linux/include/linux/crypto.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Scatterlist Cryptographic API.
   4 *
   5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
   6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
   7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
   8 *
   9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
  10 * and Nettle, by Niels Möller.
  11 */
  12#ifndef _LINUX_CRYPTO_H
  13#define _LINUX_CRYPTO_H
  14
  15#include <linux/atomic.h>
  16#include <linux/kernel.h>
  17#include <linux/list.h>
  18#include <linux/bug.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/uaccess.h>
  22#include <linux/completion.h>
  23
  24/*
  25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
  26 * arbitrary modules to be loaded. Loading from userspace may still need the
  27 * unprefixed names, so retains those aliases as well.
  28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
  29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
  30 * expands twice on the same line. Instead, use a separate base name for the
  31 * alias.
  32 */
  33#define MODULE_ALIAS_CRYPTO(name)       \
  34                __MODULE_INFO(alias, alias_userspace, name);    \
  35                __MODULE_INFO(alias, alias_crypto, "crypto-" name)
  36
  37/*
  38 * Algorithm masks and types.
  39 */
  40#define CRYPTO_ALG_TYPE_MASK            0x0000000f
  41#define CRYPTO_ALG_TYPE_CIPHER          0x00000001
  42#define CRYPTO_ALG_TYPE_COMPRESS        0x00000002
  43#define CRYPTO_ALG_TYPE_AEAD            0x00000003
  44#define CRYPTO_ALG_TYPE_BLKCIPHER       0x00000004
  45#define CRYPTO_ALG_TYPE_ABLKCIPHER      0x00000005
  46#define CRYPTO_ALG_TYPE_SKCIPHER        0x00000005
  47#define CRYPTO_ALG_TYPE_KPP             0x00000008
  48#define CRYPTO_ALG_TYPE_ACOMPRESS       0x0000000a
  49#define CRYPTO_ALG_TYPE_SCOMPRESS       0x0000000b
  50#define CRYPTO_ALG_TYPE_RNG             0x0000000c
  51#define CRYPTO_ALG_TYPE_AKCIPHER        0x0000000d
  52#define CRYPTO_ALG_TYPE_DIGEST          0x0000000e
  53#define CRYPTO_ALG_TYPE_HASH            0x0000000e
  54#define CRYPTO_ALG_TYPE_SHASH           0x0000000e
  55#define CRYPTO_ALG_TYPE_AHASH           0x0000000f
  56
  57#define CRYPTO_ALG_TYPE_HASH_MASK       0x0000000e
  58#define CRYPTO_ALG_TYPE_AHASH_MASK      0x0000000e
  59#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK  0x0000000c
  60#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK  0x0000000e
  61
  62#define CRYPTO_ALG_LARVAL               0x00000010
  63#define CRYPTO_ALG_DEAD                 0x00000020
  64#define CRYPTO_ALG_DYING                0x00000040
  65#define CRYPTO_ALG_ASYNC                0x00000080
  66
  67/*
  68 * Set this bit if and only if the algorithm requires another algorithm of
  69 * the same type to handle corner cases.
  70 */
  71#define CRYPTO_ALG_NEED_FALLBACK        0x00000100
  72
  73/*
  74 * Set if the algorithm has passed automated run-time testing.  Note that
  75 * if there is no run-time testing for a given algorithm it is considered
  76 * to have passed.
  77 */
  78
  79#define CRYPTO_ALG_TESTED               0x00000400
  80
  81/*
  82 * Set if the algorithm is an instance that is built from templates.
  83 */
  84#define CRYPTO_ALG_INSTANCE             0x00000800
  85
  86/* Set this bit if the algorithm provided is hardware accelerated but
  87 * not available to userspace via instruction set or so.
  88 */
  89#define CRYPTO_ALG_KERN_DRIVER_ONLY     0x00001000
  90
  91/*
  92 * Mark a cipher as a service implementation only usable by another
  93 * cipher and never by a normal user of the kernel crypto API
  94 */
  95#define CRYPTO_ALG_INTERNAL             0x00002000
  96
  97/*
  98 * Set if the algorithm has a ->setkey() method but can be used without
  99 * calling it first, i.e. there is a default key.
 100 */
 101#define CRYPTO_ALG_OPTIONAL_KEY         0x00004000
 102
 103/*
 104 * Don't trigger module loading
 105 */
 106#define CRYPTO_NOLOAD                   0x00008000
 107
 108/*
 109 * Transform masks and values (for crt_flags).
 110 */
 111#define CRYPTO_TFM_NEED_KEY             0x00000001
 112
 113#define CRYPTO_TFM_REQ_MASK             0x000fff00
 114#define CRYPTO_TFM_RES_MASK             0xfff00000
 115
 116#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
 117#define CRYPTO_TFM_REQ_MAY_SLEEP        0x00000200
 118#define CRYPTO_TFM_REQ_MAY_BACKLOG      0x00000400
 119#define CRYPTO_TFM_RES_WEAK_KEY         0x00100000
 120#define CRYPTO_TFM_RES_BAD_KEY_LEN      0x00200000
 121#define CRYPTO_TFM_RES_BAD_KEY_SCHED    0x00400000
 122#define CRYPTO_TFM_RES_BAD_BLOCK_LEN    0x00800000
 123#define CRYPTO_TFM_RES_BAD_FLAGS        0x01000000
 124
 125/*
 126 * Miscellaneous stuff.
 127 */
 128#define CRYPTO_MAX_ALG_NAME             128
 129
 130/*
 131 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
 132 * declaration) is used to ensure that the crypto_tfm context structure is
 133 * aligned correctly for the given architecture so that there are no alignment
 134 * faults for C data types.  In particular, this is required on platforms such
 135 * as arm where pointers are 32-bit aligned but there are data types such as
 136 * u64 which require 64-bit alignment.
 137 */
 138#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
 139
 140#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
 141
 142struct scatterlist;
 143struct crypto_ablkcipher;
 144struct crypto_async_request;
 145struct crypto_blkcipher;
 146struct crypto_tfm;
 147struct crypto_type;
 148
 149typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
 150
 151/**
 152 * DOC: Block Cipher Context Data Structures
 153 *
 154 * These data structures define the operating context for each block cipher
 155 * type.
 156 */
 157
 158struct crypto_async_request {
 159        struct list_head list;
 160        crypto_completion_t complete;
 161        void *data;
 162        struct crypto_tfm *tfm;
 163
 164        u32 flags;
 165};
 166
 167struct ablkcipher_request {
 168        struct crypto_async_request base;
 169
 170        unsigned int nbytes;
 171
 172        void *info;
 173
 174        struct scatterlist *src;
 175        struct scatterlist *dst;
 176
 177        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 178};
 179
 180struct blkcipher_desc {
 181        struct crypto_blkcipher *tfm;
 182        void *info;
 183        u32 flags;
 184};
 185
 186/**
 187 * DOC: Block Cipher Algorithm Definitions
 188 *
 189 * These data structures define modular crypto algorithm implementations,
 190 * managed via crypto_register_alg() and crypto_unregister_alg().
 191 */
 192
 193/**
 194 * struct ablkcipher_alg - asynchronous block cipher definition
 195 * @min_keysize: Minimum key size supported by the transformation. This is the
 196 *               smallest key length supported by this transformation algorithm.
 197 *               This must be set to one of the pre-defined values as this is
 198 *               not hardware specific. Possible values for this field can be
 199 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
 200 * @max_keysize: Maximum key size supported by the transformation. This is the
 201 *               largest key length supported by this transformation algorithm.
