linux/fs/proc/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <trace/events/oom.h>
  98#include "internal.h"
  99#include "fd.h"
 100
 101#include "../../lib/kstrtox.h"
 102
 103/* NOTE:
 104 *      Implementing inode permission operations in /proc is almost
 105 *      certainly an error.  Permission checks need to happen during
 106 *      each system call not at open time.  The reason is that most of
 107 *      what we wish to check for permissions in /proc varies at runtime.
 108 *
 109 *      The classic example of a problem is opening file descriptors
 110 *      in /proc for a task before it execs a suid executable.
 111 */
 112
 113static u8 nlink_tid __ro_after_init;
 114static u8 nlink_tgid __ro_after_init;
 115
 116struct pid_entry {
 117        const char *name;
 118        unsigned int len;
 119        umode_t mode;
 120        const struct inode_operations *iop;
 121        const struct file_operations *fop;
 122        union proc_op op;
 123};
 124
 125#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 126        .name = (NAME),                                 \
 127        .len  = sizeof(NAME) - 1,                       \
 128        .mode = MODE,                                   \
 129        .iop  = IOP,                                    \
 130        .fop  = FOP,                                    \
 131        .op   = OP,                                     \
 132}
 133
 134#define DIR(NAME, MODE, iops, fops)     \
 135        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 136#define LNK(NAME, get_link)                                     \
 137        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 138                &proc_pid_link_inode_operations, NULL,          \
 139                { .proc_get_link = get_link } )
 140#define REG(NAME, MODE, fops)                           \
 141        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 142#define ONE(NAME, MODE, show)                           \
 143        NOD(NAME, (S_IFREG|(MODE)),                     \
 144                NULL, &proc_single_file_operations,     \
 145                { .proc_show = show } )
 146#define ATTR(LSM, NAME, MODE)                           \
 147        NOD(NAME, (S_IFREG|(MODE)),                     \
 148                NULL, &proc_pid_attr_operations,        \
 149                { .lsm = LSM })
 150
 151/*
 152 * Count the number of hardlinks for the pid_entry table, excluding the .
 153 * and .. links.
 154 */
 155static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 156        unsigned int n)
 157{
 158        unsigned int i;
 159        unsigned int count;
 160
 161        count = 2;
 162        for (i = 0; i < n; ++i) {
 163                if (S_ISDIR(entries[i].mode))
 164                        ++count;
 165        }
 166
 167        return count;
 168}
 169
 170static int get_task_root(struct task_struct *task, struct path *root)
 171{
 172        int result = -ENOENT;
 173
 174        task_lock(task);
 175        if (task->fs) {
 176                get_fs_root(task->fs, root);
 177                result = 0;
 178        }
 179        task_unlock(task);
 180        return result;
 181}
 182
 183static int proc_cwd_link(struct dentry *dentry, struct path *path)
 184{
 185        struct task_struct *task = get_proc_task(d_inode(dentry));
 186        int result = -ENOENT;
 187
 188        if (task) {
 189                task_lock(task);
 190                if (task->fs) {
 191                        get_fs_pwd(task->fs, path);
 192                        result = 0;
 193                }
 194                task_unlock(task);
 195                put_task_struct(task);
 196        }
 197        return result;
 198}
 199
 200static int proc_root_link(struct dentry *dentry, struct path *path)
 201{
 202        struct task_struct *task = get_proc_task(d_inode(dentry));
 203        int result = -ENOENT;
 204
 205        if (task) {
 206                result = get_task_root(task, path);
 207                put_task_struct(task);
 208        }
 209        return result;
 210}
 211
 212static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 213                              size_t count, loff_t *ppos)
 214{
 215        unsigned long arg_start, arg_end, env_start, env_end;
 216        unsigned long pos, len;
 217        char *page;
 218
 219        /* Check if process spawned far enough to have cmdline. */
 220        if (!mm->env_end)
 221                return 0;
 222
 223        spin_lock(&mm->arg_lock);
 224        arg_start = mm->arg_start;
 225        arg_end = mm->arg_end;
 226        env_start = mm->env_start;
 227        env_end = mm->env_end;
 228        spin_unlock(&mm->arg_lock);
 229
 230        if (arg_start >= arg_end)
 231                return 0;
 232
 233        /*
 234         * We have traditionally allowed the user to re-write
 235         * the argument strings and overflow the end result
 236         * into the environment section. But only do that if
 237         * the environment area is contiguous to the arguments.
 238         */
 239        if (env_start != arg_end || env_start >= env_end)
 240                env_start = env_end = arg_end;
 241
 242        /* .. and limit it to a maximum of one page of slop */
 243        if (env_end >= arg_end + PAGE_SIZE)
 244                env_end = arg_end + PAGE_SIZE - 1;
 245
 246        /* We're not going to care if "*ppos" has high bits set */
 247        pos = arg_start + *ppos;
 248
 249        /* .. but we do check the result is in the proper range */
 250        if (pos < arg_start || pos >= env_end)
 251                return 0;
 252
 253        /* .. and we never go past env_end */
 254        if (env_end - pos < count)
 255                count = env_end - pos;
 256
 257        page = (char *)__get_free_page(GFP_KERNEL);
 258        if (!page)
 259                return -ENOMEM;
 260
 261        len = 0;
 262        while (count) {
 263                int got;
 264                size_t size = min_t(size_t, PAGE_SIZE, count);
 265                long offset;
 266
 267                /*
 268                 * Are we already starting past the official end?
 269                 * We always include the last byte that is *supposed*
 270                 * to be NUL
 271                 */
 272                offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
 273
 274                got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
 275                if (got <= offset)
 276                        break;
 277                got -= offset;
 278
 279                /* Don't walk past a NUL character once you hit arg_end */
 280                if (pos + got >= arg_end) {
 281                        int n = 0;
 282
 283                        /*
 284                         * If we started before 'arg_end' but ended up
 285                         * at or after it, we start the NUL character
 286                         * check at arg_end-1 (where we expect the normal
 287                         * EOF to be).
 288                         *
 289                         * NOTE! This is smaller than 'got', because
 290                         * pos + got >= arg_end
 291                         */
 292                        if (pos < arg_end)
 293                                n = arg_end - pos - 1;
 294
 295                        /* Cut off at first NUL after 'n' */
 296                        got = n + strnlen(page+n, offset+got-n);
 297                        if (got < offset)
 298                                break;
 299                        got -= offset;
 300
 301                        /* Include the NUL if it existed */
 302                        if (got < size)
 303                                got++;
 304                }
 305
 306                got -= copy_to_user(buf, page+offset, got);
 307                if (unlikely(!got)) {
 308                        if (!len)
 309                                len = -EFAULT;
 310                        break;
 311                }
 312                pos += got;
 313                buf += got;
 314                len += got;
 315                count -= got;
 316        }
 317
 318        free_page((unsigned long)page);
 319        return len;
 320}
 321
 322static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 323                                size_t count, loff_t *pos)
 324{
 325        struct mm_struct *mm;
 326        ssize_t ret;
 327
 328        mm = get_task_mm(tsk);
 329        if (!mm)
 330                return 0;
 331
 332        ret = get_mm_cmdline(mm, buf, count, pos);
 333        mmput(mm);
 334        return ret;
 335}
 336
 337static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 338                                     size_t count, loff_t *pos)
 339{
 340        struct task_struct *tsk;
 341        ssize_t ret;
 342
 343        BUG_ON(*pos < 0);
 344
 345        tsk = get_proc_task(file_inode(file));
 346        if (!tsk)
 347                return -ESRCH;
 348        ret = get_task_cmdline(tsk, buf, count, pos);
 349        put_task_struct(tsk);
 350        if (ret > 0)
 351                *pos += ret;
 352        return ret;
 353}
 354
 355static const struct file_operations proc_pid_cmdline_ops = {
 356        .read   = proc_pid_cmdline_read,
 357        .llseek = generic_file_llseek,
 358};
 359
 360#ifdef CONFIG_KALLSYMS
 361/*
 362 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 363 * Returns the resolved symbol.  If that fails, simply return the address.
 364 */
 365static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 366                          struct pid *pid, struct task_struct *task)
 367{
 368        unsigned long wchan;
 369        char symname[KSYM_NAME_LEN];
 370
 371        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 372                goto print0;
 373
 374        wchan = get_wchan(task);
 375        if (wchan && !lookup_symbol_name(wchan, symname)) {
 376                seq_puts(m, symname);
 377                return 0;
 378        }
 379
 380print0:
 381        seq_putc(m, '0');
 382        return 0;
 383}
 384#endif /* CONFIG_KALLSYMS */
 385
 386static int lock_trace(struct task_struct *task)
 387{
 388        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 389        if (err)
 390                return err;
 391        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 392                mutex_unlock(&task->signal->cred_guard_mutex);
 393                return -EPERM;
 394        }
 395        return 0;
 396}
 397
 398static void unlock_trace(struct task_struct *task)
 399{
 400        mutex_unlock(&task->signal->cred_guard_mutex);
 401}
 402
 403#ifdef CONFIG_STACKTRACE
 404
 405#define MAX_STACK_TRACE_DEPTH   64
 406
 407static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 408                          struct pid *pid, struct task_struct *task)
 409{
 410        unsigned long *entries;
 411        int err;
 412
 413        /*
 414         * The ability to racily run the kernel stack unwinder on a running task
 415         * and then observe the unwinder output is scary; while it is useful for
 416         * debugging kernel issues, it can also allow an attacker to leak kernel
 417         * stack contents.
 418         * Doing this in a manner that is at least safe from races would require
 419         * some work to ensure that the remote task can not be scheduled; and
 420         * even then, this would still expose the unwinder as local attack
 421         * surface.
 422         * Therefore, this interface is restricted to root.
