linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36
  37/* Exported common interfaces */
  38void call_rcu(struct rcu_head *head, rcu_callback_t func);
  39void rcu_barrier_tasks(void);
  40void synchronize_rcu(void);
  41
  42#ifdef CONFIG_PREEMPT_RCU
  43
  44void __rcu_read_lock(void);
  45void __rcu_read_unlock(void);
  46
  47/*
  48 * Defined as a macro as it is a very low level header included from
  49 * areas that don't even know about current.  This gives the rcu_read_lock()
  50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  52 */
  53#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  54
  55#else /* #ifdef CONFIG_PREEMPT_RCU */
  56
  57static inline void __rcu_read_lock(void)
  58{
  59        preempt_disable();
  60}
  61
  62static inline void __rcu_read_unlock(void)
  63{
  64        preempt_enable();
  65}
  66
  67static inline int rcu_preempt_depth(void)
  68{
  69        return 0;
  70}
  71
  72#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  73
  74/* Internal to kernel */
  75void rcu_init(void);
  76extern int rcu_scheduler_active __read_mostly;
  77void rcu_sched_clock_irq(int user);
  78void rcu_report_dead(unsigned int cpu);
  79void rcutree_migrate_callbacks(int cpu);
  80
  81#ifdef CONFIG_RCU_STALL_COMMON
  82void rcu_sysrq_start(void);
  83void rcu_sysrq_end(void);
  84#else /* #ifdef CONFIG_RCU_STALL_COMMON */
  85static inline void rcu_sysrq_start(void) { }
  86static inline void rcu_sysrq_end(void) { }
  87#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
  88
  89#ifdef CONFIG_NO_HZ_FULL
  90void rcu_user_enter(void);
  91void rcu_user_exit(void);
  92#else
  93static inline void rcu_user_enter(void) { }
  94static inline void rcu_user_exit(void) { }
  95#endif /* CONFIG_NO_HZ_FULL */
  96
  97#ifdef CONFIG_RCU_NOCB_CPU
  98void rcu_init_nohz(void);
  99#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 100static inline void rcu_init_nohz(void) { }
 101#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 102
 103/**
 104 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 105 * @a: Code that RCU needs to pay attention to.
 106 *
 107 * RCU read-side critical sections are forbidden in the inner idle loop,
 108 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 109 * will happily ignore any such read-side critical sections.  However,
 110 * things like powertop need tracepoints in the inner idle loop.
 111 *
 112 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 113 * will tell RCU that it needs to pay attention, invoke its argument
 114 * (in this example, calling the do_something_with_RCU() function),
 115 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 116 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 117 * on the order of a million or so, even on 32-bit systems).  It is
 118 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 119 * transfer control either into or out of RCU_NONIDLE()'s statement.
 120 */
 121#define RCU_NONIDLE(a) \
 122        do { \
 123                rcu_irq_enter_irqson(); \
 124                do { a; } while (0); \
 125                rcu_irq_exit_irqson(); \
 126        } while (0)
 127
 128/*
 129 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 130 * This is a macro rather than an inline function to avoid #include hell.
 131 */
 132#ifdef CONFIG_TASKS_RCU
 133#define rcu_tasks_qs(t) \
 134        do { \
 135                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 136                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 137        } while (0)
 138#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
 139void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 140void synchronize_rcu_tasks(void);
 141void exit_tasks_rcu_start(void);
 142void exit_tasks_rcu_finish(void);
 143#else /* #ifdef CONFIG_TASKS_RCU */
 144#define rcu_tasks_qs(t) do { } while (0)
 145#define rcu_note_voluntary_context_switch(t) do { } while (0)
 146#define call_rcu_tasks call_rcu
 147#define synchronize_rcu_tasks synchronize_rcu
 148static inline void exit_tasks_rcu_start(void) { }
 149static inline void exit_tasks_rcu_finish(void) { }
 150#endif /* #else #ifdef CONFIG_TASKS_RCU */
 151
 152/**
 153 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 154 *
 155 * This macro resembles cond_resched(), except that it is defined to
 156 * report potential quiescent states to RCU-tasks even if the cond_resched()
 157 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 158 */
 159#define cond_resched_tasks_rcu_qs() \
 160do { \
 161        rcu_tasks_qs(current); \
 162        cond_resched(); \
 163} while (0)
 164
 165/*
 166 * Infrastructure to implement the synchronize_() primitives in
 167 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 168 */
 169
 170#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 171#include <linux/rcutree.h>
 172#elif defined(CONFIG_TINY_RCU)
 173#include <linux/rcutiny.h>
 174#else
 175#error "Unknown RCU implementation specified to kernel configuration"
 176#endif
 177
 178/*
 179 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 180 * are needed for dynamic initialization and destruction of rcu_head
 181 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 182 * dynamic initialization and destruction of statically allocated rcu_head
 183 * structures.  However, rcu_head structures allocated dynamically in the
 184 * heap don't need any initialization.