 202 *               This must be set to one of the pre-defined values as this is
 203 *               not hardware specific. Possible values for this field can be
 204 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
 205 * @setkey: Set key for the transformation. This function is used to either
 206 *          program a supplied key into the hardware or store the key in the
 207 *          transformation context for programming it later. Note that this
 208 *          function does modify the transformation context. This function can
 209 *          be called multiple times during the existence of the transformation
 210 *          object, so one must make sure the key is properly reprogrammed into
 211 *          the hardware. This function is also responsible for checking the key
 212 *          length for validity. In case a software fallback was put in place in
 213 *          the @cra_init call, this function might need to use the fallback if
 214 *          the algorithm doesn't support all of the key sizes.
 215 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
 216 *           the supplied scatterlist containing the blocks of data. The crypto
 217 *           API consumer is responsible for aligning the entries of the
 218 *           scatterlist properly and making sure the chunks are correctly
 219 *           sized. In case a software fallback was put in place in the
 220 *           @cra_init call, this function might need to use the fallback if
 221 *           the algorithm doesn't support all of the key sizes. In case the
 222 *           key was stored in transformation context, the key might need to be
 223 *           re-programmed into the hardware in this function. This function
 224 *           shall not modify the transformation context, as this function may
 225 *           be called in parallel with the same transformation object.
 226 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 227 *           and the conditions are exactly the same.
 228 * @ivsize: IV size applicable for transformation. The consumer must provide an
 229 *          IV of exactly that size to perform the encrypt or decrypt operation.
 230 *
 231 * All fields except @ivsize are mandatory and must be filled.
 232 */
 233struct ablkcipher_alg {
 234        int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 235                      unsigned int keylen);
 236        int (*encrypt)(struct ablkcipher_request *req);
 237        int (*decrypt)(struct ablkcipher_request *req);
 238
 239        unsigned int min_keysize;
 240        unsigned int max_keysize;
 241        unsigned int ivsize;
 242};
 243
 244/**
 245 * struct blkcipher_alg - synchronous block cipher definition
 246 * @min_keysize: see struct ablkcipher_alg
 247 * @max_keysize: see struct ablkcipher_alg
 248 * @setkey: see struct ablkcipher_alg
 249 * @encrypt: see struct ablkcipher_alg
 250 * @decrypt: see struct ablkcipher_alg
 251 * @ivsize: see struct ablkcipher_alg
 252 *
 253 * All fields except @ivsize are mandatory and must be filled.
 254 */
 255struct blkcipher_alg {
 256        int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 257                      unsigned int keylen);
 258        int (*encrypt)(struct blkcipher_desc *desc,
 259                       struct scatterlist *dst, struct scatterlist *src,
 260                       unsigned int nbytes);
 261        int (*decrypt)(struct blkcipher_desc *desc,
 262                       struct scatterlist *dst, struct scatterlist *src,
 263                       unsigned int nbytes);
 264
 265        unsigned int min_keysize;
 266        unsigned int max_keysize;
 267        unsigned int ivsize;
 268};
 269
 270/**
 271 * struct cipher_alg - single-block symmetric ciphers definition
 272 * @cia_min_keysize: Minimum key size supported by the transformation. This is
 273 *                   the smallest key length supported by this transformation
 274 *                   algorithm. This must be set to one of the pre-defined
 275 *                   values as this is not hardware specific. Possible values
 276 *                   for this field can be found via git grep "_MIN_KEY_SIZE"
 277 *                   include/crypto/
 278 * @cia_max_keysize: Maximum key size supported by the transformation. This is
 279 *                  the largest key length supported by this transformation
 280 *                  algorithm. This must be set to one of the pre-defined values
 281 *                  as this is not hardware specific. Possible values for this
 282 *                  field can be found via git grep "_MAX_KEY_SIZE"
 283 *                  include/crypto/
 284 * @cia_setkey: Set key for the transformation. This function is used to either
 285 *              program a supplied key into the hardware or store the key in the
 286 *              transformation context for programming it later. Note that this
 287 *              function does modify the transformation context. This function
 288 *              can be called multiple times during the existence of the
 289 *              transformation object, so one must make sure the key is properly
 290 *              reprogrammed into the hardware. This function is also
 291 *              responsible for checking the key length for validity.
 292 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
 293 *               single block of data, which must be @cra_blocksize big. This
 294 *               always operates on a full @cra_blocksize and it is not possible
 295 *               to encrypt a block of smaller size. The supplied buffers must
 296 *               therefore also be at least of @cra_blocksize size. Both the
 297 *               input and output buffers are always aligned to @cra_alignmask.
 298 *               In case either of the input or output buffer supplied by user
 299 *               of the crypto API is not aligned to @cra_alignmask, the crypto
 300 *               API will re-align the buffers. The re-alignment means that a
 301 *               new buffer will be allocated, the data will be copied into the
 302 *               new buffer, then the processing will happen on the new buffer,
 303 *               then the data will be copied back into the original buffer and
 304 *               finally the new buffer will be freed. In case a software
 305 *               fallback was put in place in the @cra_init call, this function
 306 *               might need to use the fallback if the algorithm doesn't support
 307 *               all of the key sizes. In case the key was stored in
 308 *               transformation context, the key might need to be re-programmed
 309 *               into the hardware in this function. This function shall not
 310 *               modify the transformation context, as this function may be
 311 *               called in parallel with the same transformation object.
 312 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
 313 *               @cia_encrypt, and the conditions are exactly the same.
 314 *
 315 * All fields are mandatory and must be filled.
