linux/fs/squashfs/cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Squashfs - a compressed read only filesystem for Linux
   4 *
   5 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
   6 * Phillip Lougher <phillip@squashfs.org.uk>
   7 *
   8 * cache.c
   9 */
  10
  11/*
  12 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
  13 * recently accessed data Squashfs uses two small metadata and fragment caches.
  14 *
  15 * This file implements a generic cache implementation used for both caches,
  16 * plus functions layered ontop of the generic cache implementation to
  17 * access the metadata and fragment caches.
  18 *
  19 * To avoid out of memory and fragmentation issues with vmalloc the cache
  20 * uses sequences of kmalloced PAGE_SIZE buffers.
  21 *
  22 * It should be noted that the cache is not used for file datablocks, these
  23 * are decompressed and cached in the page-cache in the normal way.  The
  24 * cache is only used to temporarily cache fragment and metadata blocks
  25 * which have been read as as a result of a metadata (i.e. inode or
  26 * directory) or fragment access.  Because metadata and fragments are packed
  27 * together into blocks (to gain greater compression) the read of a particular
  28 * piece of metadata or fragment will retrieve other metadata/fragments which
  29 * have been packed with it, these because of locality-of-reference may be read
  30 * in the near future. Temporarily caching them ensures they are available for
  31 * near future access without requiring an additional read and decompress.
  32 */
  33
  34#include <linux/fs.h>
  35#include <linux/vfs.h>
  36#include <linux/slab.h>
  37#include <linux/vmalloc.h>
  38#include <linux/sched.h>
  39#include <linux/spinlock.h>
  40#include <linux/wait.h>
  41#include <linux/pagemap.h>
  42
  43#include "squashfs_fs.h"
  44#include "squashfs_fs_sb.h"
  45#include "squashfs.h"
  46#include "page_actor.h"
  47
  48/*
  49 * Look-up block in cache, and increment usage count.  If not in cache, read
  50 * and decompress it from disk.
  51 */
  52struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
  53        struct squashfs_cache *cache, u64 block, int length)
  54{
  55        int i, n;
  56        struct squashfs_cache_entry *entry;
  57
  58        spin_lock(&cache->lock);
  59
  60        while (1) {
  61                for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
  62                        if (cache->entry[i].block == block) {
  63                                cache->curr_blk = i;
  64                                break;
  65                        }
  66                        i = (i + 1) % cache->entries;
  67                }
  68
  69                if (n == cache->entries) {
  70                        /*
  71                         * Block not in cache, if all cache entries are used
  72                         * go to sleep waiting for one to become available.
  73                         */
  74                        if (cache->unused == 0) {
  75                                cache->num_waiters++;
  76                                spin_unlock(&cache->lock);
  77                                wait_event(cache->wait_queue, cache->unused);
  78                                spin_lock(&cache->lock);
  79                                cache->num_waiters--;
  80                                continue;
  81                        }
  82
  83                        /*
  84                         * At least one unused cache entry.  A simple
  85                         * round-robin strategy is used to choose the entry to
  86                         * be evicted from the cache.
  87                         */
  88                        i = cache->next_blk;
  89                        for (n = 0; n < cache->entries; n++) {
  90                                if (cache->entry[i].refcount == 0)
  91                                        break;
  92                                i = (i + 1) % cache->entries;
  93                        }
  94
  95                        cache->next_blk = (i + 1) % cache->entries;
  96                        entry = &cache->entry[i];
  97
  98                        /*
  99                         * Initialise chosen cache entry, and fill it in from
 100                         * disk.
 101                         */
 102                        cache->unused--;
 103                        entry->block = block;
 104                        entry->refcount = 1;
 105                        entry->pending = 1;
 106                        entry->num_waiters = 0;
 107                        entry->error = 0;
 108                        spin_unlock(&cache->lock);
 109
 110                        entry->length = squashfs_read_data(sb, block, length,
 111                                &entry->next_index, entry->actor);
 112
 113                        spin_lock(&cache->lock);
 114
 115                        if (entry->length < 0)
 116                                entry->error = entry->length;
 117
 118                        entry->pending = 0;
 119
 120                        /*
 121                         * While filling this entry one or more other processes
 122                         * have looked it up in the cache, and have slept
 123                         * waiting for it to become available.
 124                         */
 125                        if (entry->num_waiters) {
 126                                spin_unlock(&cache->lock);
 127                                wake_up_all(&entry->wait_queue);
 128                        } else
 129                                spin_unlock(&cache->lock);
 130
 131                        goto out;
 132                }
 133
 134                /*
 135                 * Block already in cache.  Increment refcount so it doesn't
 136                 * get reused until we're finished with it, if it was
 137                 * previously unused there's one less cache entry available
 138                 * for reuse.
