlist_add_head_rcu(&mnt->mnt_hash,
 847                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 848        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 849}
 850
 851/*
 852 * vfsmount lock must be held for write
 853 */
 854static void attach_mnt(struct mount *mnt,
 855                        struct mount *parent,
 856                        struct mountpoint *mp)
 857{
 858        mnt_set_mountpoint(parent, mp, mnt);
 859        __attach_mnt(mnt, parent);
 860}
 861
 862void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 863{
 864        struct mountpoint *old_mp = mnt->mnt_mp;
 865        struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 866        struct mount *old_parent = mnt->mnt_parent;
 867
 868        list_del_init(&mnt->mnt_child);
 869        hlist_del_init(&mnt->mnt_mp_list);
 870        hlist_del_init_rcu(&mnt->mnt_hash);
 871
 872        attach_mnt(mnt, parent, mp);
 873
 874        put_mountpoint(old_mp);
 875
 876        /*
 877         * Safely avoid even the suggestion this code might sleep or
 878         * lock the mount hash by taking advantage of the knowledge that
 879         * mnt_change_mountpoint will not release the final reference
 880         * to a mountpoint.
 881         *
 882         * During mounting, the mount passed in as the parent mount will
 883         * continue to use the old mountpoint and during unmounting, the
 884         * old mountpoint will continue to exist until namespace_unlock,
 885         * which happens well after mnt_change_mountpoint.
 886         */
 887        spin_lock(&old_mountpoint->d_lock);
 888        old_mountpoint->d_lockref.count--;
 889        spin_unlock(&old_mountpoint->d_lock);
 890
 891        mnt_add_count(old_parent, -1);
 892}
 893
 894/*
 895 * vfsmount lock must be held for write
 896 */
 897static void commit_tree(struct mount *mnt)
 898{
 899        struct mount *parent = mnt->mnt_parent;
 900        struct mount *m;
 901        LIST_HEAD(head);
 902        struct mnt_namespace *n = parent->mnt_ns;
 903
 904        BUG_ON(parent == mnt);
 905
 906        list_add_tail(&head, &mnt->mnt_list);
 907        list_for_each_entry(m, &head, mnt_list)
 908                m->mnt_ns = n;
 909
 910        list_splice(&head, n->list.prev);
 911
 912        n->mounts += n->pending_mounts;
 913        n->pending_mounts = 0;
 914
 915        __attach_mnt(mnt, parent);
 916        touch_mnt_namespace(n);
 917}
 918
 919static struct mount *next_mnt(struct mount *p, struct mount *root)
 920{
 921        struct list_head *next = p->mnt_mounts.next;
 922        if (next == &p->mnt_mounts) {
 923                while (1) {
 924                        if (p == root)
 925                                return NULL;
 926                        next = p->mnt_child.next;
 927                        if (next != &p->mnt_parent->mnt_mounts)
 928                                break;
 929                        p = p->mnt_parent;
 930                }
 931        }
 932        return list_entry(next, struct mount, mnt_child);
 933}
 934
 935static struct mount *skip_mnt_tree(struct mount *p)
 936{
 937        struct list_head *prev = p->mnt_mounts.prev;
 938        while (prev != &p->mnt_mounts) {
 939                p = list_entry(prev, struct mount, mnt_child);
 940                prev = p->mnt_mounts.prev;
 941        }
 942        return p;
 943}
 944
 945/**
 946 * vfs_create_mount - Create a mount for a configured superblock
 947 * @fc: The configuration context with the superblock attached
 948 *
 949 * Create a mount to an already configured superblock.  If necessary, the
 950 * caller should invoke vfs_get_tree() before calling this.
 951 *
 952 * Note that this does not attach the mount to anything.
 953 */
 954struct vfsmount *vfs_create_mount(struct fs_context *fc)
 955{
 956        struct mount *mnt;
 957
 958        if (!fc->root)
 959                return ERR_PTR(-EINVAL);
 960
 961        mnt = alloc_vfsmnt(fc->source ?: "none");
 962        if (!mnt)
 963                return ERR_PTR(-ENOMEM);
 964
 965        if (fc->sb_flags & SB_KERNMOUNT)
 966                mnt->mnt.mnt_flags = MNT_INTERNAL;
 967
 968        atomic_inc(&fc->root->d_sb->s_active);
 969        mnt->mnt.mnt_sb         = fc->root->d_sb;
 970        mnt->mnt.mnt_root       = dget(fc->root);
 971        mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
 972        mnt->mnt_parent         = mnt;
 973
 974        lock_mount_hash();
 975        list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 976        unlock_mount_hash();
 977        return &mnt->mnt;
 978}
 979EXPORT_SYMBOL(vfs_create_mount);
 980
 981struct vfsmount *fc_mount(struct fs_context *fc)
 982{
 983        int err = vfs_get_tree(fc);
 984        if (!err) {
 985                up_write(&fc->root->d_sb->s_umount);
 986                return vfs_create_mount(fc);
 987        }
 988        return ERR_PTR(err);
 989}
 990EXPORT_SYMBOL(fc_mount);
 991
 992struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 993                                int flags, const char *name,
 994                                void *data)
 995{
 996        struct fs_context *fc;
 997        struct vfsmount *mnt;
 998        int ret = 0;
 999
1000        if (!type)
1001                return ERR_PTR(-EINVAL);
1002
1003        fc = fs_context_for_mount(type, flags);
1004        if (IS_ERR(fc))
1005                return ERR_CAST(fc);
1006
1007        if (name)
1008                ret = vfs_parse_fs_string(fc, "source",
1009                                          name, strlen(name));
1010        if (!ret)
1011                ret = parse_monolithic_mount_data(fc, data);
1012        if (!ret)
1013                mnt = fc_mount(fc);
1014        else
1015                mnt = ERR_PTR(ret);
1016
1017        put_fs_context(fc);
1018        return mnt;
1019}
1020EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021
1022struct vfsmount *
1023vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1024             const char *name, void *data)
1025{
1026        /* Until it is worked out how to pass the user namespace
1027         * through from the parent mount to the submount don't support
1028         * unprivileged mounts with submounts.
1029         */
1030        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1031                return ERR_PTR(-EPERM);
1032
1033        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1034}
1035EXPORT_SYMBOL_GPL(vfs_submount);
1036
1037static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1038                                        int flag)
1039{
1040        struct super_block *sb = old->mnt.mnt_sb;
1041        struct mount *mnt;
1042        int err;
1043
1044        mnt = alloc_vfsmnt(old->mnt_devname);
1045        if (!mnt)
1046                return ERR_PTR(-ENOMEM);
1047
1048        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1049                mnt->mnt_group_id = 0; /* not a peer of original */
1050        else
1051                mnt->mnt_group_id = old->mnt_group_id;
1052
1053        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1054                err = mnt_alloc_group_id(mnt);
1055                if (err)
1056                        goto out_free;
1057        }
1058
1059        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1060        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1061
1062        atomic_inc(&sb->s_active);
1063        mnt->mnt.mnt_sb = sb;
1064        mnt->mnt.mnt_root = dget(root);
1065        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066        mnt->mnt_parent = mnt;
1067        lock_mount_hash();
1068        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1069        unlock_mount_hash();
1070
1071        if ((flag & CL_SLAVE) ||
1072            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1073                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1074                mnt->mnt_master = old;
1075                CLEAR_MNT_SHARED(mnt);
1076        } else if (!(flag & CL_PRIVATE)) {
1077                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1078                        list_add(&mnt->mnt_share, &old->mnt_share);
1079                if (IS_MNT_SLAVE(old))
1080                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1081                mnt->mnt_master = old->mnt_master;
1082        } else {
1083                CLEAR_MNT_SHARED(mnt);
1084        }
1085        if (flag & CL_MAKE_SHARED)
1086                set_mnt_shared(mnt);
1087
1088        /* stick the duplicate mount on the same expiry list
1089         * as the original if that was on one */
1090        if (flag & CL_EXPIRE) {
1091                if (!list_empty(&old->mnt_expire))
1092                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1093        }
1094
1095        return mnt;
1096
1097 out_free:
1098        mnt_free_id(mnt);
1099        free_vfsmnt(mnt);
1100        return ERR_PTR(err);
1101}
1102
1103static void cleanup_mnt(struct mount *mnt)
1104{
1105        /*
1106         * This probably indicates that somebody messed
1107         * up a mnt_want/drop_write() pair.  If this
1108         * happens, the filesystem was probably unable
1109         * to make r/w->r/o transitions.
1110         */
1111        /*
1112         * The locking used to deal with mnt_count decrement provides barriers,
1113         * so mnt_get_writers() below is safe.
1114         */
1115        WARN_ON(mnt_get_writers(mnt));
1116        if (unlikely(mnt->mnt_pins.first))
1117                mnt_pin_kill(mnt);
1118        fsnotify_vfsmount_delete(&mnt->mnt);
1119        dput(mnt->mnt.mnt_root);
1120        deactivate_super(mnt->mnt.mnt_sb);
1121        mnt_free_id(mnt);
1122        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123}
1124
1125static void __cleanup_mnt(struct rcu_head *head)
1126{
1127        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128}
1129
1130static LLIST_HEAD(delayed_mntput_list);
1131static void delayed_mntput(struct work_struct *unused)
1132{
1133        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1134        struct mount *m, *t;
1135
1136        llist_for_each_entry_safe(m, t, node, mnt_llist)
1137                cleanup_mnt(m);
1138}
1139static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1140
1141static void mntput_no_expire(struct mount *mnt)
1142{
1143        rcu_read_lock();
1144        if (likely(READ_ONCE(mnt->mnt_ns))) {
1145                /*
1146                 * Since we don't do lock_mount_hash() here,
1147                 * ->mnt_ns can change under us.  However, if it's
1148                 * non-NULL, then there's a reference that won't
1149                 * be dropped until after an RCU delay done after
1150                 * turning ->mnt_ns NULL.  So if we observe it
1151                 * non-NULL under rcu_read_lock(), the reference
1152                 * we are dropping is not the final one.
1153                 */
1154                mnt_add_count(mnt, -1);
1155                rcu_read_unlock();
1156                return;
1157        }
1158        lock_mount_hash();
1159        /*
1160         * make sure that if __legitimize_mnt() has not seen us grab
1161         * mount_lock, we'll see their refcount increment here.
1162         */
1163        smp_mb();
1164        mnt_add_count(mnt, -1);
1165        if (mnt_get_count(mnt)) {
1166                rcu_read_unlock();
1167                unlock_mount_hash();
1168                return;
1169        }
1170        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171                rcu_read_unlock();
1172                unlock_mount_hash();
1173                return;
1174        }
1175        mnt->mnt.mnt_flags |= MNT_DOOMED;
1176        rcu_read_unlock();
1177
1178        list_del(&mnt->mnt_instance);
1179
1180        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181                struct mount *p, *tmp;
1182                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1183                        umount_mnt(p);
1184                }
1185        }
1186        unlock_mount_hash();
1187
1188        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1189                struct task_struct *task = current;
1190                if (likely(!(task->flags & PF_KTHREAD))) {
1191                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1192                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1193                                return;
1194                }
1195                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1196                        schedule_delayed_work(&delayed_mntput_work, 1);
1197                return;
1198        }
1199        cleanup_mnt(mnt);
1200}
1201
1202void mntput(struct vfsmount *mnt)
1203{
1204        if (mnt) {
1205                struct mount *m = real_mount(mnt);
1206                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1207                if (unlikely(m->mnt_expiry_mark))
1208                        m->mnt_expiry_mark = 0;
1209                mntput_no_expire(m);
1210        }
1211}
1212EXPORT_SYMBOL(mntput);
1213
1214struct vfsmount *mntget(struct vfsmount *mnt)
1215{
1216        if (mnt)
1217                mnt_add_count(real_mount(mnt), 1);
1218        return mnt;
1219}
1220EXPORT_SYMBOL(mntget);
1221
1222/* path_is_mountpoint() - Check if path is a mount in the current
1223 *                          namespace.
