linux/include/linux/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_H
   3#define _LINUX_MM_H
   4
   5#include <linux/errno.h>
   6
   7#ifdef __KERNEL__
   8
   9#include <linux/mmdebug.h>
  10#include <linux/gfp.h>
  11#include <linux/bug.h>
  12#include <linux/list.h>
  13#include <linux/mmzone.h>
  14#include <linux/rbtree.h>
  15#include <linux/atomic.h>
  16#include <linux/debug_locks.h>
  17#include <linux/mm_types.h>
  18#include <linux/range.h>
  19#include <linux/pfn.h>
  20#include <linux/percpu-refcount.h>
  21#include <linux/bit_spinlock.h>
  22#include <linux/shrinker.h>
  23#include <linux/resource.h>
  24#include <linux/page_ext.h>
  25#include <linux/err.h>
  26#include <linux/page_ref.h>
  27#include <linux/memremap.h>
  28#include <linux/overflow.h>
  29#include <linux/sizes.h>
  30
  31struct mempolicy;
  32struct anon_vma;
  33struct anon_vma_chain;
  34struct file_ra_state;
  35struct user_struct;
  36struct writeback_control;
  37struct bdi_writeback;
  38
  39void init_mm_internals(void);
  40
  41#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  42extern unsigned long max_mapnr;
  43
  44static inline void set_max_mapnr(unsigned long limit)
  45{
  46        max_mapnr = limit;
  47}
  48#else
  49static inline void set_max_mapnr(unsigned long limit) { }
  50#endif
  51
  52extern atomic_long_t _totalram_pages;
  53static inline unsigned long totalram_pages(void)
  54{
  55        return (unsigned long)atomic_long_read(&_totalram_pages);
  56}
  57
  58static inline void totalram_pages_inc(void)
  59{
  60        atomic_long_inc(&_totalram_pages);
  61}
  62
  63static inline void totalram_pages_dec(void)
  64{
  65        atomic_long_dec(&_totalram_pages);
  66}
  67
  68static inline void totalram_pages_add(long count)
  69{
  70        atomic_long_add(count, &_totalram_pages);
  71}
  72
  73static inline void totalram_pages_set(long val)
  74{
  75        atomic_long_set(&_totalram_pages, val);
  76}
  77
  78extern void * high_memory;
  79extern int page_cluster;
  80
  81#ifdef CONFIG_SYSCTL
  82extern int sysctl_legacy_va_layout;
  83#else
  84#define sysctl_legacy_va_layout 0
  85#endif
  86
  87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  88extern const int mmap_rnd_bits_min;
  89extern const int mmap_rnd_bits_max;
  90extern int mmap_rnd_bits __read_mostly;
  91#endif
  92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  93extern const int mmap_rnd_compat_bits_min;
  94extern const int mmap_rnd_compat_bits_max;
  95extern int mmap_rnd_compat_bits __read_mostly;
  96#endif
  97
  98#include <asm/page.h>
  99#include <asm/pgtable.h>
 100#include <asm/processor.h>
 101
 102/*
 103 * Architectures that support memory tagging (assigning tags to memory regions,
 104 * embedding these tags into addresses that point to these memory regions, and
 105 * checking that the memory and the pointer tags match on memory accesses)
 106 * redefine this macro to strip tags from pointers.
 107 * It's defined as noop for arcitectures that don't support memory tagging.
 108 */
 109#ifndef untagged_addr
 110#define untagged_addr(addr) (addr)
 111#endif
 112
 113#ifndef __pa_symbol
 114#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 115#endif
 116
 117#ifndef page_to_virt
 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
 119#endif
 120
 121#ifndef lm_alias
 122#define lm_alias(x)     __va(__pa_symbol(x))
 123#endif
 124
 125/*
 126 * To prevent common memory management code establishing
 127 * a zero page mapping on a read fault.
 128 * This macro should be defined within <asm/pgtable.h>.
 129 * s390 does this to prevent multiplexing of hardware bits
 130 * related to the physical page in case of virtualization.
 131 */
 132#ifndef mm_forbids_zeropage
 133#define mm_forbids_zeropage(X)  (0)
 134#endif
 135
 136/*
 137 * On some architectures it is expensive to call memset() for small sizes.
 138 * If an architecture decides to implement their own version of
 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 140 * define their own version of this macro in <asm/pgtable.h>
 141 */
 142#if BITS_PER_LONG == 64
 143/* This function must be updated when the size of struct page grows above 80
 144 * or reduces below 56. The idea that compiler optimizes out switch()
 145 * statement, and only leaves move/store instructions. Also the compiler can
 146 * combine write statments if they are both assignments and can be reordered,
 147 * this can result in several of the writes here being dropped.
 148 */
 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 150static inline void __mm_zero_struct_page(struct page *page)
 151{
 152        unsigned long *_pp = (void *)page;
 153
 154         /* Check that struct page is either 56, 64, 72, or 80 bytes */
 155        BUILD_BUG_ON(sizeof(struct page) & 7);
 156        BUILD_BUG_ON(sizeof(struct page) < 56);
 157        BUILD_BUG_ON(sizeof(struct page) > 80);
 158
 159        switch (sizeof(struct page)) {
 160        case 80:
 161                _pp[9] = 0;     /* fallthrough */
 162        case 72:
 163                _pp[8] = 0;     /* fallthrough */
 164        case 64:
 165                _pp[7] = 0;     /* fallthrough */
 166        case 56:
 167                _pp[6] = 0;
 168                _pp[5] = 0;
 169                _pp[4] = 0;
 170                _pp[3] = 0;
 171                _pp[2] = 0;
 172                _pp[1] = 0;
 173                _pp[0] = 0;
 174        }
 175}
 176#else
 177#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 178#endif
 179
 180/*
 181 * Default maximum number of active map areas, this limits the number of vmas
 182 * per mm struct. Users can overwrite this number by sysctl but there is a
 183 * problem.
 184 *
 185 * When a program's coredump is generated as ELF format, a section is created
 186 * per a vma. In ELF, the number of sections is represented in unsigned short.
 187 * This means the number of sections should be smaller than 65535 at coredump.
 188 * Because the kernel adds some informative sections to a image of program at
 189 * generating coredump, we need some margin. The number of extra sections is
 190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 191 *
 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 193 * not a hard limit any more. Although some userspace tools can be surprised by
 194 * that.
 195 */
 196#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 197#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 198
 199extern int sysctl_max_map_count;
 200
 201extern unsigned long sysctl_user_reserve_kbytes;
 202extern unsigned long sysctl_admin_reserve_kbytes;
 203
 204extern int sysctl_overcommit_memory;
 205extern int sysctl_overcommit_ratio;
 206extern unsigned long sysctl_overcommit_kbytes;
 207
 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
 209                                    size_t *, loff_t *);
 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
 211                                    size_t *, loff_t *);
 212
 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 214
 215/* to align the pointer to the (next) page boundary */
 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 217
 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 219#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 220
 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
 222
 223/*
 224 * Linux kernel virtual memory manager primitives.
 225 * The idea being to have a "virtual" mm in the same way
 226 * we have a virtual fs - giving a cleaner interface to the
 227 * mm details, and allowing different kinds of memory mappings
 228 * (from shared memory to executable loading to arbitrary
 229 * mmap() functions).
 230 */
 231
 232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 234void vm_area_free(struct vm_area_struct *);
 235
 236#ifndef CONFIG_MMU
 237extern struct rb_root nommu_region_tree;
 238extern struct rw_semaphore nommu_region_sem;
 239
 240extern unsigned int kobjsize(const void *objp);
 241#endif
 242
 243/*
 244 * vm_flags in vm_area_struct, see mm_types.h.
 245 * When changing, update also include/trace/events/mmflags.h
 246 */
 247#define VM_NONE         0x00000000
 248
 249#define VM_READ         0x00000001      /* currently active flags */
 250#define VM_WRITE        0x00000002
 251#define VM_EXEC         0x00000004
 252#define VM_SHARED       0x00000008
 253
 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 255#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 256#define VM_MAYWRITE     0x00000020
 257#define VM_MAYEXEC      0x00000040
 258#define VM_MAYSHARE     0x00000080
 259
 260#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 261#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 262#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 263#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 264#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 265
 266#define VM_LOCKED       0x00002000
 267#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 268
 269                                        /* Used by sys_madvise() */
 270#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 271#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 272
 273#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 274#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 275#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 276#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 277#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 278#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 279#define VM_SYNC         0x00800000      /* Synchronous page faults */
 280#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 281#define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
 282#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 283
 284#ifdef CONFIG_MEM_SOFT_DIRTY
 285# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 286#else
 287# define VM_SOFTDIRTY   0
 288#endif
 289
 290#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 291#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 292#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 293#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 294
 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 296#define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
 297#define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
 298#define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
 299#define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
 300#define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
 301#define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
 302#define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
 303#define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
 304#define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
 305#define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 307
 308#ifdef CONFIG_ARCH_HAS_PKEYS
 309# define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
 310# define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
 311# define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
 312# define VM_PKEY_BIT2   VM_HIGH_ARCH_2
 313# define VM_PKEY_BIT3   VM_HIGH_ARCH_3
 314#ifdef CONFIG_PPC
 315# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 316#else
 317# define VM_PKEY_BIT4  0
 318#endif
 319#endif /* CONFIG_ARCH_HAS_PKEYS */
 320
 321#if defined(CONFIG_X86)
 322# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 323#elif defined(CONFIG_PPC)
 324# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 325#elif defined(CONFIG_PARISC)
 326# define VM_GROWSUP     VM_ARCH_1
 327#elif defined(CONFIG_IA64)
 328# define VM_GROWSUP     VM_ARCH_1
 329#elif defined(CONFIG_SPARC64)
 330# define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
 331# define VM_ARCH_CLEAR  VM_SPARC_ADI
 332#elif !defined(CONFIG_MMU)
 333# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 334#endif
 335
 336#if defined(CONFIG_X86_INTEL_MPX)
 337/* MPX specific bounds table or bounds directory */
 338# define VM_MPX         VM_HIGH_ARCH_4
 339#else
 340# define VM_MPX         VM_NONE
 341#endif
 342
 343#ifndef VM_GROWSUP
 344# define VM_GROWSUP     VM_NONE
 345#endif
 346
 347/* Bits set in the VMA until the stack is in its final location */
 348#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 349
 350#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 352#endif
 353
 354#ifdef CONFIG_STACK_GROWSUP
 355#define VM_STACK        VM_GROWSUP
 356#else
 357#define VM_STACK        VM_GROWSDOWN
 358#endif
 359
 360#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 361
 362/*
 363 * Special vmas that are non-mergable, non-mlock()able.
