linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_uptodate tells whether the page's contents is valid.  When a read
  67 * completes, the page becomes uptodate, unless a disk I/O error happened.
  68 *
  69 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  70 * file-backed pagecache (see mm/vmscan.c).
  71 *
  72 * PG_error is set to indicate that an I/O error occurred on this page.
  73 *
  74 * PG_arch_1 is an architecture specific page state bit.  The generic code
  75 * guarantees that this bit is cleared for a page when it first is entered into
  76 * the page cache.
  77 *
  78 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  79 * data with incorrect ECC bits that triggered a machine check. Accessing is
  80 * not safe since it may cause another machine check. Don't touch!
  81 */
  82
  83/*
  84 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  85 * locked- and dirty-page accounting.
  86 *
  87 * The page flags field is split into two parts, the main flags area
  88 * which extends from the low bits upwards, and the fields area which
  89 * extends from the high bits downwards.
  90 *
  91 *  | FIELD | ... | FLAGS |
  92 *  N-1           ^       0
  93 *               (NR_PAGEFLAGS)
  94 *
  95 * The fields area is reserved for fields mapping zone, node (for NUMA) and
  96 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  97 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  98 */
  99enum pageflags {
 100        PG_locked,              /* Page is locked. Don't touch. */
 101        PG_referenced,
 102        PG_uptodate,
 103        PG_dirty,
 104        PG_lru,
 105        PG_active,
 106        PG_workingset,
 107        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 108        PG_error,
 109        PG_slab,
 110        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 111        PG_arch_1,
 112        PG_reserved,
 113        PG_private,             /* If pagecache, has fs-private data */
 114        PG_private_2,           /* If pagecache, has fs aux data */
 115        PG_writeback,           /* Page is under writeback */
 116        PG_head,                /* A head page */
 117        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 118        PG_reclaim,             /* To be reclaimed asap */
 119        PG_swapbacked,          /* Page is backed by RAM/swap */
 120        PG_unevictable,         /* Page is "unevictable"  */
 121#ifdef CONFIG_MMU
 122        PG_mlocked,             /* Page is vma mlocked */
 123#endif
 124#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 125        PG_uncached,            /* Page has been mapped as uncached */
 126#endif
 127#ifdef CONFIG_MEMORY_FAILURE
 128        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 129#endif
 130#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 131        PG_young,
 132        PG_idle,
 133#endif
 134        __NR_PAGEFLAGS,
 135
 136        /* Filesystems */
 137        PG_checked = PG_owner_priv_1,
 138
 139        /* SwapBacked */
 140        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 141
 142        /* Two page bits are conscripted by FS-Cache to maintain local caching
 143         * state.  These bits are set on pages belonging to the netfs's inodes
 144         * when those inodes are being locally cached.
 145         */
 146        PG_fscache = PG_private_2,      /* page backed by cache */
 147
 148        /* XEN */
 149        /* Pinned in Xen as a read-only pagetable page. */
 150        PG_pinned = PG_owner_priv_1,
 151        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 152        PG_savepinned = PG_dirty,
 153        /* Has a grant mapping of another (foreign) domain's page. */
 154        PG_foreign = PG_owner_priv_1,
 155
 156        /* SLOB */
 157        PG_slob_free = PG_private,
 158
 159        /* Compound pages. Stored in first tail page's flags */
 160        PG_double_map = PG_private_2,
 161
 162        /* non-lru isolated movable page */
 163        PG_isolated = PG_reclaim,
 164};
 165
 166#ifndef __GENERATING_BOUNDS_H
 167
 168struct page;    /* forward declaration */
 169
 170static inline struct page *compound_head(struct page *page)
 171{
 172        unsigned long head = READ_ONCE(page->compound_head);
 173
 174        if (unlikely(head & 1))
 175                return (struct page *) (head - 1);
 176        return page;
 177}
 178
 179static __always_inline int PageTail(struct page *page)
 180{
 181        return READ_ONCE(page->compound_head) & 1;
 182}
 183
 184static __always_inline int PageCompound(struct page *page)
 185{
 186        return test_bit(PG_head, &page->flags) || PageTail(page);
 187}
 188
 189#define PAGE_POISON_PATTERN     -1l
 190static inline int PagePoisoned(const struct page *page)
 191{
 192        return page->flags == PAGE_POISON_PATTERN;
 193}
 194
 195#ifdef CONFIG_DEBUG_VM
 196void page_init_poison(struct page *page, size_t size);
 197#else
 198static inline void page_init_poison(struct page *page, size_t size)
 199{
 200}
 201#endif
 202
 203/*
 204 * Page flags policies wrt compound pages
 205 *
 206 * PF_POISONED_CHECK
 207 *     check if this struct page poisoned/uninitialized
 208 *
 209 * PF_ANY:
 210 *     the page flag is relevant for small, head and tail pages.
