linux/include/asm-generic/tlb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* include/asm-generic/tlb.h
   3 *
   4 *      Generic TLB shootdown code
   5 *
   6 * Copyright 2001 Red Hat, Inc.
   7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
   8 *
   9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
  10 */
  11#ifndef _ASM_GENERIC__TLB_H
  12#define _ASM_GENERIC__TLB_H
  13
  14#include <linux/mmu_notifier.h>
  15#include <linux/swap.h>
  16#include <asm/pgalloc.h>
  17#include <asm/tlbflush.h>
  18#include <asm/cacheflush.h>
  19
  20/*
  21 * Blindly accessing user memory from NMI context can be dangerous
  22 * if we're in the middle of switching the current user task or switching
  23 * the loaded mm.
  24 */
  25#ifndef nmi_uaccess_okay
  26# define nmi_uaccess_okay() true
  27#endif
  28
  29#ifdef CONFIG_MMU
  30
  31/*
  32 * Generic MMU-gather implementation.
  33 *
  34 * The mmu_gather data structure is used by the mm code to implement the
  35 * correct and efficient ordering of freeing pages and TLB invalidations.
  36 *
  37 * This correct ordering is:
  38 *
  39 *  1) unhook page
  40 *  2) TLB invalidate page
  41 *  3) free page
  42 *
  43 * That is, we must never free a page before we have ensured there are no live
  44 * translations left to it. Otherwise it might be possible to observe (or
  45 * worse, change) the page content after it has been reused.
  46 *
  47 * The mmu_gather API consists of:
  48 *
  49 *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
  50 *
  51 *    Finish in particular will issue a (final) TLB invalidate and free
  52 *    all (remaining) queued pages.
  53 *
  54 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
  55 *
  56 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
  57 *    there's large holes between the VMAs.
  58 *
  59 *  - tlb_remove_page() / __tlb_remove_page()
  60 *  - tlb_remove_page_size() / __tlb_remove_page_size()
  61 *
  62 *    __tlb_remove_page_size() is the basic primitive that queues a page for
  63 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
  64 *    boolean indicating if the queue is (now) full and a call to
  65 *    tlb_flush_mmu() is required.
  66 *
  67 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
  68 *    tlb_flush_mmu() when required and has no return value.
  69 *
  70 *  - tlb_change_page_size()
  71 *
  72 *    call before __tlb_remove_page*() to set the current page-size; implies a
  73 *    possible tlb_flush_mmu() call.
  74 *
  75 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
  76 *
  77 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
  78 *                              related state, like the range)
  79 *
  80 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
  81 *                      whatever pages are still batched.
  82 *
  83 *  - mmu_gather::fullmm
  84 *
  85 *    A flag set by tlb_gather_mmu() to indicate we're going to free
  86 *    the entire mm; this allows a number of optimizations.
  87 *
  88 *    - We can ignore tlb_{start,end}_vma(); because we don't
  89 *      care about ranges. Everything will be shot down.
  90 *
  91 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
  92 *      and delay the invalidation until ASID space runs out.
  93 *
  94 *  - mmu_gather::need_flush_all
  95 *
  96 *    A flag that can be set by the arch code if it wants to force
  97 *    flush the entire TLB irrespective of the range. For instance
  98 *    x86-PAE needs this when changing top-level entries.
  99 *
 100 * And allows the architecture to provide and implement tlb_flush():
 101 *
 102 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
 103 * use of:
 104 *
 105 *  - mmu_gather::start / mmu_gather::end
 106 *
 107 *    which provides the range that needs to be flushed to cover the pages to
 108 *    be freed.
 109 *
 110 *  - mmu_gather::freed_tables
 111 *
 112 *    set when we freed page table pages
 113 *
 114 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
 115 *
 116 *    returns the smallest TLB entry size unmapped in this range.
 117 *
 118 * If an architecture does not provide tlb_flush() a default implementation
 119 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
 120 * specified, in which case we'll default to flush_tlb_mm().