 423         */
 424        if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 425                return -EACCES;
 426
 427        entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 428                                GFP_KERNEL);
 429        if (!entries)
 430                return -ENOMEM;
 431
 432        err = lock_trace(task);
 433        if (!err) {
 434                unsigned int i, nr_entries;
 435
 436                nr_entries = stack_trace_save_tsk(task, entries,
 437                                                  MAX_STACK_TRACE_DEPTH, 0);
 438
 439                for (i = 0; i < nr_entries; i++) {
 440                        seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 441                }
 442
 443                unlock_trace(task);
 444        }
 445        kfree(entries);
 446
 447        return err;
 448}
 449#endif
 450
 451#ifdef CONFIG_SCHED_INFO
 452/*
 453 * Provides /proc/PID/schedstat
 454 */
 455static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 456                              struct pid *pid, struct task_struct *task)
 457{
 458        if (unlikely(!sched_info_on()))
 459                seq_puts(m, "0 0 0\n");
 460        else
 461                seq_printf(m, "%llu %llu %lu\n",
 462                   (unsigned long long)task->se.sum_exec_runtime,
 463                   (unsigned long long)task->sched_info.run_delay,
 464                   task->sched_info.pcount);
 465
 466        return 0;
 467}
 468#endif
 469
 470#ifdef CONFIG_LATENCYTOP
 471static int lstats_show_proc(struct seq_file *m, void *v)
 472{
 473        int i;
 474        struct inode *inode = m->private;
 475        struct task_struct *task = get_proc_task(inode);
 476
 477        if (!task)
 478                return -ESRCH;
 479        seq_puts(m, "Latency Top version : v0.1\n");
 480        for (i = 0; i < LT_SAVECOUNT; i++) {
 481                struct latency_record *lr = &task->latency_record[i];
 482                if (lr->backtrace[0]) {
 483                        int q;
 484                        seq_printf(m, "%i %li %li",
 485                                   lr->count, lr->time, lr->max);
 486                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 487                                unsigned long bt = lr->backtrace[q];
 488
 489                                if (!bt)
 490                                        break;
 491                                seq_printf(m, " %ps", (void *)bt);
 492                        }
 493                        seq_putc(m, '\n');
 494                }
 495
 496        }
 497        put_task_struct(task);
 498        return 0;
 499}
 500
 501static int lstats_open(struct inode *inode, struct file *file)
 502{
 503        return single_open(file, lstats_show_proc, inode);
 504}
 505
 506static ssize_t lstats_write(struct file *file, const char __user *buf,
 507                            size_t count, loff_t *offs)
 508{
 509        struct task_struct *task = get_proc_task(file_inode(file));
 510
 511        if (!task)
 512                return -ESRCH;
 513        clear_tsk_latency_tracing(task);
 514        put_task_struct(task);
 515
 516        return count;
 517}
 518
 519static const struct file_operations proc_lstats_operations = {
 520        .open           = lstats_open,
 521        .read           = seq_read,
 522        .write          = lstats_write,
 523        .llseek         = seq_lseek,
 524        .release        = single_release,
 525};
 526
 527#endif
 528
 529static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 530                          struct pid *pid, struct task_struct *task)
 531{
 532        unsigned long totalpages = totalram_pages() + total_swap_pages;
 533        unsigned long points = 0;
 534
 535        points = oom_badness(task, NULL, NULL, totalpages) *
 536                                        1000 / totalpages;
 537        seq_printf(m, "%lu\n", points);
 538
 539        return 0;
 540}
 541
 542struct limit_names {
 543        const char *name;
 544        const char *unit;
 545};
 546
 547static const struct limit_names lnames[RLIM_NLIMITS] = {
 548        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 549        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 550        [RLIMIT_DATA] = {"Max data size", "bytes"},
 551        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 552        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 553        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 554        [RLIMIT_NPROC] = {"Max processes", "processes"},
 555        [RLIMIT_NOFILE] = {"Max open files", "files"},
 556        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 557        [RLIMIT_AS] = {"Max address space", "bytes"},
 558        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 559        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 560        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 561        [RLIMIT_NICE] = {"Max nice priority", NULL},
 562        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 563        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 564};
 565
 566/* Display limits for a process */
 567static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 568                           struct pid *pid, struct task_struct *task)
 569{
 570        unsigned int i;
 571        unsigned long flags;
 572
 573        struct rlimit rlim[RLIM_NLIMITS];
 574
 575        if (!lock_task_sighand(task, &flags))
 576                return 0;
 577        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 578        unlock_task_sighand(task, &flags);
 579
 580        /*
 581         * print the file header
 582         */
 583        seq_puts(m, "Limit                     "
 584                "Soft Limit           "
 585                "Hard Limit           "
 586                "Units     \n");
 587
 588        for (i = 0; i < RLIM_NLIMITS; i++) {
 589                if (rlim[i].rlim_cur == RLIM_INFINITY)
 590                        seq_printf(m, "%-25s %-20s ",
 591                                   lnames[i].name, "unlimited");
 592                else
 593                        seq_printf(m, "%-25s %-20lu ",
 594                                   lnames[i].name, rlim[i].rlim_cur);
 595
 596                if (rlim[i].rlim_max == RLIM_INFINITY)
 597                        seq_printf(m, "%-20s ", "unlimited");
 598                else
 599                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 600
 601                if (lnames[i].unit)
 602                        seq_printf(m, "%-10s\n", lnames[i].unit);
 603                else
 604                        seq_putc(m, '\n');
 605        }
 606
 607        return 0;
 608}
 609
 610#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 611static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 612                            struct pid *pid, struct task_struct *task)
 613{
 614        struct syscall_info info;
 615        u64 *args = &info.data.args[0];
 616        int res;
 617
 618        res = lock_trace(task);
 619        if (res)
 620                return res;
 621
 622        if (task_current_syscall(task, &info))
 623                seq_puts(m, "running\n");
 624        else if (info.data.nr < 0)
 625                seq_printf(m, "%d 0x%llx 0x%llx\n",
 626                           info.data.nr, info.sp, info.data.instruction_pointer);
 627        else
 628                seq_printf(m,
 629                       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 630                       info.data.nr,
 631                       args[0], args[1], args[2], args[3], args[4], args[5],
 632                       info.sp, info.data.instruction_pointer);
 633        unlock_trace(task);
 634
 635        return 0;
 636}
 637#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 638
 639/************************************************************************/
 640/*                       Here the fs part begins                        */
 641/************************************************************************/
 642
 643/* permission checks */
 644static int proc_fd_access_allowed(struct inode *inode)
 645{
 646        struct task_struct *task;
 647        int allowed = 0;
 648        /* Allow access to a task's file descriptors if it is us or we
 649         * may use ptrace attach to the process and find out that
 650         * information.
 651         */
 652        task = get_proc_task(inode);
 653        if (task) {
 654                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 655                put_task_struct(task);
 656        }
 657        return allowed;
 658}
 659
 660int proc_setattr(struct dentry *dentry, struct iattr *attr)
 661{
 662        int error;
 663        struct inode *inode = d_inode(dentry);
 664
 665        if (attr->ia_valid & ATTR_MODE)
 666                return -EPERM;
 667
 668        error = setattr_prepare(dentry, attr);
 669        if (error)
 670                return error;
 671
 672        setattr_copy(inode, attr);
 673        mark_inode_dirty(inode);
 674        return 0;
 675}
 676
 677/*
 678 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 679 * or euid/egid (for hide_pid_min=2)?
 680 */
 681static bool has_pid_permissions(struct pid_namespace *pid,
 682                                 struct task_struct *task,
 683                                 int hide_pid_min)
 684{
 685        if (pid->hide_pid < hide_pid_min)
 686                return true;
 687        if (in_group_p(pid->pid_gid))
 688                return true;
 689        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 690}
 691
 692
 693static int proc_pid_permission(struct inode *inode, int mask)
 694{
 695        struct pid_namespace *pid = proc_pid_ns(inode);
 696        struct task_struct *task;
 697        bool has_perms;
 698
 699        task = get_proc_task(inode);
 700        if (!task)
 701                return -ESRCH;
 702        has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 703        put_task_struct(task);
 704
 705        if (!has_perms) {
 706                if (pid->hide_pid == HIDEPID_INVISIBLE) {
 707                        /*
 708                         * Let's make getdents(), stat(), and open()
 709                         * consistent with each other.  If a process
 710                         * may not stat() a file, it shouldn't be seen
 711                         * in procfs at all.
 712                         */
 713                        return -ENOENT;
 714                }
 715
 716                return -EPERM;
 717        }
 718        return generic_permission(inode, mask);
 719}
 720
 721
 722
 723static const struct inode_operations proc_def_inode_operations = {
 724        .setattr        = proc_setattr,
 725};
 726
 727static int proc_single_show(struct seq_file *m, void *v)
 728{
 729        struct inode *inode = m->private;
 730        struct pid_namespace *ns = proc_pid_ns(inode);
 731        struct pid *pid = proc_pid(inode);
 732        struct task_struct *task;
 733        int ret;
 734
 735        task = get_pid_task(pid, PIDTYPE_PID);
 736        if (!task)
 737                return -ESRCH;
 738
 739        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 740
 741        put_task_struct(task);
 742        return ret;
 743}
 744
 745static int proc_single_open(struct inode *inode, struct file *filp)
 746{
 747        return single_open(filp, proc_single_show, inode);
 748}
 749
 750static const struct file_operations proc_single_file_operations = {
 751        .open           = proc_single_open,
 752        .read           = seq_read,
 753        .llseek         = seq_lseek,
 754        .release        = single_release,
 755};
 756
 757
 758struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 759{
 760        struct task_struct *task = get_proc_task(inode);
 761        struct mm_struct *mm = ERR_PTR(-ESRCH);
 762
 763        if (task) {
 764                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 765                put_task_struct(task);
 766
 767                if (!IS_ERR_OR_NULL(mm)) {
 768                        /* ensure this mm_struct can't be freed */
 769                        mmgrab(mm);
 770                        /* but do not pin its memory */
 771                        mmput(mm);
 772                }
 773        }
 774
 775        return mm;
 776}
 777
 778static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 779{
 780        struct mm_struct *mm = proc_mem_open(inode, mode);
 781
 782        if (IS_ERR(mm))
 783                return PTR_ERR(mm);
 784
 785        file->private_data = mm;
 786        return 0;
 787}
 788
 789static int mem_open(struct inode *inode, struct file *file)
 790{
 791        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 792
 793        /* OK to pass negative loff_t, we can catch out-of-range */
 794        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 795
 796        return ret;
 797}
 798
 799static ssize_t mem_rw(struct file *file, char __user *buf,
 800                        size_t count, loff_t *ppos, int write)
 801{
 802        struct mm_struct *mm = file->private_data;
 803        unsigned long addr = *ppos;
 804        ssize_t copied;
 805        char *page;
 806        unsigned int flags;
 807
 808        if (!mm)
 809                return 0;
 810
 811        page = (char *)__get_free_page(GFP_KERNEL);
 812        if (!page)
 813                return -ENOMEM;
 814
 815        copied = 0;
 816        if (!mmget_not_zero(mm))
 817                goto free;
 818
 819        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 820
 821        while (count > 0) {
 822                int this_len = min_t(int, count, PAGE_SIZE);
 823
 824                if (write && copy_from_user(page, buf, this_len)) {
 825                        copied = -EFAULT;
 826                        break;
 827                }
 828
 829                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 830                if (!this_len) {
 831                        if (!copied)
 832                                copied = -EIO;
 833                        break;
 834                }
 835
 836                if (!write && copy_to_user(buf, page, this_len)) {
 837                        copied = -EFAULT;
 838                        break;
 839                }
 840
 841                buf += this_len;
 842                addr += this_len;
 843                copied += this_len;
 844                count -= this_len;
 845        }
 846        *ppos = addr;
 847
 848        mmput(mm);
 849free:
 850        free_page((unsigned long) page);
 851        return copied;
 852}
 853
 854static ssize_t mem_read(struct file *file, char __user *buf,
 855                        size_t count, loff_t *ppos)
 856{
 857        return mem_rw(file, buf, count, ppos, 0);
 858}
 859
 860static ssize_t mem_write(struct file *file, const char __user *buf,
 861                         size_t count, loff_t *ppos)
 862{
 863        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 864}
 865
 866loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 867{
 868        switch (orig) {
 869        case 0:
 870                file->f_pos = offset;
 871                break;
 872        case 1:
 873                file->f_pos += offset;
 874                break;
 875        default:
 876                return -EINVAL;
 877        }
 878        force_successful_syscall_return();
 879        return file->f_pos;
 880}
 881
 882static int mem_release(struct inode *inode, struct file *file)
 883{
 884        struct mm_struct *mm = file->private_data;
 885        if (mm)
 886                mmdrop(mm);
 887        return 0;
 888}
 889
 890static const struct file_operations proc_mem_operations = {
 891        .llseek         = mem_lseek,
 892        .read           = mem_read,
 893        .write          = mem_write,
 894        .open           = mem_open,
 895        .release        = mem_release,
 896};
 897
 898static int environ_open(struct inode *inode, struct file *file)
 899{
 900        return __mem_open(inode, file, PTRACE_MODE_READ);
 901}
 902
 903static ssize_t environ_read(struct file *file, char __user *buf,
 904                        size_t count, loff_t *ppos)
 905{
 906        char *page;
 907        unsigned long src = *ppos;
 908        int ret = 0;
 909        struct mm_struct *mm = file->private_data;
 910        unsigned long env_start, env_end;
 911
 912        /* Ensure the process spawned far enough to have an environment. */
 913        if (!mm || !mm->env_end)
 914                return 0;
 915
 916        page = (char *)__get_free_page(GFP_KERNEL);
 917        if (!page)
 918                return -ENOMEM;
 919
 920        ret = 0;
 921        if (!mmget_not_zero(mm))
 922                goto free;
 923
 924        spin_lock(&mm->arg_lock);
 925        env_start = mm->env_start;
 926        env_end = mm->env_end;
 927        spin_unlock(&mm->arg_lock);
 928
 929        while (count > 0) {
 930                size_t this_len, max_len;
 931                int retval;
 932
 933                if (src >= (env_end - env_start))
 934                        break;
 935
 936                this_len = env_end - (env_start + src);
 937
 938                max_len = min_t(size_t, PAGE_SIZE, count);
 939                this_len = min(max_len, this_len);
 940
 941                retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 942
 943                if (retval <= 0) {
 944                        ret = retval;
 945                        break;
 946                }
 947
 948                if (copy_to_user(buf, page, retval)) {
 949                        ret = -EFAULT;
 950                        break;
 951                }
 952
 953                ret += retval;
 954                src += retval;
 955                buf += retval;
 956                count -= retval;
 957        }
 958        *ppos = src;
 959        mmput(mm);
 960
 961free:
 962        free_page((unsigned long) page);
 963        return ret;
 964}
 965
 966static const struct file_operations proc_environ_operations = {
 967        .open           = environ_open,
 968        .read           = environ_read,
 969        .llseek         = generic_file_llseek,
 970        .release        = mem_release,
 971};
 972
 973static int auxv_open(struct inode *inode, struct file *file)
 974{
 975        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 976}
 977
 978static ssize_t auxv_read(struct file *file, char __user *buf,
 979                        size_t count, loff_t *ppos)
 980{
 981        struct mm_struct *mm = file->private_data;
 982        unsigned int nwords = 0;
 983
 984        if (!mm)
 985                return 0;
 986        do {
 987                nwords += 2;
 988        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 989        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
 990                                       nwords * sizeof(mm->saved_auxv[0]));
 991}
 992
 993static const struct file_operations proc_auxv_operations = {
 994        .open           = auxv_open,
 995        .read           = auxv_read,
 996        .llseek         = generic_file_llseek,
 997        .release        = mem_release,
 998};
 999
1000static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1001                            loff_t *ppos)
1002{
1003        struct task_struct *task = get_proc_task(file_inode(file));
1004        char buffer[PROC_NUMBUF];
1005        int oom_adj = OOM_ADJUST_MIN;
1006        size_t len;
1007
1008        if (!task)
1009                return -ESRCH;
1010        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011                oom_adj = OOM_ADJUST_MAX;
1012        else
1013                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1014                          OOM_SCORE_ADJ_MAX;
1015        put_task_struct(task);
1016        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018}
1019
1020static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1021{
1022        static DEFINE_MUTEX(oom_adj_mutex);
1023        struct mm_struct *mm = NULL;
1024        struct task_struct *task;
1025        int err = 0;
1026
1027        task = get_proc_task(file_inode(file));
1028        if (!task)
1029                return -ESRCH;
1030
1031        mutex_lock(&oom_adj_mutex);
1032        if (legacy) {
1033                if (oom_adj < task->signal->oom_score_adj &&
1034                                !capable(CAP_SYS_RESOURCE)) {
1035                        err = -EACCES;
1036                        goto err_unlock;
1037                }
1038                /*
1039                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040                 * /proc/pid/oom_score_adj instead.