 211 *
 212 * PF_HEAD:
 213 *     for compound page all operations related to the page flag applied to
 214 *     head page.
 215 *
 216 * PF_ONLY_HEAD:
 217 *     for compound page, callers only ever operate on the head page.
 218 *
 219 * PF_NO_TAIL:
 220 *     modifications of the page flag must be done on small or head pages,
 221 *     checks can be done on tail pages too.
 222 *
 223 * PF_NO_COMPOUND:
 224 *     the page flag is not relevant for compound pages.
 225 */
 226#define PF_POISONED_CHECK(page) ({                                      \
 227                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 228                page; })
 229#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 230#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 231#define PF_ONLY_HEAD(page, enforce) ({                                  \
 232                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 233                PF_POISONED_CHECK(page); })
 234#define PF_NO_TAIL(page, enforce) ({                                    \
 235                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 236                PF_POISONED_CHECK(compound_head(page)); })
 237#define PF_NO_COMPOUND(page, enforce) ({                                \
 238                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 239                PF_POISONED_CHECK(page); })
 240
 241/*
 242 * Macros to create function definitions for page flags
 243 */
 244#define TESTPAGEFLAG(uname, lname, policy)                              \
 245static __always_inline int Page##uname(struct page *page)               \
 246        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 247
 248#define SETPAGEFLAG(uname, lname, policy)                               \
 249static __always_inline void SetPage##uname(struct page *page)           \
 250        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 251
 252#define CLEARPAGEFLAG(uname, lname, policy)                             \
 253static __always_inline void ClearPage##uname(struct page *page)         \
 254        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 255
 256#define __SETPAGEFLAG(uname, lname, policy)                             \
 257static __always_inline void __SetPage##uname(struct page *page)         \
 258        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 259
 260#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 261static __always_inline void __ClearPage##uname(struct page *page)       \
 262        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 263
 264#define TESTSETFLAG(uname, lname, policy)                               \
 265static __always_inline int TestSetPage##uname(struct page *page)        \
 266        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 267
 268#define TESTCLEARFLAG(uname, lname, policy)                             \
 269static __always_inline int TestClearPage##uname(struct page *page)      \
 270        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 271
 272#define PAGEFLAG(uname, lname, policy)                                  \
 273        TESTPAGEFLAG(uname, lname, policy)                              \
 274        SETPAGEFLAG(uname, lname, policy)                               \
 275        CLEARPAGEFLAG(uname, lname, policy)
 276
 277#define __PAGEFLAG(uname, lname, policy)                                \
 278        TESTPAGEFLAG(uname, lname, policy)                              \
 279        __SETPAGEFLAG(uname, lname, policy)                             \
 280        __CLEARPAGEFLAG(uname, lname, policy)
 281
 282#define TESTSCFLAG(uname, lname, policy)                                \
 283        TESTSETFLAG(uname, lname, policy)                               \
 284        TESTCLEARFLAG(uname, lname, policy)
 285
 286#define TESTPAGEFLAG_FALSE(uname)                                       \
 287static inline int Page##uname(const struct page *page) { return 0; }
 288
 289#define SETPAGEFLAG_NOOP(uname)                                         \
 290static inline void SetPage##uname(struct page *page) {  }
 291
 292#define CLEARPAGEFLAG_NOOP(uname)                                       \
 293static inline void ClearPage##uname(struct page *page) {  }
 294
 295#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 296static inline void __ClearPage##uname(struct page *page) {  }
 297
 298#define TESTSETFLAG_FALSE(uname)                                        \
 299static inline int TestSetPage##uname(struct page *page) { return 0; }
 300
 301#define TESTCLEARFLAG_FALSE(uname)                                      \
 302static inline int TestClearPage##uname(struct page *page) { return 0; }
 303
 304#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 305        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 306
 307#define TESTSCFLAG_FALSE(uname)                                         \
 308        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 309
 310__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 311PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 312PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
 313PAGEFLAG(Referenced, referenced, PF_HEAD)
 314        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 315        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 316PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 317        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 318PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 319PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 320        TESTCLEARFLAG(Active, active, PF_HEAD)
 321PAGEFLAG(Workingset, workingset, PF_HEAD)
 322        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 323__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 324__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 325PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 326
 327/* Xen */
 328PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 329        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 330PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 331PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 332
 333PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 334        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 335        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 336PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 337        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 338        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 339
 340/*
 341 * Private page markings that may be used by the filesystem that owns the page
 342 * for its own purposes.