 316 */
 317struct cipher_alg {
 318        unsigned int cia_min_keysize;
 319        unsigned int cia_max_keysize;
 320        int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
 321                          unsigned int keylen);
 322        void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 323        void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 324};
 325
 326struct compress_alg {
 327        int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
 328                            unsigned int slen, u8 *dst, unsigned int *dlen);
 329        int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
 330                              unsigned int slen, u8 *dst, unsigned int *dlen);
 331};
 332
 333#ifdef CONFIG_CRYPTO_STATS
 334/*
 335 * struct crypto_istat_aead - statistics for AEAD algorithm
 336 * @encrypt_cnt:        number of encrypt requests
 337 * @encrypt_tlen:       total data size handled by encrypt requests
 338 * @decrypt_cnt:        number of decrypt requests
 339 * @decrypt_tlen:       total data size handled by decrypt requests
 340 * @err_cnt:            number of error for AEAD requests
 341 */
 342struct crypto_istat_aead {
 343        atomic64_t encrypt_cnt;
 344        atomic64_t encrypt_tlen;
 345        atomic64_t decrypt_cnt;
 346        atomic64_t decrypt_tlen;
 347        atomic64_t err_cnt;
 348};
 349
 350/*
 351 * struct crypto_istat_akcipher - statistics for akcipher algorithm
 352 * @encrypt_cnt:        number of encrypt requests
 353 * @encrypt_tlen:       total data size handled by encrypt requests
 354 * @decrypt_cnt:        number of decrypt requests
 355 * @decrypt_tlen:       total data size handled by decrypt requests
 356 * @verify_cnt:         number of verify operation
 357 * @sign_cnt:           number of sign requests
 358 * @err_cnt:            number of error for akcipher requests
 359 */
 360struct crypto_istat_akcipher {
 361        atomic64_t encrypt_cnt;
 362        atomic64_t encrypt_tlen;
 363        atomic64_t decrypt_cnt;
 364        atomic64_t decrypt_tlen;
 365        atomic64_t verify_cnt;
 366        atomic64_t sign_cnt;
 367        atomic64_t err_cnt;
 368};
 369
 370/*
 371 * struct crypto_istat_cipher - statistics for cipher algorithm
 372 * @encrypt_cnt:        number of encrypt requests
 373 * @encrypt_tlen:       total data size handled by encrypt requests
 374 * @decrypt_cnt:        number of decrypt requests
 375 * @decrypt_tlen:       total data size handled by decrypt requests
 376 * @err_cnt:            number of error for cipher requests
 377 */
 378struct crypto_istat_cipher {
 379        atomic64_t encrypt_cnt;
 380        atomic64_t encrypt_tlen;
 381        atomic64_t decrypt_cnt;
 382        atomic64_t decrypt_tlen;
 383        atomic64_t err_cnt;
 384};
 385
 386/*
 387 * struct crypto_istat_compress - statistics for compress algorithm
 388 * @compress_cnt:       number of compress requests
 389 * @compress_tlen:      total data size handled by compress requests
 390 * @decompress_cnt:     number of decompress requests
 391 * @decompress_tlen:    total data size handled by decompress requests
 392 * @err_cnt:            number of error for compress requests
 393 */
 394struct crypto_istat_compress {
 395        atomic64_t compress_cnt;
 396        atomic64_t compress_tlen;
 397        atomic64_t decompress_cnt;
 398        atomic64_t decompress_tlen;
 399        atomic64_t err_cnt;
 400};
 401
 402/*
 403 * struct crypto_istat_hash - statistics for has algorithm
 404 * @hash_cnt:           number of hash requests
 405 * @hash_tlen:          total data size hashed
 406 * @err_cnt:            number of error for hash requests
 407 */
 408struct crypto_istat_hash {
 409        atomic64_t hash_cnt;
 410        atomic64_t hash_tlen;
 411        atomic64_t err_cnt;
 412};
 413
 414/*
 415 * struct crypto_istat_kpp - statistics for KPP algorithm
 416 * @setsecret_cnt:              number of setsecrey operation
 417 * @generate_public_key_cnt:    number of generate_public_key operation
 418 * @compute_shared_secret_cnt:  number of compute_shared_secret operation
 419 * @err_cnt:                    number of error for KPP requests
 420 */
 421struct crypto_istat_kpp {
 422        atomic64_t setsecret_cnt;
 423        atomic64_t generate_public_key_cnt;
 424        atomic64_t compute_shared_secret_cnt;
 425        atomic64_t err_cnt;
 426};
 427
 428/*
 429 * struct crypto_istat_rng: statistics for RNG algorithm
 430 * @generate_cnt:       number of RNG generate requests
 431 * @generate_tlen:      total data size of generated data by the RNG
 432 * @seed_cnt:           number of times the RNG was seeded
 433 * @err_cnt:            number of error for RNG requests
 434 */
 435struct crypto_istat_rng {
 436        atomic64_t generate_cnt;
 437        atomic64_t generate_tlen;
 438        atomic64_t seed_cnt;
 439        atomic64_t err_cnt;
 440};
 441#endif /* CONFIG_CRYPTO_STATS */
 442
 443#define cra_ablkcipher  cra_u.ablkcipher
 444#define cra_blkcipher   cra_u.blkcipher
 445#define cra_cipher      cra_u.cipher
 446#define cra_compress    cra_u.compress
 447
 448/**
 449 * struct crypto_alg - definition of a cryptograpic cipher algorithm
 450 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
 451 *             CRYPTO_ALG_* flags for the flags which go in here. Those are
 452 *             used for fine-tuning the description of the transformation
 453 *             algorithm.
 454 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
 455 *                 of the smallest possible unit which can be transformed with
 456 *                 this algorithm. The users must respect this value.
 457 *                 In case of HASH transformation, it is possible for a smaller
 458 *                 block than @cra_blocksize to be passed to the crypto API for
 459 *                 transformation, in case of any other transformation type, an
 460 *                 error will be returned upon any attempt to transform smaller
 461 *                 than @cra_blocksize chunks.
 462 * @cra_ctxsize: Size of the operational context of the transformation. This
 463 *               value informs the kernel crypto API about the memory size
 464 *               needed to be allocated for the transformation context.
 465 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
 466 *                 buffer containing the input data for the algorithm must be
 467 *                 aligned to this alignment mask. The data buffer for the
 468 *                 output data must be aligned to this alignment mask. Note that
 469 *                 the Crypto API will do the re-alignment in software, but
 470 *                 only under special conditions and there is a performance hit.
 471 *                 The re-alignment happens at these occasions for different
 472 *                 @cra_u types: cipher -- For both input data and output data
 473 *                 buffer; ahash -- For output hash destination buf; shash --
 474 *                 For output hash destination buf.
 475 *                 This is needed on hardware which is flawed by design and
 476 *                 cannot pick data from arbitrary addresses.
 477 * @cra_priority: Priority of this transformation implementation. In case
 478 *                multiple transformations with same @cra_name are available to
 479 *                the Crypto API, the kernel will use the one with highest
 480 *                @cra_priority.
 481 * @cra_name: Generic name (usable by multiple implementations) of the
 482 *            transformation algorithm. This is the name of the transformation
 483 *            itself. This field is used by the kernel when looking up the
 484 *            providers of particular transformation.
 485 * @cra_driver_name: Unique name of the transformation provider. This is the
 486 *                   name of the provider of the transformation. This can be any
 487 *                   arbitrary value, but in the usual case, this contains the
 488 *                   name of the chip or provider and the name of the
 489 *                   transformation algorithm.
 490 * @cra_type: Type of the cryptographic transformation. This is a pointer to
 491 *            struct crypto_type, which implements callbacks common for all
 492 *            transformation types. There are multiple options:
 493 *            &crypto_blkcipher_type, &crypto_ablkcipher_type,
 494 *            &crypto_ahash_type, &crypto_rng_type.
 495 *            This field might be empty. In that case, there are no common
 496 *            callbacks. This is the case for: cipher, compress, shash.
 497 * @cra_u: Callbacks implementing the transformation. This is a union of
 498 *         multiple structures. Depending on the type of transformation selected
 499 *         by @cra_type and @cra_flags above, the associated structure must be
 500 *         filled with callbacks. This field might be empty. This is the case
 501 *         for ahash, shash.
 502 * @cra_init: Initialize the cryptographic transformation object. This function
 503 *            is used to initialize the cryptographic transformation object.
 504 *            This function is called only once at the instantiation time, right
 505 *            after the transformation context was allocated. In case the
 506 *            cryptographic hardware has some special requirements which need to
 507 *            be handled by software, this function shall check for the precise
 508 *            requirement of the transformation and put any software fallbacks
 509 *            in place.
 510 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
 511 *            counterpart to @cra_init, used to remove various changes set in
 512 *            @cra_init.
 513 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
 514 *                    definition. See @struct @ablkcipher_alg.
 515 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
 516 *                   definition See @struct @blkcipher_alg.
 517 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
 518 *                definition. See @struct @cipher_alg.
 519 * @cra_u.compress: Union member which contains a (de)compression algorithm.
 520 *                  See @struct @compress_alg.
 521 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
 522 * @cra_list: internally used
 523 * @cra_users: internally used
 524 * @cra_refcnt: internally used
 525 * @cra_destroy: internally used
 526 *
 527 * @stats: union of all possible crypto_istat_xxx structures
 528 * @stats.aead:         statistics for AEAD algorithm
 529 * @stats.akcipher:     statistics for akcipher algorithm
 530 * @stats.cipher:       statistics for cipher algorithm
 531 * @stats.compress:     statistics for compress algorithm
 532 * @stats.hash:         statistics for hash algorithm
 533 * @stats.rng:          statistics for rng algorithm
 534 * @stats.kpp:          statistics for KPP algorithm
 535 *
 536 * The struct crypto_alg describes a generic Crypto API algorithm and is common
 537 * for all of the transformations. Any variable not documented here shall not
 538 * be used by a cipher implementation as it is internal to the Crypto API.