 121 *
 122 * Additionally there are a few opt-in features:
 123 *
 124 *  HAVE_MMU_GATHER_PAGE_SIZE
 125 *
 126 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
 127 *  changes the size and provides mmu_gather::page_size to tlb_flush().
 128 *
 129 *  HAVE_RCU_TABLE_FREE
 130 *
 131 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
 132 *  for page directores (__p*_free_tlb()). This provides separate freeing of
 133 *  the page-table pages themselves in a semi-RCU fashion (see comment below).
 134 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
 135 *  and therefore doesn't naturally serialize with software page-table walkers.
 136 *
 137 *  When used, an architecture is expected to provide __tlb_remove_table()
 138 *  which does the actual freeing of these pages.
 139 *
 140 *  HAVE_RCU_TABLE_NO_INVALIDATE
 141 *
 142 *  This makes HAVE_RCU_TABLE_FREE avoid calling tlb_flush_mmu_tlbonly() before
 143 *  freeing the page-table pages. This can be avoided if you use
 144 *  HAVE_RCU_TABLE_FREE and your architecture does _NOT_ use the Linux
 145 *  page-tables natively.
 146 *
 147 *  MMU_GATHER_NO_RANGE
 148 *
 149 *  Use this if your architecture lacks an efficient flush_tlb_range().
 150 */
 151
 152#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 153/*
 154 * Semi RCU freeing of the page directories.
 155 *
 156 * This is needed by some architectures to implement software pagetable walkers.
 157 *
 158 * gup_fast() and other software pagetable walkers do a lockless page-table
 159 * walk and therefore needs some synchronization with the freeing of the page
 160 * directories. The chosen means to accomplish that is by disabling IRQs over
 161 * the walk.
 162 *
 163 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
 164 * since we unlink the page, flush TLBs, free the page. Since the disabling of
 165 * IRQs delays the completion of the TLB flush we can never observe an already
 166 * freed page.
 167 *
 168 * Architectures that do not have this (PPC) need to delay the freeing by some
 169 * other means, this is that means.
 170 *
 171 * What we do is batch the freed directory pages (tables) and RCU free them.
 172 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
 173 * holds off grace periods.
 174 *
 175 * However, in order to batch these pages we need to allocate storage, this
 176 * allocation is deep inside the MM code and can thus easily fail on memory
 177 * pressure. To guarantee progress we fall back to single table freeing, see
 178 * the implementation of tlb_remove_table_one().
 179 *
 180 */
 181struct mmu_table_batch {
 182        struct rcu_head         rcu;
 183        unsigned int            nr;
 184        void                    *tables[0];
 185};
 186
 187#define MAX_TABLE_BATCH         \
 188        ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
 189
 190extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
 191
 192#endif
 193
 194#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
 195/*
 196 * If we can't allocate a page to make a big batch of page pointers
 197 * to work on, then just handle a few from the on-stack structure.
 198 */
 199#define MMU_GATHER_BUNDLE       8
 200
 201struct mmu_gather_batch {
 202        struct mmu_gather_batch *next;
 203        unsigned int            nr;
 204        unsigned int            max;
 205        struct page             *pages[0];
 206};
 207
 208#define MAX_GATHER_BATCH        \
 209        ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
 210
 211/*
 212 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
 213 * lockups for non-preemptible kernels on huge machines when a lot of memory
 214 * is zapped during unmapping.
 215 * 10K pages freed at once should be safe even without a preemption point.
 216 */
 217#define MAX_GATHER_BATCH_COUNT  (10000UL/MAX_GATHER_BATCH)
 218
 219extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
 220                                   int page_size);
 221#endif
 222
 223/*
 224 * struct mmu_gather is an opaque type used by the mm code for passing around
 225 * any data needed by arch specific code for tlb_remove_page.