 185 */
 186#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 187void init_rcu_head(struct rcu_head *head);
 188void destroy_rcu_head(struct rcu_head *head);
 189void init_rcu_head_on_stack(struct rcu_head *head);
 190void destroy_rcu_head_on_stack(struct rcu_head *head);
 191#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 192static inline void init_rcu_head(struct rcu_head *head) { }
 193static inline void destroy_rcu_head(struct rcu_head *head) { }
 194static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 195static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 196#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 197
 198#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 199bool rcu_lockdep_current_cpu_online(void);
 200#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 201static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 202#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 203
 204#ifdef CONFIG_DEBUG_LOCK_ALLOC
 205
 206static inline void rcu_lock_acquire(struct lockdep_map *map)
 207{
 208        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 209}
 210
 211static inline void rcu_lock_release(struct lockdep_map *map)
 212{
 213        lock_release(map, 1, _THIS_IP_);
 214}
 215
 216extern struct lockdep_map rcu_lock_map;
 217extern struct lockdep_map rcu_bh_lock_map;
 218extern struct lockdep_map rcu_sched_lock_map;
 219extern struct lockdep_map rcu_callback_map;
 220int debug_lockdep_rcu_enabled(void);
 221int rcu_read_lock_held(void);
 222int rcu_read_lock_bh_held(void);
 223int rcu_read_lock_sched_held(void);
 224
 225#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 226
 227# define rcu_lock_acquire(a)            do { } while (0)
 228# define rcu_lock_release(a)            do { } while (0)
 229
 230static inline int rcu_read_lock_held(void)
 231{
 232        return 1;
 233}
 234
 235static inline int rcu_read_lock_bh_held(void)
 236{
 237        return 1;
 238}
 239
 240static inline int rcu_read_lock_sched_held(void)
 241{
 242        return !preemptible();
 243}
 244#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 245
 246#ifdef CONFIG_PROVE_RCU
 247
 248/**
 249 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 250 * @c: condition to check
 251 * @s: informative message
 252 */
 253#define RCU_LOCKDEP_WARN(c, s)                                          \
 254        do {                                                            \
 255                static bool __section(.data.unlikely) __warned;         \
 256                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 257                        __warned = true;                                \
 258                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 259                }                                                       \
 260        } while (0)
 261
 262#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 263static inline void rcu_preempt_sleep_check(void)
 264{
 265        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 266                         "Illegal context switch in RCU read-side critical section");
 267}
 268#else /* #ifdef CONFIG_PROVE_RCU */
 269static inline void rcu_preempt_sleep_check(void) { }
 270#endif /* #else #ifdef CONFIG_PROVE_RCU */
 271
 272#define rcu_sleep_check()                                               \
 273        do {                                                            \
 274                rcu_preempt_sleep_check();                              \
 275                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 276                                 "Illegal context switch in RCU-bh read-side critical section"); \
 277                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 278                                 "Illegal context switch in RCU-sched read-side critical section"); \
 279        } while (0)
 280
 281#else /* #ifdef CONFIG_PROVE_RCU */
 282
 283#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 284#define rcu_sleep_check() do { } while (0)
 285
 286#endif /* #else #ifdef CONFIG_PROVE_RCU */
 287
 288/*
 289 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 290 * and rcu_assign_pointer().  Some of these could be folded into their
 291 * callers, but they are left separate in order to ease introduction of
 292 * multiple pointers markings to match different RCU implementations
 293 * (e.g., __srcu), should this make sense in the future.