 539 */
 540struct crypto_alg {
 541        struct list_head cra_list;
 542        struct list_head cra_users;
 543
 544        u32 cra_flags;
 545        unsigned int cra_blocksize;
 546        unsigned int cra_ctxsize;
 547        unsigned int cra_alignmask;
 548
 549        int cra_priority;
 550        refcount_t cra_refcnt;
 551
 552        char cra_name[CRYPTO_MAX_ALG_NAME];
 553        char cra_driver_name[CRYPTO_MAX_ALG_NAME];
 554
 555        const struct crypto_type *cra_type;
 556
 557        union {
 558                struct ablkcipher_alg ablkcipher;
 559                struct blkcipher_alg blkcipher;
 560                struct cipher_alg cipher;
 561                struct compress_alg compress;
 562        } cra_u;
 563
 564        int (*cra_init)(struct crypto_tfm *tfm);
 565        void (*cra_exit)(struct crypto_tfm *tfm);
 566        void (*cra_destroy)(struct crypto_alg *alg);
 567        
 568        struct module *cra_module;
 569
 570#ifdef CONFIG_CRYPTO_STATS
 571        union {
 572                struct crypto_istat_aead aead;
 573                struct crypto_istat_akcipher akcipher;
 574                struct crypto_istat_cipher cipher;
 575                struct crypto_istat_compress compress;
 576                struct crypto_istat_hash hash;
 577                struct crypto_istat_rng rng;
 578                struct crypto_istat_kpp kpp;
 579        } stats;
 580#endif /* CONFIG_CRYPTO_STATS */
 581
 582} CRYPTO_MINALIGN_ATTR;
 583
 584#ifdef CONFIG_CRYPTO_STATS
 585void crypto_stats_init(struct crypto_alg *alg);
 586void crypto_stats_get(struct crypto_alg *alg);
 587void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
 588void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
 589void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
 590void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
 591void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
 592void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
 593void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
 594void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
 595void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
 596void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
 597void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
 598void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
 599void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
 600void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
 601void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
 602void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
 603void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
 604void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
 605void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
 606#else
 607static inline void crypto_stats_init(struct crypto_alg *alg)
 608{}
 609static inline void crypto_stats_get(struct crypto_alg *alg)
 610{}
 611static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
 612{}
 613static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
 614{}
 615static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
 616{}
 617static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
 618{}
 619static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
 620{}
 621static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
 622{}
 623static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
 624{}
 625static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
 626{}
 627static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
 628{}
 629static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
 630{}
 631static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
 632{}
 633static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
 634{}
 635static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
 636{}
 637static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
 638{}
 639static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
 640{}
 641static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
 642{}
 643static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
 644{}
 645static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
 646{}
 647static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
 648{}
 649#endif
 650/*
 651 * A helper struct for waiting for completion of async crypto ops
 652 */
 653struct crypto_wait {
 654        struct completion completion;
 655        int err;
 656};
 657
 658/*
 659 * Macro for declaring a crypto op async wait object on stack
 660 */
 661#define DECLARE_CRYPTO_WAIT(_wait) \
 662        struct crypto_wait _wait = { \
 663                COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
 664
 665/*
 666 * Async ops completion helper functioons
 667 */
 668void crypto_req_done(struct crypto_async_request *req, int err);
 669
 670static inline int crypto_wait_req(int err, struct crypto_wait *wait)
 671{
 672        switch (err) {
 673        case -EINPROGRESS:
 674        case -EBUSY:
 675                wait_for_completion(&wait->completion);
 676                reinit_completion(&wait->completion);
 677                err = wait->err;
 678                break;
 679        };
 680
 681        return err;
 682}
 683
 684static inline void crypto_init_wait(struct crypto_wait *wait)
 685{
 686        init_completion(&wait->completion);
 687}
 688
 689/*
 690 * Algorithm registration interface.
 691 */
 692int crypto_register_alg(struct crypto_alg *alg);
 693int crypto_unregister_alg(struct crypto_alg *alg);
 694int crypto_register_algs(struct crypto_alg *algs, int count);
 695int crypto_unregister_algs(struct crypto_alg *algs, int count);
 696
 697/*
 698 * Algorithm query interface.
 699 */
 700int crypto_has_alg(const char *name, u32 type, u32 mask);
 701
 702/*
 703 * Transforms: user-instantiated objects which encapsulate algorithms
 704 * and core processing logic.  Managed via crypto_alloc_*() and
 705 * crypto_free_*(), as well as the various helpers below.
 706 */
 707
 708struct ablkcipher_tfm {
 709        int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 710                      unsigned int keylen);
 711        int (*encrypt)(struct ablkcipher_request *req);
 712        int (*decrypt)(struct ablkcipher_request *req);
 713
 714        struct crypto_ablkcipher *base;
 715
 716        unsigned int ivsize;
 717        unsigned int reqsize;
 718};
 719
 720struct blkcipher_tfm {
 721        void *iv;
 722        int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 723                      unsigned int keylen);
 724        int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 725                       struct scatterlist *src, unsigned int nbytes);
 726        int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 727                       struct scatterlist *src, unsigned int nbytes);
 728};
 729
 730struct cipher_tfm {
 731        int (*cit_setkey)(struct crypto_tfm *tfm,
 732                          const u8 *key, unsigned int keylen);
 733        void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 734        void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 735};
 736
 737struct compress_tfm {
 738        int (*cot_compress)(struct crypto_tfm *tfm,
 739                            const u8 *src, unsigned int slen,
 740                            u8 *dst, unsigned int *dlen);
 741        int (*cot_decompress)(struct crypto_tfm *tfm,
 742                              const u8 *src, unsigned int slen,
 743                              u8 *dst, unsigned int *dlen);
 744};
 745
 746#define crt_ablkcipher  crt_u.ablkcipher
 747#define crt_blkcipher   crt_u.blkcipher
 748#define crt_cipher      crt_u.cipher
 749#define crt_compress    crt_u.compress
 750
 751struct crypto_tfm {
 752
 753        u32 crt_flags;
 754        
 755        union {
 756                struct ablkcipher_tfm ablkcipher;
 757                struct blkcipher_tfm blkcipher;
 758                struct cipher_tfm cipher;
 759                struct compress_tfm compress;
 760        } crt_u;
 761
 762        void (*exit)(struct crypto_tfm *tfm);
 763        
 764        struct crypto_alg *__crt_alg;
 765
 766        void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
 767};
 768
 769struct crypto_ablkcipher {
 770        struct crypto_tfm base;
 771};
 772
 773struct crypto_blkcipher {
 774        struct crypto_tfm base;
 775};
 776
 777struct crypto_cipher {
 778        struct crypto_tfm base;
 779};
 780
 781struct crypto_comp {
 782        struct crypto_tfm base;
 783};
 784
 785enum {
 786        CRYPTOA_UNSPEC,
 787        CRYPTOA_ALG,
 788        CRYPTOA_TYPE,
 789        CRYPTOA_U32,
 790        __CRYPTOA_MAX,
 791};
 792
 793#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
 794
 795/* Maximum number of (rtattr) parameters for each template. */
 796#define CRYPTO_MAX_ATTRS 32
 797
 798struct crypto_attr_alg {
 799        char name[CRYPTO_MAX_ALG_NAME];
 800};
 801
 802struct crypto_attr_type {
 803        u32 type;
 804        u32 mask;
 805};
 806
 807struct crypto_attr_u32 {
 808        u32 num;
 809};
 810
 811/* 
 812 * Transform user interface.
