linux/include/linux/math64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MATH64_H
   3#define _LINUX_MATH64_H
   4
   5#include <linux/types.h>
   6#include <asm/div64.h>
   7
   8#if BITS_PER_LONG == 64
   9
  10#define div64_long(x, y) div64_s64((x), (y))
  11#define div64_ul(x, y)   div64_u64((x), (y))
  12
  13/**
  14 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
  15 * @dividend: unsigned 64bit dividend
  16 * @divisor: unsigned 32bit divisor
  17 * @remainder: pointer to unsigned 32bit remainder
  18 *
  19 * Return: sets ``*remainder``, then returns dividend / divisor
  20 *
  21 * This is commonly provided by 32bit archs to provide an optimized 64bit
  22 * divide.
  23 */
  24static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  25{
  26        *remainder = dividend % divisor;
  27        return dividend / divisor;
  28}
  29
  30/**
  31 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
  32 * @dividend: signed 64bit dividend
  33 * @divisor: signed 32bit divisor
  34 * @remainder: pointer to signed 32bit remainder
  35 *
  36 * Return: sets ``*remainder``, then returns dividend / divisor
  37 */
  38static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
  39{
  40        *remainder = dividend % divisor;
  41        return dividend / divisor;
  42}
  43
  44/**
  45 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
  46 * @dividend: unsigned 64bit dividend
  47 * @divisor: unsigned 64bit divisor
  48 * @remainder: pointer to unsigned 64bit remainder
  49 *
  50 * Return: sets ``*remainder``, then returns dividend / divisor
  51 */
  52static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
  53{
  54        *remainder = dividend % divisor;
  55        return dividend / divisor;
  56}
  57
  58/**
  59 * div64_u64 - unsigned 64bit divide with 64bit divisor
  60 * @dividend: unsigned 64bit dividend
  61 * @divisor: unsigned 64bit divisor
  62 *
  63 * Return: dividend / divisor
  64 */
  65static inline u64 div64_u64(u64 dividend, u64 divisor)
  66{
  67        return dividend / divisor;
  68}
  69
  70/**
  71 * div64_s64 - signed 64bit divide with 64bit divisor
  72 * @dividend: signed 64bit dividend
  73 * @divisor: signed 64bit divisor
  74 *
  75 * Return: dividend / divisor
  76 */
  77static inline s64 div64_s64(s64 dividend, s64 divisor)
  78{
  79        return dividend / divisor;
  80}
  81
  82#elif BITS_PER_LONG == 32
  83
  84#define div64_long(x, y) div_s64((x), (y))
  85#define div64_ul(x, y)   div_u64((x), (y))
  86
  87#ifndef div_u64_rem
  88static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  89{
  90        *remainder = do_div(dividend, divisor);
  91        return dividend;
  92}
  93#endif
  94
  95#ifndef div_s64_rem
  96extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
  97#endif
  98
  99#ifndef div64_u64_rem
 100extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
 101#endif
 102
 103#ifndef div64_u64
 104extern u64 div64_u64(u64 dividend, u64 divisor);
 105#endif
 106
 107#ifndef div64_s64
 108extern s64 div64_s64(s64 dividend, s64 divisor);
 109#endif
 110
 111#endif /* BITS_PER_LONG */
 112
 113/**
 114 * div_u64 - unsigned 64bit divide with 32bit divisor
 115 * @dividend: unsigned 64bit dividend
 116 * @divisor: unsigned 32bit divisor
 117 *
 118 * This is the most common 64bit divide and should be used if possible,
 119 * as many 32bit archs can optimize this variant better than a full 64bit
 120 * divide.
