linux/fs/xfs/scrub/repair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_mount.h"
  12#include "xfs_defer.h"
  13#include "xfs_btree.h"
  14#include "xfs_bit.h"
  15#include "xfs_log_format.h"
  16#include "xfs_trans.h"
  17#include "xfs_sb.h"
  18#include "xfs_inode.h"
  19#include "xfs_icache.h"
  20#include "xfs_alloc.h"
  21#include "xfs_alloc_btree.h"
  22#include "xfs_ialloc.h"
  23#include "xfs_ialloc_btree.h"
  24#include "xfs_rmap.h"
  25#include "xfs_rmap_btree.h"
  26#include "xfs_refcount.h"
  27#include "xfs_refcount_btree.h"
  28#include "xfs_extent_busy.h"
  29#include "xfs_ag_resv.h"
  30#include "xfs_trans_space.h"
  31#include "xfs_quota.h"
  32#include "xfs_attr.h"
  33#include "xfs_reflink.h"
  34#include "scrub/xfs_scrub.h"
  35#include "scrub/scrub.h"
  36#include "scrub/common.h"
  37#include "scrub/trace.h"
  38#include "scrub/repair.h"
  39#include "scrub/bitmap.h"
  40
  41/*
  42 * Attempt to repair some metadata, if the metadata is corrupt and userspace
  43 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
  44 * and will set *fixed to true if it thinks it repaired anything.
  45 */
  46int
  47xrep_attempt(
  48        struct xfs_inode        *ip,
  49        struct xfs_scrub        *sc)
  50{
  51        int                     error = 0;
  52
  53        trace_xrep_attempt(ip, sc->sm, error);
  54
  55        xchk_ag_btcur_free(&sc->sa);
  56
  57        /* Repair whatever's broken. */
  58        ASSERT(sc->ops->repair);
  59        error = sc->ops->repair(sc);
  60        trace_xrep_done(ip, sc->sm, error);
  61        switch (error) {
  62        case 0:
  63                /*
  64                 * Repair succeeded.  Commit the fixes and perform a second
  65                 * scrub so that we can tell userspace if we fixed the problem.
  66                 */
  67                sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
  68                sc->flags |= XREP_ALREADY_FIXED;
  69                return -EAGAIN;
  70        case -EDEADLOCK:
  71        case -EAGAIN:
  72                /* Tell the caller to try again having grabbed all the locks. */
  73                if (!(sc->flags & XCHK_TRY_HARDER)) {
  74                        sc->flags |= XCHK_TRY_HARDER;
  75                        return -EAGAIN;
  76                }
  77                /*
  78                 * We tried harder but still couldn't grab all the resources
  79                 * we needed to fix it.  The corruption has not been fixed,
  80                 * so report back to userspace.
  81                 */
  82                return -EFSCORRUPTED;
  83        default:
  84                return error;
  85        }
  86}
  87
  88/*
  89 * Complain about unfixable problems in the filesystem.  We don't log
  90 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
  91 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
  92 * administrator isn't running xfs_scrub in no-repairs mode.
  93 *
  94 * Use this helper function because _ratelimited silently declares a static
  95 * structure to track rate limiting information.
  96 */
  97void
  98xrep_failure(
  99        struct xfs_mount        *mp)
 100{
 101        xfs_alert_ratelimited(mp,
 102"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
 103}
 104
 105/*
 106 * Repair probe -- userspace uses this to probe if we're willing to repair a
 107 * given mountpoint.
 108 */
 109int
 110xrep_probe(
 111        struct xfs_scrub        *sc)
 112{
 113        int                     error = 0;
 114
 115        if (xchk_should_terminate(sc, &error))
 116                return error;
 117
 118        return 0;
 119}
 120
 121/*
 122 * Roll a transaction, keeping the AG headers locked and reinitializing
 123 * the btree cursors.
 124 */
 125int
 126xrep_roll_ag_trans(
 127        struct xfs_scrub        *sc)
 128{
 129        int                     error;
 130
 131        /* Keep the AG header buffers locked so we can keep going. */
 132        if (sc->sa.agi_bp)
 133                xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
 134        if (sc->sa.agf_bp)
 135                xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
 136        if (sc->sa.agfl_bp)
 137                xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
 138
 139        /*
 140         * Roll the transaction.  We still own the buffer and the buffer lock
 141         * regardless of whether or not the roll succeeds.  If the roll fails,
 142         * the buffers will be released during teardown on our way out of the
 143         * kernel.  If it succeeds, we join them to the new transaction and
 144         * move on.
