linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/limits.h>
   8#include <linux/linkage.h>
   9#include <linux/stddef.h>
  10#include <linux/types.h>
  11#include <linux/compiler.h>
  12#include <linux/bitops.h>
  13#include <linux/log2.h>
  14#include <linux/typecheck.h>
  15#include <linux/printk.h>
  16#include <linux/build_bug.h>
  17#include <asm/byteorder.h>
  18#include <asm/div64.h>
  19#include <uapi/linux/kernel.h>
  20#include <asm/div64.h>
  21
  22#define STACK_MAGIC     0xdeadbeef
  23
  24/**
  25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  26 * @x: value to repeat
  27 *
  28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  29 */
  30#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  31
  32/* @a is a power of 2 value */
  33#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  34#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  35#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  36#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  37#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  38
  39/* generic data direction definitions */
  40#define READ                    0
  41#define WRITE                   1
  42
  43/**
  44 * ARRAY_SIZE - get the number of elements in array @arr
  45 * @arr: array to be sized
  46 */
  47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  48
  49#define u64_to_user_ptr(x) (            \
  50{                                       \
  51        typecheck(u64, (x));            \
  52        (void __user *)(uintptr_t)(x);  \
  53}                                       \
  54)
  55
  56/*
  57 * This looks more complex than it should be. But we need to
  58 * get the type for the ~ right in round_down (it needs to be
  59 * as wide as the result!), and we want to evaluate the macro
  60 * arguments just once each.
  61 */
  62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  63/**
  64 * round_up - round up to next specified power of 2
  65 * @x: the value to round
  66 * @y: multiple to round up to (must be a power of 2)
  67 *
  68 * Rounds @x up to next multiple of @y (which must be a power of 2).
  69 * To perform arbitrary rounding up, use roundup() below.
  70 */
  71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  72/**
  73 * round_down - round down to next specified power of 2
  74 * @x: the value to round
  75 * @y: multiple to round down to (must be a power of 2)
  76 *
  77 * Rounds @x down to next multiple of @y (which must be a power of 2).
  78 * To perform arbitrary rounding down, use rounddown() below.
  79 */
  80#define round_down(x, y) ((x) & ~__round_mask(x, y))
  81
  82/**
  83 * FIELD_SIZEOF - get the size of a struct's field
  84 * @t: the target struct
  85 * @f: the target struct's field
  86 * Return: the size of @f in the struct definition without having a
  87 * declared instance of @t.
  88 */
  89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  90
  91#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  92
  93#define DIV_ROUND_DOWN_ULL(ll, d) \
  94        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  95
  96#define DIV_ROUND_UP_ULL(ll, d) \
  97        DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
  98
  99#if BITS_PER_LONG == 32
 100# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
 101#else
 102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 103#endif
 104
 105/**
 106 * roundup - round up to the next specified multiple
 107 * @x: the value to up
 108 * @y: multiple to round up to
 109 *
 110 * Rounds @x up to next multiple of @y. If @y will always be a power
 111 * of 2, consider using the faster round_up().
 112 */
 113#define roundup(x, y) (                                 \
 114{                                                       \
 115        typeof(y) __y = y;                              \
 116        (((x) + (__y - 1)) / __y) * __y;                \
 117}                                                       \
 118)
 119/**
 120 * rounddown - round down to next specified multiple
 121 * @x: the value to round
 122 * @y: multiple to round down to
 123 *
 124 * Rounds @x down to next multiple of @y. If @y will always be a power
 125 * of 2, consider using the faster round_down().
 126 */
 127#define rounddown(x, y) (                               \
 128{                                                       \
 129        typeof(x) __x = (x);                            \
 130        __x - (__x % (y));                              \
 131}                                                       \
 132)
 133
 134/*
 135 * Divide positive or negative dividend by positive or negative divisor
 136 * and round to closest integer. Result is undefined for negative
 137 * divisors if the dividend variable type is unsigned and for negative
 138 * dividends if the divisor variable type is unsigned.