 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 365 */
 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 367
 368/* This mask defines which mm->def_flags a process can inherit its parent */
 369#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 370
 371/* This mask is used to clear all the VMA flags used by mlock */
 372#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 373
 374/* Arch-specific flags to clear when updating VM flags on protection change */
 375#ifndef VM_ARCH_CLEAR
 376# define VM_ARCH_CLEAR  VM_NONE
 377#endif
 378#define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 379
 380/*
 381 * mapping from the currently active vm_flags protection bits (the
 382 * low four bits) to a page protection mask..
 383 */
 384extern pgprot_t protection_map[16];
 385
 386#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 387#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 388#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 389#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 390#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 391#define FAULT_FLAG_TRIED        0x20    /* Second try */
 392#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 393#define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
 394#define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
 395
 396#define FAULT_FLAG_TRACE \
 397        { FAULT_FLAG_WRITE,             "WRITE" }, \
 398        { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
 399        { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
 400        { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
 401        { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
 402        { FAULT_FLAG_TRIED,             "TRIED" }, \
 403        { FAULT_FLAG_USER,              "USER" }, \
 404        { FAULT_FLAG_REMOTE,            "REMOTE" }, \
 405        { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }
 406
 407/*
 408 * vm_fault is filled by the the pagefault handler and passed to the vma's
 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 411 *
 412 * MM layer fills up gfp_mask for page allocations but fault handler might
 413 * alter it if its implementation requires a different allocation context.
 414 *
 415 * pgoff should be used in favour of virtual_address, if possible.
 416 */
 417struct vm_fault {
 418        struct vm_area_struct *vma;     /* Target VMA */
 419        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 420        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 421        pgoff_t pgoff;                  /* Logical page offset based on vma */
 422        unsigned long address;          /* Faulting virtual address */
 423        pmd_t *pmd;                     /* Pointer to pmd entry matching
 424                                         * the 'address' */
 425        pud_t *pud;                     /* Pointer to pud entry matching
 426                                         * the 'address'
 427                                         */
 428        pte_t orig_pte;                 /* Value of PTE at the time of fault */
 429
 430        struct page *cow_page;          /* Page handler may use for COW fault */
 431        struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
 432        struct page *page;              /* ->fault handlers should return a
 433                                         * page here, unless VM_FAULT_NOPAGE
 434                                         * is set (which is also implied by
 435                                         * VM_FAULT_ERROR).
 436                                         */
 437        /* These three entries are valid only while holding ptl lock */
 438        pte_t *pte;                     /* Pointer to pte entry matching
 439                                         * the 'address'. NULL if the page
 440                                         * table hasn't been allocated.
 441                                         */
 442        spinlock_t *ptl;                /* Page table lock.
 443                                         * Protects pte page table if 'pte'
 444                                         * is not NULL, otherwise pmd.
 445                                         */
 446        pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
 447                                         * vm_ops->map_pages() calls
 448                                         * alloc_set_pte() from atomic context.
 449                                         * do_fault_around() pre-allocates
 450                                         * page table to avoid allocation from
 451                                         * atomic context.
 452                                         */
 453};
 454
 455/* page entry size for vm->huge_fault() */
 456enum page_entry_size {
 457        PE_SIZE_PTE = 0,
 458        PE_SIZE_PMD,
 459        PE_SIZE_PUD,
 460};
 461
 462/*
 463 * These are the virtual MM functions - opening of an area, closing and
 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 465 * to the functions called when a no-page or a wp-page exception occurs.
 466 */
 467struct vm_operations_struct {
 468        void (*open)(struct vm_area_struct * area);
 469        void (*close)(struct vm_area_struct * area);
 470        int (*split)(struct vm_area_struct * area, unsigned long addr);
 471        int (*mremap)(struct vm_area_struct * area);
 472        vm_fault_t (*fault)(struct vm_fault *vmf);
 473        vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 474                        enum page_entry_size pe_size);
 475        void (*map_pages)(struct vm_fault *vmf,
 476                        pgoff_t start_pgoff, pgoff_t end_pgoff);
 477        unsigned long (*pagesize)(struct vm_area_struct * area);
 478
 479        /* notification that a previously read-only page is about to become
 480         * writable, if an error is returned it will cause a SIGBUS */
 481        vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 482
 483        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 484        vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 485
 486        /* called by access_process_vm when get_user_pages() fails, typically
 487         * for use by special VMAs that can switch between memory and hardware
 488         */
 489        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 490                      void *buf, int len, int write);
 491
 492        /* Called by the /proc/PID/maps code to ask the vma whether it
 493         * has a special name.  Returning non-NULL will also cause this
 494         * vma to be dumped unconditionally. */
 495        const char *(*name)(struct vm_area_struct *vma);
 496
 497#ifdef CONFIG_NUMA
 498        /*
 499         * set_policy() op must add a reference to any non-NULL @new mempolicy
 500         * to hold the policy upon return.  Caller should pass NULL @new to
 501         * remove a policy and fall back to surrounding context--i.e. do not
 502         * install a MPOL_DEFAULT policy, nor the task or system default
 503         * mempolicy.
 504         */
 505        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 506
 507        /*
 508         * get_policy() op must add reference [mpol_get()] to any policy at
 509         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 510         * in mm/mempolicy.c will do this automatically.
 511         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 512         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 513         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 514         * must return NULL--i.e., do not "fallback" to task or system default
 515         * policy.
 516         */
 517        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 518                                        unsigned long addr);
 519#endif
 520        /*
 521         * Called by vm_normal_page() for special PTEs to find the
 522         * page for @addr.  This is useful if the default behavior
 523         * (using pte_page()) would not find the correct page.
 524         */
 525        struct page *(*find_special_page)(struct vm_area_struct *vma,
 526                                          unsigned long addr);
 527};
 528
 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 530{
 531        static const struct vm_operations_struct dummy_vm_ops = {};
 532
 533        memset(vma, 0, sizeof(*vma));
 534        vma->vm_mm = mm;
 535        vma->vm_ops = &dummy_vm_ops;
 536        INIT_LIST_HEAD(&vma->anon_vma_chain);
 537}
 538
 539static inline void vma_set_anonymous(struct vm_area_struct *vma)
 540{
 541        vma->vm_ops = NULL;
 542}
 543
 544/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 545#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 546
 547struct mmu_gather;
 548struct inode;
 549
 550#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 551static inline int pmd_devmap(pmd_t pmd)
 552{
 553        return 0;
 554}
 555static inline int pud_devmap(pud_t pud)
 556{
 557        return 0;
 558}
 559static inline int pgd_devmap(pgd_t pgd)
 560{
 561        return 0;
 562}
 563#endif
 564
 565/*
 566 * FIXME: take this include out, include page-flags.h in
 567 * files which need it (119 of them)
 568 */
 569#include <linux/page-flags.h>
 570#include <linux/huge_mm.h>
 571
 572/*
 573 * Methods to modify the page usage count.
 574 *
 575 * What counts for a page usage:
 576 * - cache mapping   (page->mapping)
 577 * - private data    (page->private)
 578 * - page mapped in a task's page tables, each mapping
 579 *   is counted separately
 580 *
 581 * Also, many kernel routines increase the page count before a critical
 582 * routine so they can be sure the page doesn't go away from under them.
 583 */
 584
 585/*
 586 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 587 */
 588static inline int put_page_testzero(struct page *page)
 589{
 590        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 591        return page_ref_dec_and_test(page);
 592}
 593
 594/*
 595 * Try to grab a ref unless the page has a refcount of zero, return false if
 596 * that is the case.
 597 * This can be called when MMU is off so it must not access
 598 * any of the virtual mappings.
 599 */
 600static inline int get_page_unless_zero(struct page *page)
 601{
 602        return page_ref_add_unless(page, 1, 0);
 603}
 604
 605extern int page_is_ram(unsigned long pfn);
 606
 607enum {
 608        REGION_INTERSECTS,
 609        REGION_DISJOINT,
 610        REGION_MIXED,
 611};
 612
 613int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 614                      unsigned long desc);
 615
 616/* Support for virtually mapped pages */
 617struct page *vmalloc_to_page(const void *addr);
 618unsigned long vmalloc_to_pfn(const void *addr);
 619
 620/*
 621 * Determine if an address is within the vmalloc range
 622 *
 623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 624 * is no special casing required.
 625 */
 626static inline bool is_vmalloc_addr(const void *x)
 627{
 628#ifdef CONFIG_MMU
 629        unsigned long addr = (unsigned long)x;
 630
 631        return addr >= VMALLOC_START && addr < VMALLOC_END;
 632#else
 633        return false;
 634#endif
 635}
 636#ifdef CONFIG_MMU
 637extern int is_vmalloc_or_module_addr(const void *x);
 638#else
 639static inline int is_vmalloc_or_module_addr(const void *x)
 640{
 641        return 0;
 642}
 643#endif
 644
 645extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 646static inline void *kvmalloc(size_t size, gfp_t flags)
 647{
 648        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 649}
 650static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 651{
 652        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 653}
 654static inline void *kvzalloc(size_t size, gfp_t flags)
 655{
 656        return kvmalloc(size, flags | __GFP_ZERO);
 657}
 658
 659static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 660{
 661        size_t bytes;
 662
 663        if (unlikely(check_mul_overflow(n, size, &bytes)))
 664                return NULL;
 665
 666        return kvmalloc(bytes, flags);
 667}
 668
 669static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 670{
 671        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 672}
 673
 674extern void kvfree(const void *addr);
 675
 676static inline atomic_t *compound_mapcount_ptr(struct page *page)
 677{
 678        return &page[1].compound_mapcount;
 679}
 680
 681static inline int compound_mapcount(struct page *page)
 682{
 683        VM_BUG_ON_PAGE(!PageCompound(page), page);
 684        page = compound_head(page);
 685        return atomic_read(compound_mapcount_ptr(page)) + 1;
 686}
 687
 688/*
 689 * The atomic page->_mapcount, starts from -1: so that transitions
 690 * both from it and to it can be tracked, using atomic_inc_and_test
 691 * and atomic_add_negative(-1).
 692 */
 693static inline void page_mapcount_reset(struct page *page)
 694{
 695        atomic_set(&(page)->_mapcount, -1);
 696}
 697
 698int __page_mapcount(struct page *page);
 699
 700static inline int page_mapcount(struct page *page)
 701{
 702        VM_BUG_ON_PAGE(PageSlab(page), page);
 703
 704        if (unlikely(PageCompound(page)))
 705                return __page_mapcount(page);
 706        return atomic_read(&page->_mapcount) + 1;
 707}
 708
 709#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 710int total_mapcount(struct page *page);
 711int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 712#else
 713static inline int total_mapcount(struct page *page)
 714{
 715        return page_mapcount(page);
 716}
 717static inline int page_trans_huge_mapcount(struct page *page,
 718                                           int *total_mapcount)
 719{
 720        int mapcount = page_mapcount(page);
 721        if (total_mapcount)
 722                *total_mapcount = mapcount;
 723        return mapcount;
 724}
 725#endif
 726
 727static inline struct page *virt_to_head_page(const void *x)
 728{
 729        struct page *page = virt_to_page(x);
 730
 731        return compound_head(page);
 732}
 733
 734void __put_page(struct page *page);
 735
 736void put_pages_list(struct list_head *pages);
 737
 738void split_page(struct page *page, unsigned int order);
 739
 740/*
 741 * Compound pages have a destructor function.  Provide a
 742 * prototype for that function and accessor functions.