 343 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 344 */
 345PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 346        __CLEARPAGEFLAG(Private, private, PF_ANY)
 347PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 348PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 349        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 350
 351/*
 352 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 353 * risky: they bypass page accounting.
 354 */
 355TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 356        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 357PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 358
 359/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 360PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 361        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 362PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 363        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 364
 365#ifdef CONFIG_HIGHMEM
 366/*
 367 * Must use a macro here due to header dependency issues. page_zone() is not
 368 * available at this point.
 369 */
 370#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 371#else
 372PAGEFLAG_FALSE(HighMem)
 373#endif
 374
 375#ifdef CONFIG_SWAP
 376static __always_inline int PageSwapCache(struct page *page)
 377{
 378#ifdef CONFIG_THP_SWAP
 379        page = compound_head(page);
 380#endif
 381        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 382
 383}
 384SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 385CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 386#else
 387PAGEFLAG_FALSE(SwapCache)
 388#endif
 389
 390PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 391        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 392        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 393
 394#ifdef CONFIG_MMU
 395PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 396        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 397        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 398#else
 399PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 400        TESTSCFLAG_FALSE(Mlocked)
 401#endif
 402
 403#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 404PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 405#else
 406PAGEFLAG_FALSE(Uncached)
 407#endif
 408
 409#ifdef CONFIG_MEMORY_FAILURE
 410PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 411TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 412#define __PG_HWPOISON (1UL << PG_hwpoison)
 413extern bool set_hwpoison_free_buddy_page(struct page *page);
 414#else
 415PAGEFLAG_FALSE(HWPoison)
 416static inline bool set_hwpoison_free_buddy_page(struct page *page)
 417{
 418        return 0;
 419}
 420#define __PG_HWPOISON 0
 421#endif
 422
 423#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 424TESTPAGEFLAG(Young, young, PF_ANY)
 425SETPAGEFLAG(Young, young, PF_ANY)
 426TESTCLEARFLAG(Young, young, PF_ANY)
 427PAGEFLAG(Idle, idle, PF_ANY)
 428#endif
 429
 430/*
 431 * On an anonymous page mapped into a user virtual memory area,
 432 * page->mapping points to its anon_vma, not to a struct address_space;
 433 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 434 *
 435 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 436 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 437 * bit; and then page->mapping points, not to an anon_vma, but to a private
 438 * structure which KSM associates with that merged page.  See ksm.h.
 439 *
 440 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 441 * page and then page->mapping points a struct address_space.
 442 *
 443 * Please note that, confusingly, "page_mapping" refers to the inode
 444 * address_space which maps the page from disk; whereas "page_mapped"
 445 * refers to user virtual address space into which the page is mapped.
 446 */
 447#define PAGE_MAPPING_ANON       0x1
 448#define PAGE_MAPPING_MOVABLE    0x2
 449#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 450#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 451
 452static __always_inline int PageMappingFlags(struct page *page)
 453{
 454        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 455}
 456
 457static __always_inline int PageAnon(struct page *page)
 458{
 459        page = compound_head(page);
 460        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 461}
 462
 463static __always_inline int __PageMovable(struct page *page)
 464{
 465        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 466                                PAGE_MAPPING_MOVABLE;
 467}
 468
 469#ifdef CONFIG_KSM
 470/*
 471 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 472 * which KSM maps into multiple mms, wherever identical anonymous page content
 473 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 474 * anon_vma, but to that page's node of the stable tree.
