linux/include/linux/bpf_verifier.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#ifndef _LINUX_BPF_VERIFIER_H
   5#define _LINUX_BPF_VERIFIER_H 1
   6
   7#include <linux/bpf.h> /* for enum bpf_reg_type */
   8#include <linux/filter.h> /* for MAX_BPF_STACK */
   9#include <linux/tnum.h>
  10
  11/* Maximum variable offset umax_value permitted when resolving memory accesses.
  12 * In practice this is far bigger than any realistic pointer offset; this limit
  13 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  14 */
  15#define BPF_MAX_VAR_OFF (1 << 29)
  16/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  17 * that converting umax_value to int cannot overflow.
  18 */
  19#define BPF_MAX_VAR_SIZ (1 << 29)
  20
  21/* Liveness marks, used for registers and spilled-regs (in stack slots).
  22 * Read marks propagate upwards until they find a write mark; they record that
  23 * "one of this state's descendants read this reg" (and therefore the reg is
  24 * relevant for states_equal() checks).
  25 * Write marks collect downwards and do not propagate; they record that "the
  26 * straight-line code that reached this state (from its parent) wrote this reg"
  27 * (and therefore that reads propagated from this state or its descendants
  28 * should not propagate to its parent).
  29 * A state with a write mark can receive read marks; it just won't propagate
  30 * them to its parent, since the write mark is a property, not of the state,
  31 * but of the link between it and its parent.  See mark_reg_read() and
  32 * mark_stack_slot_read() in kernel/bpf/verifier.c.
  33 */
  34enum bpf_reg_liveness {
  35        REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
  36        REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
  37        REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
  38        REG_LIVE_DONE = 4, /* liveness won't be updating this register anymore */
  39};
  40
  41struct bpf_reg_state {
  42        /* Ordering of fields matters.  See states_equal() */
  43        enum bpf_reg_type type;
  44        union {
  45                /* valid when type == PTR_TO_PACKET */
  46                u16 range;
  47
  48                /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  49                 *   PTR_TO_MAP_VALUE_OR_NULL
  50                 */
  51                struct bpf_map *map_ptr;
  52
  53                /* Max size from any of the above. */
  54                unsigned long raw;
  55        };
  56        /* Fixed part of pointer offset, pointer types only */
  57        s32 off;
  58        /* For PTR_TO_PACKET, used to find other pointers with the same variable
  59         * offset, so they can share range knowledge.
  60         * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
  61         * came from, when one is tested for != NULL.
  62         * For PTR_TO_SOCKET this is used to share which pointers retain the
  63         * same reference to the socket, to determine proper reference freeing.
  64         */
  65        u32 id;
  66        /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
  67         * from a pointer-cast helper, bpf_sk_fullsock() and
  68         * bpf_tcp_sock().
  69         *
  70         * Consider the following where "sk" is a reference counted
  71         * pointer returned from "sk = bpf_sk_lookup_tcp();":
  72         *
  73         * 1: sk = bpf_sk_lookup_tcp();
  74         * 2: if (!sk) { return 0; }
  75         * 3: fullsock = bpf_sk_fullsock(sk);
  76         * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
  77         * 5: tp = bpf_tcp_sock(fullsock);
  78         * 6: if (!tp) { bpf_sk_release(sk); return 0; }
  79         * 7: bpf_sk_release(sk);
  80         * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
  81         *
  82         * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
  83         * "tp" ptr should be invalidated also.  In order to do that,
  84         * the reg holding "fullsock" and "sk" need to remember
  85         * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
  86         * such that the verifier can reset all regs which have
  87         * ref_obj_id matching the sk_reg->id.
  88         *
  89         * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
  90         * sk_reg->id will stay as NULL-marking purpose only.
  91         * After NULL-marking is done, sk_reg->id can be reset to 0.
  92         *
  93         * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
  94         * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
  95         *
  96         * After "tp = bpf_tcp_sock(fullsock);" at line 5,
  97         * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
  98         * which is the same as sk_reg->ref_obj_id.
  99         *
 100         * From the verifier perspective, if sk, fullsock and tp
 101         * are not NULL, they are the same ptr with different
 102         * reg->type.  In particular, bpf_sk_release(tp) is also
 103         * allowed and has the same effect as bpf_sk_release(sk).
 104         */
 105        u32 ref_obj_id;
 106        /* For scalar types (SCALAR_VALUE), this represents our knowledge of
 107         * the actual value.