1224 *
1225 *  d_mountpoint() can only be used reliably to establish if a dentry is
1226 *  not mounted in any namespace and that common case is handled inline.
1227 *  d_mountpoint() isn't aware of the possibility there may be multiple
1228 *  mounts using a given dentry in a different namespace. This function
1229 *  checks if the passed in path is a mountpoint rather than the dentry
1230 *  alone.
1231 */
1232bool path_is_mountpoint(const struct path *path)
1233{
1234        unsigned seq;
1235        bool res;
1236
1237        if (!d_mountpoint(path->dentry))
1238                return false;
1239
1240        rcu_read_lock();
1241        do {
1242                seq = read_seqbegin(&mount_lock);
1243                res = __path_is_mountpoint(path);
1244        } while (read_seqretry(&mount_lock, seq));
1245        rcu_read_unlock();
1246
1247        return res;
1248}
1249EXPORT_SYMBOL(path_is_mountpoint);
1250
1251struct vfsmount *mnt_clone_internal(const struct path *path)
1252{
1253        struct mount *p;
1254        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1255        if (IS_ERR(p))
1256                return ERR_CAST(p);
1257        p->mnt.mnt_flags |= MNT_INTERNAL;
1258        return &p->mnt;
1259}
1260
1261#ifdef CONFIG_PROC_FS
1262/* iterator; we want it to have access to namespace_sem, thus here... */
1263static void *m_start(struct seq_file *m, loff_t *pos)
1264{
1265        struct proc_mounts *p = m->private;
1266
1267        down_read(&namespace_sem);
1268        if (p->cached_event == p->ns->event) {
1269                void *v = p->cached_mount;
1270                if (*pos == p->cached_index)
1271                        return v;
1272                if (*pos == p->cached_index + 1) {
1273                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1274                        return p->cached_mount = v;
1275                }
1276        }
1277
1278        p->cached_event = p->ns->event;
1279        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1280        p->cached_index = *pos;
1281        return p->cached_mount;
1282}
1283
1284static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1285{
1286        struct proc_mounts *p = m->private;
1287
1288        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1289        p->cached_index = *pos;
1290        return p->cached_mount;
1291}
1292
1293static void m_stop(struct seq_file *m, void *v)
1294{
1295        up_read(&namespace_sem);
1296}
1297
1298static int m_show(struct seq_file *m, void *v)
1299{
1300        struct proc_mounts *p = m->private;
1301        struct mount *r = list_entry(v, struct mount, mnt_list);
1302        return p->show(m, &r->mnt);
1303}
1304
1305const struct seq_operations mounts_op = {
1306        .start  = m_start,
1307        .next   = m_next,
1308        .stop   = m_stop,
1309        .show   = m_show,
1310};
1311#endif  /* CONFIG_PROC_FS */
1312
1313/**
1314 * may_umount_tree - check if a mount tree is busy
1315 * @mnt: root of mount tree
1316 *
1317 * This is called to check if a tree of mounts has any
1318 * open files, pwds, chroots or sub mounts that are
1319 * busy.
1320 */
1321int may_umount_tree(struct vfsmount *m)
1322{
1323        struct mount *mnt = real_mount(m);
1324        int actual_refs = 0;
1325        int minimum_refs = 0;
1326        struct mount *p;
1327        BUG_ON(!m);
1328
1329        /* write lock needed for mnt_get_count */
1330        lock_mount_hash();
1331        for (p = mnt; p; p = next_mnt(p, mnt)) {
1332                actual_refs += mnt_get_count(p);
1333                minimum_refs += 2;
1334        }
1335        unlock_mount_hash();
1336
1337        if (actual_refs > minimum_refs)
1338                return 0;
1339
1340        return 1;
1341}
1342
1343EXPORT_SYMBOL(may_umount_tree);
1344
1345/**
1346 * may_umount - check if a mount point is busy
1347 * @mnt: root of mount
1348 *
1349 * This is called to check if a mount point has any
1350 * open files, pwds, chroots or sub mounts. If the
1351 * mount has sub mounts this will return busy
1352 * regardless of whether the sub mounts are busy.
1353 *
1354 * Doesn't take quota and stuff into account. IOW, in some cases it will
1355 * give false negatives. The main reason why it's here is that we need
1356 * a non-destructive way to look for easily umountable filesystems.
1357 */
1358int may_umount(struct vfsmount *mnt)
1359{
1360        int ret = 1;
1361        down_read(&namespace_sem);
1362        lock_mount_hash();
1363        if (propagate_mount_busy(real_mount(mnt), 2))
1364                ret = 0;
1365        unlock_mount_hash();
1366        up_read(&namespace_sem);
1367        return ret;
1368}
1369
1370EXPORT_SYMBOL(may_umount);
1371
1372static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1373
1374static void namespace_unlock(void)
1375{
1376        struct hlist_head head;
1377
1378        hlist_move_list(&unmounted, &head);
1379
1380        up_write(&namespace_sem);
1381
1382        if (likely(hlist_empty(&head)))
1383                return;
1384
1385        synchronize_rcu_expedited();
1386
1387        group_pin_kill(&head);
1388}
1389
1390static inline void namespace_lock(void)
1391{
1392        down_write(&namespace_sem);
1393}
1394
1395enum umount_tree_flags {
1396        UMOUNT_SYNC = 1,
1397        UMOUNT_PROPAGATE = 2,
1398        UMOUNT_CONNECTED = 4,
1399};
1400
1401static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402{
1403        /* Leaving mounts connected is only valid for lazy umounts */
1404        if (how & UMOUNT_SYNC)
1405                return true;
1406
1407        /* A mount without a parent has nothing to be connected to */
1408        if (!mnt_has_parent(mnt))
1409                return true;
1410
1411        /* Because the reference counting rules change when mounts are
1412         * unmounted and connected, umounted mounts may not be
1413         * connected to mounted mounts.
1414         */
1415        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416                return true;
1417
1418        /* Has it been requested that the mount remain connected? */
1419        if (how & UMOUNT_CONNECTED)
1420                return false;
1421
1422        /* Is the mount locked such that it needs to remain connected? */
1423        if (IS_MNT_LOCKED(mnt))
1424                return false;
1425
1426        /* By default disconnect the mount */
1427        return true;
1428}
1429
1430/*
1431 * mount_lock must be held
1432 * namespace_sem must be held for write
1433 */
1434static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1435{
1436        LIST_HEAD(tmp_list);
1437        struct mount *p;
1438
1439        if (how & UMOUNT_PROPAGATE)
1440                propagate_mount_unlock(mnt);
1441
1442        /* Gather the mounts to umount */
1443        for (p = mnt; p; p = next_mnt(p, mnt)) {
1444                p->mnt.mnt_flags |= MNT_UMOUNT;
1445                list_move(&p->mnt_list, &tmp_list);
1446        }
1447
1448        /* Hide the mounts from mnt_mounts */
1449        list_for_each_entry(p, &tmp_list, mnt_list) {
1450                list_del_init(&p->mnt_child);
1451        }
1452
1453        /* Add propogated mounts to the tmp_list */
1454        if (how & UMOUNT_PROPAGATE)
1455                propagate_umount(&tmp_list);
1456
1457        while (!list_empty(&tmp_list)) {
1458                struct mnt_namespace *ns;
1459                bool disconnect;
1460                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1461                list_del_init(&p->mnt_expire);
1462                list_del_init(&p->mnt_list);
1463                ns = p->mnt_ns;
1464                if (ns) {
1465                        ns->mounts--;
1466                        __touch_mnt_namespace(ns);
1467                }
1468                p->mnt_ns = NULL;
1469                if (how & UMOUNT_SYNC)
1470                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1471
1472                disconnect = disconnect_mount(p, how);
1473
1474                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475                                 disconnect ? &unmounted : NULL);
1476                if (mnt_has_parent(p)) {
1477                        mnt_add_count(p->mnt_parent, -1);
1478                        if (!disconnect) {
1479                                /* Don't forget about p */
1480                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481                        } else {
1482                                umount_mnt(p);
1483                        }
1484                }
1485                change_mnt_propagation(p, MS_PRIVATE);
1486        }
1487}
1488
1489static void shrink_submounts(struct mount *mnt);
1490
1491static int do_umount_root(struct super_block *sb)
1492{
1493        int ret = 0;
1494
1495        down_write(&sb->s_umount);
1496        if (!sb_rdonly(sb)) {
1497                struct fs_context *fc;
1498
1499                fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500                                                SB_RDONLY);
1501                if (IS_ERR(fc)) {
1502                        ret = PTR_ERR(fc);
1503                } else {
1504                        ret = parse_monolithic_mount_data(fc, NULL);
1505                        if (!ret)
1506                                ret = reconfigure_super(fc);
1507                        put_fs_context(fc);
1508                }
1509        }
1510        up_write(&sb->s_umount);
1511        return ret;
1512}
1513
1514static int do_umount(struct mount *mnt, int flags)
1515{
1516        struct super_block *sb = mnt->mnt.mnt_sb;
1517        int retval;
1518
1519        retval = security_sb_umount(&mnt->mnt, flags);
1520        if (retval)
1521                return retval;
1522
1523        /*
1524         * Allow userspace to request a mountpoint be expired rather than
1525         * unmounting unconditionally. Unmount only happens if:
1526         *  (1) the mark is already set (the mark is cleared by mntput())
1527         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528         */
1529        if (flags & MNT_EXPIRE) {
1530                if (&mnt->mnt == current->fs->root.mnt ||
1531                    flags & (MNT_FORCE | MNT_DETACH))
1532                        return -EINVAL;
1533
1534                /*
1535                 * probably don't strictly need the lock here if we examined
1536                 * all race cases, but it's a slowpath.
1537                 */
1538                lock_mount_hash();
1539                if (mnt_get_count(mnt) != 2) {
1540                        unlock_mount_hash();
1541                        return -EBUSY;
1542                }
1543                unlock_mount_hash();
1544
1545                if (!xchg(&mnt->mnt_expiry_mark, 1))
1546                        return -EAGAIN;
1547        }
1548
1549        /*
1550         * If we may have to abort operations to get out of this
1551         * mount, and they will themselves hold resources we must
1552         * allow the fs to do things. In the Unix tradition of
1553         * 'Gee thats tricky lets do it in userspace' the umount_begin
1554         * might fail to complete on the first run through as other tasks
1555         * must return, and the like. Thats for the mount program to worry
1556         * about for the moment.
1557         */
1558
1559        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1560                sb->s_op->umount_begin(sb);
1561        }
1562
1563        /*
1564         * No sense to grab the lock for this test, but test itself looks
1565         * somewhat bogus. Suggestions for better replacement?
1566         * Ho-hum... In principle, we might treat that as umount + switch
1567         * to rootfs. GC would eventually take care of the old vfsmount.
1568         * Actually it makes sense, especially if rootfs would contain a
1569         * /reboot - static binary that would close all descriptors and
1570         * call reboot(9). Then init(8) could umount root and exec /reboot.
1571         */
1572        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573                /*
1574                 * Special case for "unmounting" root ...
1575                 * we just try to remount it readonly.
1576                 */
1577                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1578                        return -EPERM;
1579                return do_umount_root(sb);
1580        }
1581
1582        namespace_lock();
1583        lock_mount_hash();
1584
1585        /* Recheck MNT_LOCKED with the locks held */
1586        retval = -EINVAL;
1587        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588                goto out;
1589
1590        event++;
1591        if (flags & MNT_DETACH) {
1592                if (!list_empty(&mnt->mnt_list))
1593                        umount_tree(mnt, UMOUNT_PROPAGATE);
1594                retval = 0;
1595        } else {
1596                shrink_submounts(mnt);
1597                retval = -EBUSY;
1598                if (!propagate_mount_busy(mnt, 2)) {
1599                        if (!list_empty(&mnt->mnt_list))
1600                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1601                        retval = 0;
1602                }
1603        }
1604out:
1605        unlock_mount_hash();
1606        namespace_unlock();
1607        return retval;
1608}
1609
1610/*
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1612 *
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1616 * leaking them.
