linux/include/linux/usb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_USB_H
   3#define __LINUX_USB_H
   4
   5#include <linux/mod_devicetable.h>
   6#include <linux/usb/ch9.h>
   7
   8#define USB_MAJOR                       180
   9#define USB_DEVICE_MAJOR                189
  10
  11
  12#ifdef __KERNEL__
  13
  14#include <linux/errno.h>        /* for -ENODEV */
  15#include <linux/delay.h>        /* for mdelay() */
  16#include <linux/interrupt.h>    /* for in_interrupt() */
  17#include <linux/list.h>         /* for struct list_head */
  18#include <linux/kref.h>         /* for struct kref */
  19#include <linux/device.h>       /* for struct device */
  20#include <linux/fs.h>           /* for struct file_operations */
  21#include <linux/completion.h>   /* for struct completion */
  22#include <linux/sched.h>        /* for current && schedule_timeout */
  23#include <linux/mutex.h>        /* for struct mutex */
  24#include <linux/pm_runtime.h>   /* for runtime PM */
  25
  26struct usb_device;
  27struct usb_driver;
  28struct wusb_dev;
  29
  30/*-------------------------------------------------------------------------*/
  31
  32/*
  33 * Host-side wrappers for standard USB descriptors ... these are parsed
  34 * from the data provided by devices.  Parsing turns them from a flat
  35 * sequence of descriptors into a hierarchy:
  36 *
  37 *  - devices have one (usually) or more configs;
  38 *  - configs have one (often) or more interfaces;
  39 *  - interfaces have one (usually) or more settings;
  40 *  - each interface setting has zero or (usually) more endpoints.
  41 *  - a SuperSpeed endpoint has a companion descriptor
  42 *
  43 * And there might be other descriptors mixed in with those.
  44 *
  45 * Devices may also have class-specific or vendor-specific descriptors.
  46 */
  47
  48struct ep_device;
  49
  50/**
  51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
  55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  57 *      with one or more transfer descriptors (TDs) per urb
  58 * @ep_dev: ep_device for sysfs info
  59 * @extra: descriptors following this endpoint in the configuration
  60 * @extralen: how many bytes of "extra" are valid
  61 * @enabled: URBs may be submitted to this endpoint
  62 * @streams: number of USB-3 streams allocated on the endpoint
  63 *
  64 * USB requests are always queued to a given endpoint, identified by a
  65 * descriptor within an active interface in a given USB configuration.
  66 */
  67struct usb_host_endpoint {
  68        struct usb_endpoint_descriptor          desc;
  69        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  70        struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
  71        struct list_head                urb_list;
  72        void                            *hcpriv;
  73        struct ep_device                *ep_dev;        /* For sysfs info */
  74
  75        unsigned char *extra;   /* Extra descriptors */
  76        int extralen;
  77        int enabled;
  78        int streams;
  79};
  80
  81/* host-side wrapper for one interface setting's parsed descriptors */
  82struct usb_host_interface {
  83        struct usb_interface_descriptor desc;
  84
  85        int extralen;
  86        unsigned char *extra;   /* Extra descriptors */
  87
  88        /* array of desc.bNumEndpoints endpoints associated with this
  89         * interface setting.  these will be in no particular order.