 813 */
 814 
 815struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
 816void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
 817
 818static inline void crypto_free_tfm(struct crypto_tfm *tfm)
 819{
 820        return crypto_destroy_tfm(tfm, tfm);
 821}
 822
 823int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
 824
 825/*
 826 * Transform helpers which query the underlying algorithm.
 827 */
 828static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
 829{
 830        return tfm->__crt_alg->cra_name;
 831}
 832
 833static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
 834{
 835        return tfm->__crt_alg->cra_driver_name;
 836}
 837
 838static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
 839{
 840        return tfm->__crt_alg->cra_priority;
 841}
 842
 843static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
 844{
 845        return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
 846}
 847
 848static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
 849{
 850        return tfm->__crt_alg->cra_blocksize;
 851}
 852
 853static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
 854{
 855        return tfm->__crt_alg->cra_alignmask;
 856}
 857
 858static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
 859{
 860        return tfm->crt_flags;
 861}
 862
 863static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
 864{
 865        tfm->crt_flags |= flags;
 866}
 867
 868static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
 869{
 870        tfm->crt_flags &= ~flags;
 871}
 872
 873static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
 874{
 875        return tfm->__crt_ctx;
 876}
 877
 878static inline unsigned int crypto_tfm_ctx_alignment(void)
 879{
 880        struct crypto_tfm *tfm;
 881        return __alignof__(tfm->__crt_ctx);
 882}
 883
 884/*
 885 * API wrappers.
 886 */
 887static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
 888        struct crypto_tfm *tfm)
 889{
 890        return (struct crypto_ablkcipher *)tfm;
 891}
 892
 893static inline u32 crypto_skcipher_type(u32 type)
 894{
 895        type &= ~CRYPTO_ALG_TYPE_MASK;
 896        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
 897        return type;
 898}
 899
 900static inline u32 crypto_skcipher_mask(u32 mask)
 901{
 902        mask &= ~CRYPTO_ALG_TYPE_MASK;
 903        mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
 904        return mask;
 905}
 906
 907/**
 908 * DOC: Asynchronous Block Cipher API
 909 *
 910 * Asynchronous block cipher API is used with the ciphers of type
 911 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
 912 *
 913 * Asynchronous cipher operations imply that the function invocation for a
 914 * cipher request returns immediately before the completion of the operation.
 915 * The cipher request is scheduled as a separate kernel thread and therefore
 916 * load-balanced on the different CPUs via the process scheduler. To allow
 917 * the kernel crypto API to inform the caller about the completion of a cipher
 918 * request, the caller must provide a callback function. That function is
 919 * invoked with the cipher handle when the request completes.
 920 *
 921 * To support the asynchronous operation, additional information than just the
 922 * cipher handle must be supplied to the kernel crypto API. That additional
 923 * information is given by filling in the ablkcipher_request data structure.
 924 *
 925 * For the asynchronous block cipher API, the state is maintained with the tfm
 926 * cipher handle. A single tfm can be used across multiple calls and in
 927 * parallel. For asynchronous block cipher calls, context data supplied and
 928 * only used by the caller can be referenced the request data structure in
 929 * addition to the IV used for the cipher request. The maintenance of such
 930 * state information would be important for a crypto driver implementer to
 931 * have, because when calling the callback function upon completion of the
 932 * cipher operation, that callback function may need some information about
 933 * which operation just finished if it invoked multiple in parallel. This
 934 * state information is unused by the kernel crypto API.
 935 */
 936
 937static inline struct crypto_tfm *crypto_ablkcipher_tfm(
 938        struct crypto_ablkcipher *tfm)
 939{
 940        return &tfm->base;
 941}
 942
 943/**
 944 * crypto_free_ablkcipher() - zeroize and free cipher handle
 945 * @tfm: cipher handle to be freed
 946 */
 947static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
 948{
 949        crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
 950}
 951
 952/**
 953 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
 954 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 955 *            ablkcipher
 956 * @type: specifies the type of the cipher
 957 * @mask: specifies the mask for the cipher
 958 *
 959 * Return: true when the ablkcipher is known to the kernel crypto API; false
 960 *         otherwise
 961 */
 962static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
 963                                        u32 mask)
 964{
 965        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 966                              crypto_skcipher_mask(mask));
 967}
 968
 969static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
 970        struct crypto_ablkcipher *tfm)
 971{
 972        return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
 973}
 974
 975/**
 976 * crypto_ablkcipher_ivsize() - obtain IV size
 977 * @tfm: cipher handle
 978 *
 979 * The size of the IV for the ablkcipher referenced by the cipher handle is
 980 * returned. This IV size may be zero if the cipher does not need an IV.
 981 *
 982 * Return: IV size in bytes
 983 */
 984static inline unsigned int crypto_ablkcipher_ivsize(
 985        struct crypto_ablkcipher *tfm)
 986{
 987        return crypto_ablkcipher_crt(tfm)->ivsize;
 988}
 989
 990/**
 991 * crypto_ablkcipher_blocksize() - obtain block size of cipher
 992 * @tfm: cipher handle
 993 *
 994 * The block size for the ablkcipher referenced with the cipher handle is
 995 * returned. The caller may use that information to allocate appropriate
 996 * memory for the data returned by the encryption or decryption operation
 997 *
 998 * Return: block size of cipher
 999 */
1000static inline unsigned int crypto_ablkcipher_blocksize(
1001        struct crypto_ablkcipher *tfm)
1002{
1003        return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1004}
1005
1006static inline unsigned int crypto_ablkcipher_alignmask(
1007        struct crypto_ablkcipher *tfm)
1008{
1009        return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1010}
1011
1012static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1013{
1014        return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1015}
1016
1017static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1018                                               u32 flags)
1019{
1020        crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1021}
1022
1023static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1024                                                 u32 flags)
1025{
1026        crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1027}
1028
1029/**
1030 * crypto_ablkcipher_setkey() - set key for cipher
1031 * @tfm: cipher handle
1032 * @key: buffer holding the key
1033 * @keylen: length of the key in bytes
1034 *
1035 * The caller provided key is set for the ablkcipher referenced by the cipher
1036 * handle.
1037 *
1038 * Note, the key length determines the cipher type. Many block ciphers implement
1039 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1040 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1041 * is performed.
1042 *
1043 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1044 */
1045static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1046                                           const u8 *key, unsigned int keylen)
1047{
1048        struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1049
1050        return crt->setkey(crt->base, key, keylen);
1051}
1052
1053/**
1054 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1055 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1056 *
1057 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1058 * data structure.
1059 *
1060 * Return: crypto_ablkcipher handle
1061 */
1062static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1063        struct ablkcipher_request *req)
1064{
1065        return __crypto_ablkcipher_cast(req->base.tfm);
1066}
1067
1068/**
1069 * crypto_ablkcipher_encrypt() - encrypt plaintext
1070 * @req: reference to the ablkcipher_request handle that holds all information
1071 *       needed to perform the cipher operation
1072 *
1073 * Encrypt plaintext data using the ablkcipher_request handle. That data
1074 * structure and how it is filled with data is discussed with the
1075 * ablkcipher_request_* functions.