1617 *
1618 * The caller may hold dentry->d_inode->i_mutex.
1619 */
1620void __detach_mounts(struct dentry *dentry)
1621{
1622        struct mountpoint *mp;
1623        struct mount *mnt;
1624
1625        namespace_lock();
1626        lock_mount_hash();
1627        mp = lookup_mountpoint(dentry);
1628        if (IS_ERR_OR_NULL(mp))
1629                goto out_unlock;
1630
1631        event++;
1632        while (!hlist_empty(&mp->m_list)) {
1633                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1634                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1635                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636                        umount_mnt(mnt);
1637                }
1638                else umount_tree(mnt, UMOUNT_CONNECTED);
1639        }
1640        put_mountpoint(mp);
1641out_unlock:
1642        unlock_mount_hash();
1643        namespace_unlock();
1644}
1645
1646/*
1647 * Is the caller allowed to modify his namespace?
1648 */
1649static inline bool may_mount(void)
1650{
1651        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652}
1653
1654static inline bool may_mandlock(void)
1655{
1656#ifndef CONFIG_MANDATORY_FILE_LOCKING
1657        return false;
1658#endif
1659        return capable(CAP_SYS_ADMIN);
1660}
1661
1662/*
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1665 *
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668 */
1669
1670int ksys_umount(char __user *name, int flags)
1671{
1672        struct path path;
1673        struct mount *mnt;
1674        int retval;
1675        int lookup_flags = 0;
1676
1677        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678                return -EINVAL;
1679
1680        if (!may_mount())
1681                return -EPERM;
1682
1683        if (!(flags & UMOUNT_NOFOLLOW))
1684                lookup_flags |= LOOKUP_FOLLOW;
1685
1686        lookup_flags |= LOOKUP_NO_EVAL;
1687
1688        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1689        if (retval)
1690                goto out;
1691        mnt = real_mount(path.mnt);
1692        retval = -EINVAL;
1693        if (path.dentry != path.mnt->mnt_root)
1694                goto dput_and_out;
1695        if (!check_mnt(mnt))
1696                goto dput_and_out;
1697        if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1698                goto dput_and_out;
1699        retval = -EPERM;
1700        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701                goto dput_and_out;
1702
1703        retval = do_umount(mnt, flags);
1704dput_and_out:
1705        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1706        dput(path.dentry);
1707        mntput_no_expire(mnt);
1708out:
1709        return retval;
1710}
1711
1712SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713{
1714        return ksys_umount(name, flags);
1715}
1716
1717#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719/*
1720 *      The 2.0 compatible umount. No flags.
1721 */
1722SYSCALL_DEFINE1(oldumount, char __user *, name)
1723{
1724        return ksys_umount(name, 0);
1725}
1726
1727#endif
1728
1729static bool is_mnt_ns_file(struct dentry *dentry)
1730{
1731        /* Is this a proxy for a mount namespace? */
1732        return dentry->d_op == &ns_dentry_operations &&
1733               dentry->d_fsdata == &mntns_operations;
1734}
1735
1736struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737{
1738        return container_of(ns, struct mnt_namespace, ns);
1739}
1740
1741static bool mnt_ns_loop(struct dentry *dentry)
1742{
1743        /* Could bind mounting the mount namespace inode cause a
1744         * mount namespace loop?
1745         */
1746        struct mnt_namespace *mnt_ns;
1747        if (!is_mnt_ns_file(dentry))
1748                return false;
1749
1750        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1751        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752}
1753
1754struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1755                                        int flag)
1756{
1757        struct mount *res, *p, *q, *r, *parent;
1758
1759        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760                return ERR_PTR(-EINVAL);
1761
1762        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1763                return ERR_PTR(-EINVAL);
1764
1765        res = q = clone_mnt(mnt, dentry, flag);
1766        if (IS_ERR(q))
1767                return q;
1768
1769        q->mnt_mountpoint = mnt->mnt_mountpoint;
1770
1771        p = mnt;
1772        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1773                struct mount *s;
1774                if (!is_subdir(r->mnt_mountpoint, dentry))
1775                        continue;
1776
1777                for (s = r; s; s = next_mnt(s, r)) {
1778                        if (!(flag & CL_COPY_UNBINDABLE) &&
1779                            IS_MNT_UNBINDABLE(s)) {
1780                                if (s->mnt.mnt_flags & MNT_LOCKED) {
1781                                        /* Both unbindable and locked. */
1782                                        q = ERR_PTR(-EPERM);
1783                                        goto out;
1784                                } else {
1785                                        s = skip_mnt_tree(s);
1786                                        continue;
1787                                }
1788                        }
1789                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790                            is_mnt_ns_file(s->mnt.mnt_root)) {
1791                                s = skip_mnt_tree(s);
1792                                continue;
1793                        }
1794                        while (p != s->mnt_parent) {
1795                                p = p->mnt_parent;
1796                                q = q->mnt_parent;
1797                        }
1798                        p = s;
1799                        parent = q;
1800                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1801                        if (IS_ERR(q))
1802                                goto out;
1803                        lock_mount_hash();
1804                        list_add_tail(&q->mnt_list, &res->mnt_list);
1805                        attach_mnt(q, parent, p->mnt_mp);
1806                        unlock_mount_hash();
1807                }
1808        }
1809        return res;
1810out:
1811        if (res) {
1812                lock_mount_hash();
1813                umount_tree(res, UMOUNT_SYNC);
1814                unlock_mount_hash();
1815        }
1816        return q;
1817}
1818
1819/* Caller should check returned pointer for errors */
1820
1821struct vfsmount *collect_mounts(const struct path *path)
1822{
1823        struct mount *tree;
1824        namespace_lock();
1825        if (!check_mnt(real_mount(path->mnt)))
1826                tree = ERR_PTR(-EINVAL);
1827        else
1828                tree = copy_tree(real_mount(path->mnt), path->dentry,
1829                                 CL_COPY_ALL | CL_PRIVATE);
1830        namespace_unlock();
1831        if (IS_ERR(tree))
1832                return ERR_CAST(tree);
1833        return &tree->mnt;
1834}
1835
1836static void free_mnt_ns(struct mnt_namespace *);
1837static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839void dissolve_on_fput(struct vfsmount *mnt)
1840{
1841        struct mnt_namespace *ns;
1842        namespace_lock();
1843        lock_mount_hash();
1844        ns = real_mount(mnt)->mnt_ns;
1845        if (ns) {
1846                if (is_anon_ns(ns))
1847                        umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848                else
1849                        ns = NULL;
1850        }
1851        unlock_mount_hash();
1852        namespace_unlock();
1853        if (ns)
1854                free_mnt_ns(ns);
1855}
1856
1857void drop_collected_mounts(struct vfsmount *mnt)
1858{
1859        namespace_lock();
1860        lock_mount_hash();
1861        umount_tree(real_mount(mnt), 0);
1862        unlock_mount_hash();
1863        namespace_unlock();
1864}
1865
1866/**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path.  The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
1875struct vfsmount *clone_private_mount(const struct path *path)
1876{
1877        struct mount *old_mnt = real_mount(path->mnt);
1878        struct mount *new_mnt;
1879
1880        if (IS_MNT_UNBINDABLE(old_mnt))
1881                return ERR_PTR(-EINVAL);
1882
1883        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884        if (IS_ERR(new_mnt))
1885                return ERR_CAST(new_mnt);
1886
1887        return &new_mnt->mnt;
1888}
1889EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1891int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892                   struct vfsmount *root)
1893{
1894        struct mount *mnt;
1895        int res = f(root, arg);
1896        if (res)
1897                return res;
1898        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899                res = f(&mnt->mnt, arg);
1900                if (res)
1901                        return res;
1902        }
1903        return 0;
1904}
1905
1906static void lock_mnt_tree(struct mount *mnt)
1907{
1908        struct mount *p;
1909
1910        for (p = mnt; p; p = next_mnt(p, mnt)) {
1911                int flags = p->mnt.mnt_flags;
1912                /* Don't allow unprivileged users to change mount flags */
1913                flags |= MNT_LOCK_ATIME;
1914
1915                if (flags & MNT_READONLY)
1916                        flags |= MNT_LOCK_READONLY;
1917
1918                if (flags & MNT_NODEV)
1919                        flags |= MNT_LOCK_NODEV;
1920
1921                if (flags & MNT_NOSUID)
1922                        flags |= MNT_LOCK_NOSUID;
1923
1924                if (flags & MNT_NOEXEC)
1925                        flags |= MNT_LOCK_NOEXEC;
1926                /* Don't allow unprivileged users to reveal what is under a mount */
1927                if (list_empty(&p->mnt_expire))
1928                        flags |= MNT_LOCKED;
1929                p->mnt.mnt_flags = flags;
1930        }
1931}
1932
1933static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1934{
1935        struct mount *p;
1936
1937        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1938                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1939                        mnt_release_group_id(p);
1940        }
1941}
1942
1943static int invent_group_ids(struct mount *mnt, bool recurse)
1944{
1945        struct mount *p;
1946
1947        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1948                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1949                        int err = mnt_alloc_group_id(p);
1950                        if (err) {
1951                                cleanup_group_ids(mnt, p);
1952                                return err;
1953                        }
1954                }
1955        }
1956
1957        return 0;
1958}
1959
1960int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961{
1962        unsigned int max = READ_ONCE(sysctl_mount_max);
1963        unsigned int mounts = 0, old, pending, sum;
1964        struct mount *p;
1965
1966        for (p = mnt; p; p = next_mnt(p, mnt))
1967                mounts++;
1968
1969        old = ns->mounts;
1970        pending = ns->pending_mounts;
1971        sum = old + pending;
1972        if ((old > sum) ||
1973            (pending > sum) ||
1974            (max < sum) ||
1975            (mounts > (max - sum)))
1976                return -ENOSPC;
1977
1978        ns->pending_mounts = pending + mounts;
1979        return 0;
1980}
1981
1982/*
1983 *  @source_mnt : mount tree to be attached
1984 *  @nd         : place the mount tree @source_mnt is attached
1985 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1986 *                 store the parent mount and mountpoint dentry.
1987 *                 (done when source_mnt is moved)
1988 *
1989 *  NOTE: in the table below explains the semantics when a source mount
1990 *  of a given type is attached to a destination mount of a given type.
1991 * ---------------------------------------------------------------------------
1992 * |         BIND MOUNT OPERATION                                            |
1993 * |**************************************************************************
1994 * | source-->| shared        |       private  |       slave    | unbindable |
1995 * | dest     |               |                |                |            |
1996 * |   |      |               |                |                |            |
1997 * |   v      |               |                |                |            |
1998 * |**************************************************************************
1999 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2000 * |          |               |                |                |            |
2001 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2002 * ***************************************************************************
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++)  the cloned mount is propagated to all the mounts in the propagation
2007 *       tree of the destination mount and the cloned mount is added to
2008 *       the peer group of the source mount.
2009 * (+)   the cloned mount is created under the destination mount and is marked
2010 *       as shared. The cloned mount is added to the peer group of the source
2011 *       mount.
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 *       of the destination mount and the cloned mount is made slave
2014 *       of the same master as that of the source mount. The cloned mount
2015 *       is marked as 'shared and slave'.
2016 * (*)   the cloned mount is made a slave of the same master as that of the
2017 *       source mount.
2018 *
2019 * ---------------------------------------------------------------------------
2020 * |                    MOVE MOUNT OPERATION                                 |
2021 * |**************************************************************************
2022 * | source-->| shared        |       private  |       slave    | unbindable |
2023 * | dest     |               |                |                |            |
2024 * |   |      |               |                |                |            |
2025 * |   v      |               |                |                |            |
2026 * |**************************************************************************
2027 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2028 * |          |               |                |                |            |
2029 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2030 * ***************************************************************************
2031 *
2032 * (+)  the mount is moved to the destination. And is then propagated to
2033 *      all the mounts in the propagation tree of the destination mount.