 139                 */
 140                entry = &cache->entry[i];
 141                if (entry->refcount == 0)
 142                        cache->unused--;
 143                entry->refcount++;
 144
 145                /*
 146                 * If the entry is currently being filled in by another process
 147                 * go to sleep waiting for it to become available.
 148                 */
 149                if (entry->pending) {
 150                        entry->num_waiters++;
 151                        spin_unlock(&cache->lock);
 152                        wait_event(entry->wait_queue, !entry->pending);
 153                } else
 154                        spin_unlock(&cache->lock);
 155
 156                goto out;
 157        }
 158
 159out:
 160        TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
 161                cache->name, i, entry->block, entry->refcount, entry->error);
 162
 163        if (entry->error)
 164                ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
 165                                                        block);
 166        return entry;
 167}
 168
 169
 170/*
 171 * Release cache entry, once usage count is zero it can be reused.
 172 */
 173void squashfs_cache_put(struct squashfs_cache_entry *entry)
 174{
 175        struct squashfs_cache *cache = entry->cache;
 176
 177        spin_lock(&cache->lock);
 178        entry->refcount--;
 179        if (entry->refcount == 0) {
 180                cache->unused++;
 181                /*
 182                 * If there's any processes waiting for a block to become
 183                 * available, wake one up.
 184                 */
 185                if (cache->num_waiters) {
 186                        spin_unlock(&cache->lock);
 187                        wake_up(&cache->wait_queue);
 188                        return;
 189                }
 190        }
 191        spin_unlock(&cache->lock);
 192}
 193
 194/*
 195 * Delete cache reclaiming all kmalloced buffers.
 196 */
 197void squashfs_cache_delete(struct squashfs_cache *cache)
 198{
 199        int i, j;
 200
 201        if (cache == NULL)
 202                return;
 203
 204        for (i = 0; i < cache->entries; i++) {
 205                if (cache->entry[i].data) {
 206                        for (j = 0; j < cache->pages; j++)
 207                                kfree(cache->entry[i].data[j]);
 208                        kfree(cache->entry[i].data);
 209                }
 210                kfree(cache->entry[i].actor);
 211        }
 212
 213        kfree(cache->entry);
 214        kfree(cache);
 215}
 216
 217
 218/*
 219 * Initialise cache allocating the specified number of entries, each of
 220 * size block_size.  To avoid vmalloc fragmentation issues each entry
 221 * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
 222 */
 223struct squashfs_cache *squashfs_cache_init(char *name, int entries,
 224        int block_size)
 225{
 226        int i, j;
 227        struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
 228
 229        if (cache == NULL) {
 230                ERROR("Failed to allocate %s cache\n", name);
 231                return NULL;
 232        }
 233
 234        cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
 235        if (cache->entry == NULL) {
 236                ERROR("Failed to allocate %s cache\n", name);
 237                goto cleanup;
 238        }
 239
 240        cache->curr_blk = 0;
 241        cache->next_blk = 0;
 242        cache->unused = entries;
 243        cache->entries = entries;
 244        cache->block_size = block_size;
 245        cache->pages = block_size >> PAGE_SHIFT;
 246        cache->pages = cache->pages ? cache->pages : 1;
 247        cache->name = name;
 248        cache->num_waiters = 0;
 249        spin_lock_init(&cache->lock);
 250        init_waitqueue_head(&cache->wait_queue);
 251
 252        for (i = 0; i < entries; i++) {
 253                struct squashfs_cache_entry *entry = &cache->entry[i];
 254
 255                init_waitqueue_head(&cache->entry[i].wait_queue);
 256                entry->cache = cache;
 257                entry->block = SQUASHFS_INVALID_BLK;
 258                entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
 259                if (entry->data == NULL) {
 260                        ERROR("Failed to allocate %s cache entry\n", name);
 261                        goto cleanup;
 262                }
 263
 264                for (j = 0; j < cache->pages; j++) {
 265                        entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
 266                        if (entry->data[j] == NULL) {
 267                                ERROR("Failed to allocate %s buffer\n", name);
 268                                goto cleanup;
 269                        }
 270                }
 271
 272                entry->actor = squashfs_page_actor_init(entry->data,
 273                                                cache->pages, 0);
 274                if (entry->actor == NULL) {
 275                        ERROR("Failed to allocate %s cache entry\n", name);
 276                        goto cleanup;
 277                }
 278        }
 279
 280        return cache;
 281
 282cleanup:
 283        squashfs_cache_delete(cache);
 284        return NULL;
 285}
 286
 287
 288/*
 289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
 290 * into the cache entry.  If there's not length bytes then copy the number of
 291 * bytes available.  In all cases return the number of bytes copied.