  90         */
  91        struct usb_host_endpoint *endpoint;
  92
  93        char *string;           /* iInterface string, if present */
  94};
  95
  96enum usb_interface_condition {
  97        USB_INTERFACE_UNBOUND = 0,
  98        USB_INTERFACE_BINDING,
  99        USB_INTERFACE_BOUND,
 100        USB_INTERFACE_UNBINDING,
 101};
 102
 103int __must_check
 104usb_find_common_endpoints(struct usb_host_interface *alt,
 105                struct usb_endpoint_descriptor **bulk_in,
 106                struct usb_endpoint_descriptor **bulk_out,
 107                struct usb_endpoint_descriptor **int_in,
 108                struct usb_endpoint_descriptor **int_out);
 109
 110int __must_check
 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 112                struct usb_endpoint_descriptor **bulk_in,
 113                struct usb_endpoint_descriptor **bulk_out,
 114                struct usb_endpoint_descriptor **int_in,
 115                struct usb_endpoint_descriptor **int_out);
 116
 117static inline int __must_check
 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
 119                struct usb_endpoint_descriptor **bulk_in)
 120{
 121        return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
 122}
 123
 124static inline int __must_check
 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
 126                struct usb_endpoint_descriptor **bulk_out)
 127{
 128        return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
 129}
 130
 131static inline int __must_check
 132usb_find_int_in_endpoint(struct usb_host_interface *alt,
 133                struct usb_endpoint_descriptor **int_in)
 134{
 135        return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
 136}
 137
 138static inline int __must_check
 139usb_find_int_out_endpoint(struct usb_host_interface *alt,
 140                struct usb_endpoint_descriptor **int_out)
 141{
 142        return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
 143}
 144
 145static inline int __must_check
 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
 147                struct usb_endpoint_descriptor **bulk_in)
 148{
 149        return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
 150}
 151
 152static inline int __must_check
 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
 154                struct usb_endpoint_descriptor **bulk_out)
 155{
 156        return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
 157}
 158
 159static inline int __must_check
 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
 161                struct usb_endpoint_descriptor **int_in)
 162{
 163        return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
 164}
 165
 166static inline int __must_check
 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
 168                struct usb_endpoint_descriptor **int_out)
 169{
 170        return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
 171}
 172
 173/**
 174 * struct usb_interface - what usb device drivers talk to
 175 * @altsetting: array of interface structures, one for each alternate
 176 *      setting that may be selected.  Each one includes a set of
 177 *      endpoint configurations.  They will be in no particular order.
 178 * @cur_altsetting: the current altsetting.
 179 * @num_altsetting: number of altsettings defined.
 180 * @intf_assoc: interface association descriptor
 181 * @minor: the minor number assigned to this interface, if this
 182 *      interface is bound to a driver that uses the USB major number.
 183 *      If this interface does not use the USB major, this field should
 184 *      be unused.  The driver should set this value in the probe()
 185 *      function of the driver, after it has been assigned a minor
 186 *      number from the USB core by calling usb_register_dev().
 187 * @condition: binding state of the interface: not bound, binding
 188 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 189 * @sysfs_files_created: sysfs attributes exist
 190 * @ep_devs_created: endpoint child pseudo-devices exist
 191 * @unregistering: flag set when the interface is being unregistered
 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 193 *      capability during autosuspend.
 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 195 *      has been deferred.
 196 * @needs_binding: flag set when the driver should be re-probed or unbound
 197 *      following a reset or suspend operation it doesn't support.
 198 * @authorized: This allows to (de)authorize individual interfaces instead
 199 *      a whole device in contrast to the device authorization.
 200 * @dev: driver model's view of this device
 201 * @usb_dev: if an interface is bound to the USB major, this will point
 202 *      to the sysfs representation for that device.
 203 * @reset_ws: Used for scheduling resets from atomic context.
 204 * @resetting_device: USB core reset the device, so use alt setting 0 as
 205 *      current; needs bandwidth alloc after reset.
 206 *
 207 * USB device drivers attach to interfaces on a physical device.  Each
 208 * interface encapsulates a single high level function, such as feeding
 209 * an audio stream to a speaker or reporting a change in a volume control.
 210 * Many USB devices only have one interface.  The protocol used to talk to
 211 * an interface's endpoints can be defined in a usb "class" specification,
 212 * or by a product's vendor.  The (default) control endpoint is part of
 213 * every interface, but is never listed among the interface's descriptors.
 214 *
 215 * The driver that is bound to the interface can use standard driver model
 216 * calls such as dev_get_drvdata() on the dev member of this structure.
 217 *
 218 * Each interface may have alternate settings.  The initial configuration
 219 * of a device sets altsetting 0, but the device driver can change
 220 * that setting using usb_set_interface().  Alternate settings are often
 221 * used to control the use of periodic endpoints, such as by having
 222 * different endpoints use different amounts of reserved USB bandwidth.
 223 * All standards-conformant USB devices that use isochronous endpoints
 224 * will use them in non-default settings.