2034 * (+*)  the mount is moved to the destination.
2035 * (+++)  the mount is moved to the destination and is then propagated to
2036 *      all the mounts belonging to the destination mount's propagation tree.
2037 *      the mount is marked as 'shared and slave'.
2038 * (*)  the mount continues to be a slave at the new location.
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
2045static int attach_recursive_mnt(struct mount *source_mnt,
2046                        struct mount *dest_mnt,
2047                        struct mountpoint *dest_mp,
2048                        struct path *parent_path)
2049{
2050        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2051        HLIST_HEAD(tree_list);
2052        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2053        struct mountpoint *smp;
2054        struct mount *child, *p;
2055        struct hlist_node *n;
2056        int err;
2057
2058        /* Preallocate a mountpoint in case the new mounts need
2059         * to be tucked under other mounts.
2060         */
2061        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062        if (IS_ERR(smp))
2063                return PTR_ERR(smp);
2064
2065        /* Is there space to add these mounts to the mount namespace? */
2066        if (!parent_path) {
2067                err = count_mounts(ns, source_mnt);
2068                if (err)
2069                        goto out;
2070        }
2071
2072        if (IS_MNT_SHARED(dest_mnt)) {
2073                err = invent_group_ids(source_mnt, true);
2074                if (err)
2075                        goto out;
2076                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2077                lock_mount_hash();
2078                if (err)
2079                        goto out_cleanup_ids;
2080                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2081                        set_mnt_shared(p);
2082        } else {
2083                lock_mount_hash();
2084        }
2085        if (parent_path) {
2086                detach_mnt(source_mnt, parent_path);
2087                attach_mnt(source_mnt, dest_mnt, dest_mp);
2088                touch_mnt_namespace(source_mnt->mnt_ns);
2089        } else {
2090                if (source_mnt->mnt_ns) {
2091                        /* move from anon - the caller will destroy */
2092                        list_del_init(&source_mnt->mnt_ns->list);
2093                }
2094                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2095                commit_tree(source_mnt);
2096        }
2097
2098        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2099                struct mount *q;
2100                hlist_del_init(&child->mnt_hash);
2101                q = __lookup_mnt(&child->mnt_parent->mnt,
2102                                 child->mnt_mountpoint);
2103                if (q)
2104                        mnt_change_mountpoint(child, smp, q);
2105                /* Notice when we are propagating across user namespaces */
2106                if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107                        lock_mnt_tree(child);
2108                child->mnt.mnt_flags &= ~MNT_LOCKED;
2109                commit_tree(child);
2110        }
2111        put_mountpoint(smp);
2112        unlock_mount_hash();
2113
2114        return 0;
2115
2116 out_cleanup_ids:
2117        while (!hlist_empty(&tree_list)) {
2118                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2119                child->mnt_parent->mnt_ns->pending_mounts = 0;
2120                umount_tree(child, UMOUNT_SYNC);
2121        }
2122        unlock_mount_hash();
2123        cleanup_group_ids(source_mnt, NULL);
2124 out:
2125        ns->pending_mounts = 0;
2126
2127        read_seqlock_excl(&mount_lock);
2128        put_mountpoint(smp);
2129        read_sequnlock_excl(&mount_lock);
2130
2131        return err;
2132}
2133
2134static struct mountpoint *lock_mount(struct path *path)
2135{
2136        struct vfsmount *mnt;
2137        struct dentry *dentry = path->dentry;
2138retry:
2139        inode_lock(dentry->d_inode);
2140        if (unlikely(cant_mount(dentry))) {
2141                inode_unlock(dentry->d_inode);
2142                return ERR_PTR(-ENOENT);
2143        }
2144        namespace_lock();
2145        mnt = lookup_mnt(path);
2146        if (likely(!mnt)) {
2147                struct mountpoint *mp = get_mountpoint(dentry);
2148                if (IS_ERR(mp)) {
2149                        namespace_unlock();
2150                        inode_unlock(dentry->d_inode);
2151                        return mp;
2152                }
2153                return mp;
2154        }
2155        namespace_unlock();
2156        inode_unlock(path->dentry->d_inode);
2157        path_put(path);
2158        path->mnt = mnt;
2159        dentry = path->dentry = dget(mnt->mnt_root);
2160        goto retry;
2161}
2162
2163static void unlock_mount(struct mountpoint *where)
2164{
2165        struct dentry *dentry = where->m_dentry;
2166
2167        read_seqlock_excl(&mount_lock);
2168        put_mountpoint(where);
2169        read_sequnlock_excl(&mount_lock);
2170
2171        namespace_unlock();
2172        inode_unlock(dentry->d_inode);
2173}
2174
2175static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2176{
2177        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2178                return -EINVAL;
2179
2180        if (d_is_dir(mp->m_dentry) !=
2181              d_is_dir(mnt->mnt.mnt_root))
2182                return -ENOTDIR;
2183
2184        return attach_recursive_mnt(mnt, p, mp, NULL);
2185}
2186
2187/*
2188 * Sanity check the flags to change_mnt_propagation.
2189 */
2190
2191static int flags_to_propagation_type(int ms_flags)
2192{
2193        int type = ms_flags & ~(MS_REC | MS_SILENT);
2194
2195        /* Fail if any non-propagation flags are set */
2196        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2197                return 0;
2198        /* Only one propagation flag should be set */
2199        if (!is_power_of_2(type))
2200                return 0;
2201        return type;
2202}
2203
2204/*
2205 * recursively change the type of the mountpoint.
2206 */
2207static int do_change_type(struct path *path, int ms_flags)
2208{
2209        struct mount *m;
2210        struct mount *mnt = real_mount(path->mnt);
2211        int recurse = ms_flags & MS_REC;
2212        int type;
2213        int err = 0;
2214
2215        if (path->dentry != path->mnt->mnt_root)
2216                return -EINVAL;
2217
2218        type = flags_to_propagation_type(ms_flags);
2219        if (!type)
2220                return -EINVAL;
2221
2222        namespace_lock();
2223        if (type == MS_SHARED) {
2224                err = invent_group_ids(mnt, recurse);
2225                if (err)
2226                        goto out_unlock;
2227        }
2228
2229        lock_mount_hash();
2230        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2231                change_mnt_propagation(m, type);
2232        unlock_mount_hash();
2233
2234 out_unlock:
2235        namespace_unlock();
2236        return err;
2237}
2238
2239static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2240{
2241        struct mount *child;
2242        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2243                if (!is_subdir(child->mnt_mountpoint, dentry))
2244                        continue;
2245
2246                if (child->mnt.mnt_flags & MNT_LOCKED)
2247                        return true;
2248        }
2249        return false;
2250}
2251
2252static struct mount *__do_loopback(struct path *old_path, int recurse)
2253{
2254        struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2255
2256        if (IS_MNT_UNBINDABLE(old))
2257                return mnt;
2258
2259        if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2260                return mnt;
2261
2262        if (!recurse && has_locked_children(old, old_path->dentry))
2263                return mnt;
2264
2265        if (recurse)
2266                mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2267        else
2268                mnt = clone_mnt(old, old_path->dentry, 0);
2269
2270        if (!IS_ERR(mnt))
2271                mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2272
2273        return mnt;
2274}
2275
2276/*
2277 * do loopback mount.
2278 */
2279static int do_loopback(struct path *path, const char *old_name,
2280                                int recurse)
2281{
2282        struct path old_path;
2283        struct mount *mnt = NULL, *parent;
2284        struct mountpoint *mp;
2285        int err;
2286        if (!old_name || !*old_name)
2287                return -EINVAL;
2288        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2289        if (err)
2290                return err;
2291
2292        err = -EINVAL;
2293        if (mnt_ns_loop(old_path.dentry))
2294                goto out;
2295
2296        mp = lock_mount(path);
2297        if (IS_ERR(mp)) {
2298                err = PTR_ERR(mp);
2299                goto out;
2300        }
2301
2302        parent = real_mount(path->mnt);
2303        if (!check_mnt(parent))
2304                goto out2;
2305
2306        mnt = __do_loopback(&old_path, recurse);
2307        if (IS_ERR(mnt)) {
2308                err = PTR_ERR(mnt);
2309                goto out2;
2310        }
2311
2312        err = graft_tree(mnt, parent, mp);
2313        if (err) {
2314                lock_mount_hash();
2315                umount_tree(mnt, UMOUNT_SYNC);
2316                unlock_mount_hash();
2317        }
2318out2:
2319        unlock_mount(mp);
2320out:
2321        path_put(&old_path);
2322        return err;
2323}
2324
2325static struct file *open_detached_copy(struct path *path, bool recursive)
2326{
2327        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2328        struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2329        struct mount *mnt, *p;
2330        struct file *file;
2331
2332        if (IS_ERR(ns))
2333                return ERR_CAST(ns);
2334
2335        namespace_lock();
2336        mnt = __do_loopback(path, recursive);
2337        if (IS_ERR(mnt)) {
2338                namespace_unlock();
2339                free_mnt_ns(ns);
2340                return ERR_CAST(mnt);
2341        }
2342
2343        lock_mount_hash();
2344        for (p = mnt; p; p = next_mnt(p, mnt)) {
2345                p->mnt_ns = ns;
2346                ns->mounts++;
2347        }
2348        ns->root = mnt;
2349        list_add_tail(&ns->list, &mnt->mnt_list);
2350        mntget(&mnt->mnt);
2351        unlock_mount_hash();
2352        namespace_unlock();
2353
2354        mntput(path->mnt);
2355        path->mnt = &mnt->mnt;
2356        file = dentry_open(path, O_PATH, current_cred());
2357        if (IS_ERR(file))
2358                dissolve_on_fput(path->mnt);
2359        else
2360                file->f_mode |= FMODE_NEED_UNMOUNT;
2361        return file;
2362}
2363
2364SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2365{
2366        struct file *file;
2367        struct path path;
2368        int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2369        bool detached = flags & OPEN_TREE_CLONE;
2370        int error;
2371        int fd;
2372
2373        BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2374
2375        if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2376                      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2377                      OPEN_TREE_CLOEXEC))
2378                return -EINVAL;
2379
2380        if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2381                return -EINVAL;
2382
2383        if (flags & AT_NO_AUTOMOUNT)
2384                lookup_flags &= ~LOOKUP_AUTOMOUNT;
2385        if (flags & AT_SYMLINK_NOFOLLOW)
2386                lookup_flags &= ~LOOKUP_FOLLOW;
2387        if (flags & AT_EMPTY_PATH)
2388                lookup_flags |= LOOKUP_EMPTY;
2389
2390        if (detached && !may_mount())
2391                return -EPERM;
2392
2393        fd = get_unused_fd_flags(flags & O_CLOEXEC);
2394        if (fd < 0)
2395                return fd;
2396
2397        error = user_path_at(dfd, filename, lookup_flags, &path);
2398        if (unlikely(error)) {
2399                file = ERR_PTR(error);
2400        } else {
2401                if (detached)
2402                        file = open_detached_copy(&path, flags & AT_RECURSIVE);
2403                else
2404                        file = dentry_open(&path, O_PATH, current_cred());
2405                path_put(&path);
2406        }
2407        if (IS_ERR(file)) {
2408                put_unused_fd(fd);
2409                return PTR_ERR(file);
2410        }
2411        fd_install(fd, file);
2412        return fd;
2413}
2414
2415/*
2416 * Don't allow locked mount flags to be cleared.
2417 *
2418 * No locks need to be held here while testing the various MNT_LOCK
2419 * flags because those flags can never be cleared once they are set.