 743 * These are _only_ valid on the head of a compound page.
 744 */
 745typedef void compound_page_dtor(struct page *);
 746
 747/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 748enum compound_dtor_id {
 749        NULL_COMPOUND_DTOR,
 750        COMPOUND_PAGE_DTOR,
 751#ifdef CONFIG_HUGETLB_PAGE
 752        HUGETLB_PAGE_DTOR,
 753#endif
 754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 755        TRANSHUGE_PAGE_DTOR,
 756#endif
 757        NR_COMPOUND_DTORS,
 758};
 759extern compound_page_dtor * const compound_page_dtors[];
 760
 761static inline void set_compound_page_dtor(struct page *page,
 762                enum compound_dtor_id compound_dtor)
 763{
 764        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 765        page[1].compound_dtor = compound_dtor;
 766}
 767
 768static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 769{
 770        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 771        return compound_page_dtors[page[1].compound_dtor];
 772}
 773
 774static inline unsigned int compound_order(struct page *page)
 775{
 776        if (!PageHead(page))
 777                return 0;
 778        return page[1].compound_order;
 779}
 780
 781static inline void set_compound_order(struct page *page, unsigned int order)
 782{
 783        page[1].compound_order = order;
 784}
 785
 786void free_compound_page(struct page *page);
 787
 788#ifdef CONFIG_MMU
 789/*
 790 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 791 * servicing faults for write access.  In the normal case, do always want
 792 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 793 * that do not have writing enabled, when used by access_process_vm.
 794 */
 795static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 796{
 797        if (likely(vma->vm_flags & VM_WRITE))
 798                pte = pte_mkwrite(pte);
 799        return pte;
 800}
 801
 802vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
 803                struct page *page);
 804vm_fault_t finish_fault(struct vm_fault *vmf);
 805vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 806#endif
 807
 808/*
 809 * Multiple processes may "see" the same page. E.g. for untouched
 810 * mappings of /dev/null, all processes see the same page full of
 811 * zeroes, and text pages of executables and shared libraries have
 812 * only one copy in memory, at most, normally.
 813 *
 814 * For the non-reserved pages, page_count(page) denotes a reference count.
 815 *   page_count() == 0 means the page is free. page->lru is then used for
 816 *   freelist management in the buddy allocator.
 817 *   page_count() > 0  means the page has been allocated.
 818 *
 819 * Pages are allocated by the slab allocator in order to provide memory
 820 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 821 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 822 * unless a particular usage is carefully commented. (the responsibility of
 823 * freeing the kmalloc memory is the caller's, of course).
 824 *
 825 * A page may be used by anyone else who does a __get_free_page().
 826 * In this case, page_count still tracks the references, and should only
 827 * be used through the normal accessor functions. The top bits of page->flags
 828 * and page->virtual store page management information, but all other fields
 829 * are unused and could be used privately, carefully. The management of this
 830 * page is the responsibility of the one who allocated it, and those who have
 831 * subsequently been given references to it.
 832 *
 833 * The other pages (we may call them "pagecache pages") are completely
 834 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 835 * The following discussion applies only to them.
 836 *
 837 * A pagecache page contains an opaque `private' member, which belongs to the
 838 * page's address_space. Usually, this is the address of a circular list of
 839 * the page's disk buffers. PG_private must be set to tell the VM to call
 840 * into the filesystem to release these pages.
 841 *
 842 * A page may belong to an inode's memory mapping. In this case, page->mapping
 843 * is the pointer to the inode, and page->index is the file offset of the page,
 844 * in units of PAGE_SIZE.
 845 *
 846 * If pagecache pages are not associated with an inode, they are said to be
 847 * anonymous pages. These may become associated with the swapcache, and in that
 848 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 849 *
 850 * In either case (swapcache or inode backed), the pagecache itself holds one
 851 * reference to the page. Setting PG_private should also increment the
 852 * refcount. The each user mapping also has a reference to the page.
 853 *
 854 * The pagecache pages are stored in a per-mapping radix tree, which is
 855 * rooted at mapping->i_pages, and indexed by offset.
 856 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 857 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 858 *
 859 * All pagecache pages may be subject to I/O:
 860 * - inode pages may need to be read from disk,
 861 * - inode pages which have been modified and are MAP_SHARED may need
 862 *   to be written back to the inode on disk,
 863 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 864 *   modified may need to be swapped out to swap space and (later) to be read
 865 *   back into memory.
 866 */
 867
 868/*
 869 * The zone field is never updated after free_area_init_core()
 870 * sets it, so none of the operations on it need to be atomic.
 871 */
 872
 873/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 874#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 875#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 876#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 877#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 878#define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
 879
 880/*
 881 * Define the bit shifts to access each section.  For non-existent
 882 * sections we define the shift as 0; that plus a 0 mask ensures
 883 * the compiler will optimise away reference to them.
 884 */
 885#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 886#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 887#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 888#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 889#define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
 890
 891/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 892#ifdef NODE_NOT_IN_PAGE_FLAGS
 893#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 894#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 895                                                SECTIONS_PGOFF : ZONES_PGOFF)
 896#else
 897#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 898#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 899                                                NODES_PGOFF : ZONES_PGOFF)
 900#endif
 901
 902#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 903
 904#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 905#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 906#endif
 907
 908#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 909#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 910#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 911#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 912#define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
 913#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 914
 915static inline enum zone_type page_zonenum(const struct page *page)
 916{
 917        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 918}
 919
 920#ifdef CONFIG_ZONE_DEVICE
 921static inline bool is_zone_device_page(const struct page *page)
 922{
 923        return page_zonenum(page) == ZONE_DEVICE;
 924}
 925extern void memmap_init_zone_device(struct zone *, unsigned long,
 926                                    unsigned long, struct dev_pagemap *);
 927#else
 928static inline bool is_zone_device_page(const struct page *page)
 929{
 930        return false;
 931}
 932#endif
 933
 934#ifdef CONFIG_DEV_PAGEMAP_OPS
 935void dev_pagemap_get_ops(void);
 936void dev_pagemap_put_ops(void);
 937void __put_devmap_managed_page(struct page *page);
 938DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 939static inline bool put_devmap_managed_page(struct page *page)
 940{
 941        if (!static_branch_unlikely(&devmap_managed_key))
 942                return false;
 943        if (!is_zone_device_page(page))
 944                return false;
 945        switch (page->pgmap->type) {
 946        case MEMORY_DEVICE_PRIVATE:
 947        case MEMORY_DEVICE_PUBLIC:
 948        case MEMORY_DEVICE_FS_DAX:
 949                __put_devmap_managed_page(page);
 950                return true;
 951        default:
 952                break;
 953        }
 954        return false;
 955}
 956
 957static inline bool is_device_private_page(const struct page *page)
 958{
 959        return is_zone_device_page(page) &&
 960                page->pgmap->type == MEMORY_DEVICE_PRIVATE;
 961}
 962
 963static inline bool is_device_public_page(const struct page *page)
 964{
 965        return is_zone_device_page(page) &&
 966                page->pgmap->type == MEMORY_DEVICE_PUBLIC;
 967}
 968
 969#ifdef CONFIG_PCI_P2PDMA
 970static inline bool is_pci_p2pdma_page(const struct page *page)
 971{
 972        return is_zone_device_page(page) &&
 973                page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
 974}
 975#else /* CONFIG_PCI_P2PDMA */
 976static inline bool is_pci_p2pdma_page(const struct page *page)
 977{
 978        return false;
 979}
 980#endif /* CONFIG_PCI_P2PDMA */
 981
 982#else /* CONFIG_DEV_PAGEMAP_OPS */
 983static inline void dev_pagemap_get_ops(void)
 984{
 985}
 986
 987static inline void dev_pagemap_put_ops(void)
 988{
 989}
 990
 991static inline bool put_devmap_managed_page(struct page *page)
 992{
 993        return false;
 994}
 995
 996static inline bool is_device_private_page(const struct page *page)
 997{
 998        return false;
 999}
1000
1001static inline bool is_device_public_page(const struct page *page)
1002{
1003        return false;
1004}
1005
1006static inline bool is_pci_p2pdma_page(const struct page *page)
1007{
1008        return false;
1009}
1010#endif /* CONFIG_DEV_PAGEMAP_OPS */
1011
1012/* 127: arbitrary random number, small enough to assemble well */
1013#define page_ref_zero_or_close_to_overflow(page) \
1014        ((unsigned int) page_ref_count(page) + 127u <= 127u)
1015
1016static inline void get_page(struct page *page)
1017{
1018        page = compound_head(page);
1019        /*
1020         * Getting a normal page or the head of a compound page
1021         * requires to already have an elevated page->_refcount.
1022         */
1023        VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1024        page_ref_inc(page);
1025}
1026
1027static inline __must_check bool try_get_page(struct page *page)
1028{
1029        page = compound_head(page);
1030        if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031                return false;
1032        page_ref_inc(page);
1033        return true;
1034}
1035
1036static inline void put_page(struct page *page)
1037{
1038        page = compound_head(page);
1039
1040        /*
1041         * For devmap managed pages we need to catch refcount transition from
1042         * 2 to 1, when refcount reach one it means the page is free and we
1043         * need to inform the device driver through callback. See
1044         * include/linux/memremap.h and HMM for details.
1045         */
1046        if (put_devmap_managed_page(page))
1047                return;
1048
1049        if (put_page_testzero(page))
1050                __put_page(page);
1051}
1052
1053/**
1054 * put_user_page() - release a gup-pinned page
1055 * @page:            pointer to page to be released
1056 *
1057 * Pages that were pinned via get_user_pages*() must be released via
1058 * either put_user_page(), or one of the put_user_pages*() routines
1059 * below. This is so that eventually, pages that are pinned via
1060 * get_user_pages*() can be separately tracked and uniquely handled. In
1061 * particular, interactions with RDMA and filesystems need special
1062 * handling.
1063 *
1064 * put_user_page() and put_page() are not interchangeable, despite this early
1065 * implementation that makes them look the same. put_user_page() calls must
1066 * be perfectly matched up with get_user_page() calls.
