linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48        "sb_writers",
  49        "sb_pagefaults",
  50        "sb_internal",
  51};
  52
  53/*
  54 * One thing we have to be careful of with a per-sb shrinker is that we don't
  55 * drop the last active reference to the superblock from within the shrinker.
  56 * If that happens we could trigger unregistering the shrinker from within the
  57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  58 * take a passive reference to the superblock to avoid this from occurring.
  59 */
  60static unsigned long super_cache_scan(struct shrinker *shrink,
  61                                      struct shrink_control *sc)
  62{
  63        struct super_block *sb;
  64        long    fs_objects = 0;
  65        long    total_objects;
  66        long    freed = 0;
  67        long    dentries;
  68        long    inodes;
  69
  70        sb = container_of(shrink, struct super_block, s_shrink);
  71
  72        /*
  73         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  74         * to recurse into the FS that called us in clear_inode() and friends..
  75         */
  76        if (!(sc->gfp_mask & __GFP_FS))
  77                return SHRINK_STOP;
  78
  79        if (!trylock_super(sb))
  80                return SHRINK_STOP;
  81
  82        if (sb->s_op->nr_cached_objects)
  83                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  84
  85        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  86        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  87        total_objects = dentries + inodes + fs_objects + 1;
  88        if (!total_objects)
  89                total_objects = 1;
  90
  91        /* proportion the scan between the caches */
  92        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  93        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  94        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  95
  96        /*
  97         * prune the dcache first as the icache is pinned by it, then
  98         * prune the icache, followed by the filesystem specific caches
  99         *
 100         * Ensure that we always scan at least one object - memcg kmem
 101         * accounting uses this to fully empty the caches.
 102         */
 103        sc->nr_to_scan = dentries + 1;
 104        freed = prune_dcache_sb(sb, sc);
 105        sc->nr_to_scan = inodes + 1;
 106        freed += prune_icache_sb(sb, sc);
 107
 108        if (fs_objects) {
 109                sc->nr_to_scan = fs_objects + 1;
 110                freed += sb->s_op->free_cached_objects(sb, sc);
 111        }
 112
 113        up_read(&sb->s_umount);
 114        return freed;
 115}
 116
 117static unsigned long super_cache_count(struct shrinker *shrink,
 118                                       struct shrink_control *sc)
 119{
 120        struct super_block *sb;
 121        long    total_objects = 0;
 122
 123        sb = container_of(shrink, struct super_block, s_shrink);
 124
 125        /*
 126         * We don't call trylock_super() here as it is a scalability bottleneck,
 127         * so we're exposed to partial setup state. The shrinker rwsem does not
 128         * protect filesystem operations backing list_lru_shrink_count() or
 129         * s_op->nr_cached_objects(). Counts can change between
 130         * super_cache_count and super_cache_scan, so we really don't need locks
 131         * here.
 132         *
 133         * However, if we are currently mounting the superblock, the underlying
 134         * filesystem might be in a state of partial construction and hence it
 135         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 136         * avoid this situation, so do the same here. The memory barrier is
 137         * matched with the one in mount_fs() as we don't hold locks here.
 138         */
 139        if (!(sb->s_flags & SB_BORN))
 140                return 0;
 141        smp_rmb();
 142
 143        if (sb->s_op && sb->s_op->nr_cached_objects)
 144                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 145
 146        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 147        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 148
 149        if (!total_objects)
 150                return SHRINK_EMPTY;
 151
 152        total_objects = vfs_pressure_ratio(total_objects);
 153        return total_objects;
 154}
 155
 156static void destroy_super_work(struct work_struct *work)
 157{
 158        struct super_block *s = container_of(work, struct super_block,
 159                                                        destroy_work);
 160        int i;
 161
 162        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 163                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 164        kfree(s);
 165}
 166
 167static void destroy_super_rcu(struct rcu_head *head)
 168{
 169        struct super_block *s = container_of(head, struct super_block, rcu);
 170        INIT_WORK(&s->destroy_work, destroy_super_work);
 171        schedule_work(&s->destroy_work);
 172}
 173
 174/* Free a superblock that has never been seen by anyone */
 175static void destroy_unused_super(struct super_block *s)
 176{
 177        if (!s)
 178                return;
 179        up_write(&s->s_umount);
 180        list_lru_destroy(&s->s_dentry_lru);
 181        list_lru_destroy(&s->s_inode_lru);
 182        security_sb_free(s);
 183        put_user_ns(s->s_user_ns);
 184        kfree(s->s_subtype);
 185        free_prealloced_shrinker(&s->s_shrink);
 186        /* no delays needed */
 187        destroy_super_work(&s->destroy_work);
 188}
 189
 190/**
 191 *      alloc_super     -       create new superblock
 192 *      @type:  filesystem type superblock should belong to
 193 *      @flags: the mount flags
 194 *      @user_ns: User namespace for the super_block
 195 *
 196 *      Allocates and initializes a new &struct super_block.  alloc_super()
 197 *      returns a pointer new superblock or %NULL if allocation had failed.
 198 */
 199static struct super_block *alloc_super(struct file_system_type *type, int flags,
 200                                       struct user_namespace *user_ns)
 201{
 202        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 203        static const struct super_operations default_op;
 204        int i;
 205
 206        if (!s)
 207                return NULL;
 208
 209        INIT_LIST_HEAD(&s->s_mounts);
 210        s->s_user_ns = get_user_ns(user_ns);
 211        init_rwsem(&s->s_umount);
 212        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 213        /*
 214         * sget() can have s_umount recursion.
 215         *
 216         * When it cannot find a suitable sb, it allocates a new
 217         * one (this one), and tries again to find a suitable old
 218         * one.
 219         *
 220         * In case that succeeds, it will acquire the s_umount
 221         * lock of the old one. Since these are clearly distrinct
 222         * locks, and this object isn't exposed yet, there's no
 223         * risk of deadlocks.
 224         *
 225         * Annotate this by putting this lock in a different
 226         * subclass.
 227         */
 228        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 229
 230        if (security_sb_alloc(s))
 231                goto fail;
 232
 233        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 234                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 235                                        sb_writers_name[i],
 236                                        &type->s_writers_key[i]))
 237                        goto fail;
 238        }
 239        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 240        s->s_bdi = &noop_backing_dev_info;
 241        s->s_flags = flags;
 242        if (s->s_user_ns != &init_user_ns)
 243                s->s_iflags |= SB_I_NODEV;
 244        INIT_HLIST_NODE(&s->s_instances);
 245        INIT_HLIST_BL_HEAD(&s->s_roots);
 246        mutex_init(&s->s_sync_lock);
 247        INIT_LIST_HEAD(&s->s_inodes);
 248        spin_lock_init(&s->s_inode_list_lock);
 249        INIT_LIST_HEAD(&s->s_inodes_wb);
 250        spin_lock_init(&s->s_inode_wblist_lock);
 251
 252        s->s_count = 1;
 253        atomic_set(&s->s_active, 1);
 254        mutex_init(&s->s_vfs_rename_mutex);
 255        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 256        init_rwsem(&s->s_dquot.dqio_sem);
 257        s->s_maxbytes = MAX_NON_LFS;
 258        s->s_op = &default_op;
 259        s->s_time_gran = 1000000000;
 260        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 261
 262        s->s_shrink.seeks = DEFAULT_SEEKS;
 263        s->s_shrink.scan_objects = super_cache_scan;
 264        s->s_shrink.count_objects = super_cache_count;
 265        s->s_shrink.batch = 1024;
 266        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 267        if (prealloc_shrinker(&s->s_shrink))
 268                goto fail;
 269        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 270                goto fail;
 271        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 272                goto fail;
 273        return s;
 274
 275fail:
 276        destroy_unused_super(s);
 277        return NULL;
 278}
 279
 280/* Superblock refcounting  */
 281
 282/*
 283 * Drop a superblock's refcount.  The caller must hold sb_lock.