2420 */
2421static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2422{
2423        unsigned int fl = mnt->mnt.mnt_flags;
2424
2425        if ((fl & MNT_LOCK_READONLY) &&
2426            !(mnt_flags & MNT_READONLY))
2427                return false;
2428
2429        if ((fl & MNT_LOCK_NODEV) &&
2430            !(mnt_flags & MNT_NODEV))
2431                return false;
2432
2433        if ((fl & MNT_LOCK_NOSUID) &&
2434            !(mnt_flags & MNT_NOSUID))
2435                return false;
2436
2437        if ((fl & MNT_LOCK_NOEXEC) &&
2438            !(mnt_flags & MNT_NOEXEC))
2439                return false;
2440
2441        if ((fl & MNT_LOCK_ATIME) &&
2442            ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2443                return false;
2444
2445        return true;
2446}
2447
2448static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2449{
2450        bool readonly_request = (mnt_flags & MNT_READONLY);
2451
2452        if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2453                return 0;
2454
2455        if (readonly_request)
2456                return mnt_make_readonly(mnt);
2457
2458        return __mnt_unmake_readonly(mnt);
2459}
2460
2461/*
2462 * Update the user-settable attributes on a mount.  The caller must hold
2463 * sb->s_umount for writing.
2464 */
2465static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2466{
2467        lock_mount_hash();
2468        mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2469        mnt->mnt.mnt_flags = mnt_flags;
2470        touch_mnt_namespace(mnt->mnt_ns);
2471        unlock_mount_hash();
2472}
2473
2474/*
2475 * Handle reconfiguration of the mountpoint only without alteration of the
2476 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2477 * to mount(2).
2478 */
2479static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2480{
2481        struct super_block *sb = path->mnt->mnt_sb;
2482        struct mount *mnt = real_mount(path->mnt);
2483        int ret;
2484
2485        if (!check_mnt(mnt))
2486                return -EINVAL;
2487
2488        if (path->dentry != mnt->mnt.mnt_root)
2489                return -EINVAL;
2490
2491        if (!can_change_locked_flags(mnt, mnt_flags))
2492                return -EPERM;
2493
2494        down_write(&sb->s_umount);
2495        ret = change_mount_ro_state(mnt, mnt_flags);
2496        if (ret == 0)
2497                set_mount_attributes(mnt, mnt_flags);
2498        up_write(&sb->s_umount);
2499        return ret;
2500}
2501
2502/*
2503 * change filesystem flags. dir should be a physical root of filesystem.
2504 * If you've mounted a non-root directory somewhere and want to do remount
2505 * on it - tough luck.
2506 */
2507static int do_remount(struct path *path, int ms_flags, int sb_flags,
2508                      int mnt_flags, void *data)
2509{
2510        int err;
2511        struct super_block *sb = path->mnt->mnt_sb;
2512        struct mount *mnt = real_mount(path->mnt);
2513        struct fs_context *fc;
2514
2515        if (!check_mnt(mnt))
2516                return -EINVAL;
2517
2518        if (path->dentry != path->mnt->mnt_root)
2519                return -EINVAL;
2520
2521        if (!can_change_locked_flags(mnt, mnt_flags))
2522                return -EPERM;
2523
2524        fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2525        if (IS_ERR(fc))
2526                return PTR_ERR(fc);
2527
2528        err = parse_monolithic_mount_data(fc, data);
2529        if (!err) {
2530                down_write(&sb->s_umount);
2531                err = -EPERM;
2532                if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2533                        err = reconfigure_super(fc);
2534                        if (!err)
2535                                set_mount_attributes(mnt, mnt_flags);
2536                }
2537                up_write(&sb->s_umount);
2538        }
2539        put_fs_context(fc);
2540        return err;
2541}
2542
2543static inline int tree_contains_unbindable(struct mount *mnt)
2544{
2545        struct mount *p;
2546        for (p = mnt; p; p = next_mnt(p, mnt)) {
2547                if (IS_MNT_UNBINDABLE(p))
2548                        return 1;
2549        }
2550        return 0;
2551}
2552
2553/*
2554 * Check that there aren't references to earlier/same mount namespaces in the
2555 * specified subtree.  Such references can act as pins for mount namespaces
2556 * that aren't checked by the mount-cycle checking code, thereby allowing
2557 * cycles to be made.
2558 */
2559static bool check_for_nsfs_mounts(struct mount *subtree)
2560{
2561        struct mount *p;
2562        bool ret = false;
2563
2564        lock_mount_hash();
2565        for (p = subtree; p; p = next_mnt(p, subtree))
2566                if (mnt_ns_loop(p->mnt.mnt_root))
2567                        goto out;
2568
2569        ret = true;
2570out:
2571        unlock_mount_hash();
2572        return ret;
2573}
2574
2575static int do_move_mount(struct path *old_path, struct path *new_path)
2576{
2577        struct path parent_path = {.mnt = NULL, .dentry = NULL};
2578        struct mnt_namespace *ns;
2579        struct mount *p;
2580        struct mount *old;
2581        struct mountpoint *mp;
2582        int err;
2583        bool attached;
2584
2585        mp = lock_mount(new_path);
2586        if (IS_ERR(mp))
2587                return PTR_ERR(mp);
2588
2589        old = real_mount(old_path->mnt);
2590        p = real_mount(new_path->mnt);
2591        attached = mnt_has_parent(old);
2592        ns = old->mnt_ns;
2593
2594        err = -EINVAL;
2595        /* The mountpoint must be in our namespace. */
2596        if (!check_mnt(p))
2597                goto out;
2598
2599        /* The thing moved must be mounted... */
2600        if (!is_mounted(&old->mnt))
2601                goto out;
2602
2603        /* ... and either ours or the root of anon namespace */
2604        if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2605                goto out;
2606
2607        if (old->mnt.mnt_flags & MNT_LOCKED)
2608                goto out;
2609
2610        if (old_path->dentry != old_path->mnt->mnt_root)
2611                goto out;
2612
2613        if (d_is_dir(new_path->dentry) !=
2614            d_is_dir(old_path->dentry))
2615                goto out;
2616        /*
2617         * Don't move a mount residing in a shared parent.
2618         */
2619        if (attached && IS_MNT_SHARED(old->mnt_parent))
2620                goto out;
2621        /*
2622         * Don't move a mount tree containing unbindable mounts to a destination
2623         * mount which is shared.
2624         */
2625        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2626                goto out;
2627        err = -ELOOP;
2628        if (!check_for_nsfs_mounts(old))
2629                goto out;
2630        for (; mnt_has_parent(p); p = p->mnt_parent)
2631                if (p == old)
2632                        goto out;
2633
2634        err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2635                                   attached ? &parent_path : NULL);
2636        if (err)
2637                goto out;
2638
2639        /* if the mount is moved, it should no longer be expire
2640         * automatically */
2641        list_del_init(&old->mnt_expire);
2642out:
2643        unlock_mount(mp);
2644        if (!err) {
2645                path_put(&parent_path);
2646                if (!attached)
2647                        free_mnt_ns(ns);
2648        }
2649        return err;
2650}
2651
2652static int do_move_mount_old(struct path *path, const char *old_name)
2653{
2654        struct path old_path;
2655        int err;
2656
2657        if (!old_name || !*old_name)
2658                return -EINVAL;
2659
2660        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2661        if (err)
2662                return err;
2663
2664        err = do_move_mount(&old_path, path);
2665        path_put(&old_path);
2666        return err;
2667}
2668
2669/*
2670 * add a mount into a namespace's mount tree
2671 */
2672static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2673{
2674        struct mountpoint *mp;
2675        struct mount *parent;
2676        int err;
2677
2678        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2679
2680        mp = lock_mount(path);
2681        if (IS_ERR(mp))
2682                return PTR_ERR(mp);
2683
2684        parent = real_mount(path->mnt);
2685        err = -EINVAL;
2686        if (unlikely(!check_mnt(parent))) {
2687                /* that's acceptable only for automounts done in private ns */
2688                if (!(mnt_flags & MNT_SHRINKABLE))
2689                        goto unlock;
2690                /* ... and for those we'd better have mountpoint still alive */
2691                if (!parent->mnt_ns)
2692                        goto unlock;
2693        }
2694
2695        /* Refuse the same filesystem on the same mount point */
2696        err = -EBUSY;
2697        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2698            path->mnt->mnt_root == path->dentry)
2699                goto unlock;
2700
2701        err = -EINVAL;
2702        if (d_is_symlink(newmnt->mnt.mnt_root))
2703                goto unlock;
2704
2705        newmnt->mnt.mnt_flags = mnt_flags;
2706        err = graft_tree(newmnt, parent, mp);
2707
2708unlock:
2709        unlock_mount(mp);
2710        return err;
2711}
2712
2713static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2714
2715/*
2716 * Create a new mount using a superblock configuration and request it
2717 * be added to the namespace tree.
2718 */
2719static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2720                           unsigned int mnt_flags)
2721{
2722        struct vfsmount *mnt;
2723        struct super_block *sb = fc->root->d_sb;
2724        int error;
2725
2726        error = security_sb_kern_mount(sb);
2727        if (!error && mount_too_revealing(sb, &mnt_flags))
2728                error = -EPERM;
2729
2730        if (unlikely(error)) {
2731                fc_drop_locked(fc);
2732                return error;
2733        }
2734
2735        up_write(&sb->s_umount);
2736
2737        mnt = vfs_create_mount(fc);
2738        if (IS_ERR(mnt))
2739                return PTR_ERR(mnt);
2740
2741        error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2742        if (error < 0)
2743                mntput(mnt);
2744        return error;
2745}
2746
2747/*
2748 * create a new mount for userspace and request it to be added into the
2749 * namespace's tree
2750 */
2751static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2752                        int mnt_flags, const char *name, void *data)
2753{
2754        struct file_system_type *type;
2755        struct fs_context *fc;
2756        const char *subtype = NULL;
2757        int err = 0;
2758
2759        if (!fstype)
2760                return -EINVAL;
2761
2762        type = get_fs_type(fstype);
2763        if (!type)
2764                return -ENODEV;
2765
2766        if (type->fs_flags & FS_HAS_SUBTYPE) {
2767                subtype = strchr(fstype, '.');
2768                if (subtype) {
2769                        subtype++;
2770                        if (!*subtype) {
2771                                put_filesystem(type);
2772                                return -EINVAL;
2773                        }
2774                } else {
2775                        subtype = "";
2776                }
2777        }
2778
2779        fc = fs_context_for_mount(type, sb_flags);
2780        put_filesystem(type);
2781        if (IS_ERR(fc))
2782                return PTR_ERR(fc);
2783
2784        if (subtype)
2785                err = vfs_parse_fs_string(fc, "subtype",
2786                                          subtype, strlen(subtype));
2787        if (!err && name)
2788                err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2789        if (!err)
2790                err = parse_monolithic_mount_data(fc, data);
2791        if (!err)
2792                err = vfs_get_tree(fc);
2793        if (!err)
2794                err = do_new_mount_fc(fc, path, mnt_flags);
2795
2796        put_fs_context(fc);
2797        return err;
2798}
2799
2800int finish_automount(struct vfsmount *m, struct path *path)
2801{
2802        struct mount *mnt = real_mount(m);
2803        int err;
2804        /* The new mount record should have at least 2 refs to prevent it being
2805         * expired before we get a chance to add it
2806         */
2807        BUG_ON(mnt_get_count(mnt) < 2);
2808
2809        if (m->mnt_sb == path->mnt->mnt_sb &&
2810            m->mnt_root == path->dentry) {
2811                err = -ELOOP;
2812                goto fail;
2813        }
2814
2815        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2816        if (!err)
2817                return 0;
2818fail:
2819        /* remove m from any expiration list it may be on */
2820        if (!list_empty(&mnt->mnt_expire)) {
2821                namespace_lock();
2822                list_del_init(&mnt->mnt_expire);
2823                namespace_unlock();
2824        }
2825        mntput(m);
2826        mntput(m);
2827        return err;
2828}
2829
2830/**
2831 * mnt_set_expiry - Put a mount on an expiration list
2832 * @mnt: The mount to list.