 294 */
 295
 296#ifdef __CHECKER__
 297#define rcu_check_sparse(p, space) \
 298        ((void)(((typeof(*p) space *)p) == p))
 299#else /* #ifdef __CHECKER__ */
 300#define rcu_check_sparse(p, space)
 301#endif /* #else #ifdef __CHECKER__ */
 302
 303#define __rcu_access_pointer(p, space) \
 304({ \
 305        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 306        rcu_check_sparse(p, space); \
 307        ((typeof(*p) __force __kernel *)(_________p1)); \
 308})
 309#define __rcu_dereference_check(p, c, space) \
 310({ \
 311        /* Dependency order vs. p above. */ \
 312        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 313        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 314        rcu_check_sparse(p, space); \
 315        ((typeof(*p) __force __kernel *)(________p1)); \
 316})
 317#define __rcu_dereference_protected(p, c, space) \
 318({ \
 319        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 320        rcu_check_sparse(p, space); \
 321        ((typeof(*p) __force __kernel *)(p)); \
 322})
 323#define rcu_dereference_raw(p) \
 324({ \
 325        /* Dependency order vs. p above. */ \
 326        typeof(p) ________p1 = READ_ONCE(p); \
 327        ((typeof(*p) __force __kernel *)(________p1)); \
 328})
 329
 330/**
 331 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 332 * @v: The value to statically initialize with.
 333 */
 334#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 335
 336/**
 337 * rcu_assign_pointer() - assign to RCU-protected pointer
 338 * @p: pointer to assign to
 339 * @v: value to assign (publish)
 340 *
 341 * Assigns the specified value to the specified RCU-protected
 342 * pointer, ensuring that any concurrent RCU readers will see
 343 * any prior initialization.
 344 *
 345 * Inserts memory barriers on architectures that require them
 346 * (which is most of them), and also prevents the compiler from
 347 * reordering the code that initializes the structure after the pointer
 348 * assignment.  More importantly, this call documents which pointers
 349 * will be dereferenced by RCU read-side code.
 350 *
 351 * In some special cases, you may use RCU_INIT_POINTER() instead
 352 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 353 * to the fact that it does not constrain either the CPU or the compiler.
 354 * That said, using RCU_INIT_POINTER() when you should have used
 355 * rcu_assign_pointer() is a very bad thing that results in
 356 * impossible-to-diagnose memory corruption.  So please be careful.
 357 * See the RCU_INIT_POINTER() comment header for details.
 358 *
 359 * Note that rcu_assign_pointer() evaluates each of its arguments only
 360 * once, appearances notwithstanding.  One of the "extra" evaluations
 361 * is in typeof() and the other visible only to sparse (__CHECKER__),
 362 * neither of which actually execute the argument.  As with most cpp
 363 * macros, this execute-arguments-only-once property is important, so
 364 * please be careful when making changes to rcu_assign_pointer() and the
 365 * other macros that it invokes.
 366 */
 367#define rcu_assign_pointer(p, v)                                              \
 368({                                                                            \
 369        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 370        rcu_check_sparse(p, __rcu);                                   \
 371                                                                              \
 372        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 373                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 374        else                                                                  \
 375                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 376        _r_a_p__v;                                                            \
 377})
 378
 379/**
 380 * rcu_swap_protected() - swap an RCU and a regular pointer
 381 * @rcu_ptr: RCU pointer
 382 * @ptr: regular pointer
 383 * @c: the conditions under which the dereference will take place
 384 *
 385 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
 386 * @c is the argument that is passed to the rcu_dereference_protected() call
 387 * used to read that pointer.
 388 */
 389#define rcu_swap_protected(rcu_ptr, ptr, c) do {                        \
 390        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 391        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 392        (ptr) = __tmp;                                                  \
 393} while (0)
 394
 395/**
 396 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 397 * @p: The pointer to read
 398 *
 399 * Return the value of the specified RCU-protected pointer, but omit the
 400 * lockdep checks for being in an RCU read-side critical section.  This is
 401 * useful when the value of this pointer is accessed, but the pointer is
 402 * not dereferenced, for example, when testing an RCU-protected pointer
 403 * against NULL.  Although rcu_access_pointer() may also be used in cases
 404 * where update-side locks prevent the value of the pointer from changing,
 405 * you should instead use rcu_dereference_protected() for this use case.