 292 */
 293int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
 294                int offset, int length)
 295{
 296        int remaining = length;
 297
 298        if (length == 0)
 299                return 0;
 300        else if (buffer == NULL)
 301                return min(length, entry->length - offset);
 302
 303        while (offset < entry->length) {
 304                void *buff = entry->data[offset / PAGE_SIZE]
 305                                + (offset % PAGE_SIZE);
 306                int bytes = min_t(int, entry->length - offset,
 307                                PAGE_SIZE - (offset % PAGE_SIZE));
 308
 309                if (bytes >= remaining) {
 310                        memcpy(buffer, buff, remaining);
 311                        remaining = 0;
 312                        break;
 313                }
 314
 315                memcpy(buffer, buff, bytes);
 316                buffer += bytes;
 317                remaining -= bytes;
 318                offset += bytes;
 319        }
 320
 321        return length - remaining;
 322}
 323
 324
 325/*
 326 * Read length bytes from metadata position <block, offset> (block is the
 327 * start of the compressed block on disk, and offset is the offset into
 328 * the block once decompressed).  Data is packed into consecutive blocks,
 329 * and length bytes may require reading more than one block.
 330 */
 331int squashfs_read_metadata(struct super_block *sb, void *buffer,
 332                u64 *block, int *offset, int length)
 333{
 334        struct squashfs_sb_info *msblk = sb->s_fs_info;
 335        int bytes, res = length;
 336        struct squashfs_cache_entry *entry;
 337
 338        TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
 339
 340        if (unlikely(length < 0))
 341                return -EIO;
 342
 343        while (length) {
 344                entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
 345                if (entry->error) {
 346                        res = entry->error;
 347                        goto error;
 348                } else if (*offset >= entry->length) {
 349                        res = -EIO;
 350                        goto error;
 351                }
 352
 353                bytes = squashfs_copy_data(buffer, entry, *offset, length);
 354                if (buffer)
 355                        buffer += bytes;
 356                length -= bytes;
 357                *offset += bytes;
 358
 359                if (*offset == entry->length) {
 360                        *block = entry->next_index;
 361                        *offset = 0;
 362                }
 363
 364                squashfs_cache_put(entry);
 365        }
 366
 367        return res;
 368
 369error:
 370        squashfs_cache_put(entry);
 371        return res;
 372}
 373
 374
 375/*
 376 * Look-up in the fragmment cache the fragment located at <start_block> in the
 377 * filesystem.  If necessary read and decompress it from disk.
 378 */
 379struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
 380                                u64 start_block, int length)
 381{
 382        struct squashfs_sb_info *msblk = sb->s_fs_info;
 383
 384        return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
 385                length);
 386}
 387
 388
 389/*
 390 * Read and decompress the datablock located at <start_block> in the
 391 * filesystem.  The cache is used here to avoid duplicating locking and
 392 * read/decompress code.
 393 */
 394struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
 395                                u64 start_block, int length)
 396{
 397        struct squashfs_sb_info *msblk = sb->s_fs_info;
 398
 399        return squashfs_cache_get(sb, msblk->read_page, start_block, length);
 400}
 401
 402
 403/*
 404 * Read a filesystem table (uncompressed sequence of bytes) from disk
 405 */
 406void *squashfs_read_table(struct super_block *sb, u64 block, int length)
 407{
 408        int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
 409        int i, res;
 410        void *table, *buffer, **data;
 411        struct squashfs_page_actor *actor;
 412
 413        table = buffer = kmalloc(length, GFP_KERNEL);
 414        if (table == NULL)
 415                return ERR_PTR(-ENOMEM);
 416
 417        data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
 418        if (data == NULL) {
 419                res = -ENOMEM;
 420                goto failed;
 421        }
 422
 423        actor = squashfs_page_actor_init(data, pages, length);
 424        if (actor == NULL) {
 425                res = -ENOMEM;
 426                goto failed2;
 427        }
 428
 429        for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
 430                data[i] = buffer;
 431
 432        res = squashfs_read_data(sb, block, length |
 433                SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
 434
 435        kfree(data);
 436        kfree(actor);
 437
 438        if (res < 0)
 439                goto failed;
 440
 441        return table;
 442
 443failed2:
 444        kfree(data);
 445failed:
 446        kfree(table);
 447        return ERR_PTR(res);
 448}
 449