 139 */
 140#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 141{                                                       \
 142        typeof(x) __x = x;                              \
 143        typeof(divisor) __d = divisor;                  \
 144        (((typeof(x))-1) > 0 ||                         \
 145         ((typeof(divisor))-1) > 0 ||                   \
 146         (((__x) > 0) == ((__d) > 0))) ?                \
 147                (((__x) + ((__d) / 2)) / (__d)) :       \
 148                (((__x) - ((__d) / 2)) / (__d));        \
 149}                                                       \
 150)
 151/*
 152 * Same as above but for u64 dividends. divisor must be a 32-bit
 153 * number.
 154 */
 155#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 156{                                                       \
 157        typeof(divisor) __d = divisor;                  \
 158        unsigned long long _tmp = (x) + (__d) / 2;      \
 159        do_div(_tmp, __d);                              \
 160        _tmp;                                           \
 161}                                                       \
 162)
 163
 164/*
 165 * Multiplies an integer by a fraction, while avoiding unnecessary
 166 * overflow or loss of precision.
 167 */
 168#define mult_frac(x, numer, denom)(                     \
 169{                                                       \
 170        typeof(x) quot = (x) / (denom);                 \
 171        typeof(x) rem  = (x) % (denom);                 \
 172        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 173}                                                       \
 174)
 175
 176
 177#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 178#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 179
 180#define sector_div(a, b) do_div(a, b)
 181
 182/**
 183 * upper_32_bits - return bits 32-63 of a number
 184 * @n: the number we're accessing
 185 *
 186 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 187 * the "right shift count >= width of type" warning when that quantity is
 188 * 32-bits.
 189 */
 190#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 191
 192/**
 193 * lower_32_bits - return bits 0-31 of a number
 194 * @n: the number we're accessing
 195 */
 196#define lower_32_bits(n) ((u32)(n))
 197
 198struct completion;
 199struct pt_regs;
 200struct user;
 201
 202#ifdef CONFIG_PREEMPT_VOLUNTARY
 203extern int _cond_resched(void);
 204# define might_resched() _cond_resched()
 205#else
 206# define might_resched() do { } while (0)
 207#endif
 208
 209#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 210extern void ___might_sleep(const char *file, int line, int preempt_offset);
 211extern void __might_sleep(const char *file, int line, int preempt_offset);
 212extern void __cant_sleep(const char *file, int line, int preempt_offset);
 213
 214/**
 215 * might_sleep - annotation for functions that can sleep
 216 *
 217 * this macro will print a stack trace if it is executed in an atomic
 218 * context (spinlock, irq-handler, ...).
 219 *
 220 * This is a useful debugging help to be able to catch problems early and not
 221 * be bitten later when the calling function happens to sleep when it is not
 222 * supposed to.
 223 */
 224# define might_sleep() \
 225        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 226/**
 227 * cant_sleep - annotation for functions that cannot sleep
 228 *
 229 * this macro will print a stack trace if it is executed with preemption enabled
 230 */
 231# define cant_sleep() \
 232        do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
 233# define sched_annotate_sleep() (current->task_state_change = 0)
 234#else
 235  static inline void ___might_sleep(const char *file, int line,
 236                                   int preempt_offset) { }
 237  static inline void __might_sleep(const char *file, int line,
 238                                   int preempt_offset) { }
 239# define might_sleep() do { might_resched(); } while (0)
 240# define cant_sleep() do { } while (0)
 241# define sched_annotate_sleep() do { } while (0)
 242#endif
 243
 244#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 245
 246/**
 247 * abs - return absolute value of an argument
 248 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 249 *     char is treated as if it was signed (regardless of whether it really is)
 250 *     but the macro's return type is preserved as char.
 251 *
 252 * Return: an absolute value of x.