 145         */
 146        error = xfs_trans_roll(&sc->tp);
 147        if (error)
 148                return error;
 149
 150        /* Join AG headers to the new transaction. */
 151        if (sc->sa.agi_bp)
 152                xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
 153        if (sc->sa.agf_bp)
 154                xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
 155        if (sc->sa.agfl_bp)
 156                xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
 157
 158        return 0;
 159}
 160
 161/*
 162 * Does the given AG have enough space to rebuild a btree?  Neither AG
 163 * reservation can be critical, and we must have enough space (factoring
 164 * in AG reservations) to construct a whole btree.
 165 */
 166bool
 167xrep_ag_has_space(
 168        struct xfs_perag        *pag,
 169        xfs_extlen_t            nr_blocks,
 170        enum xfs_ag_resv_type   type)
 171{
 172        return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
 173                !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
 174                pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
 175}
 176
 177/*
 178 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 179 * worst case estimate for the number of blocks we'd need to rebuild one of
 180 * any type of per-AG btree.
 181 */
 182xfs_extlen_t
 183xrep_calc_ag_resblks(
 184        struct xfs_scrub                *sc)
 185{
 186        struct xfs_mount                *mp = sc->mp;
 187        struct xfs_scrub_metadata       *sm = sc->sm;
 188        struct xfs_perag                *pag;
 189        struct xfs_buf                  *bp;
 190        xfs_agino_t                     icount = NULLAGINO;
 191        xfs_extlen_t                    aglen = NULLAGBLOCK;
 192        xfs_extlen_t                    usedlen;
 193        xfs_extlen_t                    freelen;
 194        xfs_extlen_t                    bnobt_sz;
 195        xfs_extlen_t                    inobt_sz;
 196        xfs_extlen_t                    rmapbt_sz;
 197        xfs_extlen_t                    refcbt_sz;
 198        int                             error;
 199
 200        if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
 201                return 0;
 202
 203        pag = xfs_perag_get(mp, sm->sm_agno);
 204        if (pag->pagi_init) {
 205                /* Use in-core icount if possible. */
 206                icount = pag->pagi_count;
 207        } else {
 208                /* Try to get the actual counters from disk. */
 209                error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
 210                if (!error) {
 211                        icount = pag->pagi_count;
 212                        xfs_buf_relse(bp);
 213                }
 214        }
 215
 216        /* Now grab the block counters from the AGF. */
 217        error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
 218        if (!error) {
 219                aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
 220                freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
 221                usedlen = aglen - freelen;
 222                xfs_buf_relse(bp);
 223        }
 224        xfs_perag_put(pag);
 225
 226        /* If the icount is impossible, make some worst-case assumptions. */
 227        if (icount == NULLAGINO ||
 228            !xfs_verify_agino(mp, sm->sm_agno, icount)) {
 229                xfs_agino_t     first, last;
 230
 231                xfs_agino_range(mp, sm->sm_agno, &first, &last);
 232                icount = last - first + 1;
 233        }
 234
 235        /* If the block counts are impossible, make worst-case assumptions. */
 236        if (aglen == NULLAGBLOCK ||
 237            aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
 238            freelen >= aglen) {
 239                aglen = xfs_ag_block_count(mp, sm->sm_agno);
 240                freelen = aglen;
 241                usedlen = aglen;
 242        }
 243
 244        trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
 245                        freelen, usedlen);
 246
 247        /*
 248         * Figure out how many blocks we'd need worst case to rebuild
 249         * each type of btree.  Note that we can only rebuild the
 250         * bnobt/cntbt or inobt/finobt as pairs.