 406 *
 407 * It is also permissible to use rcu_access_pointer() when read-side
 408 * access to the pointer was removed at least one grace period ago, as
 409 * is the case in the context of the RCU callback that is freeing up
 410 * the data, or after a synchronize_rcu() returns.  This can be useful
 411 * when tearing down multi-linked structures after a grace period
 412 * has elapsed.
 413 */
 414#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 415
 416/**
 417 * rcu_dereference_check() - rcu_dereference with debug checking
 418 * @p: The pointer to read, prior to dereferencing
 419 * @c: The conditions under which the dereference will take place
 420 *
 421 * Do an rcu_dereference(), but check that the conditions under which the
 422 * dereference will take place are correct.  Typically the conditions
 423 * indicate the various locking conditions that should be held at that
 424 * point.  The check should return true if the conditions are satisfied.
 425 * An implicit check for being in an RCU read-side critical section
 426 * (rcu_read_lock()) is included.
 427 *
 428 * For example:
 429 *
 430 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 431 *
 432 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 433 * if either rcu_read_lock() is held, or that the lock required to replace
 434 * the bar struct at foo->bar is held.
 435 *
 436 * Note that the list of conditions may also include indications of when a lock
 437 * need not be held, for example during initialisation or destruction of the
 438 * target struct:
 439 *
 440 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 441 *                                            atomic_read(&foo->usage) == 0);
 442 *
 443 * Inserts memory barriers on architectures that require them
 444 * (currently only the Alpha), prevents the compiler from refetching
 445 * (and from merging fetches), and, more importantly, documents exactly
 446 * which pointers are protected by RCU and checks that the pointer is
 447 * annotated as __rcu.
 448 */
 449#define rcu_dereference_check(p, c) \
 450        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 451
 452/**
 453 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 454 * @p: The pointer to read, prior to dereferencing
 455 * @c: The conditions under which the dereference will take place
 456 *
 457 * This is the RCU-bh counterpart to rcu_dereference_check().
 458 */
 459#define rcu_dereference_bh_check(p, c) \
 460        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 461
 462/**
 463 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 464 * @p: The pointer to read, prior to dereferencing
 465 * @c: The conditions under which the dereference will take place
 466 *
 467 * This is the RCU-sched counterpart to rcu_dereference_check().
 468 */
 469#define rcu_dereference_sched_check(p, c) \
 470        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 471                                __rcu)
 472
 473/*
 474 * The tracing infrastructure traces RCU (we want that), but unfortunately
 475 * some of the RCU checks causes tracing to lock up the system.
 476 *
 477 * The no-tracing version of rcu_dereference_raw() must not call
 478 * rcu_read_lock_held().
 479 */
 480#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 481
 482/**
 483 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 484 * @p: The pointer to read, prior to dereferencing
 485 * @c: The conditions under which the dereference will take place
 486 *
 487 * Return the value of the specified RCU-protected pointer, but omit
 488 * the READ_ONCE().  This is useful in cases where update-side locks
 489 * prevent the value of the pointer from changing.  Please note that this
 490 * primitive does *not* prevent the compiler from repeating this reference
 491 * or combining it with other references, so it should not be used without
 492 * protection of appropriate locks.
 493 *
 494 * This function is only for update-side use.  Using this function
 495 * when protected only by rcu_read_lock() will result in infrequent
 496 * but very ugly failures.
 497 */
 498#define rcu_dereference_protected(p, c) \
 499        __rcu_dereference_protected((p), (c), __rcu)
 500
 501
 502/**
 503 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 504 * @p: The pointer to read, prior to dereferencing
 505 *
 506 * This is a simple wrapper around rcu_dereference_check().
 507 */
 508#define rcu_dereference(p) rcu_dereference_check(p, 0)
 509
 510/**
 511 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 512 * @p: The pointer to read, prior to dereferencing
 513 *
 514 * Makes rcu_dereference_check() do the dirty work.
 515 */
 516#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 517
 518/**
 519 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 520 * @p: The pointer to read, prior to dereferencing
 521 *
 522 * Makes rcu_dereference_check() do the dirty work.