 475 */
 476static __always_inline int PageKsm(struct page *page)
 477{
 478        page = compound_head(page);
 479        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 480                                PAGE_MAPPING_KSM;
 481}
 482#else
 483TESTPAGEFLAG_FALSE(Ksm)
 484#endif
 485
 486u64 stable_page_flags(struct page *page);
 487
 488static inline int PageUptodate(struct page *page)
 489{
 490        int ret;
 491        page = compound_head(page);
 492        ret = test_bit(PG_uptodate, &(page)->flags);
 493        /*
 494         * Must ensure that the data we read out of the page is loaded
 495         * _after_ we've loaded page->flags to check for PageUptodate.
 496         * We can skip the barrier if the page is not uptodate, because
 497         * we wouldn't be reading anything from it.
 498         *
 499         * See SetPageUptodate() for the other side of the story.
 500         */
 501        if (ret)
 502                smp_rmb();
 503
 504        return ret;
 505}
 506
 507static __always_inline void __SetPageUptodate(struct page *page)
 508{
 509        VM_BUG_ON_PAGE(PageTail(page), page);
 510        smp_wmb();
 511        __set_bit(PG_uptodate, &page->flags);
 512}
 513
 514static __always_inline void SetPageUptodate(struct page *page)
 515{
 516        VM_BUG_ON_PAGE(PageTail(page), page);
 517        /*
 518         * Memory barrier must be issued before setting the PG_uptodate bit,
 519         * so that all previous stores issued in order to bring the page
 520         * uptodate are actually visible before PageUptodate becomes true.
 521         */
 522        smp_wmb();
 523        set_bit(PG_uptodate, &page->flags);
 524}
 525
 526CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 527
 528int test_clear_page_writeback(struct page *page);
 529int __test_set_page_writeback(struct page *page, bool keep_write);
 530
 531#define test_set_page_writeback(page)                   \
 532        __test_set_page_writeback(page, false)
 533#define test_set_page_writeback_keepwrite(page) \
 534        __test_set_page_writeback(page, true)
 535
 536static inline void set_page_writeback(struct page *page)
 537{
 538        test_set_page_writeback(page);
 539}
 540
 541static inline void set_page_writeback_keepwrite(struct page *page)
 542{
 543        test_set_page_writeback_keepwrite(page);
 544}
 545
 546__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 547
 548static __always_inline void set_compound_head(struct page *page, struct page *head)
 549{
 550        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 551}
 552
 553static __always_inline void clear_compound_head(struct page *page)
 554{
 555        WRITE_ONCE(page->compound_head, 0);
 556}
 557
 558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 559static inline void ClearPageCompound(struct page *page)
 560{
 561        BUG_ON(!PageHead(page));
 562        ClearPageHead(page);
 563}
 564#endif
 565
 566#define PG_head_mask ((1UL << PG_head))
 567
 568#ifdef CONFIG_HUGETLB_PAGE
 569int PageHuge(struct page *page);
 570int PageHeadHuge(struct page *page);
 571bool page_huge_active(struct page *page);
 572#else
 573TESTPAGEFLAG_FALSE(Huge)
 574TESTPAGEFLAG_FALSE(HeadHuge)
 575
 576static inline bool page_huge_active(struct page *page)
 577{
 578        return 0;
 579}
 580#endif
 581
 582
 583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 584/*
 585 * PageHuge() only returns true for hugetlbfs pages, but not for
 586 * normal or transparent huge pages.
 587 *
 588 * PageTransHuge() returns true for both transparent huge and
 589 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 590 * called only in the core VM paths where hugetlbfs pages can't exist.
 591 */
 592static inline int PageTransHuge(struct page *page)
 593{
 594        VM_BUG_ON_PAGE(PageTail(page), page);
 595        return PageHead(page);
 596}
 597
 598/*
 599 * PageTransCompound returns true for both transparent huge pages
 600 * and hugetlbfs pages, so it should only be called when it's known
 601 * that hugetlbfs pages aren't involved.