 251         */
 252        bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
 253        if (xfs_sb_version_hassparseinodes(&mp->m_sb))
 254                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 255                                XFS_INODES_PER_HOLEMASK_BIT);
 256        else
 257                inobt_sz = xfs_iallocbt_calc_size(mp, icount /
 258                                XFS_INODES_PER_CHUNK);
 259        if (xfs_sb_version_hasfinobt(&mp->m_sb))
 260                inobt_sz *= 2;
 261        if (xfs_sb_version_hasreflink(&mp->m_sb))
 262                refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
 263        else
 264                refcbt_sz = 0;
 265        if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
 266                /*
 267                 * Guess how many blocks we need to rebuild the rmapbt.
 268                 * For non-reflink filesystems we can't have more records than
 269                 * used blocks.  However, with reflink it's possible to have
 270                 * more than one rmap record per AG block.  We don't know how
 271                 * many rmaps there could be in the AG, so we start off with
 272                 * what we hope is an generous over-estimation.
 273                 */
 274                if (xfs_sb_version_hasreflink(&mp->m_sb))
 275                        rmapbt_sz = xfs_rmapbt_calc_size(mp,
 276                                        (unsigned long long)aglen * 2);
 277                else
 278                        rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
 279        } else {
 280                rmapbt_sz = 0;
 281        }
 282
 283        trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
 284                        inobt_sz, rmapbt_sz, refcbt_sz);
 285
 286        return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
 287}
 288
 289/* Allocate a block in an AG. */
 290int
 291xrep_alloc_ag_block(
 292        struct xfs_scrub                *sc,
 293        const struct xfs_owner_info     *oinfo,
 294        xfs_fsblock_t                   *fsbno,
 295        enum xfs_ag_resv_type           resv)
 296{
 297        struct xfs_alloc_arg            args = {0};
 298        xfs_agblock_t                   bno;
 299        int                             error;
 300
 301        switch (resv) {
 302        case XFS_AG_RESV_AGFL:
 303        case XFS_AG_RESV_RMAPBT:
 304                error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
 305                if (error)
 306                        return error;
 307                if (bno == NULLAGBLOCK)
 308                        return -ENOSPC;
 309                xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
 310                                1, false);
 311                *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
 312                if (resv == XFS_AG_RESV_RMAPBT)
 313                        xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
 314                return 0;
 315        default:
 316                break;
 317        }
 318
 319        args.tp = sc->tp;
 320        args.mp = sc->mp;
 321        args.oinfo = *oinfo;
 322        args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
 323        args.minlen = 1;
 324        args.maxlen = 1;
 325        args.prod = 1;
 326        args.type = XFS_ALLOCTYPE_THIS_AG;
 327        args.resv = resv;
 328
 329        error = xfs_alloc_vextent(&args);
 330        if (error)
 331                return error;
 332        if (args.fsbno == NULLFSBLOCK)
 333                return -ENOSPC;
 334        ASSERT(args.len == 1);
 335        *fsbno = args.fsbno;
 336
 337        return 0;
 338}
 339
 340/* Initialize a new AG btree root block with zero entries. */
 341int
 342xrep_init_btblock(
 343        struct xfs_scrub                *sc,
 344        xfs_fsblock_t                   fsb,
 345        struct xfs_buf                  **bpp,
 346        xfs_btnum_t                     btnum,
 347        const struct xfs_buf_ops        *ops)
 348{
 349        struct xfs_trans                *tp = sc->tp;
 350        struct xfs_mount                *mp = sc->mp;
 351        struct xfs_buf                  *bp;
 352
 353        trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
 354                        XFS_FSB_TO_AGBNO(mp, fsb), btnum);
 355
 356        ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
 357        bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
 358                        XFS_FSB_TO_BB(mp, 1), 0);
 359        xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
 360        xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
 361        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
 362        xfs_trans_log_buf(tp, bp, 0, bp->b_length);
 363        bp->b_ops = ops;
 364        *bpp = bp;
 365
 366        return 0;
 367}
 368
 369/*
 370 * Reconstructing per-AG Btrees
 371 *
 372 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 373 * we scan secondary space metadata to derive the records that should be in
 374 * the damaged btree, initialize a fresh btree root, and insert the records.
 375 * Note that for rebuilding the rmapbt we scan all the primary data to
 376 * generate the new records.