 253 */
 254#define abs(x)  __abs_choose_expr(x, long long,                         \
 255                __abs_choose_expr(x, long,                              \
 256                __abs_choose_expr(x, int,                               \
 257                __abs_choose_expr(x, short,                             \
 258                __abs_choose_expr(x, char,                              \
 259                __builtin_choose_expr(                                  \
 260                        __builtin_types_compatible_p(typeof(x), char),  \
 261                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 262                        ((void)0)))))))
 263
 264#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 265        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 266        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 267        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 268
 269/**
 270 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 271 * @val: value
 272 * @ep_ro: right open interval endpoint
 273 *
 274 * Perform a "reciprocal multiplication" in order to "scale" a value into
 275 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 276 * This is useful, e.g. for accessing a index of an array containing
 277 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 278 * the result isn't that of modulo. ;) Note that if initial input is a
 279 * small value, then result will return 0.
 280 *
 281 * Return: a result based on @val in interval [0, @ep_ro).
 282 */
 283static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 284{
 285        return (u32)(((u64) val * ep_ro) >> 32);
 286}
 287
 288#if defined(CONFIG_MMU) && \
 289        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 290#define might_fault() __might_fault(__FILE__, __LINE__)
 291void __might_fault(const char *file, int line);
 292#else
 293static inline void might_fault(void) { }
 294#endif
 295
 296extern struct atomic_notifier_head panic_notifier_list;
 297extern long (*panic_blink)(int state);
 298__printf(1, 2)
 299void panic(const char *fmt, ...) __noreturn __cold;
 300void nmi_panic(struct pt_regs *regs, const char *msg);
 301extern void oops_enter(void);
 302extern void oops_exit(void);
 303void print_oops_end_marker(void);
 304extern int oops_may_print(void);
 305void do_exit(long error_code) __noreturn;
 306void complete_and_exit(struct completion *, long) __noreturn;
 307
 308#ifdef CONFIG_ARCH_HAS_REFCOUNT
 309void refcount_error_report(struct pt_regs *regs, const char *err);
 310#else
 311static inline void refcount_error_report(struct pt_regs *regs, const char *err)
 312{ }
 313#endif
 314
 315/* Internal, do not use. */
 316int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 317int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 318
 319int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 320int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 321
 322/**
 323 * kstrtoul - convert a string to an unsigned long
 324 * @s: The start of the string. The string must be null-terminated, and may also
 325 *  include a single newline before its terminating null. The first character
 326 *  may also be a plus sign, but not a minus sign.
 327 * @base: The number base to use. The maximum supported base is 16. If base is
 328 *  given as 0, then the base of the string is automatically detected with the
 329 *  conventional semantics - If it begins with 0x the number will be parsed as a
 330 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 331 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 332 * @res: Where to write the result of the conversion on success.
 333 *
 334 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 335 * Used as a replacement for the obsolete simple_strtoull. Return code must
 336 * be checked.
 337*/
 338static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 339{
 340        /*
 341         * We want to shortcut function call, but
 342         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 343         */
 344        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 345            __alignof__(unsigned long) == __alignof__(unsigned long long))
 346                return kstrtoull(s, base, (unsigned long long *)res);
 347        else
 348                return _kstrtoul(s, base, res);
 349}
 350
 351/**
 352 * kstrtol - convert a string to a long
 353 * @s: The start of the string. The string must be null-terminated, and may also
 354 *  include a single newline before its terminating null. The first character
 355 *  may also be a plus sign or a minus sign.
 356 * @base: The number base to use. The maximum supported base is 16. If base is
 357 *  given as 0, then the base of the string is automatically detected with the
 358 *  conventional semantics - If it begins with 0x the number will be parsed as a
 359 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 360 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 361 * @res: Where to write the result of the conversion on success.
 362 *
 363 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 364 * Used as a replacement for the obsolete simple_strtoull. Return code must
 365 * be checked.
 366 */
 367static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 368{
 369        /*
 370         * We want to shortcut function call, but
 371         * __builtin_types_compatible_p(long, long long) = 0.