2833 * @expiry_list: The list to add the mount to.
2834 */
2835void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2836{
2837        namespace_lock();
2838
2839        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2840
2841        namespace_unlock();
2842}
2843EXPORT_SYMBOL(mnt_set_expiry);
2844
2845/*
2846 * process a list of expirable mountpoints with the intent of discarding any
2847 * mountpoints that aren't in use and haven't been touched since last we came
2848 * here
2849 */
2850void mark_mounts_for_expiry(struct list_head *mounts)
2851{
2852        struct mount *mnt, *next;
2853        LIST_HEAD(graveyard);
2854
2855        if (list_empty(mounts))
2856                return;
2857
2858        namespace_lock();
2859        lock_mount_hash();
2860
2861        /* extract from the expiration list every vfsmount that matches the
2862         * following criteria:
2863         * - only referenced by its parent vfsmount
2864         * - still marked for expiry (marked on the last call here; marks are
2865         *   cleared by mntput())
2866         */
2867        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2868                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2869                        propagate_mount_busy(mnt, 1))
2870                        continue;
2871                list_move(&mnt->mnt_expire, &graveyard);
2872        }
2873        while (!list_empty(&graveyard)) {
2874                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2875                touch_mnt_namespace(mnt->mnt_ns);
2876                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2877        }
2878        unlock_mount_hash();
2879        namespace_unlock();
2880}
2881
2882EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2883
2884/*
2885 * Ripoff of 'select_parent()'
2886 *
2887 * search the list of submounts for a given mountpoint, and move any
2888 * shrinkable submounts to the 'graveyard' list.
2889 */
2890static int select_submounts(struct mount *parent, struct list_head *graveyard)
2891{
2892        struct mount *this_parent = parent;
2893        struct list_head *next;
2894        int found = 0;
2895
2896repeat:
2897        next = this_parent->mnt_mounts.next;
2898resume:
2899        while (next != &this_parent->mnt_mounts) {
2900                struct list_head *tmp = next;
2901                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2902
2903                next = tmp->next;
2904                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2905                        continue;
2906                /*
2907                 * Descend a level if the d_mounts list is non-empty.
2908                 */
2909                if (!list_empty(&mnt->mnt_mounts)) {
2910                        this_parent = mnt;
2911                        goto repeat;
2912                }
2913
2914                if (!propagate_mount_busy(mnt, 1)) {
2915                        list_move_tail(&mnt->mnt_expire, graveyard);
2916                        found++;
2917                }
2918        }
2919        /*
2920         * All done at this level ... ascend and resume the search
2921         */
2922        if (this_parent != parent) {
2923                next = this_parent->mnt_child.next;
2924                this_parent = this_parent->mnt_parent;
2925                goto resume;
2926        }
2927        return found;
2928}
2929
2930/*
2931 * process a list of expirable mountpoints with the intent of discarding any
2932 * submounts of a specific parent mountpoint
2933 *
2934 * mount_lock must be held for write
2935 */
2936static void shrink_submounts(struct mount *mnt)
2937{
2938        LIST_HEAD(graveyard);
2939        struct mount *m;
2940
2941        /* extract submounts of 'mountpoint' from the expiration list */
2942        while (select_submounts(mnt, &graveyard)) {
2943                while (!list_empty(&graveyard)) {
2944                        m = list_first_entry(&graveyard, struct mount,
2945                                                mnt_expire);
2946                        touch_mnt_namespace(m->mnt_ns);
2947                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2948                }
2949        }
2950}
2951
2952/*
2953 * Some copy_from_user() implementations do not return the exact number of
2954 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2955 * Note that this function differs from copy_from_user() in that it will oops
2956 * on bad values of `to', rather than returning a short copy.
2957 */
2958static long exact_copy_from_user(void *to, const void __user * from,
2959                                 unsigned long n)
2960{
2961        char *t = to;
2962        const char __user *f = from;
2963        char c;
2964
2965        if (!access_ok(from, n))
2966                return n;
2967
2968        while (n) {
2969                if (__get_user(c, f)) {
2970                        memset(t, 0, n);
2971                        break;
2972                }
2973                *t++ = c;
2974                f++;
2975                n--;
2976        }
2977        return n;
2978}
2979
2980void *copy_mount_options(const void __user * data)
2981{
2982        int i;
2983        unsigned long size;
2984        char *copy;
2985
2986        if (!data)
2987                return NULL;
2988
2989        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2990        if (!copy)
2991                return ERR_PTR(-ENOMEM);
2992
2993        /* We only care that *some* data at the address the user
2994         * gave us is valid.  Just in case, we'll zero
2995         * the remainder of the page.
2996         */
2997        /* copy_from_user cannot cross TASK_SIZE ! */
2998        size = TASK_SIZE - (unsigned long)data;
2999        if (size > PAGE_SIZE)
3000                size = PAGE_SIZE;
3001
3002        i = size - exact_copy_from_user(copy, data, size);
3003        if (!i) {
3004                kfree(copy);
3005                return ERR_PTR(-EFAULT);
3006        }
3007        if (i != PAGE_SIZE)
3008                memset(copy + i, 0, PAGE_SIZE - i);
3009        return copy;
3010}
3011
3012char *copy_mount_string(const void __user *data)
3013{
3014        return data ? strndup_user(data, PATH_MAX) : NULL;
3015}
3016
3017/*
3018 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3019 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3020 *
3021 * data is a (void *) that can point to any structure up to
3022 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3023 * information (or be NULL).
3024 *
3025 * Pre-0.97 versions of mount() didn't have a flags word.
3026 * When the flags word was introduced its top half was required
3027 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3028 * Therefore, if this magic number is present, it carries no information
3029 * and must be discarded.
3030 */
3031long do_mount(const char *dev_name, const char __user *dir_name,
3032                const char *type_page, unsigned long flags, void *data_page)
3033{
3034        struct path path;
3035        unsigned int mnt_flags = 0, sb_flags;
3036        int retval = 0;
3037
3038        /* Discard magic */
3039        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3040                flags &= ~MS_MGC_MSK;
3041
3042        /* Basic sanity checks */
3043        if (data_page)
3044                ((char *)data_page)[PAGE_SIZE - 1] = 0;
3045
3046        if (flags & MS_NOUSER)
3047                return -EINVAL;
3048
3049        /* ... and get the mountpoint */
3050        retval = user_path(dir_name, &path);
3051        if (retval)
3052                return retval;
3053
3054        retval = security_sb_mount(dev_name, &path,
3055                                   type_page, flags, data_page);
3056        if (!retval && !may_mount())
3057                retval = -EPERM;
3058        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3059                retval = -EPERM;
3060        if (retval)
3061                goto dput_out;
3062
3063        /* Default to relatime unless overriden */
3064        if (!(flags & MS_NOATIME))
3065                mnt_flags |= MNT_RELATIME;
3066
3067        /* Separate the per-mountpoint flags */
3068        if (flags & MS_NOSUID)
3069                mnt_flags |= MNT_NOSUID;
3070        if (flags & MS_NODEV)
3071                mnt_flags |= MNT_NODEV;
3072        if (flags & MS_NOEXEC)
3073                mnt_flags |= MNT_NOEXEC;
3074        if (flags & MS_NOATIME)
3075                mnt_flags |= MNT_NOATIME;
3076        if (flags & MS_NODIRATIME)
3077                mnt_flags |= MNT_NODIRATIME;
3078        if (flags & MS_STRICTATIME)
3079                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3080        if (flags & MS_RDONLY)
3081                mnt_flags |= MNT_READONLY;
3082
3083        /* The default atime for remount is preservation */
3084        if ((flags & MS_REMOUNT) &&
3085            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3086                       MS_STRICTATIME)) == 0)) {
3087                mnt_flags &= ~MNT_ATIME_MASK;
3088                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3089        }
3090
3091        sb_flags = flags & (SB_RDONLY |
3092                            SB_SYNCHRONOUS |
3093                            SB_MANDLOCK |
3094                            SB_DIRSYNC |
3095                            SB_SILENT |
3096                            SB_POSIXACL |
3097                            SB_LAZYTIME |
3098                            SB_I_VERSION);
3099
3100        if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3101                retval = do_reconfigure_mnt(&path, mnt_flags);
3102        else if (flags & MS_REMOUNT)
3103                retval = do_remount(&path, flags, sb_flags, mnt_flags,
3104                                    data_page);
3105        else if (flags & MS_BIND)
3106                retval = do_loopback(&path, dev_name, flags & MS_REC);
3107        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3108                retval = do_change_type(&path, flags);
3109        else if (flags & MS_MOVE)
3110                retval = do_move_mount_old(&path, dev_name);
3111        else
3112                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3113                                      dev_name, data_page);
3114dput_out:
3115        path_put(&path);
3116        return retval;
3117}
3118
3119static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3120{
3121        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3122}
3123
3124static void dec_mnt_namespaces(struct ucounts *ucounts)
3125{
3126        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3127}
3128
3129static void free_mnt_ns(struct mnt_namespace *ns)
3130{
3131        if (!is_anon_ns(ns))
3132                ns_free_inum(&ns->ns);
3133        dec_mnt_namespaces(ns->ucounts);
3134        put_user_ns(ns->user_ns);
3135        kfree(ns);
3136}
3137
3138/*
3139 * Assign a sequence number so we can detect when we attempt to bind
3140 * mount a reference to an older mount namespace into the current
3141 * mount namespace, preventing reference counting loops.  A 64bit
3142 * number incrementing at 10Ghz will take 12,427 years to wrap which
3143 * is effectively never, so we can ignore the possibility.
3144 */
3145static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3146
3147static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3148{
3149        struct mnt_namespace *new_ns;
3150        struct ucounts *ucounts;
3151        int ret;
3152
3153        ucounts = inc_mnt_namespaces(user_ns);
3154        if (!ucounts)
3155                return ERR_PTR(-ENOSPC);
3156
3157        new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3158        if (!new_ns) {
3159                dec_mnt_namespaces(ucounts);
3160                return ERR_PTR(-ENOMEM);
3161        }
3162        if (!anon) {
3163                ret = ns_alloc_inum(&new_ns->ns);
3164                if (ret) {
3165                        kfree(new_ns);
3166                        dec_mnt_namespaces(ucounts);
3167                        return ERR_PTR(ret);
3168                }
3169        }
3170        new_ns->ns.ops = &mntns_operations;
3171        if (!anon)
3172                new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3173        atomic_set(&new_ns->count, 1);
3174        INIT_LIST_HEAD(&new_ns->list);
3175        init_waitqueue_head(&new_ns->poll);
3176        new_ns->user_ns = get_user_ns(user_ns);
3177        new_ns->ucounts = ucounts;
3178        return new_ns;
3179}
3180
3181__latent_entropy
3182struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3183                struct user_namespace *user_ns, struct fs_struct *new_fs)
3184{
3185        struct mnt_namespace *new_ns;
3186        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3187        struct mount *p, *q;
3188        struct mount *old;
3189        struct mount *new;
3190        int copy_flags;
3191
3192        BUG_ON(!ns);
3193
3194        if (likely(!(flags & CLONE_NEWNS))) {
3195                get_mnt_ns(ns);
3196                return ns;
3197        }
3198
3199        old = ns->root;
3200
3201        new_ns = alloc_mnt_ns(user_ns, false);
3202        if (IS_ERR(new_ns))
3203                return new_ns;
3204
3205        namespace_lock();
3206        /* First pass: copy the tree topology */
3207        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3208        if (user_ns != ns->user_ns)
3209                copy_flags |= CL_SHARED_TO_SLAVE;
3210        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3211        if (IS_ERR(new)) {
3212                namespace_unlock();
3213                free_mnt_ns(new_ns);
3214                return ERR_CAST(new);
3215        }
3216        if (user_ns != ns->user_ns) {
3217                lock_mount_hash();
3218                lock_mnt_tree(new);
3219                unlock_mount_hash();
3220        }
3221        new_ns->root = new;
3222        list_add_tail(&new_ns->list, &new->mnt_list);
3223
3224        /*
3225         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3226         * as belonging to new namespace.  We have already acquired a private
3227         * fs_struct, so tsk->fs->lock is not needed.