1067 */
1068static inline void put_user_page(struct page *page)
1069{
1070        put_page(page);
1071}
1072
1073void put_user_pages_dirty(struct page **pages, unsigned long npages);
1074void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1075void put_user_pages(struct page **pages, unsigned long npages);
1076
1077#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1078#define SECTION_IN_PAGE_FLAGS
1079#endif
1080
1081/*
1082 * The identification function is mainly used by the buddy allocator for
1083 * determining if two pages could be buddies. We are not really identifying
1084 * the zone since we could be using the section number id if we do not have
1085 * node id available in page flags.
1086 * We only guarantee that it will return the same value for two combinable
1087 * pages in a zone.
1088 */
1089static inline int page_zone_id(struct page *page)
1090{
1091        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1092}
1093
1094#ifdef NODE_NOT_IN_PAGE_FLAGS
1095extern int page_to_nid(const struct page *page);
1096#else
1097static inline int page_to_nid(const struct page *page)
1098{
1099        struct page *p = (struct page *)page;
1100
1101        return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1102}
1103#endif
1104
1105#ifdef CONFIG_NUMA_BALANCING
1106static inline int cpu_pid_to_cpupid(int cpu, int pid)
1107{
1108        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1109}
1110
1111static inline int cpupid_to_pid(int cpupid)
1112{
1113        return cpupid & LAST__PID_MASK;
1114}
1115
1116static inline int cpupid_to_cpu(int cpupid)
1117{
1118        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1119}
1120
1121static inline int cpupid_to_nid(int cpupid)
1122{
1123        return cpu_to_node(cpupid_to_cpu(cpupid));
1124}
1125
1126static inline bool cpupid_pid_unset(int cpupid)
1127{
1128        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1129}
1130
1131static inline bool cpupid_cpu_unset(int cpupid)
1132{
1133        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1134}
1135
1136static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1137{
1138        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1139}
1140
1141#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1142#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1143static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1144{
1145        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1146}
1147
1148static inline int page_cpupid_last(struct page *page)
1149{
1150        return page->_last_cpupid;
1151}
1152static inline void page_cpupid_reset_last(struct page *page)
1153{
1154        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1155}
1156#else
1157static inline int page_cpupid_last(struct page *page)
1158{
1159        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1160}
1161
1162extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1163
1164static inline void page_cpupid_reset_last(struct page *page)
1165{
1166        page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1167}
1168#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1169#else /* !CONFIG_NUMA_BALANCING */
1170static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1171{
1172        return page_to_nid(page); /* XXX */
1173}
1174
1175static inline int page_cpupid_last(struct page *page)
1176{
1177        return page_to_nid(page); /* XXX */
1178}
1179
1180static inline int cpupid_to_nid(int cpupid)
1181{
1182        return -1;
1183}
1184
1185static inline int cpupid_to_pid(int cpupid)
1186{
1187        return -1;
1188}
1189
1190static inline int cpupid_to_cpu(int cpupid)
1191{
1192        return -1;
1193}
1194
1195static inline int cpu_pid_to_cpupid(int nid, int pid)
1196{
1197        return -1;
1198}
1199
1200static inline bool cpupid_pid_unset(int cpupid)
1201{
1202        return 1;
1203}
1204
1205static inline void page_cpupid_reset_last(struct page *page)
1206{
1207}
1208
1209static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1210{
1211        return false;
1212}
1213#endif /* CONFIG_NUMA_BALANCING */
1214
1215#ifdef CONFIG_KASAN_SW_TAGS
1216static inline u8 page_kasan_tag(const struct page *page)
1217{
1218        return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1219}
1220
1221static inline void page_kasan_tag_set(struct page *page, u8 tag)
1222{
1223        page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1224        page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1225}
1226
1227static inline void page_kasan_tag_reset(struct page *page)
1228{
1229        page_kasan_tag_set(page, 0xff);
1230}
1231#else
1232static inline u8 page_kasan_tag(const struct page *page)
1233{
1234        return 0xff;
1235}
1236
1237static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1238static inline void page_kasan_tag_reset(struct page *page) { }
1239#endif
1240
1241static inline struct zone *page_zone(const struct page *page)
1242{
1243        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1244}
1245
1246static inline pg_data_t *page_pgdat(const struct page *page)
1247{
1248        return NODE_DATA(page_to_nid(page));
1249}
1250
1251#ifdef SECTION_IN_PAGE_FLAGS
1252static inline void set_page_section(struct page *page, unsigned long section)
1253{
1254        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1255        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1256}
1257
1258static inline unsigned long page_to_section(const struct page *page)
1259{
1260        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1261}
1262#endif
1263
1264static inline void set_page_zone(struct page *page, enum zone_type zone)
1265{
1266        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1267        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1268}
1269
1270static inline void set_page_node(struct page *page, unsigned long node)
1271{
1272        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1273        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1274}
1275
1276static inline void set_page_links(struct page *page, enum zone_type zone,
1277        unsigned long node, unsigned long pfn)
1278{
1279        set_page_zone(page, zone);
1280        set_page_node(page, node);
1281#ifdef SECTION_IN_PAGE_FLAGS
1282        set_page_section(page, pfn_to_section_nr(pfn));
1283#endif
1284}
1285
1286#ifdef CONFIG_MEMCG
1287static inline struct mem_cgroup *page_memcg(struct page *page)
1288{
1289        return page->mem_cgroup;
1290}
1291static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1292{
1293        WARN_ON_ONCE(!rcu_read_lock_held());
1294        return READ_ONCE(page->mem_cgroup);
1295}
1296#else
1297static inline struct mem_cgroup *page_memcg(struct page *page)
1298{
1299        return NULL;
1300}
1301static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1302{
1303        WARN_ON_ONCE(!rcu_read_lock_held());
1304        return NULL;
1305}
1306#endif
1307
1308/*
1309 * Some inline functions in vmstat.h depend on page_zone()
1310 */
1311#include <linux/vmstat.h>
1312
1313static __always_inline void *lowmem_page_address(const struct page *page)
1314{
1315        return page_to_virt(page);
1316}
1317
1318#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1319#define HASHED_PAGE_VIRTUAL
1320#endif
1321
1322#if defined(WANT_PAGE_VIRTUAL)
1323static inline void *page_address(const struct page *page)
1324{
1325        return page->virtual;
1326}
1327static inline void set_page_address(struct page *page, void *address)
1328{
1329        page->virtual = address;
1330}
1331#define page_address_init()  do { } while(0)
1332#endif
1333
1334#if defined(HASHED_PAGE_VIRTUAL)
1335void *page_address(const struct page *page);
1336void set_page_address(struct page *page, void *virtual);
1337void page_address_init(void);
1338#endif
1339
1340#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1341#define page_address(page) lowmem_page_address(page)
1342#define set_page_address(page, address)  do { } while(0)
1343#define page_address_init()  do { } while(0)
1344#endif
1345
1346extern void *page_rmapping(struct page *page);
1347extern struct anon_vma *page_anon_vma(struct page *page);
1348extern struct address_space *page_mapping(struct page *page);
1349
1350extern struct address_space *__page_file_mapping(struct page *);
1351
1352static inline
1353struct address_space *page_file_mapping(struct page *page)
1354{
1355        if (unlikely(PageSwapCache(page)))
1356                return __page_file_mapping(page);
1357
1358        return page->mapping;
1359}
1360
1361extern pgoff_t __page_file_index(struct page *page);
1362
1363/*
1364 * Return the pagecache index of the passed page.  Regular pagecache pages
1365 * use ->index whereas swapcache pages use swp_offset(->private)
1366 */
1367static inline pgoff_t page_index(struct page *page)
1368{
1369        if (unlikely(PageSwapCache(page)))
1370                return __page_file_index(page);
1371        return page->index;
1372}
1373
1374bool page_mapped(struct page *page);
1375struct address_space *page_mapping(struct page *page);
1376struct address_space *page_mapping_file(struct page *page);
1377
1378/*
1379 * Return true only if the page has been allocated with
1380 * ALLOC_NO_WATERMARKS and the low watermark was not
1381 * met implying that the system is under some pressure.
1382 */
1383static inline bool page_is_pfmemalloc(struct page *page)
1384{
1385        /*
1386         * Page index cannot be this large so this must be
1387         * a pfmemalloc page.
1388         */
1389        return page->index == -1UL;
1390}
1391
1392/*
1393 * Only to be called by the page allocator on a freshly allocated
1394 * page.
1395 */
1396static inline void set_page_pfmemalloc(struct page *page)
1397{
1398        page->index = -1UL;
1399}
1400
1401static inline void clear_page_pfmemalloc(struct page *page)
1402{
1403        page->index = 0;
1404}
1405
1406/*
1407 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1408 */
1409extern void pagefault_out_of_memory(void);
1410
1411#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1412
1413/*
1414 * Flags passed to show_mem() and show_free_areas() to suppress output in
1415 * various contexts.
1416 */
1417#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1418
1419extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1420
1421extern bool can_do_mlock(void);
1422extern int user_shm_lock(size_t, struct user_struct *);
1423extern void user_shm_unlock(size_t, struct user_struct *);
1424
1425/*
1426 * Parameter block passed down to zap_pte_range in exceptional cases.
1427 */
1428struct zap_details {
1429        struct address_space *check_mapping;    /* Check page->mapping if set */
1430        pgoff_t first_index;                    /* Lowest page->index to unmap */
1431        pgoff_t last_index;                     /* Highest page->index to unmap */
1432};
1433
1434struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1435                             pte_t pte, bool with_public_device);
1436#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1437
1438struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1439                                pmd_t pmd);
1440
1441void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442                  unsigned long size);
1443void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1444                    unsigned long size);
1445void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1446                unsigned long start, unsigned long end);
1447
1448/**
1449 * mm_walk - callbacks for walk_page_range
1450 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1451 *             this handler should only handle pud_trans_huge() puds.
1452 *             the pmd_entry or pte_entry callbacks will be used for
1453 *             regular PUDs.
1454 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1455 *             this handler is required to be able to handle
1456 *             pmd_trans_huge() pmds.  They may simply choose to
1457 *             split_huge_page() instead of handling it explicitly.
1458 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1459 * @pte_hole: if set, called for each hole at all levels
1460 * @hugetlb_entry: if set, called for each hugetlb entry
1461 * @test_walk: caller specific callback function to determine whether
1462 *             we walk over the current vma or not. Returning 0
1463 *             value means "do page table walk over the current vma,"
1464 *             and a negative one means "abort current page table walk
1465 *             right now." 1 means "skip the current vma."