1041                 */
1042                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043                          current->comm, task_pid_nr(current), task_pid_nr(task),
1044                          task_pid_nr(task));
1045        } else {
1046                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047                                !capable(CAP_SYS_RESOURCE)) {
1048                        err = -EACCES;
1049                        goto err_unlock;
1050                }
1051        }
1052
1053        /*
1054         * Make sure we will check other processes sharing the mm if this is
1055         * not vfrok which wants its own oom_score_adj.
1056         * pin the mm so it doesn't go away and get reused after task_unlock
1057         */
1058        if (!task->vfork_done) {
1059                struct task_struct *p = find_lock_task_mm(task);
1060
1061                if (p) {
1062                        if (atomic_read(&p->mm->mm_users) > 1) {
1063                                mm = p->mm;
1064                                mmgrab(mm);
1065                        }
1066                        task_unlock(p);
1067                }
1068        }
1069
1070        task->signal->oom_score_adj = oom_adj;
1071        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072                task->signal->oom_score_adj_min = (short)oom_adj;
1073        trace_oom_score_adj_update(task);
1074
1075        if (mm) {
1076                struct task_struct *p;
1077
1078                rcu_read_lock();
1079                for_each_process(p) {
1080                        if (same_thread_group(task, p))
1081                                continue;
1082
1083                        /* do not touch kernel threads or the global init */
1084                        if (p->flags & PF_KTHREAD || is_global_init(p))
1085                                continue;
1086
1087                        task_lock(p);
1088                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1089                                p->signal->oom_score_adj = oom_adj;
1090                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091                                        p->signal->oom_score_adj_min = (short)oom_adj;
1092                        }
1093                        task_unlock(p);
1094                }
1095                rcu_read_unlock();
1096                mmdrop(mm);
1097        }
1098err_unlock:
1099        mutex_unlock(&oom_adj_mutex);
1100        put_task_struct(task);
1101        return err;
1102}
1103
1104/*
1105 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1106 * kernels.  The effective policy is defined by oom_score_adj, which has a
1107 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1108 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1109 * Processes that become oom disabled via oom_adj will still be oom disabled
1110 * with this implementation.
1111 *
1112 * oom_adj cannot be removed since existing userspace binaries use it.
1113 */
1114static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1115                             size_t count, loff_t *ppos)
1116{
1117        char buffer[PROC_NUMBUF];
1118        int oom_adj;
1119        int err;
1120
1121        memset(buffer, 0, sizeof(buffer));
1122        if (count > sizeof(buffer) - 1)
1123                count = sizeof(buffer) - 1;
1124        if (copy_from_user(buffer, buf, count)) {
1125                err = -EFAULT;
1126                goto out;
1127        }
1128
1129        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1130        if (err)
1131                goto out;
1132        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1133             oom_adj != OOM_DISABLE) {
1134                err = -EINVAL;
1135                goto out;
1136        }
1137
1138        /*
1139         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1140         * value is always attainable.
1141         */
1142        if (oom_adj == OOM_ADJUST_MAX)
1143                oom_adj = OOM_SCORE_ADJ_MAX;
1144        else
1145                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1146
1147        err = __set_oom_adj(file, oom_adj, true);
1148out:
1149        return err < 0 ? err : count;
1150}
1151
1152static const struct file_operations proc_oom_adj_operations = {
1153        .read           = oom_adj_read,
1154        .write          = oom_adj_write,
1155        .llseek         = generic_file_llseek,
1156};
1157
1158static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1159                                        size_t count, loff_t *ppos)
1160{
1161        struct task_struct *task = get_proc_task(file_inode(file));
1162        char buffer[PROC_NUMBUF];
1163        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1164        size_t len;
1165
1166        if (!task)
1167                return -ESRCH;
1168        oom_score_adj = task->signal->oom_score_adj;
1169        put_task_struct(task);
1170        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1171        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172}
1173
1174static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1175                                        size_t count, loff_t *ppos)
1176{
1177        char buffer[PROC_NUMBUF];
1178        int oom_score_adj;
1179        int err;
1180
1181        memset(buffer, 0, sizeof(buffer));
1182        if (count > sizeof(buffer) - 1)
1183                count = sizeof(buffer) - 1;
1184        if (copy_from_user(buffer, buf, count)) {
1185                err = -EFAULT;
1186                goto out;
1187        }
1188
1189        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1190        if (err)
1191                goto out;
1192        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1193                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1194                err = -EINVAL;
1195                goto out;
1196        }
1197
1198        err = __set_oom_adj(file, oom_score_adj, false);
1199out:
1200        return err < 0 ? err : count;
1201}
1202
1203static const struct file_operations proc_oom_score_adj_operations = {
1204        .read           = oom_score_adj_read,
1205        .write          = oom_score_adj_write,
1206        .llseek         = default_llseek,
1207};
1208
1209#ifdef CONFIG_AUDIT
1210#define TMPBUFLEN 11
1211static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1212                                  size_t count, loff_t *ppos)
1213{
1214        struct inode * inode = file_inode(file);
1215        struct task_struct *task = get_proc_task(inode);
1216        ssize_t length;
1217        char tmpbuf[TMPBUFLEN];
1218
1219        if (!task)
1220                return -ESRCH;
1221        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1222                           from_kuid(file->f_cred->user_ns,
1223                                     audit_get_loginuid(task)));
1224        put_task_struct(task);
1225        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1226}
1227
1228static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1229                                   size_t count, loff_t *ppos)
1230{
1231        struct inode * inode = file_inode(file);
1232        uid_t loginuid;
1233        kuid_t kloginuid;
1234        int rv;
1235
1236        rcu_read_lock();
1237        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1238                rcu_read_unlock();
1239                return -EPERM;
1240        }
1241        rcu_read_unlock();
1242
1243        if (*ppos != 0) {
1244                /* No partial writes. */
1245                return -EINVAL;
1246        }
1247
1248        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1249        if (rv < 0)
1250                return rv;
1251
1252        /* is userspace tring to explicitly UNSET the loginuid? */
1253        if (loginuid == AUDIT_UID_UNSET) {
1254                kloginuid = INVALID_UID;
1255        } else {
1256                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1257                if (!uid_valid(kloginuid))
1258                        return -EINVAL;
1259        }
1260
1261        rv = audit_set_loginuid(kloginuid);
1262        if (rv < 0)
1263                return rv;
1264        return count;
1265}
1266
1267static const struct file_operations proc_loginuid_operations = {
1268        .read           = proc_loginuid_read,
1269        .write          = proc_loginuid_write,
1270        .llseek         = generic_file_llseek,
1271};
1272
1273static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1274                                  size_t count, loff_t *ppos)
1275{
1276        struct inode * inode = file_inode(file);
1277        struct task_struct *task = get_proc_task(inode);
1278        ssize_t length;
1279        char tmpbuf[TMPBUFLEN];
1280
1281        if (!task)
1282                return -ESRCH;
1283        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1284                                audit_get_sessionid(task));
1285        put_task_struct(task);
1286        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1287}
1288
1289static const struct file_operations proc_sessionid_operations = {
1290        .read           = proc_sessionid_read,
1291        .llseek         = generic_file_llseek,
1292};
1293#endif
1294
1295#ifdef CONFIG_FAULT_INJECTION
1296static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1297                                      size_t count, loff_t *ppos)
1298{
1299        struct task_struct *task = get_proc_task(file_inode(file));
1300        char buffer[PROC_NUMBUF];
1301        size_t len;
1302        int make_it_fail;
1303
1304        if (!task)
1305                return -ESRCH;
1306        make_it_fail = task->make_it_fail;
1307        put_task_struct(task);
1308
1309        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1310
1311        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1312}
1313
1314static ssize_t proc_fault_inject_write(struct file * file,
1315                        const char __user * buf, size_t count, loff_t *ppos)
1316{
1317        struct task_struct *task;
1318        char buffer[PROC_NUMBUF];
1319        int make_it_fail;
1320        int rv;
1321
1322        if (!capable(CAP_SYS_RESOURCE))
1323                return -EPERM;
1324        memset(buffer, 0, sizeof(buffer));
1325        if (count > sizeof(buffer) - 1)
1326                count = sizeof(buffer) - 1;
1327        if (copy_from_user(buffer, buf, count))
1328                return -EFAULT;
1329        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1330        if (rv < 0)
1331                return rv;
1332        if (make_it_fail < 0 || make_it_fail > 1)
1333                return -EINVAL;
1334
1335        task = get_proc_task(file_inode(file));
1336        if (!task)
1337                return -ESRCH;
1338        task->make_it_fail = make_it_fail;
1339        put_task_struct(task);
1340
1341        return count;
1342}
1343
1344static const struct file_operations proc_fault_inject_operations = {
1345        .read           = proc_fault_inject_read,
1346        .write          = proc_fault_inject_write,
1347        .llseek         = generic_file_llseek,
1348};
1349
1350static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1351                                   size_t count, loff_t *ppos)
1352{
1353        struct task_struct *task;
1354        int err;
1355        unsigned int n;
1356
1357        err = kstrtouint_from_user(buf, count, 0, &n);
1358        if (err)
1359                return err;
1360
1361        task = get_proc_task(file_inode(file));
1362        if (!task)
1363                return -ESRCH;
1364        task->fail_nth = n;
1365        put_task_struct(task);
1366
1367        return count;
1368}
1369
1370static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1371                                  size_t count, loff_t *ppos)
1372{
1373        struct task_struct *task;
1374        char numbuf[PROC_NUMBUF];
1375        ssize_t len;
1376
1377        task = get_proc_task(file_inode(file));
1378        if (!task)
1379                return -ESRCH;
1380        len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1381        put_task_struct(task);
1382        return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1383}
1384
1385static const struct file_operations proc_fail_nth_operations = {
1386        .read           = proc_fail_nth_read,
1387        .write          = proc_fail_nth_write,
1388};
1389#endif
1390
1391
1392#ifdef CONFIG_SCHED_DEBUG
1393/*
1394 * Print out various scheduling related per-task fields:
1395 */
1396static int sched_show(struct seq_file *m, void *v)
1397{
1398        struct inode *inode = m->private;
1399        struct pid_namespace *ns = proc_pid_ns(inode);
1400        struct task_struct *p;
1401
1402        p = get_proc_task(inode);
1403        if (!p)
1404                return -ESRCH;
1405        proc_sched_show_task(p, ns, m);
1406
1407        put_task_struct(p);
1408
1409        return 0;
1410}
1411
1412static ssize_t
1413sched_write(struct file *file, const char __user *buf,
1414            size_t count, loff_t *offset)
1415{
1416        struct inode *inode = file_inode(file);
1417        struct task_struct *p;
1418
1419        p = get_proc_task(inode);
1420        if (!p)
1421                return -ESRCH;
1422        proc_sched_set_task(p);
1423
1424        put_task_struct(p);
1425
1426        return count;
1427}
1428
1429static int sched_open(struct inode *inode, struct file *filp)
1430{
1431        return single_open(filp, sched_show, inode);
1432}
1433
1434static const struct file_operations proc_pid_sched_operations = {
1435        .open           = sched_open,
1436        .read           = seq_read,
1437        .write          = sched_write,
1438        .llseek         = seq_lseek,
1439        .release        = single_release,
1440};
1441
1442#endif
1443
1444#ifdef CONFIG_SCHED_AUTOGROUP
1445/*
1446 * Print out autogroup related information:
1447 */
1448static int sched_autogroup_show(struct seq_file *m, void *v)
1449{
1450        struct inode *inode = m->private;
1451        struct task_struct *p;
1452
1453        p = get_proc_task(inode);
1454        if (!p)
1455                return -ESRCH;
1456        proc_sched_autogroup_show_task(p, m);
1457
1458        put_task_struct(p);
1459