 377 *
 378 * However, that leaves the matter of removing all the metadata describing the
 379 * old broken structure.  For primary metadata we use the rmap data to collect
 380 * every extent with a matching rmap owner (bitmap); we then iterate all other
 381 * metadata structures with the same rmap owner to collect the extents that
 382 * cannot be removed (sublist).  We then subtract sublist from bitmap to
 383 * derive the blocks that were used by the old btree.  These blocks can be
 384 * reaped.
 385 *
 386 * For rmapbt reconstructions we must use different tactics for extent
 387 * collection.  First we iterate all primary metadata (this excludes the old
 388 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 389 * records are collected as bitmap.  The bnobt records are collected as
 390 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
 391 * result (since the rmapbt lives in the free space) are the blocks from the
 392 * old rmapbt.
 393 *
 394 * Disposal of Blocks from Old per-AG Btrees
 395 *
 396 * Now that we've constructed a new btree to replace the damaged one, we want
 397 * to dispose of the blocks that (we think) the old btree was using.
 398 * Previously, we used the rmapbt to collect the extents (bitmap) with the
 399 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 400 * blocks with the same rmap owner that are owned by another data structure
 401 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 402 * remaining in bitmap are the old btree's blocks.
 403 *
 404 * Unfortunately, it's possible that the btree was crosslinked with other
 405 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 406 * if the rmapbt says there is an owner of this block other than @oinfo, then
 407 * the block is crosslinked.  Remove the reverse mapping and continue.
 408 *
 409 * If there is one rmap record, we can free the block, which removes the
 410 * reverse mapping but doesn't add the block to the free space.  Our repair
 411 * strategy is to hope the other metadata objects crosslinked on this block
 412 * will be rebuilt (atop different blocks), thereby removing all the cross
 413 * links.
 414 *
 415 * If there are no rmap records at all, we also free the block.  If the btree
 416 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 417 * supposed to be a rmap record and everything is ok.  For other btrees there
 418 * had to have been an rmap entry for the block to have ended up on @bitmap,
 419 * so if it's gone now there's something wrong and the fs will shut down.
 420 *
 421 * Note: If there are multiple rmap records with only the same rmap owner as
 422 * the btree we're trying to rebuild and the block is indeed owned by another
 423 * data structure with the same rmap owner, then the block will be in sublist
 424 * and therefore doesn't need disposal.  If there are multiple rmap records
 425 * with only the same rmap owner but the block is not owned by something with
 426 * the same rmap owner, the block will be freed.
 427 *
 428 * The caller is responsible for locking the AG headers for the entire rebuild
 429 * operation so that nothing else can sneak in and change the AG state while
 430 * we're not looking.  We also assume that the caller already invalidated any
 431 * buffers associated with @bitmap.
 432 */
 433
 434/*
 435 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 436 * is not intended for use with file data repairs; we have bunmapi for that.
 437 */
 438int
 439xrep_invalidate_blocks(
 440        struct xfs_scrub        *sc,
 441        struct xfs_bitmap       *bitmap)
 442{
 443        struct xfs_bitmap_range *bmr;
 444        struct xfs_bitmap_range *n;
 445        struct xfs_buf          *bp;
 446        xfs_fsblock_t           fsbno;
 447
 448        /*
 449         * For each block in each extent, see if there's an incore buffer for
 450         * exactly that block; if so, invalidate it.  The buffer cache only
 451         * lets us look for one buffer at a time, so we have to look one block
 452         * at a time.  Avoid invalidating AG headers and post-EOFS blocks
 453         * because we never own those; and if we can't TRYLOCK the buffer we
 454         * assume it's owned by someone else.
 455         */
 456        for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
 457                /* Skip AG headers and post-EOFS blocks */
 458                if (!xfs_verify_fsbno(sc->mp, fsbno))
 459                        continue;
 460                bp = xfs_buf_incore(sc->mp->m_ddev_targp,
 461                                XFS_FSB_TO_DADDR(sc->mp, fsbno),
 462                                XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
 463                if (bp) {
 464                        xfs_trans_bjoin(sc->tp, bp);
 465                        xfs_trans_binval(sc->tp, bp);
 466                }
 467        }
 468
 469        return 0;
 470}
 471
 472/* Ensure the freelist is the correct size. */
 473int
 474xrep_fix_freelist(
 475        struct xfs_scrub        *sc,
 476        bool                    can_shrink)
 477{
 478        struct xfs_alloc_arg    args = {0};
 479
 480        args.mp = sc->mp;
 481        args.tp = sc->tp;
 482        args.agno = sc->sa.agno;
 483        args.alignment = 1;
 484        args.pag = sc->sa.pag;
 485
 486        return xfs_alloc_fix_freelist(&args,
 487                        can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
 488}
 489
 490/*
 491 * Put a block back on the AGFL.