1076 *
1077 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1078 */
1079static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1080{
1081        struct ablkcipher_tfm *crt =
1082                crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1083        struct crypto_alg *alg = crt->base->base.__crt_alg;
1084        unsigned int nbytes = req->nbytes;
1085        int ret;
1086
1087        crypto_stats_get(alg);
1088        ret = crt->encrypt(req);
1089        crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1090        return ret;
1091}
1092
1093/**
1094 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1095 * @req: reference to the ablkcipher_request handle that holds all information
1096 *       needed to perform the cipher operation
1097 *
1098 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1099 * structure and how it is filled with data is discussed with the
1100 * ablkcipher_request_* functions.
1101 *
1102 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1103 */
1104static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1105{
1106        struct ablkcipher_tfm *crt =
1107                crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1108        struct crypto_alg *alg = crt->base->base.__crt_alg;
1109        unsigned int nbytes = req->nbytes;
1110        int ret;
1111
1112        crypto_stats_get(alg);
1113        ret = crt->decrypt(req);
1114        crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1115        return ret;
1116}
1117
1118/**
1119 * DOC: Asynchronous Cipher Request Handle
1120 *
1121 * The ablkcipher_request data structure contains all pointers to data
1122 * required for the asynchronous cipher operation. This includes the cipher
1123 * handle (which can be used by multiple ablkcipher_request instances), pointer
1124 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1125 * as a handle to the ablkcipher_request_* API calls in a similar way as
1126 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1127 */
1128
1129/**
1130 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1131 * @tfm: cipher handle
1132 *
1133 * Return: number of bytes
1134 */
1135static inline unsigned int crypto_ablkcipher_reqsize(
1136        struct crypto_ablkcipher *tfm)
1137{
1138        return crypto_ablkcipher_crt(tfm)->reqsize;
1139}
1140
1141/**
1142 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1143 * @req: request handle to be modified
1144 * @tfm: cipher handle that shall be added to the request handle
1145 *
1146 * Allow the caller to replace the existing ablkcipher handle in the request
1147 * data structure with a different one.
1148 */
1149static inline void ablkcipher_request_set_tfm(
1150        struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1151{
1152        req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1153}
1154
1155static inline struct ablkcipher_request *ablkcipher_request_cast(
1156        struct crypto_async_request *req)
1157{
1158        return container_of(req, struct ablkcipher_request, base);
1159}
1160
1161/**
1162 * ablkcipher_request_alloc() - allocate request data structure
1163 * @tfm: cipher handle to be registered with the request
1164 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1165 *
1166 * Allocate the request data structure that must be used with the ablkcipher
1167 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1168 * handle is registered in the request data structure.
1169 *
1170 * Return: allocated request handle in case of success, or NULL if out of memory
1171 */
1172static inline struct ablkcipher_request *ablkcipher_request_alloc(
1173        struct crypto_ablkcipher *tfm, gfp_t gfp)
1174{
1175        struct ablkcipher_request *req;
1176
1177        req = kmalloc(sizeof(struct ablkcipher_request) +
1178                      crypto_ablkcipher_reqsize(tfm), gfp);
1179
1180        if (likely(req))
1181                ablkcipher_request_set_tfm(req, tfm);
1182
1183        return req;
1184}
1185
1186/**
1187 * ablkcipher_request_free() - zeroize and free request data structure
1188 * @req: request data structure cipher handle to be freed
1189 */
1190static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1191{
1192        kzfree(req);
1193}
1194
1195/**
1196 * ablkcipher_request_set_callback() - set asynchronous callback function
1197 * @req: request handle
1198 * @flags: specify zero or an ORing of the flags
1199 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1200 *         increase the wait queue beyond the initial maximum size;
1201 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1202 * @compl: callback function pointer to be registered with the request handle
1203 * @data: The data pointer refers to memory that is not used by the kernel
1204 *        crypto API, but provided to the callback function for it to use. Here,
1205 *        the caller can provide a reference to memory the callback function can
1206 *        operate on. As the callback function is invoked asynchronously to the
1207 *        related functionality, it may need to access data structures of the
1208 *        related functionality which can be referenced using this pointer. The
1209 *        callback function can access the memory via the "data" field in the
1210 *        crypto_async_request data structure provided to the callback function.
1211 *
1212 * This function allows setting the callback function that is triggered once the
1213 * cipher operation completes.
1214 *
1215 * The callback function is registered with the ablkcipher_request handle and
1216 * must comply with the following template::
1217 *
1218 *      void callback_function(struct crypto_async_request *req, int error)
1219 */
1220static inline void ablkcipher_request_set_callback(
1221        struct ablkcipher_request *req,
1222        u32 flags, crypto_completion_t compl, void *data)
1223{
1224        req->base.complete = compl;
1225        req->base.data = data;
1226        req->base.flags = flags;
1227}
1228
1229/**
1230 * ablkcipher_request_set_crypt() - set data buffers
1231 * @req: request handle
1232 * @src: source scatter / gather list
1233 * @dst: destination scatter / gather list
1234 * @nbytes: number of bytes to process from @src
1235 * @iv: IV for the cipher operation which must comply with the IV size defined
1236 *      by crypto_ablkcipher_ivsize
1237 *
1238 * This function allows setting of the source data and destination data
1239 * scatter / gather lists.
1240 *
1241 * For encryption, the source is treated as the plaintext and the
1242 * destination is the ciphertext. For a decryption operation, the use is
1243 * reversed - the source is the ciphertext and the destination is the plaintext.
1244 */
1245static inline void ablkcipher_request_set_crypt(
1246        struct ablkcipher_request *req,
1247        struct scatterlist *src, struct scatterlist *dst,
1248        unsigned int nbytes, void *iv)
1249{
1250        req->src = src;
1251        req->dst = dst;
1252        req->nbytes = nbytes;
1253        req->info = iv;
1254}
1255
1256/**
1257 * DOC: Synchronous Block Cipher API
1258 *
1259 * The synchronous block cipher API is used with the ciphers of type
1260 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1261 *
1262 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1263 * used in multiple calls and in parallel, this info should not be changeable
1264 * (unless a lock is used). This applies, for example, to the symmetric key.
1265 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1266 * structure for synchronous blkcipher api. So, its the only state info that can
1267 * be kept for synchronous calls without using a big lock across a tfm.
1268 *
1269 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1270 * consisting of a template (a block chaining mode) and a single block cipher
1271 * primitive (e.g. AES).
1272 *
1273 * The plaintext data buffer and the ciphertext data buffer are pointed to
1274 * by using scatter/gather lists. The cipher operation is performed
1275 * on all segments of the provided scatter/gather lists.
1276 *
1277 * The kernel crypto API supports a cipher operation "in-place" which means that
1278 * the caller may provide the same scatter/gather list for the plaintext and
1279 * cipher text. After the completion of the cipher operation, the plaintext
1280 * data is replaced with the ciphertext data in case of an encryption and vice
1281 * versa for a decryption. The caller must ensure that the scatter/gather lists
1282 * for the output data point to sufficiently large buffers, i.e. multiples of
1283 * the block size of the cipher.
1284 */
1285
1286static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1287        struct crypto_tfm *tfm)
1288{
1289        return (struct crypto_blkcipher *)tfm;
1290}
1291
1292static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1293        struct crypto_tfm *tfm)
1294{
1295        BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1296        return __crypto_blkcipher_cast(tfm);
1297}
1298
1299/**
1300 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1301 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1302 *            blkcipher cipher
1303 * @type: specifies the type of the cipher
1304 * @mask: specifies the mask for the cipher
1305 *
1306 * Allocate a cipher handle for a block cipher. The returned struct
1307 * crypto_blkcipher is the cipher handle that is required for any subsequent
1308 * API invocation for that block cipher.