3228         */
3229        p = old;
3230        q = new;
3231        while (p) {
3232                q->mnt_ns = new_ns;
3233                new_ns->mounts++;
3234                if (new_fs) {
3235                        if (&p->mnt == new_fs->root.mnt) {
3236                                new_fs->root.mnt = mntget(&q->mnt);
3237                                rootmnt = &p->mnt;
3238                        }
3239                        if (&p->mnt == new_fs->pwd.mnt) {
3240                                new_fs->pwd.mnt = mntget(&q->mnt);
3241                                pwdmnt = &p->mnt;
3242                        }
3243                }
3244                p = next_mnt(p, old);
3245                q = next_mnt(q, new);
3246                if (!q)
3247                        break;
3248                while (p->mnt.mnt_root != q->mnt.mnt_root)
3249                        p = next_mnt(p, old);
3250        }
3251        namespace_unlock();
3252
3253        if (rootmnt)
3254                mntput(rootmnt);
3255        if (pwdmnt)
3256                mntput(pwdmnt);
3257
3258        return new_ns;
3259}
3260
3261struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3262{
3263        struct mount *mnt = real_mount(m);
3264        struct mnt_namespace *ns;
3265        struct super_block *s;
3266        struct path path;
3267        int err;
3268
3269        ns = alloc_mnt_ns(&init_user_ns, true);
3270        if (IS_ERR(ns)) {
3271                mntput(m);
3272                return ERR_CAST(ns);
3273        }
3274        mnt->mnt_ns = ns;
3275        ns->root = mnt;
3276        ns->mounts++;
3277        list_add(&mnt->mnt_list, &ns->list);
3278
3279        err = vfs_path_lookup(m->mnt_root, m,
3280                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3281
3282        put_mnt_ns(ns);
3283
3284        if (err)
3285                return ERR_PTR(err);
3286
3287        /* trade a vfsmount reference for active sb one */
3288        s = path.mnt->mnt_sb;
3289        atomic_inc(&s->s_active);
3290        mntput(path.mnt);
3291        /* lock the sucker */
3292        down_write(&s->s_umount);
3293        /* ... and return the root of (sub)tree on it */
3294        return path.dentry;
3295}
3296EXPORT_SYMBOL(mount_subtree);
3297
3298int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3299               unsigned long flags, void __user *data)
3300{
3301        int ret;
3302        char *kernel_type;
3303        char *kernel_dev;
3304        void *options;
3305
3306        kernel_type = copy_mount_string(type);
3307        ret = PTR_ERR(kernel_type);
3308        if (IS_ERR(kernel_type))
3309                goto out_type;
3310
3311        kernel_dev = copy_mount_string(dev_name);
3312        ret = PTR_ERR(kernel_dev);
3313        if (IS_ERR(kernel_dev))
3314                goto out_dev;
3315
3316        options = copy_mount_options(data);
3317        ret = PTR_ERR(options);
3318        if (IS_ERR(options))
3319                goto out_data;
3320
3321        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3322
3323        kfree(options);
3324out_data:
3325        kfree(kernel_dev);
3326out_dev:
3327        kfree(kernel_type);
3328out_type:
3329        return ret;
3330}
3331
3332SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333                char __user *, type, unsigned long, flags, void __user *, data)
3334{
3335        return ksys_mount(dev_name, dir_name, type, flags, data);
3336}
3337
3338/*
3339 * Create a kernel mount representation for a new, prepared superblock
3340 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3341 */
3342SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3343                unsigned int, attr_flags)
3344{
3345        struct mnt_namespace *ns;
3346        struct fs_context *fc;
3347        struct file *file;
3348        struct path newmount;
3349        struct mount *mnt;
3350        struct fd f;
3351        unsigned int mnt_flags = 0;
3352        long ret;
3353
3354        if (!may_mount())
3355                return -EPERM;
3356
3357        if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3358                return -EINVAL;
3359
3360        if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3361                           MOUNT_ATTR_NOSUID |
3362                           MOUNT_ATTR_NODEV |
3363                           MOUNT_ATTR_NOEXEC |
3364                           MOUNT_ATTR__ATIME |
3365                           MOUNT_ATTR_NODIRATIME))
3366                return -EINVAL;
3367
3368        if (attr_flags & MOUNT_ATTR_RDONLY)
3369                mnt_flags |= MNT_READONLY;
3370        if (attr_flags & MOUNT_ATTR_NOSUID)
3371                mnt_flags |= MNT_NOSUID;
3372        if (attr_flags & MOUNT_ATTR_NODEV)
3373                mnt_flags |= MNT_NODEV;
3374        if (attr_flags & MOUNT_ATTR_NOEXEC)
3375                mnt_flags |= MNT_NOEXEC;
3376        if (attr_flags & MOUNT_ATTR_NODIRATIME)
3377                mnt_flags |= MNT_NODIRATIME;
3378
3379        switch (attr_flags & MOUNT_ATTR__ATIME) {
3380        case MOUNT_ATTR_STRICTATIME:
3381                break;
3382        case MOUNT_ATTR_NOATIME:
3383                mnt_flags |= MNT_NOATIME;
3384                break;
3385        case MOUNT_ATTR_RELATIME:
3386                mnt_flags |= MNT_RELATIME;
3387                break;
3388        default:
3389                return -EINVAL;
3390        }
3391
3392        f = fdget(fs_fd);
3393        if (!f.file)
3394                return -EBADF;
3395
3396        ret = -EINVAL;
3397        if (f.file->f_op != &fscontext_fops)
3398                goto err_fsfd;
3399
3400        fc = f.file->private_data;
3401
3402        ret = mutex_lock_interruptible(&fc->uapi_mutex);
3403        if (ret < 0)
3404                goto err_fsfd;
3405
3406        /* There must be a valid superblock or we can't mount it */
3407        ret = -EINVAL;
3408        if (!fc->root)
3409                goto err_unlock;
3410
3411        ret = -EPERM;
3412        if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3413                pr_warn("VFS: Mount too revealing\n");
3414                goto err_unlock;
3415        }
3416
3417        ret = -EBUSY;
3418        if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3419                goto err_unlock;
3420
3421        ret = -EPERM;
3422        if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3423                goto err_unlock;
3424
3425        newmount.mnt = vfs_create_mount(fc);
3426        if (IS_ERR(newmount.mnt)) {
3427                ret = PTR_ERR(newmount.mnt);
3428                goto err_unlock;
3429        }
3430        newmount.dentry = dget(fc->root);
3431        newmount.mnt->mnt_flags = mnt_flags;
3432
3433        /* We've done the mount bit - now move the file context into more or
3434         * less the same state as if we'd done an fspick().  We don't want to
3435         * do any memory allocation or anything like that at this point as we
3436         * don't want to have to handle any errors incurred.
3437         */
3438        vfs_clean_context(fc);
3439
3440        ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3441        if (IS_ERR(ns)) {
3442                ret = PTR_ERR(ns);
3443                goto err_path;
3444        }
3445        mnt = real_mount(newmount.mnt);
3446        mnt->mnt_ns = ns;
3447        ns->root = mnt;
3448        ns->mounts = 1;
3449        list_add(&mnt->mnt_list, &ns->list);
3450        mntget(newmount.mnt);
3451
3452        /* Attach to an apparent O_PATH fd with a note that we need to unmount
3453         * it, not just simply put it.
3454         */
3455        file = dentry_open(&newmount, O_PATH, fc->cred);
3456        if (IS_ERR(file)) {
3457                dissolve_on_fput(newmount.mnt);
3458                ret = PTR_ERR(file);
3459                goto err_path;
3460        }
3461        file->f_mode |= FMODE_NEED_UNMOUNT;
3462
3463        ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3464        if (ret >= 0)
3465                fd_install(ret, file);
3466        else
3467                fput(file);
3468
3469err_path:
3470        path_put(&newmount);
3471err_unlock:
3472        mutex_unlock(&fc->uapi_mutex);
3473err_fsfd:
3474        fdput(f);
3475        return ret;
3476}
3477
3478/*
3479 * Move a mount from one place to another.  In combination with
3480 * fsopen()/fsmount() this is used to install a new mount and in combination
3481 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3482 * a mount subtree.
3483 *
3484 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3485 */
3486SYSCALL_DEFINE5(move_mount,
3487                int, from_dfd, const char *, from_pathname,
3488                int, to_dfd, const char *, to_pathname,
3489                unsigned int, flags)
3490{
3491        struct path from_path, to_path;
3492        unsigned int lflags;
3493        int ret = 0;
3494
3495        if (!may_mount())
3496                return -EPERM;
3497
3498        if (flags & ~MOVE_MOUNT__MASK)
3499                return -EINVAL;
3500
3501        /* If someone gives a pathname, they aren't permitted to move
3502         * from an fd that requires unmount as we can't get at the flag
3503         * to clear it afterwards.
3504         */
3505        lflags = 0;
3506        if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3507        if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3508        if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3509
3510        ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3511        if (ret < 0)
3512                return ret;
3513
3514        lflags = 0;
3515        if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3516        if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3517        if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3518
3519        ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3520        if (ret < 0)
3521                goto out_from;
3522
3523        ret = security_move_mount(&from_path, &to_path);
3524        if (ret < 0)
3525                goto out_to;
3526
3527        ret = do_move_mount(&from_path, &to_path);
3528
3529out_to:
3530        path_put(&to_path);
3531out_from:
3532        path_put(&from_path);
3533        return ret;
3534}
3535
3536/*
3537 * Return true if path is reachable from root
3538 *
3539 * namespace_sem or mount_lock is held
3540 */
3541bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3542                         const struct path *root)
3543{
3544        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3545                dentry = mnt->mnt_mountpoint;
3546                mnt = mnt->mnt_parent;
3547        }
3548        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3549}
3550
3551bool path_is_under(const struct path *path1, const struct path *path2)
3552{
3553        bool res;
3554        read_seqlock_excl(&mount_lock);
3555        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3556        read_sequnlock_excl(&mount_lock);
3557        return res;
3558}
3559EXPORT_SYMBOL(path_is_under);
3560
3561/*
3562 * pivot_root Semantics:
3563 * Moves the root file system of the current process to the directory put_old,
3564 * makes new_root as the new root file system of the current process, and sets
3565 * root/cwd of all processes which had them on the current root to new_root.
3566 *
3567 * Restrictions:
3568 * The new_root and put_old must be directories, and  must not be on the
3569 * same file  system as the current process root. The put_old  must  be
3570 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3571 * pointed to by put_old must yield the same directory as new_root. No other
3572 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3573 *
3574 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3575 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3576 * in this situation.
3577 *
3578 * Notes:
3579 *  - we don't move root/cwd if they are not at the root (reason: if something
3580 *    cared enough to change them, it's probably wrong to force them elsewhere)
3581 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3582 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3583 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3584 *    first.