 492 */
 493STATIC int
 494xrep_put_freelist(
 495        struct xfs_scrub        *sc,
 496        xfs_agblock_t           agbno)
 497{
 498        int                     error;
 499
 500        /* Make sure there's space on the freelist. */
 501        error = xrep_fix_freelist(sc, true);
 502        if (error)
 503                return error;
 504
 505        /*
 506         * Since we're "freeing" a lost block onto the AGFL, we have to
 507         * create an rmap for the block prior to merging it or else other
 508         * parts will break.
 509         */
 510        error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
 511                        &XFS_RMAP_OINFO_AG);
 512        if (error)
 513                return error;
 514
 515        /* Put the block on the AGFL. */
 516        error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
 517                        agbno, 0);
 518        if (error)
 519                return error;
 520        xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
 521                        XFS_EXTENT_BUSY_SKIP_DISCARD);
 522
 523        return 0;
 524}
 525
 526/* Dispose of a single block. */
 527STATIC int
 528xrep_reap_block(
 529        struct xfs_scrub                *sc,
 530        xfs_fsblock_t                   fsbno,
 531        const struct xfs_owner_info     *oinfo,
 532        enum xfs_ag_resv_type           resv)
 533{
 534        struct xfs_btree_cur            *cur;
 535        struct xfs_buf                  *agf_bp = NULL;
 536        xfs_agnumber_t                  agno;
 537        xfs_agblock_t                   agbno;
 538        bool                            has_other_rmap;
 539        int                             error;
 540
 541        agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
 542        agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
 543
 544        /*
 545         * If we are repairing per-inode metadata, we need to read in the AGF
 546         * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
 547         * the AGF buffer that the setup functions already grabbed.
 548         */
 549        if (sc->ip) {
 550                error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
 551                if (error)
 552                        return error;
 553                if (!agf_bp)
 554                        return -ENOMEM;
 555        } else {
 556                agf_bp = sc->sa.agf_bp;
 557        }
 558        cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
 559
 560        /* Can we find any other rmappings? */
 561        error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
 562        xfs_btree_del_cursor(cur, error);
 563        if (error)
 564                goto out_free;
 565
 566        /*
 567         * If there are other rmappings, this block is cross linked and must
 568         * not be freed.  Remove the reverse mapping and move on.  Otherwise,
 569         * we were the only owner of the block, so free the extent, which will
 570         * also remove the rmap.
 571         *
 572         * XXX: XFS doesn't support detecting the case where a single block
 573         * metadata structure is crosslinked with a multi-block structure
 574         * because the buffer cache doesn't detect aliasing problems, so we
 575         * can't fix 100% of crosslinking problems (yet).  The verifiers will
 576         * blow on writeout, the filesystem will shut down, and the admin gets
 577         * to run xfs_repair.