1309 *
1310 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1311 *         of an error, PTR_ERR() returns the error code.
1312 */
1313static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1314        const char *alg_name, u32 type, u32 mask)
1315{
1316        type &= ~CRYPTO_ALG_TYPE_MASK;
1317        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1318        mask |= CRYPTO_ALG_TYPE_MASK;
1319
1320        return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1321}
1322
1323static inline struct crypto_tfm *crypto_blkcipher_tfm(
1324        struct crypto_blkcipher *tfm)
1325{
1326        return &tfm->base;
1327}
1328
1329/**
1330 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1331 * @tfm: cipher handle to be freed
1332 */
1333static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1334{
1335        crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1336}
1337
1338/**
1339 * crypto_has_blkcipher() - Search for the availability of a block cipher
1340 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1341 *            block cipher
1342 * @type: specifies the type of the cipher
1343 * @mask: specifies the mask for the cipher
1344 *
1345 * Return: true when the block cipher is known to the kernel crypto API; false
1346 *         otherwise
1347 */
1348static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1349{
1350        type &= ~CRYPTO_ALG_TYPE_MASK;
1351        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1352        mask |= CRYPTO_ALG_TYPE_MASK;
1353
1354        return crypto_has_alg(alg_name, type, mask);
1355}
1356
1357/**
1358 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1359 * @tfm: cipher handle
1360 *
1361 * Return: The character string holding the name of the cipher
1362 */
1363static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1364{
1365        return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1366}
1367
1368static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1369        struct crypto_blkcipher *tfm)
1370{
1371        return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1372}
1373
1374static inline struct blkcipher_alg *crypto_blkcipher_alg(
1375        struct crypto_blkcipher *tfm)
1376{
1377        return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1378}
1379
1380/**
1381 * crypto_blkcipher_ivsize() - obtain IV size
1382 * @tfm: cipher handle
1383 *
1384 * The size of the IV for the block cipher referenced by the cipher handle is
1385 * returned. This IV size may be zero if the cipher does not need an IV.
1386 *
1387 * Return: IV size in bytes
1388 */
1389static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1390{
1391        return crypto_blkcipher_alg(tfm)->ivsize;
1392}
1393
1394/**
1395 * crypto_blkcipher_blocksize() - obtain block size of cipher
1396 * @tfm: cipher handle
1397 *
1398 * The block size for the block cipher referenced with the cipher handle is
1399 * returned. The caller may use that information to allocate appropriate
1400 * memory for the data returned by the encryption or decryption operation.
1401 *
1402 * Return: block size of cipher
1403 */
1404static inline unsigned int crypto_blkcipher_blocksize(
1405        struct crypto_blkcipher *tfm)
1406{
1407        return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1408}
1409
1410static inline unsigned int crypto_blkcipher_alignmask(
1411        struct crypto_blkcipher *tfm)
1412{
1413        return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1414}
1415
1416static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1417{
1418        return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1419}
1420
1421static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1422                                              u32 flags)
1423{
1424        crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1425}
1426
1427static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1428                                                u32 flags)
1429{
1430        crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1431}
1432
1433/**
1434 * crypto_blkcipher_setkey() - set key for cipher
1435 * @tfm: cipher handle
1436 * @key: buffer holding the key
1437 * @keylen: length of the key in bytes
1438 *
1439 * The caller provided key is set for the block cipher referenced by the cipher
1440 * handle.
1441 *
1442 * Note, the key length determines the cipher type. Many block ciphers implement
1443 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1444 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1445 * is performed.
1446 *
1447 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1448 */
1449static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1450                                          const u8 *key, unsigned int keylen)
1451{
1452        return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1453                                                 key, keylen);
1454}
1455
1456/**
1457 * crypto_blkcipher_encrypt() - encrypt plaintext
1458 * @desc: reference to the block cipher handle with meta data
1459 * @dst: scatter/gather list that is filled by the cipher operation with the
1460 *      ciphertext
1461 * @src: scatter/gather list that holds the plaintext
1462 * @nbytes: number of bytes of the plaintext to encrypt.
1463 *
1464 * Encrypt plaintext data using the IV set by the caller with a preceding
1465 * call of crypto_blkcipher_set_iv.
1466 *
1467 * The blkcipher_desc data structure must be filled by the caller and can
1468 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1469 * with the block cipher handle; desc.flags is filled with either
1470 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1471 *
1472 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1473 */
1474static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1475                                           struct scatterlist *dst,
1476                                           struct scatterlist *src,
1477                                           unsigned int nbytes)
1478{
1479        desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1480        return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1481}
1482
1483/**
1484 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1485 * @desc: reference to the block cipher handle with meta data
1486 * @dst: scatter/gather list that is filled by the cipher operation with the
1487 *      ciphertext
1488 * @src: scatter/gather list that holds the plaintext
1489 * @nbytes: number of bytes of the plaintext to encrypt.
1490 *
1491 * Encrypt plaintext data with the use of an IV that is solely used for this
1492 * cipher operation. Any previously set IV is not used.
1493 *
1494 * The blkcipher_desc data structure must be filled by the caller and can
1495 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1496 * with the block cipher handle; desc.info is filled with the IV to be used for
1497 * the current operation; desc.flags is filled with either
1498 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1499 *
1500 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1501 */
1502static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1503                                              struct scatterlist *dst,
1504                                              struct scatterlist *src,
1505                                              unsigned int nbytes)
1506{
1507        return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1508}
1509
1510/**
1511 * crypto_blkcipher_decrypt() - decrypt ciphertext
1512 * @desc: reference to the block cipher handle with meta data
1513 * @dst: scatter/gather list that is filled by the cipher operation with the
1514 *      plaintext
1515 * @src: scatter/gather list that holds the ciphertext
1516 * @nbytes: number of bytes of the ciphertext to decrypt.
1517 *
1518 * Decrypt ciphertext data using the IV set by the caller with a preceding
1519 * call of crypto_blkcipher_set_iv.
1520 *
1521 * The blkcipher_desc data structure must be filled by the caller as documented
1522 * for the crypto_blkcipher_encrypt call above.
1523 *
1524 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1525 *
1526 */
1527static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1528                                           struct scatterlist *dst,
1529                                           struct scatterlist *src,
1530                                           unsigned int nbytes)
1531{
1532        desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1533        return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1534}
1535
1536/**
1537 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1538 * @desc: reference to the block cipher handle with meta data
1539 * @dst: scatter/gather list that is filled by the cipher operation with the
1540 *      plaintext
1541 * @src: scatter/gather list that holds the ciphertext
1542 * @nbytes: number of bytes of the ciphertext to decrypt.
1543 *
1544 * Decrypt ciphertext data with the use of an IV that is solely used for this
1545 * cipher operation. Any previously set IV is not used.
1546 *
1547 * The blkcipher_desc data structure must be filled by the caller as documented
1548 * for the crypto_blkcipher_encrypt_iv call above.
1549 *
1550 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1551 */
1552static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1553                                              struct scatterlist *dst,
1554                                              struct scatterlist *src,
1555                                              unsigned int nbytes)
1556{
1557        return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1558}
1559
1560/**
1561 * crypto_blkcipher_set_iv() - set IV for cipher
1562 * @tfm: cipher handle
1563 * @src: buffer holding the IV
1564 * @len: length of the IV in bytes
1565 *
1566 * The caller provided IV is set for the block cipher referenced by the cipher
1567 * handle.