 523 */
 524#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 525
 526/**
 527 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 528 * @p: The pointer to hand off
 529 *
 530 * This is simply an identity function, but it documents where a pointer
 531 * is handed off from RCU to some other synchronization mechanism, for
 532 * example, reference counting or locking.  In C11, it would map to
 533 * kill_dependency().  It could be used as follows::
 534 *
 535 *      rcu_read_lock();
 536 *      p = rcu_dereference(gp);
 537 *      long_lived = is_long_lived(p);
 538 *      if (long_lived) {
 539 *              if (!atomic_inc_not_zero(p->refcnt))
 540 *                      long_lived = false;
 541 *              else
 542 *                      p = rcu_pointer_handoff(p);
 543 *      }
 544 *      rcu_read_unlock();
 545 */
 546#define rcu_pointer_handoff(p) (p)
 547
 548/**
 549 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 550 *
 551 * When synchronize_rcu() is invoked on one CPU while other CPUs
 552 * are within RCU read-side critical sections, then the
 553 * synchronize_rcu() is guaranteed to block until after all the other
 554 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 555 * on one CPU while other CPUs are within RCU read-side critical
 556 * sections, invocation of the corresponding RCU callback is deferred
 557 * until after the all the other CPUs exit their critical sections.
 558 *
 559 * Note, however, that RCU callbacks are permitted to run concurrently
 560 * with new RCU read-side critical sections.  One way that this can happen
 561 * is via the following sequence of events: (1) CPU 0 enters an RCU
 562 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 563 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 564 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 565 * callback is invoked.  This is legal, because the RCU read-side critical
 566 * section that was running concurrently with the call_rcu() (and which
 567 * therefore might be referencing something that the corresponding RCU
 568 * callback would free up) has completed before the corresponding
 569 * RCU callback is invoked.
 570 *
 571 * RCU read-side critical sections may be nested.  Any deferred actions
 572 * will be deferred until the outermost RCU read-side critical section
 573 * completes.
 574 *
 575 * You can avoid reading and understanding the next paragraph by
 576 * following this rule: don't put anything in an rcu_read_lock() RCU
 577 * read-side critical section that would block in a !PREEMPT kernel.
 578 * But if you want the full story, read on!
 579 *
 580 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 581 * it is illegal to block while in an RCU read-side critical section.
 582 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 583 * kernel builds, RCU read-side critical sections may be preempted,
 584 * but explicit blocking is illegal.  Finally, in preemptible RCU
 585 * implementations in real-time (with -rt patchset) kernel builds, RCU
 586 * read-side critical sections may be preempted and they may also block, but
 587 * only when acquiring spinlocks that are subject to priority inheritance.
 588 */
 589static inline void rcu_read_lock(void)
 590{
 591        __rcu_read_lock();
 592        __acquire(RCU);
 593        rcu_lock_acquire(&rcu_lock_map);
 594        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 595                         "rcu_read_lock() used illegally while idle");
 596}
 597
 598/*
 599 * So where is rcu_write_lock()?  It does not exist, as there is no
 600 * way for writers to lock out RCU readers.  This is a feature, not
 601 * a bug -- this property is what provides RCU's performance benefits.
 602 * Of course, writers must coordinate with each other.  The normal
 603 * spinlock primitives work well for this, but any other technique may be
 604 * used as well.  RCU does not care how the writers keep out of each
 605 * others' way, as long as they do so.
 606 */
 607
 608/**
 609 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 610 *
 611 * In most situations, rcu_read_unlock() is immune from deadlock.
 612 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 613 * is responsible for deboosting, which it does via rt_mutex_unlock().
 614 * Unfortunately, this function acquires the scheduler's runqueue and
 615 * priority-inheritance spinlocks.  This means that deadlock could result
 616 * if the caller of rcu_read_unlock() already holds one of these locks or
 617 * any lock that is ever acquired while holding them.
 618 *
 619 * That said, RCU readers are never priority boosted unless they were
 620 * preempted.  Therefore, one way to avoid deadlock is to make sure
 621 * that preemption never happens within any RCU read-side critical
 622 * section whose outermost rcu_read_unlock() is called with one of
 623 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 624 * a number of ways, for example, by invoking preempt_disable() before
 625 * critical section's outermost rcu_read_lock().
 626 *
 627 * Given that the set of locks acquired by rt_mutex_unlock() might change
 628 * at any time, a somewhat more future-proofed approach is to make sure
 629 * that that preemption never happens within any RCU read-side critical
 630 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 631 * This approach relies on the fact that rt_mutex_unlock() currently only
 632 * acquires irq-disabled locks.