 372         */
 373        if (sizeof(long) == sizeof(long long) &&
 374            __alignof__(long) == __alignof__(long long))
 375                return kstrtoll(s, base, (long long *)res);
 376        else
 377                return _kstrtol(s, base, res);
 378}
 379
 380int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 381int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 382
 383static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 384{
 385        return kstrtoull(s, base, res);
 386}
 387
 388static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 389{
 390        return kstrtoll(s, base, res);
 391}
 392
 393static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 394{
 395        return kstrtouint(s, base, res);
 396}
 397
 398static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 399{
 400        return kstrtoint(s, base, res);
 401}
 402
 403int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 404int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 405int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 406int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 407int __must_check kstrtobool(const char *s, bool *res);
 408
 409int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 410int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 411int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 412int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 413int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 414int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 415int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 416int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 417int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 418int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 419int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 420
 421static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 422{
 423        return kstrtoull_from_user(s, count, base, res);
 424}
 425
 426static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 427{
 428        return kstrtoll_from_user(s, count, base, res);
 429}
 430
 431static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 432{
 433        return kstrtouint_from_user(s, count, base, res);
 434}
 435
 436static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 437{
 438        return kstrtoint_from_user(s, count, base, res);
 439}
 440
 441/* Obsolete, do not use.  Use kstrto<foo> instead */
 442
 443extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 444extern long simple_strtol(const char *,char **,unsigned int);
 445extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 446extern long long simple_strtoll(const char *,char **,unsigned int);
 447
 448extern int num_to_str(char *buf, int size,
 449                      unsigned long long num, unsigned int width);
 450
 451/* lib/printf utilities */
 452
 453extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 454extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 455extern __printf(3, 4)
 456int snprintf(char *buf, size_t size, const char *fmt, ...);
 457extern __printf(3, 0)
 458int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 459extern __printf(3, 4)
 460int scnprintf(char *buf, size_t size, const char *fmt, ...);
 461extern __printf(3, 0)
 462int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 463extern __printf(2, 3) __malloc
 464char *kasprintf(gfp_t gfp, const char *fmt, ...);
 465extern __printf(2, 0) __malloc
 466char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 467extern __printf(2, 0)
 468const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 469
 470extern __scanf(2, 3)
 471int sscanf(const char *, const char *, ...);
 472extern __scanf(2, 0)
 473int vsscanf(const char *, const char *, va_list);
 474
 475extern int get_option(char **str, int *pint);
 476extern char *get_options(const char *str, int nints, int *ints);
 477extern unsigned long long memparse(const char *ptr, char **retptr);
 478extern bool parse_option_str(const char *str, const char *option);
 479extern char *next_arg(char *args, char **param, char **val);
 480
 481extern int core_kernel_text(unsigned long addr);
 482extern int init_kernel_text(unsigned long addr);
 483extern int core_kernel_data(unsigned long addr);
 484extern int __kernel_text_address(unsigned long addr);
 485extern int kernel_text_address(unsigned long addr);
 486extern int func_ptr_is_kernel_text(void *ptr);
 487
 488u64 int_pow(u64 base, unsigned int exp);
 489unsigned long int_sqrt(unsigned long);
 490
 491#if BITS_PER_LONG < 64
 492u32 int_sqrt64(u64 x);
 493#else
 494static inline u32 int_sqrt64(u64 x)
 495{
 496        return (u32)int_sqrt(x);
 497}
 498#endif
 499
 500extern void bust_spinlocks(int yes);
 501extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 502extern int panic_timeout;
 503extern unsigned long panic_print;
 504extern int panic_on_oops;
 505extern int panic_on_unrecovered_nmi;
 506extern int panic_on_io_nmi;
 507extern int panic_on_warn;
 508extern int sysctl_panic_on_rcu_stall;
 509extern int sysctl_panic_on_stackoverflow;
 510
 511extern bool crash_kexec_post_notifiers;
 512
 513/*
 514 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 515 * holds a CPU number which is executing panic() currently. A value of
 516 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 517 */
 518extern atomic_t panic_cpu;
 519#define PANIC_CPU_INVALID       -1
 520
 521/*
 522 * Only to be used by arch init code. If the user over-wrote the default
 523 * CONFIG_PANIC_TIMEOUT, honor it.