 226 */
 227struct mmu_gather {
 228        struct mm_struct        *mm;
 229
 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 231        struct mmu_table_batch  *batch;
 232#endif
 233
 234        unsigned long           start;
 235        unsigned long           end;
 236        /*
 237         * we are in the middle of an operation to clear
 238         * a full mm and can make some optimizations
 239         */
 240        unsigned int            fullmm : 1;
 241
 242        /*
 243         * we have performed an operation which
 244         * requires a complete flush of the tlb
 245         */
 246        unsigned int            need_flush_all : 1;
 247
 248        /*
 249         * we have removed page directories
 250         */
 251        unsigned int            freed_tables : 1;
 252
 253        /*
 254         * at which levels have we cleared entries?
 255         */
 256        unsigned int            cleared_ptes : 1;
 257        unsigned int            cleared_pmds : 1;
 258        unsigned int            cleared_puds : 1;
 259        unsigned int            cleared_p4ds : 1;
 260
 261        /*
 262         * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
 263         */
 264        unsigned int            vma_exec : 1;
 265        unsigned int            vma_huge : 1;
 266
 267        unsigned int            batch_count;
 268
 269#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
 270        struct mmu_gather_batch *active;
 271        struct mmu_gather_batch local;
 272        struct page             *__pages[MMU_GATHER_BUNDLE];
 273
 274#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
 275        unsigned int page_size;
 276#endif
 277#endif
 278};
 279
 280void arch_tlb_gather_mmu(struct mmu_gather *tlb,
 281        struct mm_struct *mm, unsigned long start, unsigned long end);
 282void tlb_flush_mmu(struct mmu_gather *tlb);
 283void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 284                         unsigned long start, unsigned long end, bool force);
 285
 286static inline void __tlb_adjust_range(struct mmu_gather *tlb,
 287                                      unsigned long address,
 288                                      unsigned int range_size)
 289{
 290        tlb->start = min(tlb->start, address);
 291        tlb->end = max(tlb->end, address + range_size);
 292}
 293
 294static inline void __tlb_reset_range(struct mmu_gather *tlb)
 295{
 296        if (tlb->fullmm) {
 297                tlb->start = tlb->end = ~0;
 298        } else {
 299                tlb->start = TASK_SIZE;
 300                tlb->end = 0;
 301        }
 302        tlb->freed_tables = 0;
 303        tlb->cleared_ptes = 0;
 304        tlb->cleared_pmds = 0;
 305        tlb->cleared_puds = 0;
 306        tlb->cleared_p4ds = 0;
 307        /*
 308         * Do not reset mmu_gather::vma_* fields here, we do not
 309         * call into tlb_start_vma() again to set them if there is an
 310         * intermediate flush.
 311         */
 312}
 313
 314#ifdef CONFIG_MMU_GATHER_NO_RANGE
 315
 316#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
 317#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
 318#endif
 319
 320/*
 321 * When an architecture does not have efficient means of range flushing TLBs
 322 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
 323 * range small. We equally don't have to worry about page granularity or other
 324 * things.
 325 *
 326 * All we need to do is issue a full flush for any !0 range.
 327 */
 328static inline void tlb_flush(struct mmu_gather *tlb)
 329{
 330        if (tlb->end)
 331                flush_tlb_mm(tlb->mm);
 332}
 333
 334static inline void
 335tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
 336
 337#define tlb_end_vma tlb_end_vma
 338static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
 339
 340#else /* CONFIG_MMU_GATHER_NO_RANGE */
 341
 342#ifndef tlb_flush
 343
 344#if defined(tlb_start_vma) || defined(tlb_end_vma)
 345#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
 346#endif
 347
 348/*
 349 * When an architecture does not provide its own tlb_flush() implementation
 350 * but does have a reasonably efficient flush_vma_range() implementation
 351 * use that.