 578         */
 579        if (has_other_rmap)
 580                error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
 581        else if (resv == XFS_AG_RESV_AGFL)
 582                error = xrep_put_freelist(sc, agbno);
 583        else
 584                error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
 585        if (agf_bp != sc->sa.agf_bp)
 586                xfs_trans_brelse(sc->tp, agf_bp);
 587        if (error)
 588                return error;
 589
 590        if (sc->ip)
 591                return xfs_trans_roll_inode(&sc->tp, sc->ip);
 592        return xrep_roll_ag_trans(sc);
 593
 594out_free:
 595        if (agf_bp != sc->sa.agf_bp)
 596                xfs_trans_brelse(sc->tp, agf_bp);
 597        return error;
 598}
 599
 600/* Dispose of every block of every extent in the bitmap. */
 601int
 602xrep_reap_extents(
 603        struct xfs_scrub                *sc,
 604        struct xfs_bitmap               *bitmap,
 605        const struct xfs_owner_info     *oinfo,
 606        enum xfs_ag_resv_type           type)
 607{
 608        struct xfs_bitmap_range         *bmr;
 609        struct xfs_bitmap_range         *n;
 610        xfs_fsblock_t                   fsbno;
 611        int                             error = 0;
 612
 613        ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
 614
 615        for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
 616                ASSERT(sc->ip != NULL ||
 617                       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
 618                trace_xrep_dispose_btree_extent(sc->mp,
 619                                XFS_FSB_TO_AGNO(sc->mp, fsbno),
 620                                XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
 621
 622                error = xrep_reap_block(sc, fsbno, oinfo, type);
 623                if (error)
 624                        goto out;
 625        }
 626
 627out:
 628        xfs_bitmap_destroy(bitmap);
 629        return error;
 630}
 631
 632/*
 633 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 634 *
 635 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 636 * the AG headers by using the rmap data to rummage through the AG looking for
 637 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 638 * or the rmap data are corrupt.
 639 *
 640 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
 641 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 642 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 643 * other threads to change the btrees' shapes.  The caller provides
 644 * information about the btrees to look for by passing in an array of
 645 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
 646 * The (root, height) fields will be set on return if anything is found.  The
 647 * last element of the array should have a NULL buf_ops to mark the end of the
 648 * array.
 649 *
 650 * For every rmapbt record matching any of the rmap owners in btree_info,
 651 * read each block referenced by the rmap record.  If the block is a btree
 652 * block from this filesystem matching any of the magic numbers and has a
 653 * level higher than what we've already seen, remember the block and the
 654 * height of the tree required to have such a block.  When the call completes,
 655 * we return the highest block we've found for each btree description; those
 656 * should be the roots.
 657 */
 658
 659struct xrep_findroot {
 660        struct xfs_scrub                *sc;
 661        struct xfs_buf                  *agfl_bp;
 662        struct xfs_agf                  *agf;
 663        struct xrep_find_ag_btree       *btree_info;
 664};
 665
 666/* See if our block is in the AGFL. */
 667STATIC int
 668xrep_findroot_agfl_walk(
 669        struct xfs_mount        *mp,
 670        xfs_agblock_t           bno,
 671        void                    *priv)
 672{
 673        xfs_agblock_t           *agbno = priv;
 674
 675        return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
 676}
 677
 678/* Does this block match the btree information passed in? */
 679STATIC int
 680xrep_findroot_block(
 681        struct xrep_findroot            *ri,
 682        struct xrep_find_ag_btree       *fab,
 683        uint64_t                        owner,
 684        xfs_agblock_t                   agbno,
 685        bool                            *done_with_block)
 686{
 687        struct xfs_mount                *mp = ri->sc->mp;
 688        struct xfs_buf                  *bp;
 689        struct xfs_btree_block          *btblock;
 690        xfs_daddr_t                     daddr;
 691        int                             block_level;
 692        int                             error = 0;
 693
 694        daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
 695
 696        /*
 697         * Blocks in the AGFL have stale contents that might just happen to
 698         * have a matching magic and uuid.  We don't want to pull these blocks
 699         * in as part of a tree root, so we have to filter out the AGFL stuff
 700         * here.  If the AGFL looks insane we'll just refuse to repair.
 701         */
 702        if (owner == XFS_RMAP_OWN_AG) {
 703                error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
 704                                xrep_findroot_agfl_walk, &agbno);
 705                if (error == XFS_BTREE_QUERY_RANGE_ABORT)
 706                        return 0;
 707                if (error)
 708                        return error;
 709        }
 710
 711        /*
 712         * Read the buffer into memory so that we can see if it's a match for
 713         * our btree type.  We have no clue if it is beforehand, and we want to
 714         * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
 715         * will cause needless disk reads in subsequent calls to this function)
 716         * and logging metadata verifier failures.
 717         *
 718         * Therefore, pass in NULL buffer ops.  If the buffer was already in
 719         * memory from some other caller it will already have b_ops assigned.
 720         * If it was in memory from a previous unsuccessful findroot_block
 721         * call, the buffer won't have b_ops but it should be clean and ready
 722         * for us to try to verify if the read call succeeds.  The same applies
 723         * if the buffer wasn't in memory at all.