 284 */
 285static void __put_super(struct super_block *s)
 286{
 287        if (!--s->s_count) {
 288                list_del_init(&s->s_list);
 289                WARN_ON(s->s_dentry_lru.node);
 290                WARN_ON(s->s_inode_lru.node);
 291                WARN_ON(!list_empty(&s->s_mounts));
 292                security_sb_free(s);
 293                put_user_ns(s->s_user_ns);
 294                kfree(s->s_subtype);
 295                call_rcu(&s->rcu, destroy_super_rcu);
 296        }
 297}
 298
 299/**
 300 *      put_super       -       drop a temporary reference to superblock
 301 *      @sb: superblock in question
 302 *
 303 *      Drops a temporary reference, frees superblock if there's no
 304 *      references left.
 305 */
 306static void put_super(struct super_block *sb)
 307{
 308        spin_lock(&sb_lock);
 309        __put_super(sb);
 310        spin_unlock(&sb_lock);
 311}
 312
 313
 314/**
 315 *      deactivate_locked_super -       drop an active reference to superblock
 316 *      @s: superblock to deactivate
 317 *
 318 *      Drops an active reference to superblock, converting it into a temporary
 319 *      one if there is no other active references left.  In that case we
 320 *      tell fs driver to shut it down and drop the temporary reference we
 321 *      had just acquired.
 322 *
 323 *      Caller holds exclusive lock on superblock; that lock is released.
 324 */
 325void deactivate_locked_super(struct super_block *s)
 326{
 327        struct file_system_type *fs = s->s_type;
 328        if (atomic_dec_and_test(&s->s_active)) {
 329                cleancache_invalidate_fs(s);
 330                unregister_shrinker(&s->s_shrink);
 331                fs->kill_sb(s);
 332
 333                /*
 334                 * Since list_lru_destroy() may sleep, we cannot call it from
 335                 * put_super(), where we hold the sb_lock. Therefore we destroy
 336                 * the lru lists right now.
 337                 */
 338                list_lru_destroy(&s->s_dentry_lru);
 339                list_lru_destroy(&s->s_inode_lru);
 340
 341                put_filesystem(fs);
 342                put_super(s);
 343        } else {
 344                up_write(&s->s_umount);
 345        }
 346}
 347
 348EXPORT_SYMBOL(deactivate_locked_super);
 349
 350/**
 351 *      deactivate_super        -       drop an active reference to superblock
 352 *      @s: superblock to deactivate
 353 *
 354 *      Variant of deactivate_locked_super(), except that superblock is *not*
 355 *      locked by caller.  If we are going to drop the final active reference,
 356 *      lock will be acquired prior to that.
 357 */
 358void deactivate_super(struct super_block *s)
 359{
 360        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 361                down_write(&s->s_umount);
 362                deactivate_locked_super(s);
 363        }
 364}
 365
 366EXPORT_SYMBOL(deactivate_super);
 367
 368/**
 369 *      grab_super - acquire an active reference
 370 *      @s: reference we are trying to make active
 371 *
 372 *      Tries to acquire an active reference.  grab_super() is used when we
 373 *      had just found a superblock in super_blocks or fs_type->fs_supers
 374 *      and want to turn it into a full-blown active reference.  grab_super()
 375 *      is called with sb_lock held and drops it.  Returns 1 in case of
 376 *      success, 0 if we had failed (superblock contents was already dead or
 377 *      dying when grab_super() had been called).  Note that this is only
 378 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 379 *      of their type), so increment of ->s_count is OK here.
 380 */
 381static int grab_super(struct super_block *s) __releases(sb_lock)
 382{
 383        s->s_count++;
 384        spin_unlock(&sb_lock);
 385        down_write(&s->s_umount);
 386        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 387                put_super(s);
 388                return 1;
 389        }
 390        up_write(&s->s_umount);
 391        put_super(s);
 392        return 0;
 393}
 394
 395/*
 396 *      trylock_super - try to grab ->s_umount shared
 397 *      @sb: reference we are trying to grab
 398 *
 399 *      Try to prevent fs shutdown.  This is used in places where we
 400 *      cannot take an active reference but we need to ensure that the
 401 *      filesystem is not shut down while we are working on it. It returns
 402 *      false if we cannot acquire s_umount or if we lose the race and
 403 *      filesystem already got into shutdown, and returns true with the s_umount
 404 *      lock held in read mode in case of success. On successful return,
 405 *      the caller must drop the s_umount lock when done.
 406 *
 407 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 408 *      The reason why it's safe is that we are OK with doing trylock instead
 409 *      of down_read().  There's a couple of places that are OK with that, but
 410 *      it's very much not a general-purpose interface.
 411 */
 412bool trylock_super(struct super_block *sb)
 413{
 414        if (down_read_trylock(&sb->s_umount)) {
 415                if (!hlist_unhashed(&sb->s_instances) &&
 416                    sb->s_root && (sb->s_flags & SB_BORN))
 417                        return true;
 418                up_read(&sb->s_umount);
 419        }
 420
 421        return false;
 422}
 423
 424/**
 425 *      generic_shutdown_super  -       common helper for ->kill_sb()
 426 *      @sb: superblock to kill
 427 *
 428 *      generic_shutdown_super() does all fs-independent work on superblock
 429 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 430 *      that need destruction out of superblock, call generic_shutdown_super()
 431 *      and release aforementioned objects.  Note: dentries and inodes _are_
 432 *      taken care of and do not need specific handling.
 433 *
 434 *      Upon calling this function, the filesystem may no longer alter or
 435 *      rearrange the set of dentries belonging to this super_block, nor may it
 436 *      change the attachments of dentries to inodes.