1460        return 0;
1461}
1462
1463static ssize_t
1464sched_autogroup_write(struct file *file, const char __user *buf,
1465            size_t count, loff_t *offset)
1466{
1467        struct inode *inode = file_inode(file);
1468        struct task_struct *p;
1469        char buffer[PROC_NUMBUF];
1470        int nice;
1471        int err;
1472
1473        memset(buffer, 0, sizeof(buffer));
1474        if (count > sizeof(buffer) - 1)
1475                count = sizeof(buffer) - 1;
1476        if (copy_from_user(buffer, buf, count))
1477                return -EFAULT;
1478
1479        err = kstrtoint(strstrip(buffer), 0, &nice);
1480        if (err < 0)
1481                return err;
1482
1483        p = get_proc_task(inode);
1484        if (!p)
1485                return -ESRCH;
1486
1487        err = proc_sched_autogroup_set_nice(p, nice);
1488        if (err)
1489                count = err;
1490
1491        put_task_struct(p);
1492
1493        return count;
1494}
1495
1496static int sched_autogroup_open(struct inode *inode, struct file *filp)
1497{
1498        int ret;
1499
1500        ret = single_open(filp, sched_autogroup_show, NULL);
1501        if (!ret) {
1502                struct seq_file *m = filp->private_data;
1503
1504                m->private = inode;
1505        }
1506        return ret;
1507}
1508
1509static const struct file_operations proc_pid_sched_autogroup_operations = {
1510        .open           = sched_autogroup_open,
1511        .read           = seq_read,
1512        .write          = sched_autogroup_write,
1513        .llseek         = seq_lseek,
1514        .release        = single_release,
1515};
1516
1517#endif /* CONFIG_SCHED_AUTOGROUP */
1518
1519static ssize_t comm_write(struct file *file, const char __user *buf,
1520                                size_t count, loff_t *offset)
1521{
1522        struct inode *inode = file_inode(file);
1523        struct task_struct *p;
1524        char buffer[TASK_COMM_LEN];
1525        const size_t maxlen = sizeof(buffer) - 1;
1526
1527        memset(buffer, 0, sizeof(buffer));
1528        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1529                return -EFAULT;
1530
1531        p = get_proc_task(inode);
1532        if (!p)
1533                return -ESRCH;
1534
1535        if (same_thread_group(current, p))
1536                set_task_comm(p, buffer);
1537        else
1538                count = -EINVAL;
1539
1540        put_task_struct(p);
1541
1542        return count;
1543}
1544
1545static int comm_show(struct seq_file *m, void *v)
1546{
1547        struct inode *inode = m->private;
1548        struct task_struct *p;
1549
1550        p = get_proc_task(inode);
1551        if (!p)
1552                return -ESRCH;
1553
1554        proc_task_name(m, p, false);
1555        seq_putc(m, '\n');
1556
1557        put_task_struct(p);
1558
1559        return 0;
1560}
1561
1562static int comm_open(struct inode *inode, struct file *filp)
1563{
1564        return single_open(filp, comm_show, inode);
1565}
1566
1567static const struct file_operations proc_pid_set_comm_operations = {
1568        .open           = comm_open,
1569        .read           = seq_read,
1570        .write          = comm_write,
1571        .llseek         = seq_lseek,
1572        .release        = single_release,
1573};
1574
1575static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1576{
1577        struct task_struct *task;
1578        struct file *exe_file;
1579
1580        task = get_proc_task(d_inode(dentry));
1581        if (!task)
1582                return -ENOENT;
1583        exe_file = get_task_exe_file(task);
1584        put_task_struct(task);
1585        if (exe_file) {
1586                *exe_path = exe_file->f_path;
1587                path_get(&exe_file->f_path);
1588                fput(exe_file);
1589                return 0;
1590        } else
1591                return -ENOENT;
1592}
1593
1594static const char *proc_pid_get_link(struct dentry *dentry,
1595                                     struct inode *inode,
1596                                     struct delayed_call *done)
1597{
1598        struct path path;
1599        int error = -EACCES;
1600
1601        if (!dentry)
1602                return ERR_PTR(-ECHILD);
1603
1604        /* Are we allowed to snoop on the tasks file descriptors? */
1605        if (!proc_fd_access_allowed(inode))
1606                goto out;
1607
1608        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1609        if (error)
1610                goto out;
1611
1612        nd_jump_link(&path);
1613        return NULL;
1614out:
1615        return ERR_PTR(error);
1616}
1617
1618static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1619{
1620        char *tmp = (char *)__get_free_page(GFP_KERNEL);
1621        char *pathname;
1622        int len;
1623
1624        if (!tmp)
1625                return -ENOMEM;
1626
1627        pathname = d_path(path, tmp, PAGE_SIZE);
1628        len = PTR_ERR(pathname);
1629        if (IS_ERR(pathname))
1630                goto out;
1631        len = tmp + PAGE_SIZE - 1 - pathname;
1632
1633        if (len > buflen)
1634                len = buflen;
1635        if (copy_to_user(buffer, pathname, len))
1636                len = -EFAULT;
1637 out:
1638        free_page((unsigned long)tmp);
1639        return len;
1640}
1641
1642static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1643{
1644        int error = -EACCES;
1645        struct inode *inode = d_inode(dentry);
1646        struct path path;
1647
1648        /* Are we allowed to snoop on the tasks file descriptors? */
1649        if (!proc_fd_access_allowed(inode))
1650                goto out;
1651
1652        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1653        if (error)
1654                goto out;
1655
1656        error = do_proc_readlink(&path, buffer, buflen);
1657        path_put(&path);
1658out:
1659        return error;
1660}
1661
1662const struct inode_operations proc_pid_link_inode_operations = {
1663        .readlink       = proc_pid_readlink,
1664        .get_link       = proc_pid_get_link,
1665        .setattr        = proc_setattr,
1666};
1667
1668
1669/* building an inode */
1670
1671void task_dump_owner(struct task_struct *task, umode_t mode,
1672                     kuid_t *ruid, kgid_t *rgid)
1673{
1674        /* Depending on the state of dumpable compute who should own a
1675         * proc file for a task.
1676         */
1677        const struct cred *cred;
1678        kuid_t uid;
1679        kgid_t gid;
1680
1681        if (unlikely(task->flags & PF_KTHREAD)) {
1682                *ruid = GLOBAL_ROOT_UID;
1683                *rgid = GLOBAL_ROOT_GID;
1684                return;
1685        }
1686
1687        /* Default to the tasks effective ownership */
1688        rcu_read_lock();
1689        cred = __task_cred(task);
1690        uid = cred->euid;
1691        gid = cred->egid;
1692        rcu_read_unlock();
1693
1694        /*
1695         * Before the /proc/pid/status file was created the only way to read
1696         * the effective uid of a /process was to stat /proc/pid.  Reading
1697         * /proc/pid/status is slow enough that procps and other packages
1698         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1699         * made this apply to all per process world readable and executable
1700         * directories.
1701         */
1702        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1703                struct mm_struct *mm;
1704                task_lock(task);
1705                mm = task->mm;
1706                /* Make non-dumpable tasks owned by some root */
1707                if (mm) {
1708                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1709                                struct user_namespace *user_ns = mm->user_ns;
1710
1711                                uid = make_kuid(user_ns, 0);
1712                                if (!uid_valid(uid))
1713                                        uid = GLOBAL_ROOT_UID;
1714
1715                                gid = make_kgid(user_ns, 0);
1716                                if (!gid_valid(gid))
1717                                        gid = GLOBAL_ROOT_GID;
1718                        }
1719                } else {
1720                        uid = GLOBAL_ROOT_UID;
1721                        gid = GLOBAL_ROOT_GID;
1722                }
1723                task_unlock(task);
1724        }
1725        *ruid = uid;
1726        *rgid = gid;
1727}
1728
1729struct inode *proc_pid_make_inode(struct super_block * sb,
1730                                  struct task_struct *task, umode_t mode)
1731{
1732        struct inode * inode;
1733        struct proc_inode *ei;
1734
1735        /* We need a new inode */
1736
1737        inode = new_inode(sb);
1738        if (!inode)
1739                goto out;
1740
1741        /* Common stuff */
1742        ei = PROC_I(inode);
1743        inode->i_mode = mode;
1744        inode->i_ino = get_next_ino();
1745        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1746        inode->i_op = &proc_def_inode_operations;
1747
1748        /*
1749         * grab the reference to task.
1750         */
1751        ei->pid = get_task_pid(task, PIDTYPE_PID);
1752        if (!ei->pid)
1753                goto out_unlock;
1754
1755        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1756        security_task_to_inode(task, inode);
1757
1758out:
1759        return inode;
1760
1761out_unlock:
1762        iput(inode);
1763        return NULL;
1764}
1765
1766int pid_getattr(const struct path *path, struct kstat *stat,
1767                u32 request_mask, unsigned int query_flags)
1768{
1769        struct inode *inode = d_inode(path->dentry);
1770        struct pid_namespace *pid = proc_pid_ns(inode);
1771        struct task_struct *task;
1772
1773        generic_fillattr(inode, stat);
1774
1775        stat->uid = GLOBAL_ROOT_UID;
1776        stat->gid = GLOBAL_ROOT_GID;
1777        rcu_read_lock();
1778        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1779        if (task) {
1780                if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1781                        rcu_read_unlock();
1782                        /*
1783                         * This doesn't prevent learning whether PID exists,
1784                         * it only makes getattr() consistent with readdir().
1785                         */
1786                        return -ENOENT;
1787                }
1788                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1789        }
1790        rcu_read_unlock();
1791        return 0;
1792}
1793
1794/* dentry stuff */
1795
1796/*
1797 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1798 */
1799void pid_update_inode(struct task_struct *task, struct inode *inode)
1800{
1801        task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1802
1803        inode->i_mode &= ~(S_ISUID | S_ISGID);
1804        security_task_to_inode(task, inode);
1805}
1806
1807/*
1808 * Rewrite the inode's ownerships here because the owning task may have
1809 * performed a setuid(), etc.
1810 *
1811 */
1812static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1813{
1814        struct inode *inode;
1815        struct task_struct *task;
1816
1817        if (flags & LOOKUP_RCU)
1818                return -ECHILD;
1819
1820        inode = d_inode(dentry);
1821        task = get_proc_task(inode);
1822
1823        if (task) {
1824                pid_update_inode(task, inode);
1825                put_task_struct(task);
1826                return 1;
1827        }
1828        return 0;
1829}
1830
1831static inline bool proc_inode_is_dead(struct inode *inode)
1832{
1833        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1834}
1835
1836int pid_delete_dentry(const struct dentry *dentry)
1837{
1838        /* Is the task we represent dead?
1839         * If so, then don't put the dentry on the lru list,
1840         * kill it immediately.
1841         */
1842        return proc_inode_is_dead(d_inode(dentry));
1843}
1844
1845const struct dentry_operations pid_dentry_operations =
1846{
1847        .d_revalidate   = pid_revalidate,
1848        .d_delete       = pid_delete_dentry,
1849};
1850
1851/* Lookups */
1852
1853/*
1854 * Fill a directory entry.
1855 *
1856 * If possible create the dcache entry and derive our inode number and
1857 * file type from dcache entry.
1858 *
1859 * Since all of the proc inode numbers are dynamically generated, the inode
1860 * numbers do not exist until the inode is cache.  This means creating the
1861 * the dcache entry in readdir is necessary to keep the inode numbers
1862 * reported by readdir in sync with the inode numbers reported
1863 * by stat.
1864 */
1865bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1866        const char *name, unsigned int len,
1867        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1868{
1869        struct dentry *child, *dir = file->f_path.dentry;
1870        struct qstr qname = QSTR_INIT(name, len);
1871        struct inode *inode;
1872        unsigned type = DT_UNKNOWN;
1873        ino_t ino = 1;
1874
1875        child = d_hash_and_lookup(dir, &qname);
1876        if (!child) {
1877                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1878                child = d_alloc_parallel(dir, &qname, &wq);
1879                if (IS_ERR(child))
1880                        goto end_instantiate;
1881                if (d_in_lookup(child)) {
1882                        struct dentry *res;
1883                        res = instantiate(child, task, ptr);
1884                        d_lookup_done(child);
1885                        if (unlikely(res)) {
1886                                dput(child);
1887                                child = res;
1888                                if (IS_ERR(child))
1889                                        goto end_instantiate;
1890                        }
1891                }
1892        }
1893        inode = d_inode(child);
1894        ino = inode->i_ino;
1895        type = inode->i_mode >> 12;
1896        dput(child);
1897end_instantiate:
1898        return dir_emit(ctx, name, len, ino, type);
1899}
1900
1901/*
1902 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1903 * which represent vma start and end addresses.