 602 */
 603static inline int PageTransCompound(struct page *page)
 604{
 605        return PageCompound(page);
 606}
 607
 608/*
 609 * PageTransCompoundMap is the same as PageTransCompound, but it also
 610 * guarantees the primary MMU has the entire compound page mapped
 611 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 612 * can also map the entire compound page. This allows the secondary
 613 * MMUs to call get_user_pages() only once for each compound page and
 614 * to immediately map the entire compound page with a single secondary
 615 * MMU fault. If there will be a pmd split later, the secondary MMUs
 616 * will get an update through the MMU notifier invalidation through
 617 * split_huge_pmd().
 618 *
 619 * Unlike PageTransCompound, this is safe to be called only while
 620 * split_huge_pmd() cannot run from under us, like if protected by the
 621 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
 622 * positives.
 623 */
 624static inline int PageTransCompoundMap(struct page *page)
 625{
 626        return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
 627}
 628
 629/*
 630 * PageTransTail returns true for both transparent huge pages
 631 * and hugetlbfs pages, so it should only be called when it's known
 632 * that hugetlbfs pages aren't involved.
 633 */
 634static inline int PageTransTail(struct page *page)
 635{
 636        return PageTail(page);
 637}
 638
 639/*
 640 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 641 * as PMDs.
 642 *
 643 * This is required for optimization of rmap operations for THP: we can postpone
 644 * per small page mapcount accounting (and its overhead from atomic operations)
 645 * until the first PMD split.
 646 *
 647 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 648 * by one. This reference will go away with last compound_mapcount.
 649 *
 650 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 651 */
 652static inline int PageDoubleMap(struct page *page)
 653{
 654        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 655}
 656
 657static inline void SetPageDoubleMap(struct page *page)
 658{
 659        VM_BUG_ON_PAGE(!PageHead(page), page);
 660        set_bit(PG_double_map, &page[1].flags);
 661}
 662
 663static inline void ClearPageDoubleMap(struct page *page)
 664{
 665        VM_BUG_ON_PAGE(!PageHead(page), page);
 666        clear_bit(PG_double_map, &page[1].flags);
 667}
 668static inline int TestSetPageDoubleMap(struct page *page)
 669{
 670        VM_BUG_ON_PAGE(!PageHead(page), page);
 671        return test_and_set_bit(PG_double_map, &page[1].flags);
 672}
 673
 674static inline int TestClearPageDoubleMap(struct page *page)
 675{
 676        VM_BUG_ON_PAGE(!PageHead(page), page);
 677        return test_and_clear_bit(PG_double_map, &page[1].flags);
 678}
 679
 680#else
 681TESTPAGEFLAG_FALSE(TransHuge)
 682TESTPAGEFLAG_FALSE(TransCompound)
 683TESTPAGEFLAG_FALSE(TransCompoundMap)
 684TESTPAGEFLAG_FALSE(TransTail)
 685PAGEFLAG_FALSE(DoubleMap)
 686        TESTSETFLAG_FALSE(DoubleMap)
 687        TESTCLEARFLAG_FALSE(DoubleMap)
 688#endif
 689
 690/*
 691 * For pages that are never mapped to userspace (and aren't PageSlab),
 692 * page_type may be used.  Because it is initialised to -1, we invert the
 693 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 694 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 695 * low bits so that an underflow or overflow of page_mapcount() won't be
 696 * mistaken for a page type value.
 697 */
 698
 699#define PAGE_TYPE_BASE  0xf0000000
 700/* Reserve              0x0000007f to catch underflows of page_mapcount */
 701#define PAGE_MAPCOUNT_RESERVE   -128
 702#define PG_buddy        0x00000080
 703#define PG_offline      0x00000100
 704#define PG_kmemcg       0x00000200
 705#define PG_table        0x00000400
 706
 707#define PageType(page, flag)                                            \
 708        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 709
 710static inline int page_has_type(struct page *page)
 711{
 712        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 713}
 714
 715#define PAGE_TYPE_OPS(uname, lname)                                     \
 716static __always_inline int Page##uname(struct page *page)               \
 717{                                                                       \
 718        return PageType(page, PG_##lname);                              \
 719}                                                                       \
 720static __always_inline void __SetPage##uname(struct page *page)         \
 721{                                                                       \
 722        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 723        page->page_type &= ~PG_##lname;                                 \
 724}                                                                       \
 725static __always_inline void __ClearPage##uname(struct page *page)       \
 726{                                                                       \
 727        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 728        page->page_type |= PG_##lname;                                  \
 729}
 730
 731/*
 732 * PageBuddy() indicates that the page is free and in the buddy system
 733 * (see mm/page_alloc.c).