1568 */
1569static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1570                                           const u8 *src, unsigned int len)
1571{
1572        memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1573}
1574
1575/**
1576 * crypto_blkcipher_get_iv() - obtain IV from cipher
1577 * @tfm: cipher handle
1578 * @dst: buffer filled with the IV
1579 * @len: length of the buffer dst
1580 *
1581 * The caller can obtain the IV set for the block cipher referenced by the
1582 * cipher handle and store it into the user-provided buffer. If the buffer
1583 * has an insufficient space, the IV is truncated to fit the buffer.
1584 */
1585static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1586                                           u8 *dst, unsigned int len)
1587{
1588        memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1589}
1590
1591/**
1592 * DOC: Single Block Cipher API
1593 *
1594 * The single block cipher API is used with the ciphers of type
1595 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1596 *
1597 * Using the single block cipher API calls, operations with the basic cipher
1598 * primitive can be implemented. These cipher primitives exclude any block
1599 * chaining operations including IV handling.
1600 *
1601 * The purpose of this single block cipher API is to support the implementation
1602 * of templates or other concepts that only need to perform the cipher operation
1603 * on one block at a time. Templates invoke the underlying cipher primitive
1604 * block-wise and process either the input or the output data of these cipher
1605 * operations.
1606 */
1607
1608static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1609{
1610        return (struct crypto_cipher *)tfm;
1611}
1612
1613static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1614{
1615        BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1616        return __crypto_cipher_cast(tfm);
1617}
1618
1619/**
1620 * crypto_alloc_cipher() - allocate single block cipher handle
1621 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1622 *           single block cipher
1623 * @type: specifies the type of the cipher
1624 * @mask: specifies the mask for the cipher
1625 *
1626 * Allocate a cipher handle for a single block cipher. The returned struct
1627 * crypto_cipher is the cipher handle that is required for any subsequent API
1628 * invocation for that single block cipher.
1629 *
1630 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1631 *         of an error, PTR_ERR() returns the error code.
1632 */
1633static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1634                                                        u32 type, u32 mask)
1635{
1636        type &= ~CRYPTO_ALG_TYPE_MASK;
1637        type |= CRYPTO_ALG_TYPE_CIPHER;
1638        mask |= CRYPTO_ALG_TYPE_MASK;
1639
1640        return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1641}
1642
1643static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1644{
1645        return &tfm->base;
1646}
1647
1648/**
1649 * crypto_free_cipher() - zeroize and free the single block cipher handle
1650 * @tfm: cipher handle to be freed
1651 */
1652static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1653{
1654        crypto_free_tfm(crypto_cipher_tfm(tfm));
1655}
1656
1657/**
1658 * crypto_has_cipher() - Search for the availability of a single block cipher
1659 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1660 *           single block cipher
1661 * @type: specifies the type of the cipher
1662 * @mask: specifies the mask for the cipher
1663 *
1664 * Return: true when the single block cipher is known to the kernel crypto API;
1665 *         false otherwise
1666 */
1667static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1668{
1669        type &= ~CRYPTO_ALG_TYPE_MASK;
1670        type |= CRYPTO_ALG_TYPE_CIPHER;
1671        mask |= CRYPTO_ALG_TYPE_MASK;
1672
1673        return crypto_has_alg(alg_name, type, mask);
1674}
1675
1676static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1677{
1678        return &crypto_cipher_tfm(tfm)->crt_cipher;
1679}
1680
1681/**
1682 * crypto_cipher_blocksize() - obtain block size for cipher
1683 * @tfm: cipher handle
1684 *
1685 * The block size for the single block cipher referenced with the cipher handle
1686 * tfm is returned. The caller may use that information to allocate appropriate
1687 * memory for the data returned by the encryption or decryption operation
1688 *
1689 * Return: block size of cipher
1690 */
1691static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1692{
1693        return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1694}
1695
1696static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1697{
1698        return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1699}
1700
1701static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1702{
1703        return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1704}
1705
1706static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1707                                           u32 flags)
1708{
1709        crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1710}
1711
1712static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1713                                             u32 flags)
1714{
1715        crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1716}
1717
1718/**
1719 * crypto_cipher_setkey() - set key for cipher
1720 * @tfm: cipher handle
1721 * @key: buffer holding the key
1722 * @keylen: length of the key in bytes
1723 *
1724 * The caller provided key is set for the single block cipher referenced by the
1725 * cipher handle.
1726 *
1727 * Note, the key length determines the cipher type. Many block ciphers implement
1728 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1729 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1730 * is performed.
1731 *
1732 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1733 */
1734static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1735                                       const u8 *key, unsigned int keylen)
1736{
1737        return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1738                                                  key, keylen);
1739}
1740
1741/**
1742 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1743 * @tfm: cipher handle
1744 * @dst: points to the buffer that will be filled with the ciphertext
1745 * @src: buffer holding the plaintext to be encrypted
1746 *
1747 * Invoke the encryption operation of one block. The caller must ensure that
1748 * the plaintext and ciphertext buffers are at least one block in size.
1749 */
1750static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1751                                             u8 *dst, const u8 *src)
1752{
1753        crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1754                                                dst, src);
1755}
1756
1757/**
1758 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1759 * @tfm: cipher handle
1760 * @dst: points to the buffer that will be filled with the plaintext
1761 * @src: buffer holding the ciphertext to be decrypted
1762 *
1763 * Invoke the decryption operation of one block. The caller must ensure that
1764 * the plaintext and ciphertext buffers are at least one block in size.
1765 */
1766static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1767                                             u8 *dst, const u8 *src)
1768{
1769        crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1770                                                dst, src);
1771}
1772
1773static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1774{
1775        return (struct crypto_comp *)tfm;
1776}
1777
1778static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1779{
1780        BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1781               CRYPTO_ALG_TYPE_MASK);
1782        return __crypto_comp_cast(tfm);
1783}
1784
1785static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1786                                                    u32 type, u32 mask)
1787{
1788        type &= ~CRYPTO_ALG_TYPE_MASK;
1789        type |= CRYPTO_ALG_TYPE_COMPRESS;
1790        mask |= CRYPTO_ALG_TYPE_MASK;
1791
1792        return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1793}
1794
1795static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1796{
1797        return &tfm->base;
1798}
1799
1800static inline void crypto_free_comp(struct crypto_comp *tfm)
1801{
1802        crypto_free_tfm(crypto_comp_tfm(tfm));
1803}
1804
1805static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1806{
1807        type &= ~CRYPTO_ALG_TYPE_MASK;
1808        type |= CRYPTO_ALG_TYPE_COMPRESS;
1809        mask |= CRYPTO_ALG_TYPE_MASK;
1810
1811        return crypto_has_alg(alg_name, type, mask);
1812}
1813
1814static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1815{
1816        return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1817}
1818
1819static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1820{
1821        return &crypto_comp_tfm(tfm)->crt_compress;
1822}
1823
1824static inline int crypto_comp_compress(struct crypto_comp *tfm,
1825                                       const u8 *src, unsigned int slen,
1826                                       u8 *dst, unsigned int *dlen)
1827{
1828        return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1829                                                  src, slen, dst, dlen);
1830}
1831
1832static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1833                                         const u8 *src, unsigned int slen,
1834                                         u8 *dst, unsigned int *dlen)
1835{
1836        return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1837                                                    src, slen, dst, dlen);
1838}
1839
1840#endif  /* _LINUX_CRYPTO_H */
1841
1842