 524 */
 525static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 526{
 527        if (panic_timeout == arch_default_timeout)
 528                panic_timeout = timeout;
 529}
 530extern const char *print_tainted(void);
 531enum lockdep_ok {
 532        LOCKDEP_STILL_OK,
 533        LOCKDEP_NOW_UNRELIABLE
 534};
 535extern void add_taint(unsigned flag, enum lockdep_ok);
 536extern int test_taint(unsigned flag);
 537extern unsigned long get_taint(void);
 538extern int root_mountflags;
 539
 540extern bool early_boot_irqs_disabled;
 541
 542/*
 543 * Values used for system_state. Ordering of the states must not be changed
 544 * as code checks for <, <=, >, >= STATE.
 545 */
 546extern enum system_states {
 547        SYSTEM_BOOTING,
 548        SYSTEM_SCHEDULING,
 549        SYSTEM_RUNNING,
 550        SYSTEM_HALT,
 551        SYSTEM_POWER_OFF,
 552        SYSTEM_RESTART,
 553        SYSTEM_SUSPEND,
 554} system_state;
 555
 556/* This cannot be an enum because some may be used in assembly source. */
 557#define TAINT_PROPRIETARY_MODULE        0
 558#define TAINT_FORCED_MODULE             1
 559#define TAINT_CPU_OUT_OF_SPEC           2
 560#define TAINT_FORCED_RMMOD              3
 561#define TAINT_MACHINE_CHECK             4
 562#define TAINT_BAD_PAGE                  5
 563#define TAINT_USER                      6
 564#define TAINT_DIE                       7
 565#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 566#define TAINT_WARN                      9
 567#define TAINT_CRAP                      10
 568#define TAINT_FIRMWARE_WORKAROUND       11
 569#define TAINT_OOT_MODULE                12
 570#define TAINT_UNSIGNED_MODULE           13
 571#define TAINT_SOFTLOCKUP                14
 572#define TAINT_LIVEPATCH                 15
 573#define TAINT_AUX                       16
 574#define TAINT_RANDSTRUCT                17
 575#define TAINT_FLAGS_COUNT               18
 576
 577struct taint_flag {
 578        char c_true;    /* character printed when tainted */
 579        char c_false;   /* character printed when not tainted */
 580        bool module;    /* also show as a per-module taint flag */
 581};
 582
 583extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 584
 585extern const char hex_asc[];
 586#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 587#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 588
 589static inline char *hex_byte_pack(char *buf, u8 byte)
 590{
 591        *buf++ = hex_asc_hi(byte);
 592        *buf++ = hex_asc_lo(byte);
 593        return buf;
 594}
 595
 596extern const char hex_asc_upper[];
 597#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 598#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 599
 600static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 601{
 602        *buf++ = hex_asc_upper_hi(byte);
 603        *buf++ = hex_asc_upper_lo(byte);
 604        return buf;
 605}
 606
 607extern int hex_to_bin(char ch);
 608extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 609extern char *bin2hex(char *dst, const void *src, size_t count);
 610
 611bool mac_pton(const char *s, u8 *mac);
 612
 613/*
 614 * General tracing related utility functions - trace_printk(),
 615 * tracing_on/tracing_off and tracing_start()/tracing_stop
 616 *
 617 * Use tracing_on/tracing_off when you want to quickly turn on or off
 618 * tracing. It simply enables or disables the recording of the trace events.
 619 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 620 * file, which gives a means for the kernel and userspace to interact.
 621 * Place a tracing_off() in the kernel where you want tracing to end.
 622 * From user space, examine the trace, and then echo 1 > tracing_on
 623 * to continue tracing.
 624 *
 625 * tracing_stop/tracing_start has slightly more overhead. It is used
 626 * by things like suspend to ram where disabling the recording of the
 627 * trace is not enough, but tracing must actually stop because things
 628 * like calling smp_processor_id() may crash the system.
 629 *
 630 * Most likely, you want to use tracing_on/tracing_off.