 437 */
 438void generic_shutdown_super(struct super_block *sb)
 439{
 440        const struct super_operations *sop = sb->s_op;
 441
 442        if (sb->s_root) {
 443                shrink_dcache_for_umount(sb);
 444                sync_filesystem(sb);
 445                sb->s_flags &= ~SB_ACTIVE;
 446
 447                fsnotify_sb_delete(sb);
 448                cgroup_writeback_umount();
 449
 450                evict_inodes(sb);
 451
 452                if (sb->s_dio_done_wq) {
 453                        destroy_workqueue(sb->s_dio_done_wq);
 454                        sb->s_dio_done_wq = NULL;
 455                }
 456
 457                if (sop->put_super)
 458                        sop->put_super(sb);
 459
 460                if (!list_empty(&sb->s_inodes)) {
 461                        printk("VFS: Busy inodes after unmount of %s. "
 462                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 463                           sb->s_id);
 464                }
 465        }
 466        spin_lock(&sb_lock);
 467        /* should be initialized for __put_super_and_need_restart() */
 468        hlist_del_init(&sb->s_instances);
 469        spin_unlock(&sb_lock);
 470        up_write(&sb->s_umount);
 471        if (sb->s_bdi != &noop_backing_dev_info) {
 472                bdi_put(sb->s_bdi);
 473                sb->s_bdi = &noop_backing_dev_info;
 474        }
 475}
 476
 477EXPORT_SYMBOL(generic_shutdown_super);
 478
 479/**
 480 * sget_fc - Find or create a superblock
 481 * @fc: Filesystem context.
 482 * @test: Comparison callback
 483 * @set: Setup callback
 484 *
 485 * Find or create a superblock using the parameters stored in the filesystem
 486 * context and the two callback functions.
 487 *
 488 * If an extant superblock is matched, then that will be returned with an
 489 * elevated reference count that the caller must transfer or discard.
 490 *
 491 * If no match is made, a new superblock will be allocated and basic
 492 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 493 * the set() callback will be invoked), the superblock will be published and it
 494 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 495 * as yet unset.
 496 */
 497struct super_block *sget_fc(struct fs_context *fc,
 498                            int (*test)(struct super_block *, struct fs_context *),
 499                            int (*set)(struct super_block *, struct fs_context *))
 500{
 501        struct super_block *s = NULL;
 502        struct super_block *old;
 503        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 504        int err;
 505
 506        if (!(fc->sb_flags & SB_KERNMOUNT) &&
 507            fc->purpose != FS_CONTEXT_FOR_SUBMOUNT) {
 508                /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
 509                 * over the namespace.
 510                 */
 511                if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
 512                        if (!capable(CAP_SYS_ADMIN))
 513                                return ERR_PTR(-EPERM);
 514                } else {
 515                        if (!ns_capable(fc->user_ns, CAP_SYS_ADMIN))
 516                                return ERR_PTR(-EPERM);
 517                }
 518        }
 519
 520retry:
 521        spin_lock(&sb_lock);
 522        if (test) {
 523                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 524                        if (test(old, fc))
 525                                goto share_extant_sb;
 526                }
 527        }
 528        if (!s) {
 529                spin_unlock(&sb_lock);
 530                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 531                if (!s)
 532                        return ERR_PTR(-ENOMEM);
 533                goto retry;
 534        }
 535
 536        s->s_fs_info = fc->s_fs_info;
 537        err = set(s, fc);
 538        if (err) {
 539                s->s_fs_info = NULL;
 540                spin_unlock(&sb_lock);
 541                destroy_unused_super(s);
 542                return ERR_PTR(err);
 543        }
 544        fc->s_fs_info = NULL;
 545        s->s_type = fc->fs_type;
 546        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 547        list_add_tail(&s->s_list, &super_blocks);
 548        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 549        spin_unlock(&sb_lock);
 550        get_filesystem(s->s_type);
 551        register_shrinker_prepared(&s->s_shrink);
 552        return s;
 553
 554share_extant_sb:
 555        if (user_ns != old->s_user_ns) {
 556                spin_unlock(&sb_lock);
 557                destroy_unused_super(s);
 558                return ERR_PTR(-EBUSY);
 559        }
 560        if (!grab_super(old))
 561                goto retry;
 562        destroy_unused_super(s);
 563        return old;
 564}
 565EXPORT_SYMBOL(sget_fc);
 566
 567/**
 568 *      sget_userns -   find or create a superblock
 569 *      @type:  filesystem type superblock should belong to
 570 *      @test:  comparison callback
 571 *      @set:   setup callback
 572 *      @flags: mount flags
 573 *      @user_ns: User namespace for the super_block
 574 *      @data:  argument to each of them
 575 */
 576struct super_block *sget_userns(struct file_system_type *type,
 577                        int (*test)(struct super_block *,void *),
 578                        int (*set)(struct super_block *,void *),
 579                        int flags, struct user_namespace *user_ns,
 580                        void *data)
 581{
 582        struct super_block *s = NULL;
 583        struct super_block *old;
 584        int err;
 585
 586        if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
 587            !(type->fs_flags & FS_USERNS_MOUNT) &&
 588            !capable(CAP_SYS_ADMIN))
 589                return ERR_PTR(-EPERM);
 590retry:
 591        spin_lock(&sb_lock);
 592        if (test) {
 593                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 594                        if (!test(old, data))
 595                                continue;
 596                        if (user_ns != old->s_user_ns) {
 597                                spin_unlock(&sb_lock);
 598                                destroy_unused_super(s);
 599                                return ERR_PTR(-EBUSY);
 600                        }
 601                        if (!grab_super(old))
 602                                goto retry;
 603                        destroy_unused_super(s);
 604                        return old;
 605                }
 606        }
 607        if (!s) {
 608                spin_unlock(&sb_lock);
 609                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 610                if (!s)
 611                        return ERR_PTR(-ENOMEM);
 612                goto retry;
 613        }
 614
 615        err = set(s, data);
 616        if (err) {
 617                spin_unlock(&sb_lock);
 618                destroy_unused_super(s);
 619                return ERR_PTR(err);
 620        }
 621        s->s_type = type;
 622        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 623        list_add_tail(&s->s_list, &super_blocks);
 624        hlist_add_head(&s->s_instances, &type->fs_supers);
 625        spin_unlock(&sb_lock);
 626        get_filesystem(type);
 627        register_shrinker_prepared(&s->s_shrink);
 628        return s;
 629}
 630
 631EXPORT_SYMBOL(sget_userns);
 632
 633/**
 634 *      sget    -       find or create a superblock
 635 *      @type:    filesystem type superblock should belong to
 636 *      @test:    comparison callback
 637 *      @set:     setup callback
 638 *      @flags:   mount flags
 639 *      @data:    argument to each of them
 640 */
 641struct super_block *sget(struct file_system_type *type,
 642                        int (*test)(struct super_block *,void *),
 643                        int (*set)(struct super_block *,void *),
 644                        int flags,
 645                        void *data)
 646{
 647        struct user_namespace *user_ns = current_user_ns();
 648
 649        /* We don't yet pass the user namespace of the parent
 650         * mount through to here so always use &init_user_ns
 651         * until that changes.