 734 */
 735PAGE_TYPE_OPS(Buddy, buddy)
 736
 737/*
 738 * PageOffline() indicates that the page is logically offline although the
 739 * containing section is online. (e.g. inflated in a balloon driver or
 740 * not onlined when onlining the section).
 741 * The content of these pages is effectively stale. Such pages should not
 742 * be touched (read/write/dump/save) except by their owner.
 743 */
 744PAGE_TYPE_OPS(Offline, offline)
 745
 746/*
 747 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 748 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 749 */
 750PAGE_TYPE_OPS(Kmemcg, kmemcg)
 751
 752/*
 753 * Marks pages in use as page tables.
 754 */
 755PAGE_TYPE_OPS(Table, table)
 756
 757extern bool is_free_buddy_page(struct page *page);
 758
 759__PAGEFLAG(Isolated, isolated, PF_ANY);
 760
 761/*
 762 * If network-based swap is enabled, sl*b must keep track of whether pages
 763 * were allocated from pfmemalloc reserves.
 764 */
 765static inline int PageSlabPfmemalloc(struct page *page)
 766{
 767        VM_BUG_ON_PAGE(!PageSlab(page), page);
 768        return PageActive(page);
 769}
 770
 771static inline void SetPageSlabPfmemalloc(struct page *page)
 772{
 773        VM_BUG_ON_PAGE(!PageSlab(page), page);
 774        SetPageActive(page);
 775}
 776
 777static inline void __ClearPageSlabPfmemalloc(struct page *page)
 778{
 779        VM_BUG_ON_PAGE(!PageSlab(page), page);
 780        __ClearPageActive(page);
 781}
 782
 783static inline void ClearPageSlabPfmemalloc(struct page *page)
 784{
 785        VM_BUG_ON_PAGE(!PageSlab(page), page);
 786        ClearPageActive(page);
 787}
 788
 789#ifdef CONFIG_MMU
 790#define __PG_MLOCKED            (1UL << PG_mlocked)
 791#else
 792#define __PG_MLOCKED            0
 793#endif
 794
 795/*
 796 * Flags checked when a page is freed.  Pages being freed should not have
 797 * these flags set.  It they are, there is a problem.
 798 */
 799#define PAGE_FLAGS_CHECK_AT_FREE                                \
 800        (1UL << PG_lru          | 1UL << PG_locked      |       \
 801         1UL << PG_private      | 1UL << PG_private_2   |       \
 802         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 803         1UL << PG_slab         | 1UL << PG_active      |       \
 804         1UL << PG_unevictable  | __PG_MLOCKED)
 805
 806/*
 807 * Flags checked when a page is prepped for return by the page allocator.
 808 * Pages being prepped should not have these flags set.  It they are set,
 809 * there has been a kernel bug or struct page corruption.
 810 *
 811 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 812 * alloc-free cycle to prevent from reusing the page.
 813 */
 814#define PAGE_FLAGS_CHECK_AT_PREP        \
 815        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 816
 817#define PAGE_FLAGS_PRIVATE                              \
 818        (1UL << PG_private | 1UL << PG_private_2)
 819/**
 820 * page_has_private - Determine if page has private stuff
 821 * @page: The page to be checked
 822 *
 823 * Determine if a page has private stuff, indicating that release routines
 824 * should be invoked upon it.
 825 */
 826static inline int page_has_private(struct page *page)
 827{
 828        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 829}
 830
 831#undef PF_ANY
 832#undef PF_HEAD
 833#undef PF_ONLY_HEAD
 834#undef PF_NO_TAIL
 835#undef PF_NO_COMPOUND
 836#endif /* !__GENERATING_BOUNDS_H */
 837
 838#endif  /* PAGE_FLAGS_H */
 839