 631 */
 632
 633enum ftrace_dump_mode {
 634        DUMP_NONE,
 635        DUMP_ALL,
 636        DUMP_ORIG,
 637};
 638
 639#ifdef CONFIG_TRACING
 640void tracing_on(void);
 641void tracing_off(void);
 642int tracing_is_on(void);
 643void tracing_snapshot(void);
 644void tracing_snapshot_alloc(void);
 645
 646extern void tracing_start(void);
 647extern void tracing_stop(void);
 648
 649static inline __printf(1, 2)
 650void ____trace_printk_check_format(const char *fmt, ...)
 651{
 652}
 653#define __trace_printk_check_format(fmt, args...)                       \
 654do {                                                                    \
 655        if (0)                                                          \
 656                ____trace_printk_check_format(fmt, ##args);             \
 657} while (0)
 658
 659/**
 660 * trace_printk - printf formatting in the ftrace buffer
 661 * @fmt: the printf format for printing
 662 *
 663 * Note: __trace_printk is an internal function for trace_printk() and
 664 *       the @ip is passed in via the trace_printk() macro.
 665 *
 666 * This function allows a kernel developer to debug fast path sections
 667 * that printk is not appropriate for. By scattering in various
 668 * printk like tracing in the code, a developer can quickly see
 669 * where problems are occurring.
 670 *
 671 * This is intended as a debugging tool for the developer only.
 672 * Please refrain from leaving trace_printks scattered around in
 673 * your code. (Extra memory is used for special buffers that are
 674 * allocated when trace_printk() is used.)
 675 *
 676 * A little optimization trick is done here. If there's only one
 677 * argument, there's no need to scan the string for printf formats.
 678 * The trace_puts() will suffice. But how can we take advantage of
 679 * using trace_puts() when trace_printk() has only one argument?
 680 * By stringifying the args and checking the size we can tell
 681 * whether or not there are args. __stringify((__VA_ARGS__)) will
 682 * turn into "()\0" with a size of 3 when there are no args, anything
 683 * else will be bigger. All we need to do is define a string to this,
 684 * and then take its size and compare to 3. If it's bigger, use
 685 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 686 * let gcc optimize the rest.
 687 */
 688
 689#define trace_printk(fmt, ...)                          \
 690do {                                                    \
 691        char _______STR[] = __stringify((__VA_ARGS__)); \
 692        if (sizeof(_______STR) > 3)                     \
 693                do_trace_printk(fmt, ##__VA_ARGS__);    \
 694        else                                            \
 695                trace_puts(fmt);                        \
 696} while (0)
 697
 698#define do_trace_printk(fmt, args...)                                   \
 699do {                                                                    \
 700        static const char *trace_printk_fmt __used                      \
 701                __attribute__((section("__trace_printk_fmt"))) =        \
 702                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 703                                                                        \
 704        __trace_printk_check_format(fmt, ##args);                       \
 705                                                                        \
 706        if (__builtin_constant_p(fmt))                                  \
 707                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 708        else                                                            \
 709                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 710} while (0)
 711
 712extern __printf(2, 3)
 713int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 714
 715extern __printf(2, 3)
 716int __trace_printk(unsigned long ip, const char *fmt, ...);
 717
 718/**
 719 * trace_puts - write a string into the ftrace buffer
 720 * @str: the string to record
 721 *
 722 * Note: __trace_bputs is an internal function for trace_puts and
 723 *       the @ip is passed in via the trace_puts macro.
 724 *
 725 * This is similar to trace_printk() but is made for those really fast
 726 * paths that a developer wants the least amount of "Heisenbug" effects,
 727 * where the processing of the print format is still too much.
 728 *
 729 * This function allows a kernel developer to debug fast path sections
 730 * that printk is not appropriate for. By scattering in various
 731 * printk like tracing in the code, a developer can quickly see
 732 * where problems are occurring.
 733 *
 734 * This is intended as a debugging tool for the developer only.
 735 * Please refrain from leaving trace_puts scattered around in
 736 * your code. (Extra memory is used for special buffers that are
 737 * allocated when trace_puts() is used.)
 738 *
 739 * Returns: 0 if nothing was written, positive # if string was.