 652         */
 653        if (flags & SB_SUBMOUNT)
 654                user_ns = &init_user_ns;
 655
 656        /* Ensure the requestor has permissions over the target filesystem */
 657        if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 658                return ERR_PTR(-EPERM);
 659
 660        return sget_userns(type, test, set, flags, user_ns, data);
 661}
 662
 663EXPORT_SYMBOL(sget);
 664
 665void drop_super(struct super_block *sb)
 666{
 667        up_read(&sb->s_umount);
 668        put_super(sb);
 669}
 670
 671EXPORT_SYMBOL(drop_super);
 672
 673void drop_super_exclusive(struct super_block *sb)
 674{
 675        up_write(&sb->s_umount);
 676        put_super(sb);
 677}
 678EXPORT_SYMBOL(drop_super_exclusive);
 679
 680static void __iterate_supers(void (*f)(struct super_block *))
 681{
 682        struct super_block *sb, *p = NULL;
 683
 684        spin_lock(&sb_lock);
 685        list_for_each_entry(sb, &super_blocks, s_list) {
 686                if (hlist_unhashed(&sb->s_instances))
 687                        continue;
 688                sb->s_count++;
 689                spin_unlock(&sb_lock);
 690
 691                f(sb);
 692
 693                spin_lock(&sb_lock);
 694                if (p)
 695                        __put_super(p);
 696                p = sb;
 697        }
 698        if (p)
 699                __put_super(p);
 700        spin_unlock(&sb_lock);
 701}
 702/**
 703 *      iterate_supers - call function for all active superblocks
 704 *      @f: function to call
 705 *      @arg: argument to pass to it
 706 *
 707 *      Scans the superblock list and calls given function, passing it
 708 *      locked superblock and given argument.
 709 */
 710void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 711{
 712        struct super_block *sb, *p = NULL;
 713
 714        spin_lock(&sb_lock);
 715        list_for_each_entry(sb, &super_blocks, s_list) {
 716                if (hlist_unhashed(&sb->s_instances))
 717                        continue;
 718                sb->s_count++;
 719                spin_unlock(&sb_lock);
 720
 721                down_read(&sb->s_umount);
 722                if (sb->s_root && (sb->s_flags & SB_BORN))
 723                        f(sb, arg);
 724                up_read(&sb->s_umount);
 725
 726                spin_lock(&sb_lock);
 727                if (p)
 728                        __put_super(p);
 729                p = sb;
 730        }
 731        if (p)
 732                __put_super(p);
 733        spin_unlock(&sb_lock);
 734}
 735
 736/**
 737 *      iterate_supers_type - call function for superblocks of given type
 738 *      @type: fs type
 739 *      @f: function to call
 740 *      @arg: argument to pass to it
 741 *
 742 *      Scans the superblock list and calls given function, passing it
 743 *      locked superblock and given argument.
 744 */
 745void iterate_supers_type(struct file_system_type *type,
 746        void (*f)(struct super_block *, void *), void *arg)
 747{
 748        struct super_block *sb, *p = NULL;
 749
 750        spin_lock(&sb_lock);
 751        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 752                sb->s_count++;
 753                spin_unlock(&sb_lock);
 754
 755                down_read(&sb->s_umount);
 756                if (sb->s_root && (sb->s_flags & SB_BORN))
 757                        f(sb, arg);
 758                up_read(&sb->s_umount);
 759
 760                spin_lock(&sb_lock);
 761                if (p)
 762                        __put_super(p);
 763                p = sb;
 764        }
 765        if (p)
 766                __put_super(p);
 767        spin_unlock(&sb_lock);
 768}
 769
 770EXPORT_SYMBOL(iterate_supers_type);
 771
 772static struct super_block *__get_super(struct block_device *bdev, bool excl)
 773{
 774        struct super_block *sb;
 775
 776        if (!bdev)
 777                return NULL;
 778
 779        spin_lock(&sb_lock);
 780rescan:
 781        list_for_each_entry(sb, &super_blocks, s_list) {
 782                if (hlist_unhashed(&sb->s_instances))
 783                        continue;
 784                if (sb->s_bdev == bdev) {
 785                        sb->s_count++;
 786                        spin_unlock(&sb_lock);
 787                        if (!excl)
 788                                down_read(&sb->s_umount);
 789                        else
 790                                down_write(&sb->s_umount);
 791                        /* still alive? */
 792                        if (sb->s_root && (sb->s_flags & SB_BORN))
 793                                return sb;
 794                        if (!excl)
 795                                up_read(&sb->s_umount);
 796                        else
 797                                up_write(&sb->s_umount);
 798                        /* nope, got unmounted */
 799                        spin_lock(&sb_lock);
 800                        __put_super(sb);
 801                        goto rescan;
 802                }
 803        }
 804        spin_unlock(&sb_lock);
 805        return NULL;
 806}
 807
 808/**
 809 *      get_super - get the superblock of a device
 810 *      @bdev: device to get the superblock for
 811 *
 812 *      Scans the superblock list and finds the superblock of the file system
 813 *      mounted on the device given. %NULL is returned if no match is found.
 814 */
 815struct super_block *get_super(struct block_device *bdev)
 816{
 817        return __get_super(bdev, false);
 818}
 819EXPORT_SYMBOL(get_super);
 820
 821static struct super_block *__get_super_thawed(struct block_device *bdev,
 822                                              bool excl)
 823{
 824        while (1) {
 825                struct super_block *s = __get_super(bdev, excl);
 826                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 827                        return s;
 828                if (!excl)
 829                        up_read(&s->s_umount);
 830                else
 831                        up_write(&s->s_umount);
 832                wait_event(s->s_writers.wait_unfrozen,
 833                           s->s_writers.frozen == SB_UNFROZEN);
 834                put_super(s);
 835        }
 836}
 837
 838/**
 839 *      get_super_thawed - get thawed superblock of a device
 840 *      @bdev: device to get the superblock for
 841 *
 842 *      Scans the superblock list and finds the superblock of the file system
 843 *      mounted on the device. The superblock is returned once it is thawed
 844 *      (or immediately if it was not frozen). %NULL is returned if no match
 845 *      is found.
 846 */
 847struct super_block *get_super_thawed(struct block_device *bdev)
 848{
 849        return __get_super_thawed(bdev, false);
 850}
 851EXPORT_SYMBOL(get_super_thawed);
 852
 853/**
 854 *      get_super_exclusive_thawed - get thawed superblock of a device
 855 *      @bdev: device to get the superblock for
 856 *
 857 *      Scans the superblock list and finds the superblock of the file system
 858 *      mounted on the device. The superblock is returned once it is thawed
 859 *      (or immediately if it was not frozen) and s_umount semaphore is held
 860 *      in exclusive mode. %NULL is returned if no match is found.
 861 */
 862struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 863{
 864        return __get_super_thawed(bdev, true);
 865}
 866EXPORT_SYMBOL(get_super_exclusive_thawed);
 867
 868/**
 869 * get_active_super - get an active reference to the superblock of a device
 870 * @bdev: device to get the superblock for
 871 *
 872 * Scans the superblock list and finds the superblock of the file system
 873 * mounted on the device given.  Returns the superblock with an active
 874 * reference or %NULL if none was found.