1466 * @mm:        mm_struct representing the target process of page table walk
1467 * @vma:       vma currently walked (NULL if walking outside vmas)
1468 * @private:   private data for callbacks' usage
1469 *
1470 * (see the comment on walk_page_range() for more details)
1471 */
1472struct mm_walk {
1473        int (*pud_entry)(pud_t *pud, unsigned long addr,
1474                         unsigned long next, struct mm_walk *walk);
1475        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1476                         unsigned long next, struct mm_walk *walk);
1477        int (*pte_entry)(pte_t *pte, unsigned long addr,
1478                         unsigned long next, struct mm_walk *walk);
1479        int (*pte_hole)(unsigned long addr, unsigned long next,
1480                        struct mm_walk *walk);
1481        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1482                             unsigned long addr, unsigned long next,
1483                             struct mm_walk *walk);
1484        int (*test_walk)(unsigned long addr, unsigned long next,
1485                        struct mm_walk *walk);
1486        struct mm_struct *mm;
1487        struct vm_area_struct *vma;
1488        void *private;
1489};
1490
1491struct mmu_notifier_range;
1492
1493int walk_page_range(unsigned long addr, unsigned long end,
1494                struct mm_walk *walk);
1495int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1496void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1497                unsigned long end, unsigned long floor, unsigned long ceiling);
1498int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1499                        struct vm_area_struct *vma);
1500int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1501                   struct mmu_notifier_range *range,
1502                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1503int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1504        unsigned long *pfn);
1505int follow_phys(struct vm_area_struct *vma, unsigned long address,
1506                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1507int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1508                        void *buf, int len, int write);
1509
1510extern void truncate_pagecache(struct inode *inode, loff_t new);
1511extern void truncate_setsize(struct inode *inode, loff_t newsize);
1512void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1513void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1514int truncate_inode_page(struct address_space *mapping, struct page *page);
1515int generic_error_remove_page(struct address_space *mapping, struct page *page);
1516int invalidate_inode_page(struct page *page);
1517
1518#ifdef CONFIG_MMU
1519extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1520                        unsigned long address, unsigned int flags);
1521extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1522                            unsigned long address, unsigned int fault_flags,
1523                            bool *unlocked);
1524void unmap_mapping_pages(struct address_space *mapping,
1525                pgoff_t start, pgoff_t nr, bool even_cows);
1526void unmap_mapping_range(struct address_space *mapping,
1527                loff_t const holebegin, loff_t const holelen, int even_cows);
1528#else
1529static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1530                unsigned long address, unsigned int flags)
1531{
1532        /* should never happen if there's no MMU */
1533        BUG();
1534        return VM_FAULT_SIGBUS;
1535}
1536static inline int fixup_user_fault(struct task_struct *tsk,
1537                struct mm_struct *mm, unsigned long address,
1538                unsigned int fault_flags, bool *unlocked)
1539{
1540        /* should never happen if there's no MMU */
1541        BUG();
1542        return -EFAULT;
1543}
1544static inline void unmap_mapping_pages(struct address_space *mapping,
1545                pgoff_t start, pgoff_t nr, bool even_cows) { }
1546static inline void unmap_mapping_range(struct address_space *mapping,
1547                loff_t const holebegin, loff_t const holelen, int even_cows) { }
1548#endif
1549
1550static inline void unmap_shared_mapping_range(struct address_space *mapping,
1551                loff_t const holebegin, loff_t const holelen)
1552{
1553        unmap_mapping_range(mapping, holebegin, holelen, 0);
1554}
1555
1556extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1557                void *buf, int len, unsigned int gup_flags);
1558extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1559                void *buf, int len, unsigned int gup_flags);
1560extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1561                unsigned long addr, void *buf, int len, unsigned int gup_flags);
1562
1563long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1564                            unsigned long start, unsigned long nr_pages,
1565                            unsigned int gup_flags, struct page **pages,
1566                            struct vm_area_struct **vmas, int *locked);
1567long get_user_pages(unsigned long start, unsigned long nr_pages,
1568                            unsigned int gup_flags, struct page **pages,
1569                            struct vm_area_struct **vmas);
1570long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1571                    unsigned int gup_flags, struct page **pages, int *locked);
1572long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1573                    struct page **pages, unsigned int gup_flags);
1574
1575int get_user_pages_fast(unsigned long start, int nr_pages,
1576                        unsigned int gup_flags, struct page **pages);
1577
1578/* Container for pinned pfns / pages */
1579struct frame_vector {
1580        unsigned int nr_allocated;      /* Number of frames we have space for */
1581        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1582        bool got_ref;           /* Did we pin pages by getting page ref? */
1583        bool is_pfns;           /* Does array contain pages or pfns? */
1584        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1585                                 * pfns_vector_pages() or pfns_vector_pfns()
1586                                 * for access */
1587};
1588
1589struct frame_vector *frame_vector_create(unsigned int nr_frames);
1590void frame_vector_destroy(struct frame_vector *vec);
1591int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1592                     unsigned int gup_flags, struct frame_vector *vec);
1593void put_vaddr_frames(struct frame_vector *vec);
1594int frame_vector_to_pages(struct frame_vector *vec);
1595void frame_vector_to_pfns(struct frame_vector *vec);
1596
1597static inline unsigned int frame_vector_count(struct frame_vector *vec)
1598{
1599        return vec->nr_frames;
1600}
1601
1602static inline struct page **frame_vector_pages(struct frame_vector *vec)
1603{
1604        if (vec->is_pfns) {
1605                int err = frame_vector_to_pages(vec);
1606
1607                if (err)
1608                        return ERR_PTR(err);
1609        }
1610        return (struct page **)(vec->ptrs);
1611}
1612
1613static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1614{
1615        if (!vec->is_pfns)
1616                frame_vector_to_pfns(vec);
1617        return (unsigned long *)(vec->ptrs);
1618}
1619
1620struct kvec;
1621int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1622                        struct page **pages);
1623int get_kernel_page(unsigned long start, int write, struct page **pages);
1624struct page *get_dump_page(unsigned long addr);
1625
1626extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1627extern void do_invalidatepage(struct page *page, unsigned int offset,
1628                              unsigned int length);
1629
1630void __set_page_dirty(struct page *, struct address_space *, int warn);
1631int __set_page_dirty_nobuffers(struct page *page);
1632int __set_page_dirty_no_writeback(struct page *page);
1633int redirty_page_for_writepage(struct writeback_control *wbc,
1634                                struct page *page);
1635void account_page_dirtied(struct page *page, struct address_space *mapping);
1636void account_page_cleaned(struct page *page, struct address_space *mapping,
1637                          struct bdi_writeback *wb);
1638int set_page_dirty(struct page *page);
1639int set_page_dirty_lock(struct page *page);
1640void __cancel_dirty_page(struct page *page);
1641static inline void cancel_dirty_page(struct page *page)
1642{
1643        /* Avoid atomic ops, locking, etc. when not actually needed. */
1644        if (PageDirty(page))
1645                __cancel_dirty_page(page);
1646}
1647int clear_page_dirty_for_io(struct page *page);
1648
1649int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1650
1651static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1652{
1653        return !vma->vm_ops;
1654}
1655
1656#ifdef CONFIG_SHMEM
1657/*
1658 * The vma_is_shmem is not inline because it is used only by slow
1659 * paths in userfault.
1660 */
1661bool vma_is_shmem(struct vm_area_struct *vma);
1662#else
1663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1664#endif
1665
1666int vma_is_stack_for_current(struct vm_area_struct *vma);
1667
1668extern unsigned long move_page_tables(struct vm_area_struct *vma,
1669                unsigned long old_addr, struct vm_area_struct *new_vma,
1670                unsigned long new_addr, unsigned long len,
1671                bool need_rmap_locks);
1672extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1673                              unsigned long end, pgprot_t newprot,
1674                              int dirty_accountable, int prot_numa);
1675extern int mprotect_fixup(struct vm_area_struct *vma,
1676                          struct vm_area_struct **pprev, unsigned long start,
1677                          unsigned long end, unsigned long newflags);
1678
1679/*
1680 * doesn't attempt to fault and will return short.
1681 */
1682int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1683                          struct page **pages);
1684/*
1685 * per-process(per-mm_struct) statistics.
1686 */
1687static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1688{
1689        long val = atomic_long_read(&mm->rss_stat.count[member]);
1690
1691#ifdef SPLIT_RSS_COUNTING
1692        /*
1693         * counter is updated in asynchronous manner and may go to minus.
1694         * But it's never be expected number for users.
1695         */
1696        if (val < 0)
1697                val = 0;
1698#endif
1699        return (unsigned long)val;
1700}
1701
1702static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1703{
1704        atomic_long_add(value, &mm->rss_stat.count[member]);
1705}
1706
1707static inline void inc_mm_counter(struct mm_struct *mm, int member)
1708{
1709        atomic_long_inc(&mm->rss_stat.count[member]);
1710}
1711
1712static inline void dec_mm_counter(struct mm_struct *mm, int member)
1713{
1714        atomic_long_dec(&mm->rss_stat.count[member]);
1715}
1716
1717/* Optimized variant when page is already known not to be PageAnon */
1718static inline int mm_counter_file(struct page *page)
1719{
1720        if (PageSwapBacked(page))
1721                return MM_SHMEMPAGES;
1722        return MM_FILEPAGES;
1723}
1724
1725static inline int mm_counter(struct page *page)
1726{
1727        if (PageAnon(page))
1728                return MM_ANONPAGES;
1729        return mm_counter_file(page);
1730}
1731
1732static inline unsigned long get_mm_rss(struct mm_struct *mm)
1733{
1734        return get_mm_counter(mm, MM_FILEPAGES) +
1735                get_mm_counter(mm, MM_ANONPAGES) +
1736                get_mm_counter(mm, MM_SHMEMPAGES);
1737}
1738
1739static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1740{
1741        return max(mm->hiwater_rss, get_mm_rss(mm));
1742}
1743
1744static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1745{
1746        return max(mm->hiwater_vm, mm->total_vm);
1747}
1748
1749static inline void update_hiwater_rss(struct mm_struct *mm)
1750{
1751        unsigned long _rss = get_mm_rss(mm);
1752
1753        if ((mm)->hiwater_rss < _rss)
1754                (mm)->hiwater_rss = _rss;
1755}
1756
1757static inline void update_hiwater_vm(struct mm_struct *mm)
1758{
1759        if (mm->hiwater_vm < mm->total_vm)
1760                mm->hiwater_vm = mm->total_vm;
1761}
1762
1763static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1764{
1765        mm->hiwater_rss = get_mm_rss(mm);
1766}
1767
1768static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1769                                         struct mm_struct *mm)
1770{
1771        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1772
1773        if (*maxrss < hiwater_rss)
1774                *maxrss = hiwater_rss;
1775}
1776
1777#if defined(SPLIT_RSS_COUNTING)
1778void sync_mm_rss(struct mm_struct *mm);
1779#else
1780static inline void sync_mm_rss(struct mm_struct *mm)
1781{
1782}
1783#endif
1784
1785#ifndef __HAVE_ARCH_PTE_DEVMAP
1786static inline int pte_devmap(pte_t pte)
1787{
1788        return 0;
1789}
1790#endif
1791
1792int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1793
1794extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795                               spinlock_t **ptl);
1796static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1797                                    spinlock_t **ptl)
1798{
1799        pte_t *ptep;
1800        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1801        return ptep;
1802}
1803
1804#ifdef __PAGETABLE_P4D_FOLDED
1805static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1806                                                unsigned long address)
1807{
1808        return 0;
1809}
1810#else
1811int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1812#endif
1813
1814#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1815static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1816                                                unsigned long address)
1817{
1818        return 0;
1819}
1820static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1821static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1822
1823#else
1824int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1825
1826static inline void mm_inc_nr_puds(struct mm_struct *mm)
1827{
1828        if (mm_pud_folded(mm))
1829                return;
1830        atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1831}
1832
1833static inline void mm_dec_nr_puds(struct mm_struct *mm)
1834{
1835        if (mm_pud_folded(mm))
1836                return;
1837        atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1838}
1839#endif
1840
1841#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1842static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1843                                                unsigned long address)
1844{
1845        return 0;
1846}
1847
1848static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1849static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1850
1851#else
1852int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1853
1854static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1855{
1856        if (mm_pmd_folded(mm))
1857                return;
1858        atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1859}
1860
1861static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1862{
1863        if (mm_pmd_folded(mm))
1864                return;
1865        atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1866}
1867#endif
1868
1869#ifdef CONFIG_MMU
1870static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1871{
1872        atomic_long_set(&mm->pgtables_bytes, 0);
1873}
1874
1875static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1876{
1877        return atomic_long_read(&mm->pgtables_bytes);
1878}
1879
1880static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1881{
1882        atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1883}
1884
1885static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1886{
1887        atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1888}
1889#else
1890
1891static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1892static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1893{
1894        return 0;
1895}
1896
1897static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1898static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1899#endif
1900
1901int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1902int __pte_alloc_kernel(pmd_t *pmd);
1903
1904/*
1905 * The following ifdef needed to get the 4level-fixup.h header to work.