 108         * For pointer types, this represents the variable part of the offset
 109         * from the pointed-to object, and is shared with all bpf_reg_states
 110         * with the same id as us.
 111         */
 112        struct tnum var_off;
 113        /* Used to determine if any memory access using this register will
 114         * result in a bad access.
 115         * These refer to the same value as var_off, not necessarily the actual
 116         * contents of the register.
 117         */
 118        s64 smin_value; /* minimum possible (s64)value */
 119        s64 smax_value; /* maximum possible (s64)value */
 120        u64 umin_value; /* minimum possible (u64)value */
 121        u64 umax_value; /* maximum possible (u64)value */
 122        /* parentage chain for liveness checking */
 123        struct bpf_reg_state *parent;
 124        /* Inside the callee two registers can be both PTR_TO_STACK like
 125         * R1=fp-8 and R2=fp-8, but one of them points to this function stack
 126         * while another to the caller's stack. To differentiate them 'frameno'
 127         * is used which is an index in bpf_verifier_state->frame[] array
 128         * pointing to bpf_func_state.
 129         */
 130        u32 frameno;
 131        enum bpf_reg_liveness live;
 132};
 133
 134enum bpf_stack_slot_type {
 135        STACK_INVALID,    /* nothing was stored in this stack slot */
 136        STACK_SPILL,      /* register spilled into stack */
 137        STACK_MISC,       /* BPF program wrote some data into this slot */
 138        STACK_ZERO,       /* BPF program wrote constant zero */
 139};
 140
 141#define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 142
 143struct bpf_stack_state {
 144        struct bpf_reg_state spilled_ptr;
 145        u8 slot_type[BPF_REG_SIZE];
 146};
 147
 148struct bpf_reference_state {
 149        /* Track each reference created with a unique id, even if the same
 150         * instruction creates the reference multiple times (eg, via CALL).
 151         */
 152        int id;
 153        /* Instruction where the allocation of this reference occurred. This
 154         * is used purely to inform the user of a reference leak.
 155         */
 156        int insn_idx;
 157};
 158
 159/* state of the program:
 160 * type of all registers and stack info
 161 */
 162struct bpf_func_state {
 163        struct bpf_reg_state regs[MAX_BPF_REG];
 164        /* index of call instruction that called into this func */
 165        int callsite;
 166        /* stack frame number of this function state from pov of
 167         * enclosing bpf_verifier_state.
 168         * 0 = main function, 1 = first callee.
 169         */
 170        u32 frameno;
 171        /* subprog number == index within subprog_stack_depth
 172         * zero == main subprog
 173         */
 174        u32 subprogno;
 175
 176        /* The following fields should be last. See copy_func_state() */
 177        int acquired_refs;
 178        struct bpf_reference_state *refs;
 179        int allocated_stack;
 180        struct bpf_stack_state *stack;
 181};
 182
 183#define MAX_CALL_FRAMES 8
 184struct bpf_verifier_state {
 185        /* call stack tracking */
 186        struct bpf_func_state *frame[MAX_CALL_FRAMES];
 187        u32 curframe;
 188        u32 active_spin_lock;
 189        bool speculative;
 190};
 191
 192#define bpf_get_spilled_reg(slot, frame)                                \
 193        (((slot < frame->allocated_stack / BPF_REG_SIZE) &&             \
 194          (frame->stack[slot].slot_type[0] == STACK_SPILL))             \
 195         ? &frame->stack[slot].spilled_ptr : NULL)
 196
 197/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
 198#define bpf_for_each_spilled_reg(iter, frame, reg)                      \
 199        for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);          \
 200             iter < frame->allocated_stack / BPF_REG_SIZE;              \
 201             iter++, reg = bpf_get_spilled_reg(iter, frame))
 202
 203/* linked list of verifier states used to prune search */
 204struct bpf_verifier_state_list {
 205        struct bpf_verifier_state state;
 206        struct bpf_verifier_state_list *next;
 207        int miss_cnt, hit_cnt;
 208};
 209
 210/* Possible states for alu_state member. */
 211#define BPF_ALU_SANITIZE_SRC            1U
 212#define BPF_ALU_SANITIZE_DST            2U
 213#define BPF_ALU_NEG_VALUE               (1U << 2)
 214#define BPF_ALU_NON_POINTER             (1U << 3)
 215#define BPF_ALU_SANITIZE                (BPF_ALU_SANITIZE_SRC | \
 216                                         BPF_ALU_SANITIZE_DST)
 217
 218struct bpf_insn_aux_data {
 219        union {
 220                enum bpf_reg_type ptr_type;     /* pointer type for load/store insns */
 221                unsigned long map_state;        /* pointer/poison value for maps */
 222                s32 call_imm;                   /* saved imm field of call insn */
 223                u32 alu_limit;                  /* limit for add/sub register with pointer */