 724         *
 725         * Note: If we never match a btree type with this buffer, it will be
 726         * left in memory with NULL b_ops.  This shouldn't be a problem unless
 727         * the buffer gets written.
 728         */
 729        error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
 730                        mp->m_bsize, 0, &bp, NULL);
 731        if (error)
 732                return error;
 733
 734        /* Ensure the block magic matches the btree type we're looking for. */
 735        btblock = XFS_BUF_TO_BLOCK(bp);
 736        ASSERT(fab->buf_ops->magic[1] != 0);
 737        if (btblock->bb_magic != fab->buf_ops->magic[1])
 738                goto out;
 739
 740        /*
 741         * If the buffer already has ops applied and they're not the ones for
 742         * this btree type, we know this block doesn't match the btree and we
 743         * can bail out.
 744         *
 745         * If the buffer ops match ours, someone else has already validated
 746         * the block for us, so we can move on to checking if this is a root
 747         * block candidate.
 748         *
 749         * If the buffer does not have ops, nobody has successfully validated
 750         * the contents and the buffer cannot be dirty.  If the magic, uuid,
 751         * and structure match this btree type then we'll move on to checking
 752         * if it's a root block candidate.  If there is no match, bail out.
 753         */
 754        if (bp->b_ops) {
 755                if (bp->b_ops != fab->buf_ops)
 756                        goto out;
 757        } else {
 758                ASSERT(!xfs_trans_buf_is_dirty(bp));
 759                if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
 760                                &mp->m_sb.sb_meta_uuid))
 761                        goto out;
 762                /*
 763                 * Read verifiers can reference b_ops, so we set the pointer
 764                 * here.  If the verifier fails we'll reset the buffer state
 765                 * to what it was before we touched the buffer.
 766                 */
 767                bp->b_ops = fab->buf_ops;
 768                fab->buf_ops->verify_read(bp);
 769                if (bp->b_error) {
 770                        bp->b_ops = NULL;
 771                        bp->b_error = 0;
 772                        goto out;
 773                }
 774
 775                /*
 776                 * Some read verifiers will (re)set b_ops, so we must be
 777                 * careful not to change b_ops after running the verifier.
 778                 */
 779        }
 780
 781        /*
 782         * This block passes the magic/uuid and verifier tests for this btree
 783         * type.  We don't need the caller to try the other tree types.
 784         */
 785        *done_with_block = true;
 786
 787        /*
 788         * Compare this btree block's level to the height of the current
 789         * candidate root block.
 790         *
 791         * If the level matches the root we found previously, throw away both
 792         * blocks because there can't be two candidate roots.
 793         *
 794         * If level is lower in the tree than the root we found previously,
 795         * ignore this block.
 796         */
 797        block_level = xfs_btree_get_level(btblock);
 798        if (block_level + 1 == fab->height) {
 799                fab->root = NULLAGBLOCK;
 800                goto out;
 801        } else if (block_level < fab->height) {
 802                goto out;
 803        }
 804
 805        /*
 806         * This is the highest block in the tree that we've found so far.
 807         * Update the btree height to reflect what we've learned from this
 808         * block.
 809         */
 810        fab->height = block_level + 1;
 811
 812        /*
 813         * If this block doesn't have sibling pointers, then it's the new root
 814         * block candidate.  Otherwise, the root will be found farther up the
 815         * tree.
 816         */
 817        if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
 818            btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
 819                fab->root = agbno;
 820        else
 821                fab->root = NULLAGBLOCK;
 822
 823        trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
 824                        be32_to_cpu(btblock->bb_magic), fab->height - 1);
 825out:
 826        xfs_trans_brelse(ri->sc->tp, bp);
 827        return error;
 828}
 829
 830/*
 831 * Do any of the blocks in this rmap record match one of the btrees we're
 832 * looking for?