1904 */
1905static int dname_to_vma_addr(struct dentry *dentry,
1906                             unsigned long *start, unsigned long *end)
1907{
1908        const char *str = dentry->d_name.name;
1909        unsigned long long sval, eval;
1910        unsigned int len;
1911
1912        if (str[0] == '0' && str[1] != '-')
1913                return -EINVAL;
1914        len = _parse_integer(str, 16, &sval);
1915        if (len & KSTRTOX_OVERFLOW)
1916                return -EINVAL;
1917        if (sval != (unsigned long)sval)
1918                return -EINVAL;
1919        str += len;
1920
1921        if (*str != '-')
1922                return -EINVAL;
1923        str++;
1924
1925        if (str[0] == '0' && str[1])
1926                return -EINVAL;
1927        len = _parse_integer(str, 16, &eval);
1928        if (len & KSTRTOX_OVERFLOW)
1929                return -EINVAL;
1930        if (eval != (unsigned long)eval)
1931                return -EINVAL;
1932        str += len;
1933
1934        if (*str != '\0')
1935                return -EINVAL;
1936
1937        *start = sval;
1938        *end = eval;
1939
1940        return 0;
1941}
1942
1943static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1944{
1945        unsigned long vm_start, vm_end;
1946        bool exact_vma_exists = false;
1947        struct mm_struct *mm = NULL;
1948        struct task_struct *task;
1949        struct inode *inode;
1950        int status = 0;
1951
1952        if (flags & LOOKUP_RCU)
1953                return -ECHILD;
1954
1955        inode = d_inode(dentry);
1956        task = get_proc_task(inode);
1957        if (!task)
1958                goto out_notask;
1959
1960        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1961        if (IS_ERR_OR_NULL(mm))
1962                goto out;
1963
1964        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1965                down_read(&mm->mmap_sem);
1966                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1967                up_read(&mm->mmap_sem);
1968        }
1969
1970        mmput(mm);
1971
1972        if (exact_vma_exists) {
1973                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1974
1975                security_task_to_inode(task, inode);
1976                status = 1;
1977        }
1978
1979out:
1980        put_task_struct(task);
1981
1982out_notask:
1983        return status;
1984}
1985
1986static const struct dentry_operations tid_map_files_dentry_operations = {
1987        .d_revalidate   = map_files_d_revalidate,
1988        .d_delete       = pid_delete_dentry,
1989};
1990
1991static int map_files_get_link(struct dentry *dentry, struct path *path)
1992{
1993        unsigned long vm_start, vm_end;
1994        struct vm_area_struct *vma;
1995        struct task_struct *task;
1996        struct mm_struct *mm;
1997        int rc;
1998
1999        rc = -ENOENT;
2000        task = get_proc_task(d_inode(dentry));
2001        if (!task)
2002                goto out;
2003
2004        mm = get_task_mm(task);
2005        put_task_struct(task);
2006        if (!mm)
2007                goto out;
2008
2009        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2010        if (rc)
2011                goto out_mmput;
2012
2013        rc = -ENOENT;
2014        down_read(&mm->mmap_sem);
2015        vma = find_exact_vma(mm, vm_start, vm_end);
2016        if (vma && vma->vm_file) {
2017                *path = vma->vm_file->f_path;
2018                path_get(path);
2019                rc = 0;
2020        }
2021        up_read(&mm->mmap_sem);
2022
2023out_mmput:
2024        mmput(mm);
2025out:
2026        return rc;
2027}
2028
2029struct map_files_info {
2030        unsigned long   start;
2031        unsigned long   end;
2032        fmode_t         mode;
2033};
2034
2035/*
2036 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2037 * symlinks may be used to bypass permissions on ancestor directories in the
2038 * path to the file in question.
2039 */
2040static const char *
2041proc_map_files_get_link(struct dentry *dentry,
2042                        struct inode *inode,
2043                        struct delayed_call *done)
2044{
2045        if (!capable(CAP_SYS_ADMIN))
2046                return ERR_PTR(-EPERM);
2047
2048        return proc_pid_get_link(dentry, inode, done);
2049}
2050
2051/*
2052 * Identical to proc_pid_link_inode_operations except for get_link()
2053 */
2054static const struct inode_operations proc_map_files_link_inode_operations = {
2055        .readlink       = proc_pid_readlink,
2056        .get_link       = proc_map_files_get_link,
2057        .setattr        = proc_setattr,
2058};
2059
2060static struct dentry *
2061proc_map_files_instantiate(struct dentry *dentry,
2062                           struct task_struct *task, const void *ptr)
2063{
2064        fmode_t mode = (fmode_t)(unsigned long)ptr;
2065        struct proc_inode *ei;
2066        struct inode *inode;
2067
2068        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2069                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2070                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2071        if (!inode)
2072                return ERR_PTR(-ENOENT);
2073
2074        ei = PROC_I(inode);
2075        ei->op.proc_get_link = map_files_get_link;
2076
2077        inode->i_op = &proc_map_files_link_inode_operations;
2078        inode->i_size = 64;
2079
2080        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2081        return d_splice_alias(inode, dentry);
2082}
2083
2084static struct dentry *proc_map_files_lookup(struct inode *dir,
2085                struct dentry *dentry, unsigned int flags)
2086{
2087        unsigned long vm_start, vm_end;
2088        struct vm_area_struct *vma;
2089        struct task_struct *task;
2090        struct dentry *result;
2091        struct mm_struct *mm;
2092
2093        result = ERR_PTR(-ENOENT);
2094        task = get_proc_task(dir);
2095        if (!task)
2096                goto out;
2097
2098        result = ERR_PTR(-EACCES);
2099        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2100                goto out_put_task;
2101
2102        result = ERR_PTR(-ENOENT);
2103        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2104                goto out_put_task;
2105
2106        mm = get_task_mm(task);
2107        if (!mm)
2108                goto out_put_task;
2109
2110        down_read(&mm->mmap_sem);
2111        vma = find_exact_vma(mm, vm_start, vm_end);
2112        if (!vma)
2113                goto out_no_vma;
2114
2115        if (vma->vm_file)
2116                result = proc_map_files_instantiate(dentry, task,
2117                                (void *)(unsigned long)vma->vm_file->f_mode);
2118
2119out_no_vma:
2120        up_read(&mm->mmap_sem);
2121        mmput(mm);
2122out_put_task:
2123        put_task_struct(task);
2124out:
2125        return result;
2126}
2127
2128static const struct inode_operations proc_map_files_inode_operations = {
2129        .lookup         = proc_map_files_lookup,
2130        .permission     = proc_fd_permission,
2131        .setattr        = proc_setattr,
2132};
2133
2134static int
2135proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2136{
2137        struct vm_area_struct *vma;
2138        struct task_struct *task;
2139        struct mm_struct *mm;
2140        unsigned long nr_files, pos, i;
2141        GENRADIX(struct map_files_info) fa;
2142        struct map_files_info *p;
2143        int ret;
2144
2145        genradix_init(&fa);
2146
2147        ret = -ENOENT;
2148        task = get_proc_task(file_inode(file));
2149        if (!task)
2150                goto out;
2151
2152        ret = -EACCES;
2153        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2154                goto out_put_task;
2155
2156        ret = 0;
2157        if (!dir_emit_dots(file, ctx))
2158                goto out_put_task;
2159
2160        mm = get_task_mm(task);
2161        if (!mm)
2162                goto out_put_task;
2163        down_read(&mm->mmap_sem);
2164
2165        nr_files = 0;
2166
2167        /*
2168         * We need two passes here:
2169         *
2170         *  1) Collect vmas of mapped files with mmap_sem taken
2171         *  2) Release mmap_sem and instantiate entries
2172         *
2173         * otherwise we get lockdep complained, since filldir()
2174         * routine might require mmap_sem taken in might_fault().
2175         */
2176
2177        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2178                if (!vma->vm_file)
2179                        continue;
2180                if (++pos <= ctx->pos)
2181                        continue;
2182
2183                p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2184                if (!p) {
2185                        ret = -ENOMEM;
2186                        up_read(&mm->mmap_sem);
2187                        mmput(mm);
2188                        goto out_put_task;
2189                }
2190
2191                p->start = vma->vm_start;
2192                p->end = vma->vm_end;
2193                p->mode = vma->vm_file->f_mode;
2194        }
2195        up_read(&mm->mmap_sem);
2196        mmput(mm);
2197
2198        for (i = 0; i < nr_files; i++) {
2199                char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2200                unsigned int len;
2201
2202                p = genradix_ptr(&fa, i);
2203                len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2204                if (!proc_fill_cache(file, ctx,
2205                                      buf, len,
2206                                      proc_map_files_instantiate,
2207                                      task,
2208                                      (void *)(unsigned long)p->mode))
2209                        break;
2210                ctx->pos++;
2211        }
2212
2213out_put_task:
2214        put_task_struct(task);
2215out:
2216        genradix_free(&fa);
2217        return ret;
2218}
2219
2220static const struct file_operations proc_map_files_operations = {
2221        .read           = generic_read_dir,
2222        .iterate_shared = proc_map_files_readdir,
2223        .llseek         = generic_file_llseek,
2224};
2225
2226#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2227struct timers_private {
2228        struct pid *pid;
2229        struct task_struct *task;
2230        struct sighand_struct *sighand;
2231        struct pid_namespace *ns;
2232        unsigned long flags;
2233};
2234
2235static void *timers_start(struct seq_file *m, loff_t *pos)
2236{
2237        struct timers_private *tp = m->private;
2238
2239        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2240        if (!tp->task)
2241                return ERR_PTR(-ESRCH);
2242
2243        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2244        if (!tp->sighand)
2245                return ERR_PTR(-ESRCH);
2246
2247        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2248}
2249
2250static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2251{
2252        struct timers_private *tp = m->private;
2253        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2254}
2255
2256static void timers_stop(struct seq_file *m, void *v)
2257{
2258        struct timers_private *tp = m->private;
2259
2260        if (tp->sighand) {
2261                unlock_task_sighand(tp->task, &tp->flags);
2262                tp->sighand = NULL;
2263        }
2264
2265        if (tp->task) {
2266                put_task_struct(tp->task);
2267                tp->task = NULL;
2268        }
2269}
2270
2271static int show_timer(struct seq_file *m, void *v)
2272{
2273        struct k_itimer *timer;
2274        struct timers_private *tp = m->private;
2275        int notify;
2276        static const char * const nstr[] = {
2277                [SIGEV_SIGNAL] = "signal",
2278                [SIGEV_NONE] = "none",
2279                [SIGEV_THREAD] = "thread",
2280        };
2281
2282        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2283        notify = timer->it_sigev_notify;
2284
2285        seq_printf(m, "ID: %d\n", timer->it_id);
2286        seq_printf(m, "signal: %d/%px\n",
2287                   timer->sigq->info.si_signo,
2288                   timer->sigq->info.si_value.sival_ptr);
2289        seq_printf(m, "notify: %s/%s.%d\n",
2290                   nstr[notify & ~SIGEV_THREAD_ID],
2291                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2292                   pid_nr_ns(timer->it_pid, tp->ns));
2293        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2294
2295        return 0;
2296}
2297
2298static const struct seq_operations proc_timers_seq_ops = {
2299        .start  = timers_start,
2300        .next   = timers_next,
2301        .stop   = timers_stop,
2302        .show   = show_timer,
2303};
2304
2305static int proc_timers_open(struct inode *inode, struct file *file)
2306{
2307        struct timers_private *tp;
2308
2309        tp = __seq_open_private(file, &proc_timers_seq_ops,
2310                        sizeof(struct timers_private));
2311        if (!tp)
2312                return -ENOMEM;
2313
2314        tp->pid = proc_pid(inode);
2315        tp->ns = proc_pid_ns(inode);
2316        return 0;
2317}
2318
2319static const struct file_operations proc_timers_operations = {
2320        .open           = proc_timers_open,
2321        .read           = seq_read,
2322        .llseek         = seq_lseek,
2323        .release        = seq_release_private,
2324};
2325#endif
2326
2327static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2328                                        size_t count, loff_t *offset)
2329{
2330        struct inode *inode = file_inode(file);
2331        struct task_struct *p;
2332        u64 slack_ns;
2333        int err;
2334
2335        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2336        if (err < 0)
2337                return err;
2338
2339        p = get_proc_task(inode);
2340        if (!p)
2341                return -ESRCH;
2342
2343        if (p != current) {
2344                rcu_read_lock();
2345                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2346                        rcu_read_unlock();
2347                        count = -EPERM;
2348                        goto out;
2349                }
2350                rcu_read_unlock();
2351
2352                err = security_task_setscheduler(p);
2353                if (err) {
2354                        count = err;
2355                        goto out;
2356                }
2357        }
2358
2359        task_lock(p);
2360        if (slack_ns == 0)
2361                p->timer_slack_ns = p->default_timer_slack_ns;
2362        else
2363                p->timer_slack_ns = slack_ns;
2364        task_unlock(p);
2365
2366out:
2367        put_task_struct(p);
2368
2369        return count;
2370}
2371
2372static int timerslack_ns_show(struct seq_file *m, void *v)
2373{
2374        struct inode *inode = m->private;
2375        struct task_struct *p;
2376        int err = 0;
2377
2378        p = get_proc_task(inode);
2379        if (!p)
2380                return -ESRCH;
2381
2382        if (p != current) {
2383                rcu_read_lock();
2384                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2385                        rcu_read_unlock();
2386                        err = -EPERM;
2387                        goto out;
2388                }
2389                rcu_read_unlock();
2390
2391                err = security_task_getscheduler(p);
2392                if (err)
2393                        goto out;
2394        }
2395
2396        task_lock(p);
2397        seq_printf(m, "%llu\n", p->timer_slack_ns);
2398        task_unlock(p);
2399
2400out:
2401        put_task_struct(p);
2402
2403        return err;
2404}
2405
2406static int timerslack_ns_open(struct inode *inode, struct file *filp)
2407{
2408        return single_open(filp, timerslack_ns_show, inode);
2409}
2410
2411static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2412        .open           = timerslack_ns_open,
2413        .read           = seq_read,
2414        .write          = timerslack_ns_write,
2415        .llseek         = seq_lseek,
2416        .release        = single_release,
2417};
2418
2419static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2420        struct task_struct *task, const void *ptr)
2421{
2422        const struct pid_entry *p = ptr;
2423        struct inode *inode;
2424        struct proc_inode *ei;
2425
2426        inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2427        if (!inode)
2428                return ERR_PTR(-ENOENT);
2429
2430        ei = PROC_I(inode);
2431        if (S_ISDIR(inode->i_mode))
2432                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2433        if (p->iop)
2434                inode->i_op = p->iop;
2435        if (p->fop)
2436                inode->i_fop = p->fop;
2437        ei->op = p->op;
2438        pid_update_inode(task, inode);
2439        d_set_d_op(dentry, &pid_dentry_operations);
2440        return d_splice_alias(inode, dentry);
2441}
2442
2443static struct dentry *proc_pident_lookup(struct inode *dir, 
2444                                         struct dentry *dentry,
2445                                         const struct pid_entry *p,
2446                                         const struct pid_entry *end)
2447{
2448        struct task_struct *task = get_proc_task(dir);
2449        struct dentry *res = ERR_PTR(-ENOENT);
2450
2451        if (!task)
2452                goto out_no_task;
2453
2454        /*
2455         * Yes, it does not scale. And it should not. Don't add
2456         * new entries into /proc/<tgid>/ without very good reasons.