 224                struct {
 225                        u32 map_index;          /* index into used_maps[] */
 226                        u32 map_off;            /* offset from value base address */
 227                };
 228        };
 229        int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
 230        int sanitize_stack_off; /* stack slot to be cleared */
 231        bool seen; /* this insn was processed by the verifier */
 232        u8 alu_state; /* used in combination with alu_limit */
 233        unsigned int orig_idx; /* original instruction index */
 234};
 235
 236#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 237
 238#define BPF_VERIFIER_TMP_LOG_SIZE       1024
 239
 240struct bpf_verifier_log {
 241        u32 level;
 242        char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
 243        char __user *ubuf;
 244        u32 len_used;
 245        u32 len_total;
 246};
 247
 248static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
 249{
 250        return log->len_used >= log->len_total - 1;
 251}
 252
 253#define BPF_LOG_LEVEL1  1
 254#define BPF_LOG_LEVEL2  2
 255#define BPF_LOG_STATS   4
 256#define BPF_LOG_LEVEL   (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
 257#define BPF_LOG_MASK    (BPF_LOG_LEVEL | BPF_LOG_STATS)
 258
 259static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
 260{
 261        return log->level && log->ubuf && !bpf_verifier_log_full(log);
 262}
 263
 264#define BPF_MAX_SUBPROGS 256
 265
 266struct bpf_subprog_info {
 267        u32 start; /* insn idx of function entry point */
 268        u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
 269        u16 stack_depth; /* max. stack depth used by this function */
 270};
 271
 272/* single container for all structs
 273 * one verifier_env per bpf_check() call
 274 */
 275struct bpf_verifier_env {
 276        u32 insn_idx;
 277        u32 prev_insn_idx;
 278        struct bpf_prog *prog;          /* eBPF program being verified */
 279        const struct bpf_verifier_ops *ops;
 280        struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
 281        int stack_size;                 /* number of states to be processed */
 282        bool strict_alignment;          /* perform strict pointer alignment checks */
 283        struct bpf_verifier_state *cur_state; /* current verifier state */
 284        struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
 285        struct bpf_verifier_state_list *free_list;
 286        struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 287        u32 used_map_cnt;               /* number of used maps */
 288        u32 id_gen;                     /* used to generate unique reg IDs */
 289        bool allow_ptr_leaks;
 290        bool seen_direct_write;
 291        struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
 292        const struct bpf_line_info *prev_linfo;
 293        struct bpf_verifier_log log;
 294        struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
 295        struct {
 296                int *insn_state;
 297                int *insn_stack;
 298                int cur_stack;
 299        } cfg;
 300        u32 subprog_cnt;
 301        /* number of instructions analyzed by the verifier */
 302        u32 insn_processed;
 303        /* total verification time */
 304        u64 verification_time;
 305        /* maximum number of verifier states kept in 'branching' instructions */
 306        u32 max_states_per_insn;
 307        /* total number of allocated verifier states */
 308        u32 total_states;
 309        /* some states are freed during program analysis.
 310         * this is peak number of states. this number dominates kernel
 311         * memory consumption during verification
 312         */
 313        u32 peak_states;
 314        /* longest register parentage chain walked for liveness marking */
 315        u32 longest_mark_read_walk;
 316};
 317
 318__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
 319                                      const char *fmt, va_list args);
 320__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 321                                           const char *fmt, ...);
 322
 323static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
 324{
 325        struct bpf_verifier_state *cur = env->cur_state;
 326
 327        return cur->frame[cur->curframe];
 328}
 329
 330static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
 331{
 332        return cur_func(env)->regs;
 333}
 334
 335int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
 336int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
 337                                 int insn_idx, int prev_insn_idx);
 338int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
 339void
 340bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
 341                              struct bpf_insn *insn);
 342void
 343bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
 344
 345#endif /* _LINUX_BPF_VERIFIER_H */
 346