 633 *
 634 * The second of these two approaches is best in most situations,
 635 * however, the first approach can also be useful, at least to those
 636 * developers willing to keep abreast of the set of locks acquired by
 637 * rt_mutex_unlock().
 638 *
 639 * See rcu_read_lock() for more information.
 640 */
 641static inline void rcu_read_unlock(void)
 642{
 643        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 644                         "rcu_read_unlock() used illegally while idle");
 645        __release(RCU);
 646        __rcu_read_unlock();
 647        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 648}
 649
 650/**
 651 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 652 *
 653 * This is equivalent of rcu_read_lock(), but also disables softirqs.
 654 * Note that anything else that disables softirqs can also serve as
 655 * an RCU read-side critical section.
 656 *
 657 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 658 * must occur in the same context, for example, it is illegal to invoke
 659 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 660 * was invoked from some other task.
 661 */
 662static inline void rcu_read_lock_bh(void)
 663{
 664        local_bh_disable();
 665        __acquire(RCU_BH);
 666        rcu_lock_acquire(&rcu_bh_lock_map);
 667        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 668                         "rcu_read_lock_bh() used illegally while idle");
 669}
 670
 671/*
 672 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 673 *
 674 * See rcu_read_lock_bh() for more information.
 675 */
 676static inline void rcu_read_unlock_bh(void)
 677{
 678        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 679                         "rcu_read_unlock_bh() used illegally while idle");
 680        rcu_lock_release(&rcu_bh_lock_map);
 681        __release(RCU_BH);
 682        local_bh_enable();
 683}
 684
 685/**
 686 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 687 *
 688 * This is equivalent of rcu_read_lock(), but disables preemption.
 689 * Read-side critical sections can also be introduced by anything else
 690 * that disables preemption, including local_irq_disable() and friends.
 691 *
 692 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 693 * must occur in the same context, for example, it is illegal to invoke
 694 * rcu_read_unlock_sched() from process context if the matching
 695 * rcu_read_lock_sched() was invoked from an NMI handler.
 696 */
 697static inline void rcu_read_lock_sched(void)
 698{
 699        preempt_disable();
 700        __acquire(RCU_SCHED);
 701        rcu_lock_acquire(&rcu_sched_lock_map);
 702        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 703                         "rcu_read_lock_sched() used illegally while idle");
 704}
 705
 706/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 707static inline notrace void rcu_read_lock_sched_notrace(void)
 708{
 709        preempt_disable_notrace();
 710        __acquire(RCU_SCHED);
 711}
 712
 713/*
 714 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 715 *
 716 * See rcu_read_lock_sched for more information.
 717 */
 718static inline void rcu_read_unlock_sched(void)
 719{
 720        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 721                         "rcu_read_unlock_sched() used illegally while idle");
 722        rcu_lock_release(&rcu_sched_lock_map);
 723        __release(RCU_SCHED);
 724        preempt_enable();
 725}
 726
 727/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 728static inline notrace void rcu_read_unlock_sched_notrace(void)
 729{
 730        __release(RCU_SCHED);
 731        preempt_enable_notrace();
 732}
 733
 734/**
 735 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 736 * @p: The pointer to be initialized.
 737 * @v: The value to initialized the pointer to.
 738 *
 739 * Initialize an RCU-protected pointer in special cases where readers
 740 * do not need ordering constraints on the CPU or the compiler.  These
 741 * special cases are:
 742 *
 743 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 744 * 2.   The caller has taken whatever steps are required to prevent
 745 *      RCU readers from concurrently accessing this pointer *or*
 746 * 3.   The referenced data structure has already been exposed to
 747 *      readers either at compile time or via rcu_assign_pointer() *and*
 748 *
 749 *      a.      You have not made *any* reader-visible changes to
 750 *              this structure since then *or*
 751 *      b.      It is OK for readers accessing this structure from its
 752 *              new location to see the old state of the structure.  (For
 753 *              example, the changes were to statistical counters or to
 754 *              other state where exact synchronization is not required.)
 755 *
 756 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 757 * result in impossible-to-diagnose memory corruption.  As in the structures
 758 * will look OK in crash dumps, but any concurrent RCU readers might
 759 * see pre-initialized values of the referenced data structure.  So
 760 * please be very careful how you use RCU_INIT_POINTER()!!!