2457         */
2458        for (; p < end; p++) {
2459                if (p->len != dentry->d_name.len)
2460                        continue;
2461                if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2462                        res = proc_pident_instantiate(dentry, task, p);
2463                        break;
2464                }
2465        }
2466        put_task_struct(task);
2467out_no_task:
2468        return res;
2469}
2470
2471static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2472                const struct pid_entry *ents, unsigned int nents)
2473{
2474        struct task_struct *task = get_proc_task(file_inode(file));
2475        const struct pid_entry *p;
2476
2477        if (!task)
2478                return -ENOENT;
2479
2480        if (!dir_emit_dots(file, ctx))
2481                goto out;
2482
2483        if (ctx->pos >= nents + 2)
2484                goto out;
2485
2486        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2487                if (!proc_fill_cache(file, ctx, p->name, p->len,
2488                                proc_pident_instantiate, task, p))
2489                        break;
2490                ctx->pos++;
2491        }
2492out:
2493        put_task_struct(task);
2494        return 0;
2495}
2496
2497#ifdef CONFIG_SECURITY
2498static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2499                                  size_t count, loff_t *ppos)
2500{
2501        struct inode * inode = file_inode(file);
2502        char *p = NULL;
2503        ssize_t length;
2504        struct task_struct *task = get_proc_task(inode);
2505
2506        if (!task)
2507                return -ESRCH;
2508
2509        length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2510                                      (char*)file->f_path.dentry->d_name.name,
2511                                      &p);
2512        put_task_struct(task);
2513        if (length > 0)
2514                length = simple_read_from_buffer(buf, count, ppos, p, length);
2515        kfree(p);
2516        return length;
2517}
2518
2519static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2520                                   size_t count, loff_t *ppos)
2521{
2522        struct inode * inode = file_inode(file);
2523        struct task_struct *task;
2524        void *page;
2525        int rv;
2526
2527        rcu_read_lock();
2528        task = pid_task(proc_pid(inode), PIDTYPE_PID);
2529        if (!task) {
2530                rcu_read_unlock();
2531                return -ESRCH;
2532        }
2533        /* A task may only write its own attributes. */
2534        if (current != task) {
2535                rcu_read_unlock();
2536                return -EACCES;
2537        }
2538        /* Prevent changes to overridden credentials. */
2539        if (current_cred() != current_real_cred()) {
2540                rcu_read_unlock();
2541                return -EBUSY;
2542        }
2543        rcu_read_unlock();
2544
2545        if (count > PAGE_SIZE)
2546                count = PAGE_SIZE;
2547
2548        /* No partial writes. */
2549        if (*ppos != 0)
2550                return -EINVAL;
2551
2552        page = memdup_user(buf, count);
2553        if (IS_ERR(page)) {
2554                rv = PTR_ERR(page);
2555                goto out;
2556        }
2557
2558        /* Guard against adverse ptrace interaction */
2559        rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2560        if (rv < 0)
2561                goto out_free;
2562
2563        rv = security_setprocattr(PROC_I(inode)->op.lsm,
2564                                  file->f_path.dentry->d_name.name, page,
2565                                  count);
2566        mutex_unlock(&current->signal->cred_guard_mutex);
2567out_free:
2568        kfree(page);
2569out:
2570        return rv;
2571}
2572
2573static const struct file_operations proc_pid_attr_operations = {
2574        .read           = proc_pid_attr_read,
2575        .write          = proc_pid_attr_write,
2576        .llseek         = generic_file_llseek,
2577};
2578
2579#define LSM_DIR_OPS(LSM) \
2580static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2581                             struct dir_context *ctx) \
2582{ \
2583        return proc_pident_readdir(filp, ctx, \
2584                                   LSM##_attr_dir_stuff, \
2585                                   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2586} \
2587\
2588static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2589        .read           = generic_read_dir, \
2590        .iterate        = proc_##LSM##_attr_dir_iterate, \
2591        .llseek         = default_llseek, \
2592}; \
2593\
2594static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2595                                struct dentry *dentry, unsigned int flags) \
2596{ \
2597        return proc_pident_lookup(dir, dentry, \
2598                                  LSM##_attr_dir_stuff, \
2599                                  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2600} \
2601\
2602static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2603        .lookup         = proc_##LSM##_attr_dir_lookup, \
2604        .getattr        = pid_getattr, \
2605        .setattr        = proc_setattr, \
2606}
2607
2608#ifdef CONFIG_SECURITY_SMACK
2609static const struct pid_entry smack_attr_dir_stuff[] = {
2610        ATTR("smack", "current",        0666),
2611};
2612LSM_DIR_OPS(smack);
2613#endif
2614
2615static const struct pid_entry attr_dir_stuff[] = {
2616        ATTR(NULL, "current",           0666),
2617        ATTR(NULL, "prev",              0444),
2618        ATTR(NULL, "exec",              0666),
2619        ATTR(NULL, "fscreate",          0666),
2620        ATTR(NULL, "keycreate",         0666),
2621        ATTR(NULL, "sockcreate",        0666),
2622#ifdef CONFIG_SECURITY_SMACK
2623        DIR("smack",                    0555,
2624            proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2625#endif
2626};
2627
2628static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2629{
2630        return proc_pident_readdir(file, ctx, 
2631                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2632}
2633
2634static const struct file_operations proc_attr_dir_operations = {
2635        .read           = generic_read_dir,
2636        .iterate_shared = proc_attr_dir_readdir,
2637        .llseek         = generic_file_llseek,
2638};
2639
2640static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2641                                struct dentry *dentry, unsigned int flags)
2642{
2643        return proc_pident_lookup(dir, dentry,
2644                                  attr_dir_stuff,
2645                                  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2646}
2647
2648static const struct inode_operations proc_attr_dir_inode_operations = {
2649        .lookup         = proc_attr_dir_lookup,
2650        .getattr        = pid_getattr,
2651        .setattr        = proc_setattr,
2652};
2653
2654#endif
2655
2656#ifdef CONFIG_ELF_CORE
2657static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2658                                         size_t count, loff_t *ppos)
2659{
2660        struct task_struct *task = get_proc_task(file_inode(file));
2661        struct mm_struct *mm;
2662        char buffer[PROC_NUMBUF];
2663        size_t len;
2664        int ret;
2665
2666        if (!task)
2667                return -ESRCH;
2668
2669        ret = 0;
2670        mm = get_task_mm(task);
2671        if (mm) {
2672                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2673                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2674                                MMF_DUMP_FILTER_SHIFT));
2675                mmput(mm);
2676                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2677        }
2678
2679        put_task_struct(task);
2680
2681        return ret;
2682}
2683
2684static ssize_t proc_coredump_filter_write(struct file *file,
2685                                          const char __user *buf,
2686                                          size_t count,
2687                                          loff_t *ppos)
2688{
2689        struct task_struct *task;
2690        struct mm_struct *mm;
2691        unsigned int val;
2692        int ret;
2693        int i;
2694        unsigned long mask;
2695
2696        ret = kstrtouint_from_user(buf, count, 0, &val);
2697        if (ret < 0)
2698                return ret;
2699
2700        ret = -ESRCH;
2701        task = get_proc_task(file_inode(file));
2702        if (!task)
2703                goto out_no_task;
2704
2705        mm = get_task_mm(task);
2706        if (!mm)
2707                goto out_no_mm;
2708        ret = 0;
2709
2710        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2711                if (val & mask)
2712                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2713                else
2714                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715        }
2716
2717        mmput(mm);
2718 out_no_mm:
2719        put_task_struct(task);
2720 out_no_task:
2721        if (ret < 0)
2722                return ret;
2723        return count;
2724}
2725
2726static const struct file_operations proc_coredump_filter_operations = {
2727        .read           = proc_coredump_filter_read,
2728        .write          = proc_coredump_filter_write,
2729        .llseek         = generic_file_llseek,
2730};
2731#endif
2732
2733#ifdef CONFIG_TASK_IO_ACCOUNTING
2734static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2735{
2736        struct task_io_accounting acct = task->ioac;
2737        unsigned long flags;
2738        int result;
2739
2740        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2741        if (result)
2742                return result;
2743
2744        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2745                result = -EACCES;
2746                goto out_unlock;
2747        }
2748
2749        if (whole && lock_task_sighand(task, &flags)) {
2750                struct task_struct *t = task;
2751
2752                task_io_accounting_add(&acct, &task->signal->ioac);
2753                while_each_thread(task, t)
2754                        task_io_accounting_add(&acct, &t->ioac);
2755
2756                unlock_task_sighand(task, &flags);
2757        }
2758        seq_printf(m,
2759                   "rchar: %llu\n"
2760                   "wchar: %llu\n"
2761                   "syscr: %llu\n"
2762                   "syscw: %llu\n"
2763                   "read_bytes: %llu\n"
2764                   "write_bytes: %llu\n"
2765                   "cancelled_write_bytes: %llu\n",
2766                   (unsigned long long)acct.rchar,
2767                   (unsigned long long)acct.wchar,
2768                   (unsigned long long)acct.syscr,
2769                   (unsigned long long)acct.syscw,
2770                   (unsigned long long)acct.read_bytes,
2771                   (unsigned long long)acct.write_bytes,
2772                   (unsigned long long)acct.cancelled_write_bytes);
2773        result = 0;
2774
2775out_unlock:
2776        mutex_unlock(&task->signal->cred_guard_mutex);
2777        return result;
2778}
2779
2780static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2781                                  struct pid *pid, struct task_struct *task)
2782{
2783        return do_io_accounting(task, m, 0);
2784}
2785
2786static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2787                                   struct pid *pid, struct task_struct *task)
2788{
2789        return do_io_accounting(task, m, 1);
2790}
2791#endif /* CONFIG_TASK_IO_ACCOUNTING */
2792
2793#ifdef CONFIG_USER_NS
2794static int proc_id_map_open(struct inode *inode, struct file *file,
2795        const struct seq_operations *seq_ops)
2796{
2797        struct user_namespace *ns = NULL;
2798        struct task_struct *task;
2799        struct seq_file *seq;
2800        int ret = -EINVAL;
2801
2802        task = get_proc_task(inode);
2803        if (task) {
2804                rcu_read_lock();
2805                ns = get_user_ns(task_cred_xxx(task, user_ns));
2806                rcu_read_unlock();
2807                put_task_struct(task);
2808        }
2809        if (!ns)
2810                goto err;
2811
2812        ret = seq_open(file, seq_ops);
2813        if (ret)
2814                goto err_put_ns;
2815
2816        seq = file->private_data;
2817        seq->private = ns;
2818
2819        return 0;
2820err_put_ns:
2821        put_user_ns(ns);
2822err:
2823        return ret;
2824}
2825
2826static int proc_id_map_release(struct inode *inode, struct file *file)
2827{
2828        struct seq_file *seq = file->private_data;
2829        struct user_namespace *ns = seq->private;
2830        put_user_ns(ns);
2831        return seq_release(inode, file);
2832}
2833
2834static int proc_uid_map_open(struct inode *inode, struct file *file)
2835{
2836        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2837}
2838
2839static int proc_gid_map_open(struct inode *inode, struct file *file)
2840{
2841        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2842}
2843
2844static int proc_projid_map_open(struct inode *inode, struct file *file)
2845{
2846        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2847}
2848
2849static const struct file_operations proc_uid_map_operations = {
2850        .open           = proc_uid_map_open,
2851        .write          = proc_uid_map_write,
2852        .read           = seq_read,
2853        .llseek         = seq_lseek,
2854        .release        = proc_id_map_release,
2855};
2856
2857static const struct file_operations proc_gid_map_operations = {
2858        .open           = proc_gid_map_open,
2859        .write          = proc_gid_map_write,
2860        .read           = seq_read,
2861        .llseek         = seq_lseek,
2862        .release        = proc_id_map_release,
2863};
2864
2865static const struct file_operations proc_projid_map_operations = {
2866        .open           = proc_projid_map_open,
2867        .write          = proc_projid_map_write,