 740 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 741 */
 742
 743#define trace_puts(str) ({                                              \
 744        static const char *trace_printk_fmt __used                      \
 745                __attribute__((section("__trace_printk_fmt"))) =        \
 746                __builtin_constant_p(str) ? str : NULL;                 \
 747                                                                        \
 748        if (__builtin_constant_p(str))                                  \
 749                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 750        else                                                            \
 751                __trace_puts(_THIS_IP_, str, strlen(str));              \
 752})
 753extern int __trace_bputs(unsigned long ip, const char *str);
 754extern int __trace_puts(unsigned long ip, const char *str, int size);
 755
 756extern void trace_dump_stack(int skip);
 757
 758/*
 759 * The double __builtin_constant_p is because gcc will give us an error
 760 * if we try to allocate the static variable to fmt if it is not a
 761 * constant. Even with the outer if statement.
 762 */
 763#define ftrace_vprintk(fmt, vargs)                                      \
 764do {                                                                    \
 765        if (__builtin_constant_p(fmt)) {                                \
 766                static const char *trace_printk_fmt __used              \
 767                  __attribute__((section("__trace_printk_fmt"))) =      \
 768                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 769                                                                        \
 770                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 771        } else                                                          \
 772                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 773} while (0)
 774
 775extern __printf(2, 0) int
 776__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 777
 778extern __printf(2, 0) int
 779__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 780
 781extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 782#else
 783static inline void tracing_start(void) { }
 784static inline void tracing_stop(void) { }
 785static inline void trace_dump_stack(int skip) { }
 786
 787static inline void tracing_on(void) { }
 788static inline void tracing_off(void) { }
 789static inline int tracing_is_on(void) { return 0; }
 790static inline void tracing_snapshot(void) { }
 791static inline void tracing_snapshot_alloc(void) { }
 792
 793static inline __printf(1, 2)
 794int trace_printk(const char *fmt, ...)
 795{
 796        return 0;
 797}
 798static __printf(1, 0) inline int
 799ftrace_vprintk(const char *fmt, va_list ap)
 800{
 801        return 0;
 802}
 803static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 804#endif /* CONFIG_TRACING */
 805
 806/*
 807 * min()/max()/clamp() macros must accomplish three things:
 808 *
 809 * - avoid multiple evaluations of the arguments (so side-effects like
 810 *   "x++" happen only once) when non-constant.
 811 * - perform strict type-checking (to generate warnings instead of
 812 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 813 *   in __typecheck().
 814 * - retain result as a constant expressions when called with only
 815 *   constant expressions (to avoid tripping VLA warnings in stack
 816 *   allocation usage).
 817 */
 818#define __typecheck(x, y) \
 819                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 820
 821/*
 822 * This returns a constant expression while determining if an argument is
 823 * a constant expression, most importantly without evaluating the argument.
 824 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 825 */
 826#define __is_constexpr(x) \
 827        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 828
 829#define __no_side_effects(x, y) \
 830                (__is_constexpr(x) && __is_constexpr(y))
 831
 832#define __safe_cmp(x, y) \
 833                (__typecheck(x, y) && __no_side_effects(x, y))
 834
 835#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 836
 837#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 838                typeof(x) unique_x = (x);               \
 839                typeof(y) unique_y = (y);               \
 840                __cmp(unique_x, unique_y, op); })
 841
 842#define __careful_cmp(x, y, op) \
 843        __builtin_choose_expr(__safe_cmp(x, y), \
 844                __cmp(x, y, op), \
 845                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 846
 847/**
 848 * min - return minimum of two values of the same or compatible types
 849 * @x: first value
 850 * @y: second value
 851 */
 852#define min(x, y)       __careful_cmp(x, y, <)
 853
 854/**
 855 * max - return maximum of two values of the same or compatible types
 856 * @x: first value
 857 * @y: second value
 858 */
 859#define max(x, y)       __careful_cmp(x, y, >)
 860
 861/**
 862 * min3 - return minimum of three values
 863 * @x: first value
 864 * @y: second value
 865 * @z: third value
 866 */
 867#define min3(x, y, z) min((typeof(x))min(x, y), z)
 868
 869/**
 870 * max3 - return maximum of three values
 871 * @x: first value
 872 * @y: second value
 873 * @z: third value
 874 */
 875#define max3(x, y, z) max((typeof(x))max(x, y), z)
 876
 877/**
 878 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 879 * @x: value1
 880 * @y: value2
 881 */
 882#define min_not_zero(x, y) ({                   \
 883        typeof(x) __x = (x);                    \
 884        typeof(y) __y = (y);                    \
 885        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 886
 887/**
 888 * clamp - return a value clamped to a given range with strict typechecking
 889 * @val: current value
 890 * @lo: lowest allowable value
 891 * @hi: highest allowable value
 892 *
 893 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 894 * same type as @val.  See the unnecessary pointer comparisons.