1906 * Remove it when 4level-fixup.h has been removed.
1907 */
1908#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1909
1910#ifndef __ARCH_HAS_5LEVEL_HACK
1911static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1912                unsigned long address)
1913{
1914        return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1915                NULL : p4d_offset(pgd, address);
1916}
1917
1918static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1919                unsigned long address)
1920{
1921        return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1922                NULL : pud_offset(p4d, address);
1923}
1924#endif /* !__ARCH_HAS_5LEVEL_HACK */
1925
1926static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1927{
1928        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1929                NULL: pmd_offset(pud, address);
1930}
1931#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1932
1933#if USE_SPLIT_PTE_PTLOCKS
1934#if ALLOC_SPLIT_PTLOCKS
1935void __init ptlock_cache_init(void);
1936extern bool ptlock_alloc(struct page *page);
1937extern void ptlock_free(struct page *page);
1938
1939static inline spinlock_t *ptlock_ptr(struct page *page)
1940{
1941        return page->ptl;
1942}
1943#else /* ALLOC_SPLIT_PTLOCKS */
1944static inline void ptlock_cache_init(void)
1945{
1946}
1947
1948static inline bool ptlock_alloc(struct page *page)
1949{
1950        return true;
1951}
1952
1953static inline void ptlock_free(struct page *page)
1954{
1955}
1956
1957static inline spinlock_t *ptlock_ptr(struct page *page)
1958{
1959        return &page->ptl;
1960}
1961#endif /* ALLOC_SPLIT_PTLOCKS */
1962
1963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1964{
1965        return ptlock_ptr(pmd_page(*pmd));
1966}
1967
1968static inline bool ptlock_init(struct page *page)
1969{
1970        /*
1971         * prep_new_page() initialize page->private (and therefore page->ptl)
1972         * with 0. Make sure nobody took it in use in between.
1973         *
1974         * It can happen if arch try to use slab for page table allocation:
1975         * slab code uses page->slab_cache, which share storage with page->ptl.
1976         */
1977        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1978        if (!ptlock_alloc(page))
1979                return false;
1980        spin_lock_init(ptlock_ptr(page));
1981        return true;
1982}
1983
1984#else   /* !USE_SPLIT_PTE_PTLOCKS */
1985/*
1986 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1987 */
1988static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1989{
1990        return &mm->page_table_lock;
1991}
1992static inline void ptlock_cache_init(void) {}
1993static inline bool ptlock_init(struct page *page) { return true; }
1994static inline void ptlock_free(struct page *page) {}
1995#endif /* USE_SPLIT_PTE_PTLOCKS */
1996
1997static inline void pgtable_init(void)
1998{
1999        ptlock_cache_init();
2000        pgtable_cache_init();
2001}
2002
2003static inline bool pgtable_page_ctor(struct page *page)
2004{
2005        if (!ptlock_init(page))
2006                return false;
2007        __SetPageTable(page);
2008        inc_zone_page_state(page, NR_PAGETABLE);
2009        return true;
2010}
2011
2012static inline void pgtable_page_dtor(struct page *page)
2013{
2014        ptlock_free(page);
2015        __ClearPageTable(page);
2016        dec_zone_page_state(page, NR_PAGETABLE);
2017}
2018
2019#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
2020({                                                      \
2021        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
2022        pte_t *__pte = pte_offset_map(pmd, address);    \
2023        *(ptlp) = __ptl;                                \
2024        spin_lock(__ptl);                               \
2025        __pte;                                          \
2026})
2027
2028#define pte_unmap_unlock(pte, ptl)      do {            \
2029        spin_unlock(ptl);                               \
2030        pte_unmap(pte);                                 \
2031} while (0)
2032
2033#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2034
2035#define pte_alloc_map(mm, pmd, address)                 \
2036        (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2037
2038#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2039        (pte_alloc(mm, pmd) ?                   \
2040                 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2041
2042#define pte_alloc_kernel(pmd, address)                  \
2043        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2044                NULL: pte_offset_kernel(pmd, address))
2045
2046#if USE_SPLIT_PMD_PTLOCKS
2047
2048static struct page *pmd_to_page(pmd_t *pmd)
2049{
2050        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2051        return virt_to_page((void *)((unsigned long) pmd & mask));
2052}
2053
2054static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2055{
2056        return ptlock_ptr(pmd_to_page(pmd));
2057}
2058
2059static inline bool pgtable_pmd_page_ctor(struct page *page)
2060{
2061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2062        page->pmd_huge_pte = NULL;
2063#endif
2064        return ptlock_init(page);
2065}
2066
2067static inline void pgtable_pmd_page_dtor(struct page *page)
2068{
2069#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2071#endif
2072        ptlock_free(page);
2073}
2074
2075#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2076
2077#else
2078
2079static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2080{
2081        return &mm->page_table_lock;
2082}
2083
2084static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2085static inline void pgtable_pmd_page_dtor(struct page *page) {}
2086
2087#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2088
2089#endif
2090
2091static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2092{
2093        spinlock_t *ptl = pmd_lockptr(mm, pmd);
2094        spin_lock(ptl);
2095        return ptl;
2096}
2097
2098/*
2099 * No scalability reason to split PUD locks yet, but follow the same pattern
2100 * as the PMD locks to make it easier if we decide to.  The VM should not be
2101 * considered ready to switch to split PUD locks yet; there may be places
2102 * which need to be converted from page_table_lock.
2103 */
2104static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2105{
2106        return &mm->page_table_lock;
2107}
2108
2109static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2110{
2111        spinlock_t *ptl = pud_lockptr(mm, pud);
2112
2113        spin_lock(ptl);
2114        return ptl;
2115}
2116
2117extern void __init pagecache_init(void);
2118extern void free_area_init(unsigned long * zones_size);
2119extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2120                unsigned long zone_start_pfn, unsigned long *zholes_size);
2121extern void free_initmem(void);
2122
2123/*
2124 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2125 * into the buddy system. The freed pages will be poisoned with pattern
2126 * "poison" if it's within range [0, UCHAR_MAX].
2127 * Return pages freed into the buddy system.
2128 */
2129extern unsigned long free_reserved_area(void *start, void *end,
2130                                        int poison, const char *s);
2131
2132#ifdef  CONFIG_HIGHMEM
2133/*
2134 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2135 * and totalram_pages.
2136 */
2137extern void free_highmem_page(struct page *page);
2138#endif
2139
2140extern void adjust_managed_page_count(struct page *page, long count);
2141extern void mem_init_print_info(const char *str);
2142
2143extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2144
2145/* Free the reserved page into the buddy system, so it gets managed. */
2146static inline void __free_reserved_page(struct page *page)
2147{
2148        ClearPageReserved(page);
2149        init_page_count(page);
2150        __free_page(page);
2151}
2152
2153static inline void free_reserved_page(struct page *page)
2154{
2155        __free_reserved_page(page);
2156        adjust_managed_page_count(page, 1);
2157}
2158
2159static inline void mark_page_reserved(struct page *page)
2160{
2161        SetPageReserved(page);
2162        adjust_managed_page_count(page, -1);
2163}
2164
2165/*
2166 * Default method to free all the __init memory into the buddy system.
2167 * The freed pages will be poisoned with pattern "poison" if it's within
2168 * range [0, UCHAR_MAX].
2169 * Return pages freed into the buddy system.
2170 */
2171static inline unsigned long free_initmem_default(int poison)
2172{
2173        extern char __init_begin[], __init_end[];
2174
2175        return free_reserved_area(&__init_begin, &__init_end,
2176                                  poison, "unused kernel");
2177}
2178
2179static inline unsigned long get_num_physpages(void)
2180{
2181        int nid;
2182        unsigned long phys_pages = 0;
2183
2184        for_each_online_node(nid)
2185                phys_pages += node_present_pages(nid);
2186
2187        return phys_pages;
2188}
2189
2190#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2191/*
2192 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2193 * zones, allocate the backing mem_map and account for memory holes in a more
2194 * architecture independent manner. This is a substitute for creating the
2195 * zone_sizes[] and zholes_size[] arrays and passing them to
2196 * free_area_init_node()
2197 *
2198 * An architecture is expected to register range of page frames backed by
2199 * physical memory with memblock_add[_node]() before calling
2200 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2201 * usage, an architecture is expected to do something like
2202 *
2203 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2204 *                                                       max_highmem_pfn};
2205 * for_each_valid_physical_page_range()
2206 *      memblock_add_node(base, size, nid)
2207 * free_area_init_nodes(max_zone_pfns);
2208 *
2209 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2210 * registered physical page range.  Similarly
2211 * sparse_memory_present_with_active_regions() calls memory_present() for
2212 * each range when SPARSEMEM is enabled.