 761 *
 762 * If you are creating an RCU-protected linked structure that is accessed
 763 * by a single external-to-structure RCU-protected pointer, then you may
 764 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 765 * pointers, but you must use rcu_assign_pointer() to initialize the
 766 * external-to-structure pointer *after* you have completely initialized
 767 * the reader-accessible portions of the linked structure.
 768 *
 769 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 770 * ordering guarantees for either the CPU or the compiler.
 771 */
 772#define RCU_INIT_POINTER(p, v) \
 773        do { \
 774                rcu_check_sparse(p, __rcu); \
 775                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 776        } while (0)
 777
 778/**
 779 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 780 * @p: The pointer to be initialized.
 781 * @v: The value to initialized the pointer to.
 782 *
 783 * GCC-style initialization for an RCU-protected pointer in a structure field.
 784 */
 785#define RCU_POINTER_INITIALIZER(p, v) \
 786                .p = RCU_INITIALIZER(v)
 787
 788/*
 789 * Does the specified offset indicate that the corresponding rcu_head
 790 * structure can be handled by kfree_rcu()?
 791 */
 792#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
 793
 794/*
 795 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 796 */
 797#define __kfree_rcu(head, offset) \
 798        do { \
 799                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
 800                kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
 801        } while (0)
 802
 803/**
 804 * kfree_rcu() - kfree an object after a grace period.
 805 * @ptr:        pointer to kfree
 806 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
 807 *
 808 * Many rcu callbacks functions just call kfree() on the base structure.
 809 * These functions are trivial, but their size adds up, and furthermore
 810 * when they are used in a kernel module, that module must invoke the
 811 * high-latency rcu_barrier() function at module-unload time.
 812 *
 813 * The kfree_rcu() function handles this issue.  Rather than encoding a
 814 * function address in the embedded rcu_head structure, kfree_rcu() instead
 815 * encodes the offset of the rcu_head structure within the base structure.
 816 * Because the functions are not allowed in the low-order 4096 bytes of
 817 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 818 * If the offset is larger than 4095 bytes, a compile-time error will
 819 * be generated in __kfree_rcu().  If this error is triggered, you can
 820 * either fall back to use of call_rcu() or rearrange the structure to
 821 * position the rcu_head structure into the first 4096 bytes.
 822 *
 823 * Note that the allowable offset might decrease in the future, for example,
 824 * to allow something like kmem_cache_free_rcu().
 825 *
 826 * The BUILD_BUG_ON check must not involve any function calls, hence the
 827 * checks are done in macros here.
 828 */
 829#define kfree_rcu(ptr, rcu_head)                                        \
 830        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
 831
 832
 833/*
 834 * Place this after a lock-acquisition primitive to guarantee that
 835 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 836 * if the UNLOCK and LOCK are executed by the same CPU or if the
 837 * UNLOCK and LOCK operate on the same lock variable.
 838 */
 839#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 840#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 841#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 842#define smp_mb__after_unlock_lock()     do { } while (0)
 843#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 844
 845
 846/* Has the specified rcu_head structure been handed to call_rcu()? */
 847
 848/**
 849 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 850 * @rhp: The rcu_head structure to initialize.
 851 *
 852 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 853 * given rcu_head structure has already been passed to call_rcu(), then
 854 * you must also invoke this rcu_head_init() function on it just after
 855 * allocating that structure.  Calls to this function must not race with
 856 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 857 */
 858static inline void rcu_head_init(struct rcu_head *rhp)
 859{
 860        rhp->func = (rcu_callback_t)~0L;
 861}
 862
 863/**
 864 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
 865 * @rhp: The rcu_head structure to test.
 866 * @f: The function passed to call_rcu() along with @rhp.
 867 *
 868 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 869 * and @false otherwise.  Emits a warning in any other case, including
 870 * the case where @rhp has already been invoked after a grace period.
 871 * Calls to this function must not race with callback invocation.  One way
 872 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 873 * in an RCU read-side critical section that includes a read-side fetch
 874 * of the pointer to the structure containing @rhp.
 875 */
 876static inline bool
 877rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
 878{
 879        rcu_callback_t func = READ_ONCE(rhp->func);
 880
 881        if (func == f)
 882                return true;
 883        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
 884        return false;
 885}
 886
 887#endif /* __LINUX_RCUPDATE_H */
 888