 875 */
 876struct super_block *get_active_super(struct block_device *bdev)
 877{
 878        struct super_block *sb;
 879
 880        if (!bdev)
 881                return NULL;
 882
 883restart:
 884        spin_lock(&sb_lock);
 885        list_for_each_entry(sb, &super_blocks, s_list) {
 886                if (hlist_unhashed(&sb->s_instances))
 887                        continue;
 888                if (sb->s_bdev == bdev) {
 889                        if (!grab_super(sb))
 890                                goto restart;
 891                        up_write(&sb->s_umount);
 892                        return sb;
 893                }
 894        }
 895        spin_unlock(&sb_lock);
 896        return NULL;
 897}
 898
 899struct super_block *user_get_super(dev_t dev)
 900{
 901        struct super_block *sb;
 902
 903        spin_lock(&sb_lock);
 904rescan:
 905        list_for_each_entry(sb, &super_blocks, s_list) {
 906                if (hlist_unhashed(&sb->s_instances))
 907                        continue;
 908                if (sb->s_dev ==  dev) {
 909                        sb->s_count++;
 910                        spin_unlock(&sb_lock);
 911                        down_read(&sb->s_umount);
 912                        /* still alive? */
 913                        if (sb->s_root && (sb->s_flags & SB_BORN))
 914                                return sb;
 915                        up_read(&sb->s_umount);
 916                        /* nope, got unmounted */
 917                        spin_lock(&sb_lock);
 918                        __put_super(sb);
 919                        goto rescan;
 920                }
 921        }
 922        spin_unlock(&sb_lock);
 923        return NULL;
 924}
 925
 926/**
 927 * reconfigure_super - asks filesystem to change superblock parameters
 928 * @fc: The superblock and configuration
 929 *
 930 * Alters the configuration parameters of a live superblock.
 931 */
 932int reconfigure_super(struct fs_context *fc)
 933{
 934        struct super_block *sb = fc->root->d_sb;
 935        int retval;
 936        bool remount_ro = false;
 937        bool force = fc->sb_flags & SB_FORCE;
 938
 939        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 940                return -EINVAL;
 941        if (sb->s_writers.frozen != SB_UNFROZEN)
 942                return -EBUSY;
 943
 944        retval = security_sb_remount(sb, fc->security);
 945        if (retval)
 946                return retval;
 947
 948        if (fc->sb_flags_mask & SB_RDONLY) {
 949#ifdef CONFIG_BLOCK
 950                if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 951                        return -EACCES;
 952#endif
 953
 954                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 955        }
 956
 957        if (remount_ro) {
 958                if (!hlist_empty(&sb->s_pins)) {
 959                        up_write(&sb->s_umount);
 960                        group_pin_kill(&sb->s_pins);
 961                        down_write(&sb->s_umount);
 962                        if (!sb->s_root)
 963                                return 0;
 964                        if (sb->s_writers.frozen != SB_UNFROZEN)
 965                                return -EBUSY;
 966                        remount_ro = !sb_rdonly(sb);
 967                }
 968        }
 969        shrink_dcache_sb(sb);
 970
 971        /* If we are reconfiguring to RDONLY and current sb is read/write,
 972         * make sure there are no files open for writing.
 973         */
 974        if (remount_ro) {
 975                if (force) {
 976                        sb->s_readonly_remount = 1;
 977                        smp_wmb();
 978                } else {
 979                        retval = sb_prepare_remount_readonly(sb);
 980                        if (retval)
 981                                return retval;
 982                }
 983        }
 984
 985        if (fc->ops->reconfigure) {
 986                retval = fc->ops->reconfigure(fc);
 987                if (retval) {
 988                        if (!force)
 989                                goto cancel_readonly;
 990                        /* If forced remount, go ahead despite any errors */
 991                        WARN(1, "forced remount of a %s fs returned %i\n",
 992                             sb->s_type->name, retval);
 993                }
 994        }
 995
 996        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 997                                 (fc->sb_flags & fc->sb_flags_mask)));
 998        /* Needs to be ordered wrt mnt_is_readonly() */
 999        smp_wmb();
1000        sb->s_readonly_remount = 0;
1001
1002        /*
1003         * Some filesystems modify their metadata via some other path than the
1004         * bdev buffer cache (eg. use a private mapping, or directories in
1005         * pagecache, etc). Also file data modifications go via their own
1006         * mappings. So If we try to mount readonly then copy the filesystem
1007         * from bdev, we could get stale data, so invalidate it to give a best
1008         * effort at coherency.
1009         */
1010        if (remount_ro && sb->s_bdev)
1011                invalidate_bdev(sb->s_bdev);
1012        return 0;
1013
1014cancel_readonly:
1015        sb->s_readonly_remount = 0;
1016        return retval;
1017}
1018
1019static void do_emergency_remount_callback(struct super_block *sb)
1020{
1021        down_write(&sb->s_umount);
1022        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1023            !sb_rdonly(sb)) {
1024                struct fs_context *fc;
1025
1026                fc = fs_context_for_reconfigure(sb->s_root,
1027                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
1028                if (!IS_ERR(fc)) {
1029                        if (parse_monolithic_mount_data(fc, NULL) == 0)
1030                                (void)reconfigure_super(fc);
1031                        put_fs_context(fc);
1032                }
1033        }
1034        up_write(&sb->s_umount);
1035}
1036
1037static void do_emergency_remount(struct work_struct *work)
1038{
1039        __iterate_supers(do_emergency_remount_callback);
1040        kfree(work);
1041        printk("Emergency Remount complete\n");
1042}
1043
1044void emergency_remount(void)
1045{
1046        struct work_struct *work;
1047
1048        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1049        if (work) {
1050                INIT_WORK(work, do_emergency_remount);
1051                schedule_work(work);
1052        }
1053}
1054
1055static void do_thaw_all_callback(struct super_block *sb)
1056{
1057        down_write(&sb->s_umount);
1058        if (sb->s_root && sb->s_flags & SB_BORN) {
1059                emergency_thaw_bdev(sb);
1060                thaw_super_locked(sb);
1061        } else {
1062                up_write(&sb->s_umount);
1063        }
1064}
1065
1066static void do_thaw_all(struct work_struct *work)
1067{
1068        __iterate_supers(do_thaw_all_callback);
1069        kfree(work);
1070        printk(KERN_WARNING "Emergency Thaw complete\n");
1071}
1072
1073/**
1074 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1075 *
1076 * Used for emergency unfreeze of all filesystems via SysRq
1077 */
1078void emergency_thaw_all(void)
1079{
1080        struct work_struct *work;
1081
1082        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1083        if (work) {
1084                INIT_WORK(work, do_thaw_all);
1085                schedule_work(work);
1086        }
1087}
1088
1089static DEFINE_IDA(unnamed_dev_ida);
1090
1091/**
1092 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1093 * @p: Pointer to a dev_t.
1094 *
1095 * Filesystems which don't use real block devices can call this function
1096 * to allocate a virtual block device.
1097 *
1098 * Context: Any context.  Frequently called while holding sb_lock.
1099 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1100 * or -ENOMEM if memory allocation failed.