2213 *
2214 * See mm/page_alloc.c for more information on each function exposed by
2215 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2216 */
2217extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2218unsigned long node_map_pfn_alignment(void);
2219unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2220                                                unsigned long end_pfn);
2221extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2222                                                unsigned long end_pfn);
2223extern void get_pfn_range_for_nid(unsigned int nid,
2224                        unsigned long *start_pfn, unsigned long *end_pfn);
2225extern unsigned long find_min_pfn_with_active_regions(void);
2226extern void free_bootmem_with_active_regions(int nid,
2227                                                unsigned long max_low_pfn);
2228extern void sparse_memory_present_with_active_regions(int nid);
2229
2230#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2231
2232#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2233    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2234static inline int __early_pfn_to_nid(unsigned long pfn,
2235                                        struct mminit_pfnnid_cache *state)
2236{
2237        return 0;
2238}
2239#else
2240/* please see mm/page_alloc.c */
2241extern int __meminit early_pfn_to_nid(unsigned long pfn);
2242/* there is a per-arch backend function. */
2243extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2244                                        struct mminit_pfnnid_cache *state);
2245#endif
2246
2247#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2248void zero_resv_unavail(void);
2249#else
2250static inline void zero_resv_unavail(void) {}
2251#endif
2252
2253extern void set_dma_reserve(unsigned long new_dma_reserve);
2254extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2255                enum memmap_context, struct vmem_altmap *);
2256extern void setup_per_zone_wmarks(void);
2257extern int __meminit init_per_zone_wmark_min(void);
2258extern void mem_init(void);
2259extern void __init mmap_init(void);
2260extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2261extern long si_mem_available(void);
2262extern void si_meminfo(struct sysinfo * val);
2263extern void si_meminfo_node(struct sysinfo *val, int nid);
2264#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2265extern unsigned long arch_reserved_kernel_pages(void);
2266#endif
2267
2268extern __printf(3, 4)
2269void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2270
2271extern void setup_per_cpu_pageset(void);
2272
2273extern void zone_pcp_update(struct zone *zone);
2274extern void zone_pcp_reset(struct zone *zone);
2275
2276/* page_alloc.c */
2277extern int min_free_kbytes;
2278extern int watermark_boost_factor;
2279extern int watermark_scale_factor;
2280
2281/* nommu.c */
2282extern atomic_long_t mmap_pages_allocated;
2283extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2284
2285/* interval_tree.c */
2286void vma_interval_tree_insert(struct vm_area_struct *node,
2287                              struct rb_root_cached *root);
2288void vma_interval_tree_insert_after(struct vm_area_struct *node,
2289                                    struct vm_area_struct *prev,
2290                                    struct rb_root_cached *root);
2291void vma_interval_tree_remove(struct vm_area_struct *node,
2292                              struct rb_root_cached *root);
2293struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2294                                unsigned long start, unsigned long last);
2295struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2296                                unsigned long start, unsigned long last);
2297
2298#define vma_interval_tree_foreach(vma, root, start, last)               \
2299        for (vma = vma_interval_tree_iter_first(root, start, last);     \
2300             vma; vma = vma_interval_tree_iter_next(vma, start, last))
2301
2302void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2303                                   struct rb_root_cached *root);
2304void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2305                                   struct rb_root_cached *root);
2306struct anon_vma_chain *
2307anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2308                                  unsigned long start, unsigned long last);
2309struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2310        struct anon_vma_chain *node, unsigned long start, unsigned long last);
2311#ifdef CONFIG_DEBUG_VM_RB
2312void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2313#endif
2314
2315#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2316        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2317             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2318
2319/* mmap.c */
2320extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2321extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2322        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2323        struct vm_area_struct *expand);
2324static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2325        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2326{
2327        return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2328}
2329extern struct vm_area_struct *vma_merge(struct mm_struct *,
2330        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2331        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2332        struct mempolicy *, struct vm_userfaultfd_ctx);
2333extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2334extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2335        unsigned long addr, int new_below);
2336extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2337        unsigned long addr, int new_below);
2338extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2339extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2340        struct rb_node **, struct rb_node *);
2341extern void unlink_file_vma(struct vm_area_struct *);
2342extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2343        unsigned long addr, unsigned long len, pgoff_t pgoff,
2344        bool *need_rmap_locks);
2345extern void exit_mmap(struct mm_struct *);
2346
2347static inline int check_data_rlimit(unsigned long rlim,
2348                                    unsigned long new,
2349                                    unsigned long start,
2350                                    unsigned long end_data,
2351                                    unsigned long start_data)
2352{
2353        if (rlim < RLIM_INFINITY) {
2354                if (((new - start) + (end_data - start_data)) > rlim)
2355                        return -ENOSPC;
2356        }
2357
2358        return 0;
2359}
2360
2361extern int mm_take_all_locks(struct mm_struct *mm);
2362extern void mm_drop_all_locks(struct mm_struct *mm);
2363
2364extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2365extern struct file *get_mm_exe_file(struct mm_struct *mm);
2366extern struct file *get_task_exe_file(struct task_struct *task);
2367
2368extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2369extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2370
2371extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2372                                   const struct vm_special_mapping *sm);
2373extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2374                                   unsigned long addr, unsigned long len,
2375                                   unsigned long flags,
2376                                   const struct vm_special_mapping *spec);
2377/* This is an obsolete alternative to _install_special_mapping. */
2378extern int install_special_mapping(struct mm_struct *mm,
2379                                   unsigned long addr, unsigned long len,
2380                                   unsigned long flags, struct page **pages);
2381
2382extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2383
2384extern unsigned long mmap_region(struct file *file, unsigned long addr,
2385        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2386        struct list_head *uf);
2387extern unsigned long do_mmap(struct file *file, unsigned long addr,
2388        unsigned long len, unsigned long prot, unsigned long flags,
2389        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2390        struct list_head *uf);
2391extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2392                       struct list_head *uf, bool downgrade);
2393extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2394                     struct list_head *uf);
2395
2396static inline unsigned long
2397do_mmap_pgoff(struct file *file, unsigned long addr,
2398        unsigned long len, unsigned long prot, unsigned long flags,
2399        unsigned long pgoff, unsigned long *populate,
2400        struct list_head *uf)
2401{
2402        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2403}
2404
2405#ifdef CONFIG_MMU
2406extern int __mm_populate(unsigned long addr, unsigned long len,
2407                         int ignore_errors);
2408static inline void mm_populate(unsigned long addr, unsigned long len)
2409{
2410        /* Ignore errors */
2411        (void) __mm_populate(addr, len, 1);
2412}
2413#else
2414static inline void mm_populate(unsigned long addr, unsigned long len) {}
2415#endif
2416
2417/* These take the mm semaphore themselves */
2418extern int __must_check vm_brk(unsigned long, unsigned long);
2419extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2420extern int vm_munmap(unsigned long, size_t);
2421extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2422        unsigned long, unsigned long,
2423        unsigned long, unsigned long);
2424
2425struct vm_unmapped_area_info {
2426#define VM_UNMAPPED_AREA_TOPDOWN 1
2427        unsigned long flags;
2428        unsigned long length;
2429        unsigned long low_limit;
2430        unsigned long high_limit;
2431        unsigned long align_mask;
2432        unsigned long align_offset;
2433};
2434
2435extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2436extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2437
2438/*
2439 * Search for an unmapped address range.
2440 *
2441 * We are looking for a range that:
2442 * - does not intersect with any VMA;
2443 * - is contained within the [low_limit, high_limit) interval;
2444 * - is at least the desired size.
2445 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2446 */
2447static inline unsigned long
2448vm_unmapped_area(struct vm_unmapped_area_info *info)
2449{
2450        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2451                return unmapped_area_topdown(info);
2452        else
2453                return unmapped_area(info);
2454}
2455
2456/* truncate.c */
2457extern void truncate_inode_pages(struct address_space *, loff_t);
2458extern void truncate_inode_pages_range(struct address_space *,
2459                                       loff_t lstart, loff_t lend);
2460extern void truncate_inode_pages_final(struct address_space *);
2461
2462/* generic vm_area_ops exported for stackable file systems */
2463extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2464extern void filemap_map_pages(struct vm_fault *vmf,
2465                pgoff_t start_pgoff, pgoff_t end_pgoff);
2466extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2467
2468/* mm/page-writeback.c */
2469int __must_check write_one_page(struct page *page);
2470void task_dirty_inc(struct task_struct *tsk);
2471
2472/* readahead.c */
2473#define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
2474
2475int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2476                        pgoff_t offset, unsigned long nr_to_read);
2477
2478void page_cache_sync_readahead(struct address_space *mapping,
2479                               struct file_ra_state *ra,
2480                               struct file *filp,
2481                               pgoff_t offset,
2482                               unsigned long size);
2483
2484void page_cache_async_readahead(struct address_space *mapping,
2485                                struct file_ra_state *ra,
2486                                struct file *filp,
2487                                struct page *pg,
2488                                pgoff_t offset,
2489                                unsigned long size);
2490
2491extern unsigned long stack_guard_gap;
2492/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2493extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2494
2495/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2496extern int expand_downwards(struct vm_area_struct *vma,
2497                unsigned long address);
2498#if VM_GROWSUP
2499extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2500#else
2501  #define expand_upwards(vma, address) (0)
2502#endif
2503
2504/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2505extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2506extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2507                                             struct vm_area_struct **pprev);
2508
2509/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2510   NULL if none.  Assume start_addr < end_addr. */
2511static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2512{
2513        struct vm_area_struct * vma = find_vma(mm,start_addr);
2514
2515        if (vma && end_addr <= vma->vm_start)
2516                vma = NULL;
2517        return vma;
2518}
2519
2520static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2521{
2522        unsigned long vm_start = vma->vm_start;
2523
2524        if (vma->vm_flags & VM_GROWSDOWN) {
2525                vm_start -= stack_guard_gap;
2526                if (vm_start > vma->vm_start)
2527                        vm_start = 0;
2528        }
2529        return vm_start;
2530}
2531
2532static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2533{
2534        unsigned long vm_end = vma->vm_end;
2535
2536        if (vma->vm_flags & VM_GROWSUP) {
2537                vm_end += stack_guard_gap;
2538                if (vm_end < vma->vm_end)
2539                        vm_end = -PAGE_SIZE;
2540        }
2541        return vm_end;
2542}
2543
2544static inline unsigned long vma_pages(struct vm_area_struct *vma)
2545{
2546        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2547}
2548
2549/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2550static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2551                                unsigned long vm_start, unsigned long vm_end)
2552{
2553        struct vm_area_struct *vma = find_vma(mm, vm_start);
2554
2555        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2556                vma = NULL;
2557
2558        return vma;
2559}
2560
2561static inline bool range_in_vma(struct vm_area_struct *vma,
2562                                unsigned long start, unsigned long end)
2563{
2564        return (vma && vma->vm_start <= start && end <= vma->vm_end);
2565}
2566
2567#ifdef CONFIG_MMU
2568pgprot_t vm_get_page_prot(unsigned long vm_flags);
2569void vma_set_page_prot(struct vm_area_struct *vma);
2570#else
2571static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2572{
2573        return __pgprot(0);
2574}
2575static inline void vma_set_page_prot(struct vm_area_struct *vma)
2576{
2577        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2578}
2579#endif
2580
2581#ifdef CONFIG_NUMA_BALANCING
2582unsigned long change_prot_numa(struct vm_area_struct *vma,
2583                        unsigned long start, unsigned long end);
2584#endif
2585
2586struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2587int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2588                        unsigned long pfn, unsigned long size, pgprot_t);
2589int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2590int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2591                                unsigned long num);
2592int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2593                                unsigned long num);
2594vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2595                        unsigned long pfn);
2596vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2597                        unsigned long pfn, pgprot_t pgprot);
2598vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2599                        pfn_t pfn);
2600vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2601                unsigned long addr, pfn_t pfn);
2602int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2603
2604static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2605                                unsigned long addr, struct page *page)
2606{
2607        int err = vm_insert_page(vma, addr, page);
2608
2609        if (err == -ENOMEM)
2610                return VM_FAULT_OOM;
2611        if (err < 0 && err != -EBUSY)
2612                return VM_FAULT_SIGBUS;
2613
2614        return VM_FAULT_NOPAGE;
2615}
2616
2617static inline vm_fault_t vmf_error(int err)
2618{
2619        if (err == -ENOMEM)
2620                return VM_FAULT_OOM;
2621        return VM_FAULT_SIGBUS;
2622}
2623
2624struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2625                         unsigned int foll_flags);
2626
2627#define FOLL_WRITE      0x01    /* check pte is writable */
2628#define FOLL_TOUCH      0x02    /* mark page accessed */
2629#define FOLL_GET        0x04    /* do get_page on page */
2630#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2631#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2632#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2633                                 * and return without waiting upon it */
2634#define FOLL_POPULATE   0x40    /* fault in page */
2635#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2636#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2637#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2638#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2639#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2640#define FOLL_MLOCK      0x1000  /* lock present pages */
2641#define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2642#define FOLL_COW        0x4000  /* internal GUP flag */
2643#define FOLL_ANON       0x8000  /* don't do file mappings */
2644#define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2645
2646/*
2647 * NOTE on FOLL_LONGTERM:
2648 *
2649 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2650 * period _often_ under userspace control.  This is contrasted with
2651 * iov_iter_get_pages() where usages which are transient.