 895 */
 896#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 897
 898/*
 899 * ..and if you can't take the strict
 900 * types, you can specify one yourself.
 901 *
 902 * Or not use min/max/clamp at all, of course.
 903 */
 904
 905/**
 906 * min_t - return minimum of two values, using the specified type
 907 * @type: data type to use
 908 * @x: first value
 909 * @y: second value
 910 */
 911#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 912
 913/**
 914 * max_t - return maximum of two values, using the specified type
 915 * @type: data type to use
 916 * @x: first value
 917 * @y: second value
 918 */
 919#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 920
 921/**
 922 * clamp_t - return a value clamped to a given range using a given type
 923 * @type: the type of variable to use
 924 * @val: current value
 925 * @lo: minimum allowable value
 926 * @hi: maximum allowable value
 927 *
 928 * This macro does no typechecking and uses temporary variables of type
 929 * @type to make all the comparisons.
 930 */
 931#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 932
 933/**
 934 * clamp_val - return a value clamped to a given range using val's type
 935 * @val: current value
 936 * @lo: minimum allowable value
 937 * @hi: maximum allowable value
 938 *
 939 * This macro does no typechecking and uses temporary variables of whatever
 940 * type the input argument @val is.  This is useful when @val is an unsigned
 941 * type and @lo and @hi are literals that will otherwise be assigned a signed
 942 * integer type.
 943 */
 944#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 945
 946
 947/**
 948 * swap - swap values of @a and @b
 949 * @a: first value
 950 * @b: second value
 951 */
 952#define swap(a, b) \
 953        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 954
 955/* This counts to 12. Any more, it will return 13th argument. */
 956#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 957#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 958
 959#define __CONCAT(a, b) a ## b
 960#define CONCATENATE(a, b) __CONCAT(a, b)
 961
 962/**
 963 * container_of - cast a member of a structure out to the containing structure
 964 * @ptr:        the pointer to the member.
 965 * @type:       the type of the container struct this is embedded in.
 966 * @member:     the name of the member within the struct.
 967 *
 968 */
 969#define container_of(ptr, type, member) ({                              \
 970        void *__mptr = (void *)(ptr);                                   \
 971        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 972                         !__same_type(*(ptr), void),                    \
 973                         "pointer type mismatch in container_of()");    \
 974        ((type *)(__mptr - offsetof(type, member))); })
 975
 976/**
 977 * container_of_safe - cast a member of a structure out to the containing structure
 978 * @ptr:        the pointer to the member.
 979 * @type:       the type of the container struct this is embedded in.
 980 * @member:     the name of the member within the struct.
 981 *
 982 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
 983 */
 984#define container_of_safe(ptr, type, member) ({                         \
 985        void *__mptr = (void *)(ptr);                                   \
 986        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 987                         !__same_type(*(ptr), void),                    \
 988                         "pointer type mismatch in container_of()");    \
 989        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
 990                ((type *)(__mptr - offsetof(type, member))); })
 991
 992/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
 993#ifdef CONFIG_FTRACE_MCOUNT_RECORD
 994# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
 995#endif
 996
 997/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
 998#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
 999        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1000         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1001         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1002         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1003         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1004         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1005         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1006         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1007         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1008         (perms))
1009#endif
1010