1101 */
1102int get_anon_bdev(dev_t *p)
1103{
1104        int dev;
1105
1106        /*
1107         * Many userspace utilities consider an FSID of 0 invalid.
1108         * Always return at least 1 from get_anon_bdev.
1109         */
1110        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1111                        GFP_ATOMIC);
1112        if (dev == -ENOSPC)
1113                dev = -EMFILE;
1114        if (dev < 0)
1115                return dev;
1116
1117        *p = MKDEV(0, dev);
1118        return 0;
1119}
1120EXPORT_SYMBOL(get_anon_bdev);
1121
1122void free_anon_bdev(dev_t dev)
1123{
1124        ida_free(&unnamed_dev_ida, MINOR(dev));
1125}
1126EXPORT_SYMBOL(free_anon_bdev);
1127
1128int set_anon_super(struct super_block *s, void *data)
1129{
1130        return get_anon_bdev(&s->s_dev);
1131}
1132EXPORT_SYMBOL(set_anon_super);
1133
1134void kill_anon_super(struct super_block *sb)
1135{
1136        dev_t dev = sb->s_dev;
1137        generic_shutdown_super(sb);
1138        free_anon_bdev(dev);
1139}
1140EXPORT_SYMBOL(kill_anon_super);
1141
1142void kill_litter_super(struct super_block *sb)
1143{
1144        if (sb->s_root)
1145                d_genocide(sb->s_root);
1146        kill_anon_super(sb);
1147}
1148EXPORT_SYMBOL(kill_litter_super);
1149
1150static int ns_test_super(struct super_block *sb, void *data)
1151{
1152        return sb->s_fs_info == data;
1153}
1154
1155static int ns_set_super(struct super_block *sb, void *data)
1156{
1157        sb->s_fs_info = data;
1158        return set_anon_super(sb, NULL);
1159}
1160
1161struct dentry *mount_ns(struct file_system_type *fs_type,
1162        int flags, void *data, void *ns, struct user_namespace *user_ns,
1163        int (*fill_super)(struct super_block *, void *, int))
1164{
1165        struct super_block *sb;
1166
1167        /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1168         * over the namespace.
1169         */
1170        if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1171                return ERR_PTR(-EPERM);
1172
1173        sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1174                         user_ns, ns);
1175        if (IS_ERR(sb))
1176                return ERR_CAST(sb);
1177
1178        if (!sb->s_root) {
1179                int err;
1180                err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1181                if (err) {
1182                        deactivate_locked_super(sb);
1183                        return ERR_PTR(err);
1184                }
1185
1186                sb->s_flags |= SB_ACTIVE;
1187        }
1188
1189        return dget(sb->s_root);
1190}
1191
1192EXPORT_SYMBOL(mount_ns);
1193
1194int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1195{
1196        return set_anon_super(sb, NULL);
1197}
1198EXPORT_SYMBOL(set_anon_super_fc);
1199
1200static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1201{
1202        return sb->s_fs_info == fc->s_fs_info;
1203}
1204
1205static int test_single_super(struct super_block *s, struct fs_context *fc)
1206{
1207        return 1;
1208}
1209
1210/**
1211 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1212 * @fc: The filesystem context holding the parameters
1213 * @keying: How to distinguish superblocks
1214 * @fill_super: Helper to initialise a new superblock
1215 *
1216 * Search for a superblock and create a new one if not found.  The search
1217 * criterion is controlled by @keying.  If the search fails, a new superblock
1218 * is created and @fill_super() is called to initialise it.
1219 *
1220 * @keying can take one of a number of values:
1221 *
1222 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1223 *     system.  This is typically used for special system filesystems.
1224 *
1225 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1226 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1227 *     key again will turn up the superblock for that key.
1228 *
1229 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1230 *     unkeyed.  Each call will get a new superblock.
1231 *
1232 * A permissions check is made by sget_fc() unless we're getting a superblock
1233 * for a kernel-internal mount or a submount.
1234 */
1235int vfs_get_super(struct fs_context *fc,
1236                  enum vfs_get_super_keying keying,
1237                  int (*fill_super)(struct super_block *sb,
1238                                    struct fs_context *fc))
1239{
1240        int (*test)(struct super_block *, struct fs_context *);
1241        struct super_block *sb;
1242
1243        switch (keying) {
1244        case vfs_get_single_super:
1245                test = test_single_super;
1246                break;
1247        case vfs_get_keyed_super:
1248                test = test_keyed_super;
1249                break;
1250        case vfs_get_independent_super:
1251                test = NULL;
1252                break;
1253        default:
1254                BUG();
1255        }
1256
1257        sb = sget_fc(fc, test, set_anon_super_fc);
1258        if (IS_ERR(sb))
1259                return PTR_ERR(sb);
1260
1261        if (!sb->s_root) {
1262                int err = fill_super(sb, fc);
1263                if (err) {
1264                        deactivate_locked_super(sb);
1265                        return err;
1266                }
1267
1268                sb->s_flags |= SB_ACTIVE;
1269        }
1270
1271        BUG_ON(fc->root);
1272        fc->root = dget(sb->s_root);
1273        return 0;
1274}
1275EXPORT_SYMBOL(vfs_get_super);
1276
1277#ifdef CONFIG_BLOCK
1278static int set_bdev_super(struct super_block *s, void *data)
1279{
1280        s->s_bdev = data;
1281        s->s_dev = s->s_bdev->bd_dev;
1282        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1283
1284        return 0;
1285}
1286
1287static int test_bdev_super(struct super_block *s, void *data)
1288{
1289        return (void *)s->s_bdev == data;
1290}
1291
1292struct dentry *mount_bdev(struct file_system_type *fs_type,
1293        int flags, const char *dev_name, void *data,
1294        int (*fill_super)(struct super_block *, void *, int))
1295{
1296        struct block_device *bdev;
1297        struct super_block *s;
1298        fmode_t mode = FMODE_READ | FMODE_EXCL;
1299        int error = 0;
1300
1301        if (!(flags & SB_RDONLY))
1302                mode |= FMODE_WRITE;
1303
1304        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1305        if (IS_ERR(bdev))
1306                return ERR_CAST(bdev);
1307
1308        /*
1309         * once the super is inserted into the list by sget, s_umount
1310         * will protect the lockfs code from trying to start a snapshot
1311         * while we are mounting
1312         */
1313        mutex_lock(&bdev->bd_fsfreeze_mutex);
1314        if (bdev->bd_fsfreeze_count > 0) {
1315                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1316                error = -EBUSY;
1317                goto error_bdev;
1318        }
1319        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1320                 bdev);
1321        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1322        if (IS_ERR(s))
1323                goto error_s;
1324
1325        if (s->s_root) {
1326                if ((flags ^ s->s_flags) & SB_RDONLY) {
1327                        deactivate_locked_super(s);
1328                        error = -EBUSY;
1329                        goto error_bdev;
1330                }
1331
1332                /*
1333                 * s_umount nests inside bd_mutex during
1334                 * __invalidate_device().  blkdev_put() acquires
1335                 * bd_mutex and can't be called under s_umount.  Drop
1336                 * s_umount temporarily.  This is safe as we're
1337                 * holding an active reference.