2868        .read           = seq_read,
2869        .llseek         = seq_lseek,
2870        .release        = proc_id_map_release,
2871};
2872
2873static int proc_setgroups_open(struct inode *inode, struct file *file)
2874{
2875        struct user_namespace *ns = NULL;
2876        struct task_struct *task;
2877        int ret;
2878
2879        ret = -ESRCH;
2880        task = get_proc_task(inode);
2881        if (task) {
2882                rcu_read_lock();
2883                ns = get_user_ns(task_cred_xxx(task, user_ns));
2884                rcu_read_unlock();
2885                put_task_struct(task);
2886        }
2887        if (!ns)
2888                goto err;
2889
2890        if (file->f_mode & FMODE_WRITE) {
2891                ret = -EACCES;
2892                if (!ns_capable(ns, CAP_SYS_ADMIN))
2893                        goto err_put_ns;
2894        }
2895
2896        ret = single_open(file, &proc_setgroups_show, ns);
2897        if (ret)
2898                goto err_put_ns;
2899
2900        return 0;
2901err_put_ns:
2902        put_user_ns(ns);
2903err:
2904        return ret;
2905}
2906
2907static int proc_setgroups_release(struct inode *inode, struct file *file)
2908{
2909        struct seq_file *seq = file->private_data;
2910        struct user_namespace *ns = seq->private;
2911        int ret = single_release(inode, file);
2912        put_user_ns(ns);
2913        return ret;
2914}
2915
2916static const struct file_operations proc_setgroups_operations = {
2917        .open           = proc_setgroups_open,
2918        .write          = proc_setgroups_write,
2919        .read           = seq_read,
2920        .llseek         = seq_lseek,
2921        .release        = proc_setgroups_release,
2922};
2923#endif /* CONFIG_USER_NS */
2924
2925static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2926                                struct pid *pid, struct task_struct *task)
2927{
2928        int err = lock_trace(task);
2929        if (!err) {
2930                seq_printf(m, "%08x\n", task->personality);
2931                unlock_trace(task);
2932        }
2933        return err;
2934}
2935
2936#ifdef CONFIG_LIVEPATCH
2937static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2938                                struct pid *pid, struct task_struct *task)
2939{
2940        seq_printf(m, "%d\n", task->patch_state);
2941        return 0;
2942}
2943#endif /* CONFIG_LIVEPATCH */
2944
2945#ifdef CONFIG_STACKLEAK_METRICS
2946static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2947                                struct pid *pid, struct task_struct *task)
2948{
2949        unsigned long prev_depth = THREAD_SIZE -
2950                                (task->prev_lowest_stack & (THREAD_SIZE - 1));
2951        unsigned long depth = THREAD_SIZE -
2952                                (task->lowest_stack & (THREAD_SIZE - 1));
2953
2954        seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2955                                                        prev_depth, depth);
2956        return 0;
2957}
2958#endif /* CONFIG_STACKLEAK_METRICS */
2959
2960/*
2961 * Thread groups
2962 */
2963static const struct file_operations proc_task_operations;
2964static const struct inode_operations proc_task_inode_operations;
2965
2966static const struct pid_entry tgid_base_stuff[] = {
2967        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2968        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2969        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2970        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2971        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2972#ifdef CONFIG_NET
2973        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2974#endif
2975        REG("environ",    S_IRUSR, proc_environ_operations),
2976        REG("auxv",       S_IRUSR, proc_auxv_operations),
2977        ONE("status",     S_IRUGO, proc_pid_status),
2978        ONE("personality", S_IRUSR, proc_pid_personality),
2979        ONE("limits",     S_IRUGO, proc_pid_limits),
2980#ifdef CONFIG_SCHED_DEBUG
2981        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2982#endif
2983#ifdef CONFIG_SCHED_AUTOGROUP
2984        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2985#endif
2986        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2987#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2988        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2989#endif
2990        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2991        ONE("stat",       S_IRUGO, proc_tgid_stat),
2992        ONE("statm",      S_IRUGO, proc_pid_statm),
2993        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2994#ifdef CONFIG_NUMA
2995        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2996#endif
2997        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2998        LNK("cwd",        proc_cwd_link),
2999        LNK("root",       proc_root_link),
3000        LNK("exe",        proc_exe_link),
3001        REG("mounts",     S_IRUGO, proc_mounts_operations),
3002        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3003        REG("mountstats", S_IRUSR, proc_mountstats_operations),
3004#ifdef CONFIG_PROC_PAGE_MONITOR
3005        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3006        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3007        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3008        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3009#endif
3010#ifdef CONFIG_SECURITY
3011        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3012#endif
3013#ifdef CONFIG_KALLSYMS
3014        ONE("wchan",      S_IRUGO, proc_pid_wchan),
3015#endif
3016#ifdef CONFIG_STACKTRACE
3017        ONE("stack",      S_IRUSR, proc_pid_stack),
3018#endif
3019#ifdef CONFIG_SCHED_INFO
3020        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3021#endif
3022#ifdef CONFIG_LATENCYTOP
3023        REG("latency",  S_IRUGO, proc_lstats_operations),
3024#endif
3025#ifdef CONFIG_PROC_PID_CPUSET
3026        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3027#endif
3028#ifdef CONFIG_CGROUPS
3029        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3030#endif
3031        ONE("oom_score",  S_IRUGO, proc_oom_score),
3032        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3033        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3034#ifdef CONFIG_AUDIT
3035        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3036        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3037#endif
3038#ifdef CONFIG_FAULT_INJECTION
3039        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3040        REG("fail-nth", 0644, proc_fail_nth_operations),
3041#endif
3042#ifdef CONFIG_ELF_CORE
3043        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3044#endif
3045#ifdef CONFIG_TASK_IO_ACCOUNTING
3046        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3047#endif
3048#ifdef CONFIG_USER_NS
3049        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3050        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3051        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3052        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3053#endif
3054#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3055        REG("timers",     S_IRUGO, proc_timers_operations),
3056#endif
3057        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3058#ifdef CONFIG_LIVEPATCH
3059        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3060#endif
3061#ifdef CONFIG_STACKLEAK_METRICS
3062        ONE("stack_depth", S_IRUGO, proc_stack_depth),
3063#endif
3064};
3065
3066static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3067{
3068        return proc_pident_readdir(file, ctx,
3069                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3070}
3071
3072static const struct file_operations proc_tgid_base_operations = {
3073        .read           = generic_read_dir,
3074        .iterate_shared = proc_tgid_base_readdir,
3075        .llseek         = generic_file_llseek,
3076};
3077
3078struct pid *tgid_pidfd_to_pid(const struct file *file)
3079{
3080        if (file->f_op != &proc_tgid_base_operations)
3081                return ERR_PTR(-EBADF);
3082
3083        return proc_pid(file_inode(file));
3084}
3085
3086static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3087{
3088        return proc_pident_lookup(dir, dentry,
3089                                  tgid_base_stuff,
3090                                  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3091}
3092
3093static const struct inode_operations proc_tgid_base_inode_operations = {
3094        .lookup         = proc_tgid_base_lookup,
3095        .getattr        = pid_getattr,
3096        .setattr        = proc_setattr,
3097        .permission     = proc_pid_permission,
3098};
3099
3100static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3101{
3102        struct dentry *dentry, *leader, *dir;
3103        char buf[10 + 1];
3104        struct qstr name;
3105
3106        name.name = buf;
3107        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3108        /* no ->d_hash() rejects on procfs */
3109        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3110        if (dentry) {
3111                d_invalidate(dentry);
3112                dput(dentry);
3113        }
3114
3115        if (pid == tgid)
3116                return;
3117
3118        name.name = buf;
3119        name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3120        leader = d_hash_and_lookup(mnt->mnt_root, &name);
3121        if (!leader)
3122                goto out;
3123
3124        name.name = "task";
3125        name.len = strlen(name.name);
3126        dir = d_hash_and_lookup(leader, &name);
3127        if (!dir)
3128                goto out_put_leader;
3129
3130        name.name = buf;
3131        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3132        dentry = d_hash_and_lookup(dir, &name);
3133        if (dentry) {
3134                d_invalidate(dentry);
3135                dput(dentry);
3136        }
3137
3138        dput(dir);
3139out_put_leader:
3140        dput(leader);
3141out:
3142        return;
3143}
3144
3145/**
3146 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3147 * @task: task that should be flushed.
3148 *
3149 * When flushing dentries from proc, one needs to flush them from global
3150 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3151 * in. This call is supposed to do all of this job.
3152 *
3153 * Looks in the dcache for
3154 * /proc/@pid
3155 * /proc/@tgid/task/@pid
3156 * if either directory is present flushes it and all of it'ts children
3157 * from the dcache.
3158 *
3159 * It is safe and reasonable to cache /proc entries for a task until
3160 * that task exits.  After that they just clog up the dcache with
3161 * useless entries, possibly causing useful dcache entries to be
3162 * flushed instead.  This routine is proved to flush those useless
3163 * dcache entries at process exit time.
3164 *
3165 * NOTE: This routine is just an optimization so it does not guarantee
3166 *       that no dcache entries will exist at process exit time it
3167 *       just makes it very unlikely that any will persist.
3168 */
3169
3170void proc_flush_task(struct task_struct *task)
3171{
3172        int i;
3173        struct pid *pid, *tgid;
3174        struct upid *upid;
3175
3176        pid = task_pid(task);
3177        tgid = task_tgid(task);
3178
3179        for (i = 0; i <= pid->level; i++) {
3180                upid = &pid->numbers[i];
3181                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3182                                        tgid->numbers[i].nr);
3183        }
3184}
3185
3186static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3187                                   struct task_struct *task, const void *ptr)
3188{
3189        struct inode *inode;
3190
3191        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3192        if (!inode)
3193                return ERR_PTR(-ENOENT);
3194
3195        inode->i_op = &proc_tgid_base_inode_operations;
3196        inode->i_fop = &proc_tgid_base_operations;
3197        inode->i_flags|=S_IMMUTABLE;
3198
3199        set_nlink(inode, nlink_tgid);
3200        pid_update_inode(task, inode);
3201
3202        d_set_d_op(dentry, &pid_dentry_operations);
3203        return d_splice_alias(inode, dentry);
3204}
3205
3206struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3207{
3208        struct task_struct *task;
3209        unsigned tgid;
3210        struct pid_namespace *ns;
3211        struct dentry *result = ERR_PTR(-ENOENT);
3212
3213        tgid = name_to_int(&dentry->d_name);
3214        if (tgid == ~0U)
3215                goto out;
3216
3217        ns = dentry->d_sb->s_fs_info;
3218        rcu_read_lock();
3219        task = find_task_by_pid_ns(tgid, ns);
3220        if (task)
3221                get_task_struct(task);
3222        rcu_read_unlock();
3223        if (!task)
3224                goto out;
3225
3226        result = proc_pid_instantiate(dentry, task, NULL);
3227        put_task_struct(task);
3228out:
3229        return result;
3230}
3231
3232/*
3233 * Find the first task with tgid >= tgid
3234 *
3235 */
3236struct tgid_iter {
3237        unsigned int tgid;
3238        struct task_struct *task;
3239};
3240static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3241{
3242        struct pid *pid;
3243
3244        if (iter.task)
3245                put_task_struct(iter.task);
3246        rcu_read_lock();
3247retry:
3248        iter.task = NULL;
3249        pid = find_ge_pid(iter.tgid, ns);
3250        if (pid) {
3251                iter.tgid = pid_nr_ns(pid, ns);
3252                iter.task = pid_task(pid, PIDTYPE_PID);
3253                /* What we to know is if the pid we have find is the
3254                 * pid of a thread_group_leader.  Testing for task
3255                 * being a thread_group_leader is the obvious thing
3256                 * todo but there is a window when it fails, due to
3257                 * the pid transfer logic in de_thread.