 121 */
 122#ifndef div_u64
 123static inline u64 div_u64(u64 dividend, u32 divisor)
 124{
 125        u32 remainder;
 126        return div_u64_rem(dividend, divisor, &remainder);
 127}
 128#endif
 129
 130/**
 131 * div_s64 - signed 64bit divide with 32bit divisor
 132 * @dividend: signed 64bit dividend
 133 * @divisor: signed 32bit divisor
 134 */
 135#ifndef div_s64
 136static inline s64 div_s64(s64 dividend, s32 divisor)
 137{
 138        s32 remainder;
 139        return div_s64_rem(dividend, divisor, &remainder);
 140}
 141#endif
 142
 143u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
 144
 145static __always_inline u32
 146__iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 147{
 148        u32 ret = 0;
 149
 150        while (dividend >= divisor) {
 151                /* The following asm() prevents the compiler from
 152                   optimising this loop into a modulo operation.  */
 153                asm("" : "+rm"(dividend));
 154
 155                dividend -= divisor;
 156                ret++;
 157        }
 158
 159        *remainder = dividend;
 160
 161        return ret;
 162}
 163
 164#ifndef mul_u32_u32
 165/*
 166 * Many a GCC version messes this up and generates a 64x64 mult :-(
 167 */
 168static inline u64 mul_u32_u32(u32 a, u32 b)
 169{
 170        return (u64)a * b;
 171}
 172#endif
 173
 174#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
 175
 176#ifndef mul_u64_u32_shr
 177static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 178{
 179        return (u64)(((unsigned __int128)a * mul) >> shift);
 180}
 181#endif /* mul_u64_u32_shr */
 182
 183#ifndef mul_u64_u64_shr
 184static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
 185{
 186        return (u64)(((unsigned __int128)a * mul) >> shift);
 187}
 188#endif /* mul_u64_u64_shr */
 189
 190#else
 191
 192#ifndef mul_u64_u32_shr
 193static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 194{
 195        u32 ah, al;
 196        u64 ret;
 197
 198        al = a;
 199        ah = a >> 32;
 200
 201        ret = mul_u32_u32(al, mul) >> shift;
 202        if (ah)
 203                ret += mul_u32_u32(ah, mul) << (32 - shift);
 204
 205        return ret;
 206}
 207#endif /* mul_u64_u32_shr */
 208
 209#ifndef mul_u64_u64_shr
 210static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
 211{
 212        union {
 213                u64 ll;
 214                struct {
 215#ifdef __BIG_ENDIAN
 216                        u32 high, low;
 217#else
 218                        u32 low, high;
 219#endif
 220                } l;
 221        } rl, rm, rn, rh, a0, b0;
 222        u64 c;
 223
 224        a0.ll = a;
 225        b0.ll = b;
 226
 227        rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
 228        rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
 229        rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
 230        rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
 231
 232        /*
 233         * Each of these lines computes a 64-bit intermediate result into "c",
 234         * starting at bits 32-95.  The low 32-bits go into the result of the
 235         * multiplication, the high 32-bits are carried into the next step.
 236         */
 237        rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
 238        rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
 239        rh.l.high = (c >> 32) + rh.l.high;
 240
 241        /*
 242         * The 128-bit result of the multiplication is in rl.ll and rh.ll,
 243         * shift it right and throw away the high part of the result.
 244         */
 245        if (shift == 0)
 246                return rl.ll;
 247        if (shift < 64)
 248                return (rl.ll >> shift) | (rh.ll << (64 - shift));
 249        return rh.ll >> (shift & 63);
 250}
 251#endif /* mul_u64_u64_shr */
 252
 253#endif
 254
 255#ifndef mul_u64_u32_div
 256static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
 257{
 258        union {
 259                u64 ll;
 260                struct {
 261#ifdef __BIG_ENDIAN
 262                        u32 high, low;
 263#else
 264                        u32 low, high;
 265#endif
 266                } l;
 267        } u, rl, rh;
 268
 269        u.ll = a;
 270        rl.ll = mul_u32_u32(u.l.low, mul);
 271        rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
 272
 273        /* Bits 32-63 of the result will be in rh.l.low. */
 274        rl.l.high = do_div(rh.ll, divisor);
 275
 276        /* Bits 0-31 of the result will be in rl.l.low. */
 277        do_div(rl.ll, divisor);
 278
 279        rl.l.high = rh.l.low;
 280        return rl.ll;
 281}
 282#endif /* mul_u64_u32_div */
 283
 284#define DIV64_U64_ROUND_UP(ll, d)       \
 285        ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
 286
 287/**
 288 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
 289 * @dividend: unsigned 64bit dividend
 290 * @divisor: unsigned 64bit divisor
 291 *
 292 * Divide unsigned 64bit dividend by unsigned 64bit divisor
 293 * and round to closest integer.
 294 *
 295 * Return: dividend / divisor rounded to nearest integer
 296 */
 297#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)      \
 298        ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
 299
 300#endif /* _LINUX_MATH64_H */
 301