 352 */
 353static inline void tlb_flush(struct mmu_gather *tlb)
 354{
 355        if (tlb->fullmm || tlb->need_flush_all) {
 356                flush_tlb_mm(tlb->mm);
 357        } else if (tlb->end) {
 358                struct vm_area_struct vma = {
 359                        .vm_mm = tlb->mm,
 360                        .vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
 361                                    (tlb->vma_huge ? VM_HUGETLB : 0),
 362                };
 363
 364                flush_tlb_range(&vma, tlb->start, tlb->end);
 365        }
 366}
 367
 368static inline void
 369tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
 370{
 371        /*
 372         * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
 373         * mips-4k) flush only large pages.
 374         *
 375         * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
 376         * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
 377         * range.
 378         *
 379         * We rely on tlb_end_vma() to issue a flush, such that when we reset
 380         * these values the batch is empty.
 381         */
 382        tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB);
 383        tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
 384}
 385
 386#else
 387
 388static inline void
 389tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
 390
 391#endif
 392
 393#endif /* CONFIG_MMU_GATHER_NO_RANGE */
 394
 395static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 396{
 397        if (!tlb->end)
 398                return;
 399
 400        tlb_flush(tlb);
 401        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 402        __tlb_reset_range(tlb);
 403}
 404
 405static inline void tlb_remove_page_size(struct mmu_gather *tlb,
 406                                        struct page *page, int page_size)
 407{
 408        if (__tlb_remove_page_size(tlb, page, page_size))
 409                tlb_flush_mmu(tlb);
 410}
 411
 412static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 413{
 414        return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
 415}
 416
 417/* tlb_remove_page
 418 *      Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
 419 *      required.
 420 */
 421static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 422{
 423        return tlb_remove_page_size(tlb, page, PAGE_SIZE);
 424}
 425
 426static inline void tlb_change_page_size(struct mmu_gather *tlb,
 427                                                     unsigned int page_size)
 428{
 429#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
 430        if (tlb->page_size && tlb->page_size != page_size) {
 431                if (!tlb->fullmm)
 432                        tlb_flush_mmu(tlb);
 433        }
 434
 435        tlb->page_size = page_size;
 436#endif
 437}
 438
 439static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
 440{
 441        if (tlb->cleared_ptes)
 442                return PAGE_SHIFT;
 443        if (tlb->cleared_pmds)
 444                return PMD_SHIFT;
 445        if (tlb->cleared_puds)
 446                return PUD_SHIFT;
 447        if (tlb->cleared_p4ds)
 448                return P4D_SHIFT;
 449
 450        return PAGE_SHIFT;
 451}
 452
 453static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
 454{
 455        return 1UL << tlb_get_unmap_shift(tlb);
 456}
 457
 458/*
 459 * In the case of tlb vma handling, we can optimise these away in the
 460 * case where we're doing a full MM flush.  When we're doing a munmap,
 461 * the vmas are adjusted to only cover the region to be torn down.
 462 */
 463#ifndef tlb_start_vma
 464static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
 465{
 466        if (tlb->fullmm)
 467                return;
 468
 469        tlb_update_vma_flags(tlb, vma);
 470        flush_cache_range(vma, vma->vm_start, vma->vm_end);
 471}
 472#endif
 473
 474#ifndef tlb_end_vma
 475static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
 476{
 477        if (tlb->fullmm)
 478                return;
 479
 480        /*
 481         * Do a TLB flush and reset the range at VMA boundaries; this avoids
 482         * the ranges growing with the unused space between consecutive VMAs,
 483         * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
 484         * this.
 485         */
 486        tlb_flush_mmu_tlbonly(tlb);
 487}
 488#endif
 489
 490#ifndef __tlb_remove_tlb_entry
 491#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
 492#endif
 493
 494/**
 495 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
 496 *
 497 * Record the fact that pte's were really unmapped by updating the range,
 498 * so we can later optimise away the tlb invalidate.   This helps when
 499 * userspace is unmapping already-unmapped pages, which happens quite a lot.