2652 *
2653 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2654 * lifetime enforced by the filesystem and we need guarantees that longterm
2655 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2656 * the filesystem.  Ideas for this coordination include revoking the longterm
2657 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2658 * added after the problem with filesystems was found FS DAX VMAs are
2659 * specifically failed.  Filesystem pages are still subject to bugs and use of
2660 * FOLL_LONGTERM should be avoided on those pages.
2661 *
2662 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2663 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2664 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2665 * is due to an incompatibility with the FS DAX check and
2666 * FAULT_FLAG_ALLOW_RETRY
2667 *
2668 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2669 * that region.  And so CMA attempts to migrate the page before pinning when
2670 * FOLL_LONGTERM is specified.
2671 */
2672
2673static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2674{
2675        if (vm_fault & VM_FAULT_OOM)
2676                return -ENOMEM;
2677        if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2678                return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2679        if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2680                return -EFAULT;
2681        return 0;
2682}
2683
2684typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2685                        void *data);
2686extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2687                               unsigned long size, pte_fn_t fn, void *data);
2688
2689
2690#ifdef CONFIG_PAGE_POISONING
2691extern bool page_poisoning_enabled(void);
2692extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2693#else
2694static inline bool page_poisoning_enabled(void) { return false; }
2695static inline void kernel_poison_pages(struct page *page, int numpages,
2696                                        int enable) { }
2697#endif
2698
2699extern bool _debug_pagealloc_enabled;
2700
2701static inline bool debug_pagealloc_enabled(void)
2702{
2703        return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
2704}
2705
2706#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2707extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2708
2709static inline void
2710kernel_map_pages(struct page *page, int numpages, int enable)
2711{
2712        __kernel_map_pages(page, numpages, enable);
2713}
2714#ifdef CONFIG_HIBERNATION
2715extern bool kernel_page_present(struct page *page);
2716#endif  /* CONFIG_HIBERNATION */
2717#else   /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2718static inline void
2719kernel_map_pages(struct page *page, int numpages, int enable) {}
2720#ifdef CONFIG_HIBERNATION
2721static inline bool kernel_page_present(struct page *page) { return true; }
2722#endif  /* CONFIG_HIBERNATION */
2723#endif  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2724
2725#ifdef __HAVE_ARCH_GATE_AREA
2726extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2727extern int in_gate_area_no_mm(unsigned long addr);
2728extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2729#else
2730static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2731{
2732        return NULL;
2733}
2734static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2735static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2736{
2737        return 0;
2738}
2739#endif  /* __HAVE_ARCH_GATE_AREA */
2740
2741extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2742
2743#ifdef CONFIG_SYSCTL
2744extern int sysctl_drop_caches;
2745int drop_caches_sysctl_handler(struct ctl_table *, int,
2746                                        void __user *, size_t *, loff_t *);
2747#endif
2748
2749void drop_slab(void);
2750void drop_slab_node(int nid);
2751
2752#ifndef CONFIG_MMU
2753#define randomize_va_space 0
2754#else
2755extern int randomize_va_space;
2756#endif
2757
2758const char * arch_vma_name(struct vm_area_struct *vma);
2759void print_vma_addr(char *prefix, unsigned long rip);
2760
2761void *sparse_buffer_alloc(unsigned long size);
2762struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2763                struct vmem_altmap *altmap);
2764pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2765p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2766pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2767pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2768pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2769void *vmemmap_alloc_block(unsigned long size, int node);
2770struct vmem_altmap;
2771void *vmemmap_alloc_block_buf(unsigned long size, int node);
2772void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2773void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2774int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2775                               int node);
2776int vmemmap_populate(unsigned long start, unsigned long end, int node,
2777                struct vmem_altmap *altmap);
2778void vmemmap_populate_print_last(void);
2779#ifdef CONFIG_MEMORY_HOTPLUG
2780void vmemmap_free(unsigned long start, unsigned long end,
2781                struct vmem_altmap *altmap);
2782#endif
2783void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2784                                  unsigned long nr_pages);
2785
2786enum mf_flags {
2787        MF_COUNT_INCREASED = 1 << 0,
2788        MF_ACTION_REQUIRED = 1 << 1,
2789        MF_MUST_KILL = 1 << 2,
2790        MF_SOFT_OFFLINE = 1 << 3,
2791};
2792extern int memory_failure(unsigned long pfn, int flags);
2793extern void memory_failure_queue(unsigned long pfn, int flags);
2794extern int unpoison_memory(unsigned long pfn);
2795extern int get_hwpoison_page(struct page *page);
2796#define put_hwpoison_page(page) put_page(page)
2797extern int sysctl_memory_failure_early_kill;
2798extern int sysctl_memory_failure_recovery;
2799extern void shake_page(struct page *p, int access);
2800extern atomic_long_t num_poisoned_pages __read_mostly;
2801extern int soft_offline_page(struct page *page, int flags);
2802
2803
2804/*
2805 * Error handlers for various types of pages.
2806 */
2807enum mf_result {
2808        MF_IGNORED,     /* Error: cannot be handled */
2809        MF_FAILED,      /* Error: handling failed */
2810        MF_DELAYED,     /* Will be handled later */
2811        MF_RECOVERED,   /* Successfully recovered */
2812};
2813
2814enum mf_action_page_type {
2815        MF_MSG_KERNEL,
2816        MF_MSG_KERNEL_HIGH_ORDER,
2817        MF_MSG_SLAB,
2818        MF_MSG_DIFFERENT_COMPOUND,
2819        MF_MSG_POISONED_HUGE,
2820        MF_MSG_HUGE,
2821        MF_MSG_FREE_HUGE,
2822        MF_MSG_NON_PMD_HUGE,
2823        MF_MSG_UNMAP_FAILED,
2824        MF_MSG_DIRTY_SWAPCACHE,
2825        MF_MSG_CLEAN_SWAPCACHE,
2826        MF_MSG_DIRTY_MLOCKED_LRU,
2827        MF_MSG_CLEAN_MLOCKED_LRU,
2828        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2829        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2830        MF_MSG_DIRTY_LRU,
2831        MF_MSG_CLEAN_LRU,
2832        MF_MSG_TRUNCATED_LRU,
2833        MF_MSG_BUDDY,
2834        MF_MSG_BUDDY_2ND,
2835        MF_MSG_DAX,
2836        MF_MSG_UNKNOWN,
2837};
2838
2839#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2840extern void clear_huge_page(struct page *page,
2841                            unsigned long addr_hint,
2842                            unsigned int pages_per_huge_page);
2843extern void copy_user_huge_page(struct page *dst, struct page *src,
2844                                unsigned long addr_hint,
2845                                struct vm_area_struct *vma,
2846                                unsigned int pages_per_huge_page);
2847extern long copy_huge_page_from_user(struct page *dst_page,
2848                                const void __user *usr_src,
2849                                unsigned int pages_per_huge_page,
2850                                bool allow_pagefault);
2851#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2852
2853extern struct page_ext_operations debug_guardpage_ops;
2854
2855#ifdef CONFIG_DEBUG_PAGEALLOC
2856extern unsigned int _debug_guardpage_minorder;
2857extern bool _debug_guardpage_enabled;
2858
2859static inline unsigned int debug_guardpage_minorder(void)
2860{
2861        return _debug_guardpage_minorder;
2862}
2863
2864static inline bool debug_guardpage_enabled(void)
2865{
2866        return _debug_guardpage_enabled;
2867}
2868
2869static inline bool page_is_guard(struct page *page)
2870{
2871        struct page_ext *page_ext;
2872
2873        if (!debug_guardpage_enabled())
2874                return false;
2875
2876        page_ext = lookup_page_ext(page);
2877        if (unlikely(!page_ext))
2878                return false;
2879
2880        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2881}
2882#else
2883static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2884static inline bool debug_guardpage_enabled(void) { return false; }
2885static inline bool page_is_guard(struct page *page) { return false; }
2886#endif /* CONFIG_DEBUG_PAGEALLOC */
2887
2888#if MAX_NUMNODES > 1
2889void __init setup_nr_node_ids(void);
2890#else
2891static inline void setup_nr_node_ids(void) {}
2892#endif
2893
2894#endif /* __KERNEL__ */
2895#endif /* _LINUX_MM_H */
2896