1338                 */
1339                up_write(&s->s_umount);
1340                blkdev_put(bdev, mode);
1341                down_write(&s->s_umount);
1342        } else {
1343                s->s_mode = mode;
1344                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1345                sb_set_blocksize(s, block_size(bdev));
1346                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1347                if (error) {
1348                        deactivate_locked_super(s);
1349                        goto error;
1350                }
1351
1352                s->s_flags |= SB_ACTIVE;
1353                bdev->bd_super = s;
1354        }
1355
1356        return dget(s->s_root);
1357
1358error_s:
1359        error = PTR_ERR(s);
1360error_bdev:
1361        blkdev_put(bdev, mode);
1362error:
1363        return ERR_PTR(error);
1364}
1365EXPORT_SYMBOL(mount_bdev);
1366
1367void kill_block_super(struct super_block *sb)
1368{
1369        struct block_device *bdev = sb->s_bdev;
1370        fmode_t mode = sb->s_mode;
1371
1372        bdev->bd_super = NULL;
1373        generic_shutdown_super(sb);
1374        sync_blockdev(bdev);
1375        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1376        blkdev_put(bdev, mode | FMODE_EXCL);
1377}
1378
1379EXPORT_SYMBOL(kill_block_super);
1380#endif
1381
1382struct dentry *mount_nodev(struct file_system_type *fs_type,
1383        int flags, void *data,
1384        int (*fill_super)(struct super_block *, void *, int))
1385{
1386        int error;
1387        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1388
1389        if (IS_ERR(s))
1390                return ERR_CAST(s);
1391
1392        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1393        if (error) {
1394                deactivate_locked_super(s);
1395                return ERR_PTR(error);
1396        }
1397        s->s_flags |= SB_ACTIVE;
1398        return dget(s->s_root);
1399}
1400EXPORT_SYMBOL(mount_nodev);
1401
1402static int reconfigure_single(struct super_block *s,
1403                              int flags, void *data)
1404{
1405        struct fs_context *fc;
1406        int ret;
1407
1408        /* The caller really need to be passing fc down into mount_single(),
1409         * then a chunk of this can be removed.  [Bollocks -- AV]
1410         * Better yet, reconfiguration shouldn't happen, but rather the second
1411         * mount should be rejected if the parameters are not compatible.
1412         */
1413        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1414        if (IS_ERR(fc))
1415                return PTR_ERR(fc);
1416
1417        ret = parse_monolithic_mount_data(fc, data);
1418        if (ret < 0)
1419                goto out;
1420
1421        ret = reconfigure_super(fc);
1422out:
1423        put_fs_context(fc);
1424        return ret;
1425}
1426
1427static int compare_single(struct super_block *s, void *p)
1428{
1429        return 1;
1430}
1431
1432struct dentry *mount_single(struct file_system_type *fs_type,
1433        int flags, void *data,
1434        int (*fill_super)(struct super_block *, void *, int))
1435{
1436        struct super_block *s;
1437        int error;
1438
1439        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1440        if (IS_ERR(s))
1441                return ERR_CAST(s);
1442        if (!s->s_root) {
1443                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1444                if (!error)
1445                        s->s_flags |= SB_ACTIVE;
1446        } else {
1447                error = reconfigure_single(s, flags, data);
1448        }
1449        if (unlikely(error)) {
1450                deactivate_locked_super(s);
1451                return ERR_PTR(error);
1452        }
1453        return dget(s->s_root);
1454}
1455EXPORT_SYMBOL(mount_single);
1456
1457/**
1458 * vfs_get_tree - Get the mountable root
1459 * @fc: The superblock configuration context.
1460 *
1461 * The filesystem is invoked to get or create a superblock which can then later
1462 * be used for mounting.  The filesystem places a pointer to the root to be
1463 * used for mounting in @fc->root.
1464 */
1465int vfs_get_tree(struct fs_context *fc)
1466{
1467        struct super_block *sb;
1468        int error;
1469
1470        if (fc->root)
1471                return -EBUSY;
1472
1473        /* Get the mountable root in fc->root, with a ref on the root and a ref
1474         * on the superblock.
1475         */
1476        error = fc->ops->get_tree(fc);
1477        if (error < 0)
1478                return error;
1479
1480        if (!fc->root) {
1481                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1482                       fc->fs_type->name);
1483                /* We don't know what the locking state of the superblock is -
1484                 * if there is a superblock.
1485                 */
1486                BUG();
1487        }
1488
1489        sb = fc->root->d_sb;
1490        WARN_ON(!sb->s_bdi);
1491
1492        if (fc->subtype && !sb->s_subtype) {
1493                sb->s_subtype = fc->subtype;
1494                fc->subtype = NULL;
1495        }
1496
1497        /*
1498         * Write barrier is for super_cache_count(). We place it before setting
1499         * SB_BORN as the data dependency between the two functions is the
1500         * superblock structure contents that we just set up, not the SB_BORN
1501         * flag.
1502         */
1503        smp_wmb();
1504        sb->s_flags |= SB_BORN;
1505
1506        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1507        if (unlikely(error)) {
1508                fc_drop_locked(fc);
1509                return error;
1510        }
1511
1512        /*
1513         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1514         * but s_maxbytes was an unsigned long long for many releases. Throw
1515         * this warning for a little while to try and catch filesystems that
1516         * violate this rule.
1517         */
1518        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1519                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1520
1521        return 0;
1522}
1523EXPORT_SYMBOL(vfs_get_tree);
1524
1525/*
1526 * Setup private BDI for given superblock. It gets automatically cleaned up
1527 * in generic_shutdown_super().
1528 */
1529int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1530{
1531        struct backing_dev_info *bdi;
1532        int err;
1533        va_list args;
1534
1535        bdi = bdi_alloc(GFP_KERNEL);
1536        if (!bdi)
1537                return -ENOMEM;
1538
1539        bdi->name = sb->s_type->name;
1540
1541        va_start(args, fmt);
1542        err = bdi_register_va(bdi, fmt, args);
1543        va_end(args);
1544        if (err) {
1545                bdi_put(bdi);
1546                return err;
1547        }
1548        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1549        sb->s_bdi = bdi;
1550
1551        return 0;
1552}
1553EXPORT_SYMBOL(super_setup_bdi_name);
1554
1555/*
1556 * Setup private BDI for given superblock. I gets automatically cleaned up
1557 * in generic_shutdown_super().
1558 */
1559int super_setup_bdi(struct super_block *sb)
1560{
1561        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1562
1563        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1564                                    atomic_long_inc_return(&bdi_seq));
1565}
1566EXPORT_SYMBOL(super_setup_bdi);
1567
1568/*
1569 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1570 * instead.
1571 */
1572void __sb_end_write(struct super_block *sb, int level)
1573{
1574        percpu_up_read(sb->s_writers.rw_sem + level-1);
1575}
1576EXPORT_SYMBOL(__sb_end_write);
1577
1578/*
1579 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1580 * instead.