 500 */
 501#define tlb_remove_tlb_entry(tlb, ptep, address)                \
 502        do {                                                    \
 503                __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
 504                tlb->cleared_ptes = 1;                          \
 505                __tlb_remove_tlb_entry(tlb, ptep, address);     \
 506        } while (0)
 507
 508#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)        \
 509        do {                                                    \
 510                unsigned long _sz = huge_page_size(h);          \
 511                __tlb_adjust_range(tlb, address, _sz);          \
 512                if (_sz == PMD_SIZE)                            \
 513                        tlb->cleared_pmds = 1;                  \
 514                else if (_sz == PUD_SIZE)                       \
 515                        tlb->cleared_puds = 1;                  \
 516                __tlb_remove_tlb_entry(tlb, ptep, address);     \
 517        } while (0)
 518
 519/**
 520 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
 521 * This is a nop so far, because only x86 needs it.
 522 */
 523#ifndef __tlb_remove_pmd_tlb_entry
 524#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
 525#endif
 526
 527#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)                    \
 528        do {                                                            \
 529                __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE);       \
 530                tlb->cleared_pmds = 1;                                  \
 531                __tlb_remove_pmd_tlb_entry(tlb, pmdp, address);         \
 532        } while (0)
 533
 534/**
 535 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
 536 * invalidation. This is a nop so far, because only x86 needs it.
 537 */
 538#ifndef __tlb_remove_pud_tlb_entry
 539#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
 540#endif
 541
 542#define tlb_remove_pud_tlb_entry(tlb, pudp, address)                    \
 543        do {                                                            \
 544                __tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE);       \
 545                tlb->cleared_puds = 1;                                  \
 546                __tlb_remove_pud_tlb_entry(tlb, pudp, address);         \
 547        } while (0)
 548
 549/*
 550 * For things like page tables caches (ie caching addresses "inside" the
 551 * page tables, like x86 does), for legacy reasons, flushing an
 552 * individual page had better flush the page table caches behind it. This
 553 * is definitely how x86 works, for example. And if you have an
 554 * architected non-legacy page table cache (which I'm not aware of
 555 * anybody actually doing), you're going to have some architecturally
 556 * explicit flushing for that, likely *separate* from a regular TLB entry
 557 * flush, and thus you'd need more than just some range expansion..
 558 *
 559 * So if we ever find an architecture
 560 * that would want something that odd, I think it is up to that
 561 * architecture to do its own odd thing, not cause pain for others
 562 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
 563 *
 564 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
 565 */
 566
 567#ifndef pte_free_tlb
 568#define pte_free_tlb(tlb, ptep, address)                        \
 569        do {                                                    \
 570                __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
 571                tlb->freed_tables = 1;                          \
 572                tlb->cleared_pmds = 1;                          \
 573                __pte_free_tlb(tlb, ptep, address);             \
 574        } while (0)
 575#endif
 576
 577#ifndef pmd_free_tlb
 578#define pmd_free_tlb(tlb, pmdp, address)                        \
 579        do {                                                    \
 580                __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
 581                tlb->freed_tables = 1;                          \
 582                tlb->cleared_puds = 1;                          \
 583                __pmd_free_tlb(tlb, pmdp, address);             \
 584        } while (0)
 585#endif
 586
 587#ifndef __ARCH_HAS_4LEVEL_HACK
 588#ifndef pud_free_tlb
 589#define pud_free_tlb(tlb, pudp, address)                        \
 590        do {                                                    \
 591                __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
 592                tlb->freed_tables = 1;                          \
 593                tlb->cleared_p4ds = 1;                          \
 594                __pud_free_tlb(tlb, pudp, address);             \
 595        } while (0)
 596#endif
 597#endif
 598
 599#ifndef __ARCH_HAS_5LEVEL_HACK
 600#ifndef p4d_free_tlb
 601#define p4d_free_tlb(tlb, pudp, address)                        \
 602        do {                                                    \
 603                __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
 604                tlb->freed_tables = 1;                          \
 605                __p4d_free_tlb(tlb, pudp, address);             \
 606        } while (0)
 607#endif
 608#endif
 609
 610#endif /* CONFIG_MMU */
 611
 612#endif /* _ASM_GENERIC__TLB_H */
 613