3585 */
3586SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3587                const char __user *, put_old)
3588{
3589        struct path new, old, parent_path, root_parent, root;
3590        struct mount *new_mnt, *root_mnt, *old_mnt;
3591        struct mountpoint *old_mp, *root_mp;
3592        int error;
3593
3594        if (!may_mount())
3595                return -EPERM;
3596
3597        error = user_path_dir(new_root, &new);
3598        if (error)
3599                goto out0;
3600
3601        error = user_path_dir(put_old, &old);
3602        if (error)
3603                goto out1;
3604
3605        error = security_sb_pivotroot(&old, &new);
3606        if (error)
3607                goto out2;
3608
3609        get_fs_root(current->fs, &root);
3610        old_mp = lock_mount(&old);
3611        error = PTR_ERR(old_mp);
3612        if (IS_ERR(old_mp))
3613                goto out3;
3614
3615        error = -EINVAL;
3616        new_mnt = real_mount(new.mnt);
3617        root_mnt = real_mount(root.mnt);
3618        old_mnt = real_mount(old.mnt);
3619        if (IS_MNT_SHARED(old_mnt) ||
3620                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3621                IS_MNT_SHARED(root_mnt->mnt_parent))
3622                goto out4;
3623        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3624                goto out4;
3625        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3626                goto out4;
3627        error = -ENOENT;
3628        if (d_unlinked(new.dentry))
3629                goto out4;
3630        error = -EBUSY;
3631        if (new_mnt == root_mnt || old_mnt == root_mnt)
3632                goto out4; /* loop, on the same file system  */
3633        error = -EINVAL;
3634        if (root.mnt->mnt_root != root.dentry)
3635                goto out4; /* not a mountpoint */
3636        if (!mnt_has_parent(root_mnt))
3637                goto out4; /* not attached */
3638        root_mp = root_mnt->mnt_mp;
3639        if (new.mnt->mnt_root != new.dentry)
3640                goto out4; /* not a mountpoint */
3641        if (!mnt_has_parent(new_mnt))
3642                goto out4; /* not attached */
3643        /* make sure we can reach put_old from new_root */
3644        if (!is_path_reachable(old_mnt, old.dentry, &new))
3645                goto out4;
3646        /* make certain new is below the root */
3647        if (!is_path_reachable(new_mnt, new.dentry, &root))
3648                goto out4;
3649        root_mp->m_count++; /* pin it so it won't go away */
3650        lock_mount_hash();
3651        detach_mnt(new_mnt, &parent_path);
3652        detach_mnt(root_mnt, &root_parent);
3653        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3654                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3655                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3656        }
3657        /* mount old root on put_old */
3658        attach_mnt(root_mnt, old_mnt, old_mp);
3659        /* mount new_root on / */
3660        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3661        touch_mnt_namespace(current->nsproxy->mnt_ns);
3662        /* A moved mount should not expire automatically */
3663        list_del_init(&new_mnt->mnt_expire);
3664        put_mountpoint(root_mp);
3665        unlock_mount_hash();
3666        chroot_fs_refs(&root, &new);
3667        error = 0;
3668out4:
3669        unlock_mount(old_mp);
3670        if (!error) {
3671                path_put(&root_parent);
3672                path_put(&parent_path);
3673        }
3674out3:
3675        path_put(&root);
3676out2:
3677        path_put(&old);
3678out1:
3679        path_put(&new);
3680out0:
3681        return error;
3682}
3683
3684static void __init init_mount_tree(void)
3685{
3686        struct vfsmount *mnt;
3687        struct mount *m;
3688        struct mnt_namespace *ns;
3689        struct path root;
3690        struct file_system_type *type;
3691
3692        type = get_fs_type("rootfs");
3693        if (!type)
3694                panic("Can't find rootfs type");
3695        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3696        put_filesystem(type);
3697        if (IS_ERR(mnt))
3698                panic("Can't create rootfs");
3699
3700        ns = alloc_mnt_ns(&init_user_ns, false);
3701        if (IS_ERR(ns))
3702                panic("Can't allocate initial namespace");
3703        m = real_mount(mnt);
3704        m->mnt_ns = ns;
3705        ns->root = m;
3706        ns->mounts = 1;
3707        list_add(&m->mnt_list, &ns->list);
3708        init_task.nsproxy->mnt_ns = ns;
3709        get_mnt_ns(ns);
3710
3711        root.mnt = mnt;
3712        root.dentry = mnt->mnt_root;
3713        mnt->mnt_flags |= MNT_LOCKED;
3714
3715        set_fs_pwd(current->fs, &root);
3716        set_fs_root(current->fs, &root);
3717}
3718
3719void __init mnt_init(void)
3720{
3721        int err;
3722
3723        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3724                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3725
3726        mount_hashtable = alloc_large_system_hash("Mount-cache",
3727                                sizeof(struct hlist_head),
3728                                mhash_entries, 19,
3729                                HASH_ZERO,
3730                                &m_hash_shift, &m_hash_mask, 0, 0);
3731        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3732                                sizeof(struct hlist_head),
3733                                mphash_entries, 19,
3734                                HASH_ZERO,
3735                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3736
3737        if (!mount_hashtable || !mountpoint_hashtable)
3738                panic("Failed to allocate mount hash table\n");
3739
3740        kernfs_init();
3741
3742        err = sysfs_init();
3743        if (err)
3744                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3745                        __func__, err);
3746        fs_kobj = kobject_create_and_add("fs", NULL);
3747        if (!fs_kobj)
3748                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3749        init_rootfs();
3750        init_mount_tree();
3751}
3752
3753void put_mnt_ns(struct mnt_namespace *ns)
3754{
3755        if (!atomic_dec_and_test(&ns->count))
3756                return;
3757        drop_collected_mounts(&ns->root->mnt);
3758        free_mnt_ns(ns);
3759}
3760
3761struct vfsmount *kern_mount(struct file_system_type *type)
3762{
3763        struct vfsmount *mnt;
3764        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3765        if (!IS_ERR(mnt)) {
3766                /*
3767                 * it is a longterm mount, don't release mnt until
3768                 * we unmount before file sys is unregistered
3769                */
3770                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3771        }
3772        return mnt;
3773}
3774EXPORT_SYMBOL_GPL(kern_mount);
3775
3776void kern_unmount(struct vfsmount *mnt)
3777{
3778        /* release long term mount so mount point can be released */
3779        if (!IS_ERR_OR_NULL(mnt)) {
3780                real_mount(mnt)->mnt_ns = NULL;
3781                synchronize_rcu();      /* yecchhh... */
3782                mntput(mnt);
3783        }
3784}
3785EXPORT_SYMBOL(kern_unmount);
3786
3787bool our_mnt(struct vfsmount *mnt)
3788{
3789        return check_mnt(real_mount(mnt));
3790}
3791
3792bool current_chrooted(void)
3793{
3794        /* Does the current process have a non-standard root */
3795        struct path ns_root;
3796        struct path fs_root;
3797        bool chrooted;
3798
3799        /* Find the namespace root */
3800        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3801        ns_root.dentry = ns_root.mnt->mnt_root;
3802        path_get(&ns_root);
3803        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3804                ;
3805
3806        get_fs_root(current->fs, &fs_root);
3807
3808        chrooted = !path_equal(&fs_root, &ns_root);
3809
3810        path_put(&fs_root);
3811        path_put(&ns_root);
3812
3813        return chrooted;
3814}
3815
3816static bool mnt_already_visible(struct mnt_namespace *ns,
3817                                const struct super_block *sb,
3818                                int *new_mnt_flags)
3819{
3820        int new_flags = *new_mnt_flags;
3821        struct mount *mnt;
3822        bool visible = false;
3823
3824        down_read(&namespace_sem);
3825        list_for_each_entry(mnt, &ns->list, mnt_list) {
3826                struct mount *child;
3827                int mnt_flags;
3828
3829                if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3830                        continue;
3831
3832                /* This mount is not fully visible if it's root directory
3833                 * is not the root directory of the filesystem.
3834                 */
3835                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3836                        continue;
3837
3838                /* A local view of the mount flags */
3839                mnt_flags = mnt->mnt.mnt_flags;
3840
3841                /* Don't miss readonly hidden in the superblock flags */
3842                if (sb_rdonly(mnt->mnt.mnt_sb))
3843                        mnt_flags |= MNT_LOCK_READONLY;
3844
3845                /* Verify the mount flags are equal to or more permissive
3846                 * than the proposed new mount.
3847                 */
3848                if ((mnt_flags & MNT_LOCK_READONLY) &&
3849                    !(new_flags & MNT_READONLY))
3850                        continue;
3851                if ((mnt_flags & MNT_LOCK_ATIME) &&
3852                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3853                        continue;
3854
3855                /* This mount is not fully visible if there are any
3856                 * locked child mounts that cover anything except for
3857                 * empty directories.
3858                 */
3859                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3860                        struct inode *inode = child->mnt_mountpoint->d_inode;
3861                        /* Only worry about locked mounts */
3862                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3863                                continue;
3864                        /* Is the directory permanetly empty? */
3865                        if (!is_empty_dir_inode(inode))
3866                                goto next;
3867                }
3868                /* Preserve the locked attributes */
3869                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3870                                               MNT_LOCK_ATIME);
3871                visible = true;
3872                goto found;
3873        next:   ;
3874        }
3875found:
3876        up_read(&namespace_sem);
3877        return visible;
3878}
3879
3880static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3881{
3882        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3883        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3884        unsigned long s_iflags;
3885
3886        if (ns->user_ns == &init_user_ns)
3887                return false;
3888
3889        /* Can this filesystem be too revealing? */
3890        s_iflags = sb->s_iflags;
3891        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3892                return false;
3893
3894        if ((s_iflags & required_iflags) != required_iflags) {
3895                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3896                          required_iflags);
3897                return true;
3898        }
3899
3900        return !mnt_already_visible(ns, sb, new_mnt_flags);
3901}
3902
3903bool mnt_may_suid(struct vfsmount *mnt)
3904{
3905        /*
3906         * Foreign mounts (accessed via fchdir or through /proc
3907         * symlinks) are always treated as if they are nosuid.  This
3908         * prevents namespaces from trusting potentially unsafe
3909         * suid/sgid bits, file caps, or security labels that originate
3910         * in other namespaces.
3911         */
3912        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3913               current_in_userns(mnt->mnt_sb->s_user_ns);
3914}
3915
3916static struct ns_common *mntns_get(struct task_struct *task)
3917{
3918        struct ns_common *ns = NULL;
3919        struct nsproxy *nsproxy;
3920
3921        task_lock(task);
3922        nsproxy = task->nsproxy;
3923        if (nsproxy) {
3924                ns = &nsproxy->mnt_ns->ns;
3925                get_mnt_ns(to_mnt_ns(ns));
3926        }
3927        task_unlock(task);
3928
3929        return ns;
3930}
3931
3932static void mntns_put(struct ns_common *ns)
3933{
3934        put_mnt_ns(to_mnt_ns(ns));
3935}
3936
3937static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3938{
3939        struct fs_struct *fs = current->fs;
3940        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3941        struct path root;
3942        int err;
3943
3944        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3945            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3946            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3947                return -EPERM;
3948
3949        if (is_anon_ns(mnt_ns))
3950                return -EINVAL;
3951
3952        if (fs->users != 1)
3953                return -EINVAL;
3954
3955        get_mnt_ns(mnt_ns);
3956        old_mnt_ns = nsproxy->mnt_ns;
3957        nsproxy->mnt_ns = mnt_ns;
3958
3959        /* Find the root */
3960        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3961                                "/", LOOKUP_DOWN, &root);
3962        if (err) {
3963                /* revert to old namespace */
3964                nsproxy->mnt_ns = old_mnt_ns;
3965                put_mnt_ns(mnt_ns);
3966                return err;
3967        }
3968
3969        put_mnt_ns(old_mnt_ns);
3970
3971        /* Update the pwd and root */
3972        set_fs_pwd(fs, &root);
3973        set_fs_root(fs, &root);
3974
3975        path_put(&root);
3976        return 0;
3977}
3978
3979static struct user_namespace *mntns_owner(struct ns_common *ns)
3980{
3981        return to_mnt_ns(ns)->user_ns;
3982}
3983
3984const struct proc_ns_operations mntns_operations = {
3985        .name           = "mnt",
3986        .type           = CLONE_NEWNS,
3987        .get            = mntns_get,
3988        .put            = mntns_put,
3989        .install        = mntns_install,
3990        .owner          = mntns_owner,
3991};
3992