 833 */
 834STATIC int
 835xrep_findroot_rmap(
 836        struct xfs_btree_cur            *cur,
 837        struct xfs_rmap_irec            *rec,
 838        void                            *priv)
 839{
 840        struct xrep_findroot            *ri = priv;
 841        struct xrep_find_ag_btree       *fab;
 842        xfs_agblock_t                   b;
 843        bool                            done;
 844        int                             error = 0;
 845
 846        /* Ignore anything that isn't AG metadata. */
 847        if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
 848                return 0;
 849
 850        /* Otherwise scan each block + btree type. */
 851        for (b = 0; b < rec->rm_blockcount; b++) {
 852                done = false;
 853                for (fab = ri->btree_info; fab->buf_ops; fab++) {
 854                        if (rec->rm_owner != fab->rmap_owner)
 855                                continue;
 856                        error = xrep_findroot_block(ri, fab,
 857                                        rec->rm_owner, rec->rm_startblock + b,
 858                                        &done);
 859                        if (error)
 860                                return error;
 861                        if (done)
 862                                break;
 863                }
 864        }
 865
 866        return 0;
 867}
 868
 869/* Find the roots of the per-AG btrees described in btree_info. */
 870int
 871xrep_find_ag_btree_roots(
 872        struct xfs_scrub                *sc,
 873        struct xfs_buf                  *agf_bp,
 874        struct xrep_find_ag_btree       *btree_info,
 875        struct xfs_buf                  *agfl_bp)
 876{
 877        struct xfs_mount                *mp = sc->mp;
 878        struct xrep_findroot            ri;
 879        struct xrep_find_ag_btree       *fab;
 880        struct xfs_btree_cur            *cur;
 881        int                             error;
 882
 883        ASSERT(xfs_buf_islocked(agf_bp));
 884        ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
 885
 886        ri.sc = sc;
 887        ri.btree_info = btree_info;
 888        ri.agf = XFS_BUF_TO_AGF(agf_bp);
 889        ri.agfl_bp = agfl_bp;
 890        for (fab = btree_info; fab->buf_ops; fab++) {
 891                ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
 892                ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
 893                fab->root = NULLAGBLOCK;
 894                fab->height = 0;
 895        }
 896
 897        cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
 898        error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
 899        xfs_btree_del_cursor(cur, error);
 900
 901        return error;
 902}
 903
 904/* Force a quotacheck the next time we mount. */
 905void
 906xrep_force_quotacheck(
 907        struct xfs_scrub        *sc,
 908        uint                    dqtype)
 909{
 910        uint                    flag;
 911
 912        flag = xfs_quota_chkd_flag(dqtype);
 913        if (!(flag & sc->mp->m_qflags))
 914                return;
 915
 916        sc->mp->m_qflags &= ~flag;
 917        spin_lock(&sc->mp->m_sb_lock);
 918        sc->mp->m_sb.sb_qflags &= ~flag;
 919        spin_unlock(&sc->mp->m_sb_lock);
 920        xfs_log_sb(sc->tp);
 921}
 922
 923/*
 924 * Attach dquots to this inode, or schedule quotacheck to fix them.
 925 *
 926 * This function ensures that the appropriate dquots are attached to an inode.
 927 * We cannot allow the dquot code to allocate an on-disk dquot block here
 928 * because we're already in transaction context with the inode locked.  The
 929 * on-disk dquot should already exist anyway.  If the quota code signals
 930 * corruption or missing quota information, schedule quotacheck, which will
 931 * repair corruptions in the quota metadata.
 932 */
 933int
 934xrep_ino_dqattach(
 935        struct xfs_scrub        *sc)
 936{
 937        int                     error;
 938
 939        error = xfs_qm_dqattach_locked(sc->ip, false);
 940        switch (error) {
 941        case -EFSBADCRC:
 942        case -EFSCORRUPTED:
 943        case -ENOENT:
 944                xfs_err_ratelimited(sc->mp,
 945"inode %llu repair encountered quota error %d, quotacheck forced.",
 946                                (unsigned long long)sc->ip->i_ino, error);
 947                if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
 948                        xrep_force_quotacheck(sc, XFS_DQ_USER);
 949                if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
 950                        xrep_force_quotacheck(sc, XFS_DQ_GROUP);
 951                if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
 952                        xrep_force_quotacheck(sc, XFS_DQ_PROJ);
 953                /* fall through */
 954        case -ESRCH:
 955                error = 0;
 956                break;
 957        default:
 958                break;
 959        }
 960
 961        return error;
 962}
 963