3258                 *
3259                 * So we perform the straight forward test of seeing
3260                 * if the pid we have found is the pid of a thread
3261                 * group leader, and don't worry if the task we have
3262                 * found doesn't happen to be a thread group leader.
3263                 * As we don't care in the case of readdir.
3264                 */
3265                if (!iter.task || !has_group_leader_pid(iter.task)) {
3266                        iter.tgid += 1;
3267                        goto retry;
3268                }
3269                get_task_struct(iter.task);
3270        }
3271        rcu_read_unlock();
3272        return iter;
3273}
3274
3275#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3276
3277/* for the /proc/ directory itself, after non-process stuff has been done */
3278int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3279{
3280        struct tgid_iter iter;
3281        struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3282        loff_t pos = ctx->pos;
3283
3284        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3285                return 0;
3286
3287        if (pos == TGID_OFFSET - 2) {
3288                struct inode *inode = d_inode(ns->proc_self);
3289                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3290                        return 0;
3291                ctx->pos = pos = pos + 1;
3292        }
3293        if (pos == TGID_OFFSET - 1) {
3294                struct inode *inode = d_inode(ns->proc_thread_self);
3295                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3296                        return 0;
3297                ctx->pos = pos = pos + 1;
3298        }
3299        iter.tgid = pos - TGID_OFFSET;
3300        iter.task = NULL;
3301        for (iter = next_tgid(ns, iter);
3302             iter.task;
3303             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3304                char name[10 + 1];
3305                unsigned int len;
3306
3307                cond_resched();
3308                if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3309                        continue;
3310
3311                len = snprintf(name, sizeof(name), "%u", iter.tgid);
3312                ctx->pos = iter.tgid + TGID_OFFSET;
3313                if (!proc_fill_cache(file, ctx, name, len,
3314                                     proc_pid_instantiate, iter.task, NULL)) {
3315                        put_task_struct(iter.task);
3316                        return 0;
3317                }
3318        }
3319        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3320        return 0;
3321}
3322
3323/*
3324 * proc_tid_comm_permission is a special permission function exclusively
3325 * used for the node /proc/<pid>/task/<tid>/comm.
3326 * It bypasses generic permission checks in the case where a task of the same
3327 * task group attempts to access the node.
3328 * The rationale behind this is that glibc and bionic access this node for
3329 * cross thread naming (pthread_set/getname_np(!self)). However, if
3330 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3331 * which locks out the cross thread naming implementation.
3332 * This function makes sure that the node is always accessible for members of
3333 * same thread group.
3334 */
3335static int proc_tid_comm_permission(struct inode *inode, int mask)
3336{
3337        bool is_same_tgroup;
3338        struct task_struct *task;
3339
3340        task = get_proc_task(inode);
3341        if (!task)
3342                return -ESRCH;
3343        is_same_tgroup = same_thread_group(current, task);
3344        put_task_struct(task);
3345
3346        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3347                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3348                 * read or written by the members of the corresponding
3349                 * thread group.
3350                 */
3351                return 0;
3352        }
3353
3354        return generic_permission(inode, mask);
3355}
3356
3357static const struct inode_operations proc_tid_comm_inode_operations = {
3358                .permission = proc_tid_comm_permission,
3359};
3360
3361/*
3362 * Tasks
3363 */
3364static const struct pid_entry tid_base_stuff[] = {
3365        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3366        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3367        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3368#ifdef CONFIG_NET
3369        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3370#endif
3371        REG("environ",   S_IRUSR, proc_environ_operations),
3372        REG("auxv",      S_IRUSR, proc_auxv_operations),
3373        ONE("status",    S_IRUGO, proc_pid_status),
3374        ONE("personality", S_IRUSR, proc_pid_personality),
3375        ONE("limits",    S_IRUGO, proc_pid_limits),
3376#ifdef CONFIG_SCHED_DEBUG
3377        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3378#endif
3379        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3380                         &proc_tid_comm_inode_operations,
3381                         &proc_pid_set_comm_operations, {}),
3382#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3383        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3384#endif
3385        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3386        ONE("stat",      S_IRUGO, proc_tid_stat),
3387        ONE("statm",     S_IRUGO, proc_pid_statm),
3388        REG("maps",      S_IRUGO, proc_pid_maps_operations),
3389#ifdef CONFIG_PROC_CHILDREN
3390        REG("children",  S_IRUGO, proc_tid_children_operations),
3391#endif
3392#ifdef CONFIG_NUMA
3393        REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3394#endif
3395        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3396        LNK("cwd",       proc_cwd_link),
3397        LNK("root",      proc_root_link),
3398        LNK("exe",       proc_exe_link),
3399        REG("mounts",    S_IRUGO, proc_mounts_operations),
3400        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3401#ifdef CONFIG_PROC_PAGE_MONITOR
3402        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3403        REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3404        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3405        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3406#endif
3407#ifdef CONFIG_SECURITY
3408        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3409#endif
3410#ifdef CONFIG_KALLSYMS
3411        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3412#endif
3413#ifdef CONFIG_STACKTRACE
3414        ONE("stack",      S_IRUSR, proc_pid_stack),
3415#endif
3416#ifdef CONFIG_SCHED_INFO
3417        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3418#endif
3419#ifdef CONFIG_LATENCYTOP
3420        REG("latency",  S_IRUGO, proc_lstats_operations),
3421#endif
3422#ifdef CONFIG_PROC_PID_CPUSET
3423        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3424#endif
3425#ifdef CONFIG_CGROUPS
3426        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3427#endif
3428        ONE("oom_score", S_IRUGO, proc_oom_score),
3429        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3430        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3431#ifdef CONFIG_AUDIT
3432        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3433        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3434#endif
3435#ifdef CONFIG_FAULT_INJECTION
3436        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3437        REG("fail-nth", 0644, proc_fail_nth_operations),
3438#endif
3439#ifdef CONFIG_TASK_IO_ACCOUNTING
3440        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3441#endif
3442#ifdef CONFIG_USER_NS
3443        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3444        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3445        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3446        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3447#endif
3448#ifdef CONFIG_LIVEPATCH
3449        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3450#endif
3451};
3452
3453static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3454{
3455        return proc_pident_readdir(file, ctx,
3456                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3457}
3458
3459static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3460{
3461        return proc_pident_lookup(dir, dentry,
3462                                  tid_base_stuff,
3463                                  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3464}
3465
3466static const struct file_operations proc_tid_base_operations = {
3467        .read           = generic_read_dir,
3468        .iterate_shared = proc_tid_base_readdir,
3469        .llseek         = generic_file_llseek,
3470};
3471
3472static const struct inode_operations proc_tid_base_inode_operations = {
3473        .lookup         = proc_tid_base_lookup,
3474        .getattr        = pid_getattr,
3475        .setattr        = proc_setattr,
3476};
3477
3478static struct dentry *proc_task_instantiate(struct dentry *dentry,
3479        struct task_struct *task, const void *ptr)
3480{
3481        struct inode *inode;
3482        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3483        if (!inode)
3484                return ERR_PTR(-ENOENT);
3485
3486        inode->i_op = &proc_tid_base_inode_operations;
3487        inode->i_fop = &proc_tid_base_operations;
3488        inode->i_flags |= S_IMMUTABLE;
3489
3490        set_nlink(inode, nlink_tid);
3491        pid_update_inode(task, inode);
3492
3493        d_set_d_op(dentry, &pid_dentry_operations);
3494        return d_splice_alias(inode, dentry);
3495}
3496
3497static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3498{
3499        struct task_struct *task;
3500        struct task_struct *leader = get_proc_task(dir);
3501        unsigned tid;
3502        struct pid_namespace *ns;
3503        struct dentry *result = ERR_PTR(-ENOENT);
3504
3505        if (!leader)
3506                goto out_no_task;
3507
3508        tid = name_to_int(&dentry->d_name);
3509        if (tid == ~0U)
3510                goto out;
3511
3512        ns = dentry->d_sb->s_fs_info;
3513        rcu_read_lock();
3514        task = find_task_by_pid_ns(tid, ns);
3515        if (task)
3516                get_task_struct(task);
3517        rcu_read_unlock();
3518        if (!task)
3519                goto out;
3520        if (!same_thread_group(leader, task))
3521                goto out_drop_task;
3522
3523        result = proc_task_instantiate(dentry, task, NULL);
3524out_drop_task:
3525        put_task_struct(task);
3526out:
3527        put_task_struct(leader);
3528out_no_task:
3529        return result;
3530}
3531
3532/*
3533 * Find the first tid of a thread group to return to user space.
3534 *
3535 * Usually this is just the thread group leader, but if the users
3536 * buffer was too small or there was a seek into the middle of the
3537 * directory we have more work todo.
3538 *
3539 * In the case of a short read we start with find_task_by_pid.
3540 *
3541 * In the case of a seek we start with the leader and walk nr
3542 * threads past it.
3543 */
3544static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3545                                        struct pid_namespace *ns)
3546{
3547        struct task_struct *pos, *task;
3548        unsigned long nr = f_pos;
3549
3550        if (nr != f_pos)        /* 32bit overflow? */
3551                return NULL;
3552
3553        rcu_read_lock();
3554        task = pid_task(pid, PIDTYPE_PID);
3555        if (!task)
3556                goto fail;
3557
3558        /* Attempt to start with the tid of a thread */
3559        if (tid && nr) {
3560                pos = find_task_by_pid_ns(tid, ns);
3561                if (pos && same_thread_group(pos, task))
3562                        goto found;
3563        }
3564
3565        /* If nr exceeds the number of threads there is nothing todo */
3566        if (nr >= get_nr_threads(task))
3567                goto fail;
3568
3569        /* If we haven't found our starting place yet start
3570         * with the leader and walk nr threads forward.
3571         */
3572        pos = task = task->group_leader;
3573        do {
3574                if (!nr--)
3575                        goto found;
3576        } while_each_thread(task, pos);
3577fail:
3578        pos = NULL;
3579        goto out;
3580found:
3581        get_task_struct(pos);
3582out:
3583        rcu_read_unlock();
3584        return pos;
3585}
3586
3587/*
3588 * Find the next thread in the thread list.
3589 * Return NULL if there is an error or no next thread.
3590 *
3591 * The reference to the input task_struct is released.
3592 */
3593static struct task_struct *next_tid(struct task_struct *start)
3594{
3595        struct task_struct *pos = NULL;
3596        rcu_read_lock();
3597        if (pid_alive(start)) {
3598                pos = next_thread(start);
3599                if (thread_group_leader(pos))
3600                        pos = NULL;
3601                else
3602                        get_task_struct(pos);
3603        }
3604        rcu_read_unlock();
3605        put_task_struct(start);
3606        return pos;
3607}
3608
3609/* for the /proc/TGID/task/ directories */
3610static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3611{
3612        struct inode *inode = file_inode(file);
3613        struct task_struct *task;
3614        struct pid_namespace *ns;
3615        int tid;
3616
3617        if (proc_inode_is_dead(inode))
3618                return -ENOENT;
3619
3620        if (!dir_emit_dots(file, ctx))
3621                return 0;
3622
3623        /* f_version caches the tgid value that the last readdir call couldn't
3624         * return. lseek aka telldir automagically resets f_version to 0.
3625         */
3626        ns = proc_pid_ns(inode);
3627        tid = (int)file->f_version;
3628        file->f_version = 0;
3629        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3630             task;
3631             task = next_tid(task), ctx->pos++) {
3632                char name[10 + 1];
3633                unsigned int len;
3634                tid = task_pid_nr_ns(task, ns);
3635                len = snprintf(name, sizeof(name), "%u", tid);
3636                if (!proc_fill_cache(file, ctx, name, len,
3637                                proc_task_instantiate, task, NULL)) {
3638                        /* returning this tgid failed, save it as the first
3639                         * pid for the next readir call */
3640                        file->f_version = (u64)tid;
3641                        put_task_struct(task);
3642                        break;
3643                }
3644        }
3645
3646        return 0;
3647}
3648
3649static int proc_task_getattr(const struct path *path, struct kstat *stat,
3650                             u32 request_mask, unsigned int query_flags)
3651{
3652        struct inode *inode = d_inode(path->dentry);
3653        struct task_struct *p = get_proc_task(inode);
3654        generic_fillattr(inode, stat);
3655
3656        if (p) {
3657                stat->nlink += get_nr_threads(p);
3658                put_task_struct(p);
3659        }
3660
3661        return 0;
3662}
3663
3664static const struct inode_operations proc_task_inode_operations = {
3665        .lookup         = proc_task_lookup,
3666        .getattr        = proc_task_getattr,
3667        .setattr        = proc_setattr,
3668        .permission     = proc_pid_permission,
3669};
3670
3671static const struct file_operations proc_task_operations = {
3672        .read           = generic_read_dir,
3673        .iterate_shared = proc_task_readdir,
3674        .llseek         = generic_file_llseek,
3675};
3676
3677void __init set_proc_pid_nlink(void)
3678{
3679        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3680        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3681}
3682