1581 */
1582int __sb_start_write(struct super_block *sb, int level, bool wait)
1583{
1584        bool force_trylock = false;
1585        int ret = 1;
1586
1587#ifdef CONFIG_LOCKDEP
1588        /*
1589         * We want lockdep to tell us about possible deadlocks with freezing
1590         * but it's it bit tricky to properly instrument it. Getting a freeze
1591         * protection works as getting a read lock but there are subtle
1592         * problems. XFS for example gets freeze protection on internal level
1593         * twice in some cases, which is OK only because we already hold a
1594         * freeze protection also on higher level. Due to these cases we have
1595         * to use wait == F (trylock mode) which must not fail.
1596         */
1597        if (wait) {
1598                int i;
1599
1600                for (i = 0; i < level - 1; i++)
1601                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1602                                force_trylock = true;
1603                                break;
1604                        }
1605        }
1606#endif
1607        if (wait && !force_trylock)
1608                percpu_down_read(sb->s_writers.rw_sem + level-1);
1609        else
1610                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1611
1612        WARN_ON(force_trylock && !ret);
1613        return ret;
1614}
1615EXPORT_SYMBOL(__sb_start_write);
1616
1617/**
1618 * sb_wait_write - wait until all writers to given file system finish
1619 * @sb: the super for which we wait
1620 * @level: type of writers we wait for (normal vs page fault)
1621 *
1622 * This function waits until there are no writers of given type to given file
1623 * system.
1624 */
1625static void sb_wait_write(struct super_block *sb, int level)
1626{
1627        percpu_down_write(sb->s_writers.rw_sem + level-1);
1628}
1629
1630/*
1631 * We are going to return to userspace and forget about these locks, the
1632 * ownership goes to the caller of thaw_super() which does unlock().
1633 */
1634static void lockdep_sb_freeze_release(struct super_block *sb)
1635{
1636        int level;
1637
1638        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1639                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1640}
1641
1642/*
1643 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1644 */
1645static void lockdep_sb_freeze_acquire(struct super_block *sb)
1646{
1647        int level;
1648
1649        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1650                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1651}
1652
1653static void sb_freeze_unlock(struct super_block *sb)
1654{
1655        int level;
1656
1657        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1658                percpu_up_write(sb->s_writers.rw_sem + level);
1659}
1660
1661/**
1662 * freeze_super - lock the filesystem and force it into a consistent state
1663 * @sb: the super to lock
1664 *
1665 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1666 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1667 * -EBUSY.
1668 *
1669 * During this function, sb->s_writers.frozen goes through these values:
1670 *
1671 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1672 *
1673 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1674 * writes should be blocked, though page faults are still allowed. We wait for
1675 * all writes to complete and then proceed to the next stage.
1676 *
1677 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1678 * but internal fs threads can still modify the filesystem (although they
1679 * should not dirty new pages or inodes), writeback can run etc. After waiting
1680 * for all running page faults we sync the filesystem which will clean all
1681 * dirty pages and inodes (no new dirty pages or inodes can be created when
1682 * sync is running).
1683 *
1684 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1685 * modification are blocked (e.g. XFS preallocation truncation on inode
1686 * reclaim). This is usually implemented by blocking new transactions for
1687 * filesystems that have them and need this additional guard. After all
1688 * internal writers are finished we call ->freeze_fs() to finish filesystem
1689 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1690 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1691 *
1692 * sb->s_writers.frozen is protected by sb->s_umount.
1693 */
1694int freeze_super(struct super_block *sb)
1695{
1696        int ret;
1697
1698        atomic_inc(&sb->s_active);
1699        down_write(&sb->s_umount);
1700        if (sb->s_writers.frozen != SB_UNFROZEN) {
1701                deactivate_locked_super(sb);
1702                return -EBUSY;
1703        }
1704
1705        if (!(sb->s_flags & SB_BORN)) {
1706                up_write(&sb->s_umount);
1707                return 0;       /* sic - it's "nothing to do" */
1708        }
1709
1710        if (sb_rdonly(sb)) {
1711                /* Nothing to do really... */
1712                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1713                up_write(&sb->s_umount);
1714                return 0;
1715        }
1716
1717        sb->s_writers.frozen = SB_FREEZE_WRITE;
1718        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1719        up_write(&sb->s_umount);
1720        sb_wait_write(sb, SB_FREEZE_WRITE);
1721        down_write(&sb->s_umount);
1722
1723        /* Now we go and block page faults... */
1724        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1725        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1726
1727        /* All writers are done so after syncing there won't be dirty data */
1728        sync_filesystem(sb);
1729
1730        /* Now wait for internal filesystem counter */
1731        sb->s_writers.frozen = SB_FREEZE_FS;
1732        sb_wait_write(sb, SB_FREEZE_FS);
1733
1734        if (sb->s_op->freeze_fs) {
1735                ret = sb->s_op->freeze_fs(sb);
1736                if (ret) {
1737                        printk(KERN_ERR
1738                                "VFS:Filesystem freeze failed\n");
1739                        sb->s_writers.frozen = SB_UNFROZEN;
1740                        sb_freeze_unlock(sb);
1741                        wake_up(&sb->s_writers.wait_unfrozen);
1742                        deactivate_locked_super(sb);
1743                        return ret;
1744                }
1745        }
1746        /*
1747         * For debugging purposes so that fs can warn if it sees write activity
1748         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1749         */
1750        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1751        lockdep_sb_freeze_release(sb);
1752        up_write(&sb->s_umount);
1753        return 0;
1754}
1755EXPORT_SYMBOL(freeze_super);
1756
1757/**
1758 * thaw_super -- unlock filesystem
1759 * @sb: the super to thaw
1760 *
1761 * Unlocks the filesystem and marks it writeable again after freeze_super().
1762 */
1763static int thaw_super_locked(struct super_block *sb)
1764{
1765        int error;
1766
1767        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1768                up_write(&sb->s_umount);
1769                return -EINVAL;
1770        }
1771
1772        if (sb_rdonly(sb)) {
1773                sb->s_writers.frozen = SB_UNFROZEN;
1774                goto out;
1775        }
1776
1777        lockdep_sb_freeze_acquire(sb);
1778
1779        if (sb->s_op->unfreeze_fs) {
1780                error = sb->s_op->unfreeze_fs(sb);
1781                if (error) {
1782                        printk(KERN_ERR
1783                                "VFS:Filesystem thaw failed\n");
1784                        lockdep_sb_freeze_release(sb);
1785                        up_write(&sb->s_umount);
1786                        return error;
1787                }
1788        }
1789
1790        sb->s_writers.frozen = SB_UNFROZEN;
1791        sb_freeze_unlock(sb);
1792out:
1793        wake_up(&sb->s_writers.wait_unfrozen);
1794        deactivate_locked_super(sb);
1795        return 0;
1796}
1797
1798int thaw_super(struct super_block *sb)
1799{
1800        down_write(&sb->s_umount);
1801        return thaw_super_locked(sb);
1802}
1803EXPORT_SYMBOL(thaw_super);
1804