 225 *
 226 * The USB specification says that alternate setting numbers must run from
 227 * 0 to one less than the total number of alternate settings.  But some
 228 * devices manage to mess this up, and the structures aren't necessarily
 229 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 230 * look up an alternate setting in the altsetting array based on its number.
 231 */
 232struct usb_interface {
 233        /* array of alternate settings for this interface,
 234         * stored in no particular order */
 235        struct usb_host_interface *altsetting;
 236
 237        struct usb_host_interface *cur_altsetting;      /* the currently
 238                                         * active alternate setting */
 239        unsigned num_altsetting;        /* number of alternate settings */
 240
 241        /* If there is an interface association descriptor then it will list
 242         * the associated interfaces */
 243        struct usb_interface_assoc_descriptor *intf_assoc;
 244
 245        int minor;                      /* minor number this interface is
 246                                         * bound to */
 247        enum usb_interface_condition condition;         /* state of binding */
 248        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 249        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 250        unsigned unregistering:1;       /* unregistration is in progress */
 251        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 252        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 253        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 254        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 255        unsigned authorized:1;          /* used for interface authorization */
 256
 257        struct device dev;              /* interface specific device info */
 258        struct device *usb_dev;
 259        struct work_struct reset_ws;    /* for resets in atomic context */
 260};
 261#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 262
 263static inline void *usb_get_intfdata(struct usb_interface *intf)
 264{
 265        return dev_get_drvdata(&intf->dev);
 266}
 267
 268static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 269{
 270        dev_set_drvdata(&intf->dev, data);
 271}
 272
 273struct usb_interface *usb_get_intf(struct usb_interface *intf);
 274void usb_put_intf(struct usb_interface *intf);
 275
 276/* Hard limit */
 277#define USB_MAXENDPOINTS        30
 278/* this maximum is arbitrary */
 279#define USB_MAXINTERFACES       32
 280#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 281
 282/*
 283 * USB Resume Timer: Every Host controller driver should drive the resume
 284 * signalling on the bus for the amount of time defined by this macro.
 285 *
 286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 287 *
 288 * Note that the USB Specification states we should drive resume for *at least*
 289 * 20 ms, but it doesn't give an upper bound. This creates two possible
 290 * situations which we want to avoid:
 291 *
 292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 293 * us to fail USB Electrical Tests, thus failing Certification
 294 *
 295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 296 * and while we can argue that's against the USB Specification, we don't have
 297 * control over which devices a certification laboratory will be using for
 298 * certification. If CertLab uses a device which was tested against Windows and
 299 * that happens to have relaxed resume signalling rules, we might fall into
 300 * situations where we fail interoperability and electrical tests.
 301 *
 302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 303 * should cope with both LPJ calibration errors and devices not following every
 304 * detail of the USB Specification.
 305 */
 306#define USB_RESUME_TIMEOUT      40 /* ms */
 307
 308/**
 309 * struct usb_interface_cache - long-term representation of a device interface
 310 * @num_altsetting: number of altsettings defined.
 311 * @ref: reference counter.
 312 * @altsetting: variable-length array of interface structures, one for
 313 *      each alternate setting that may be selected.  Each one includes a
 314 *      set of endpoint configurations.  They will be in no particular order.
 315 *
 316 * These structures persist for the lifetime of a usb_device, unlike
 317 * struct usb_interface (which persists only as long as its configuration
 318 * is installed).  The altsetting arrays can be accessed through these
 319 * structures at any time, permitting comparison of configurations and
 320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
 321 */
 322struct usb_interface_cache {
 323        unsigned num_altsetting;        /* number of alternate settings */
 324        struct kref ref;                /* reference counter */
 325
 326        /* variable-length array of alternate settings for this interface,
 327         * stored in no particular order */
 328        struct usb_host_interface altsetting[0];
 329};
 330#define ref_to_usb_interface_cache(r) \
 331                container_of(r, struct usb_interface_cache, ref)
 332#define altsetting_to_usb_interface_cache(a) \
 333                container_of(a, struct usb_interface_cache, altsetting[0])
 334
 335/**
 336 * struct usb_host_config - representation of a device's configuration
 337 * @desc: the device's configuration descriptor.
 338 * @string: pointer to the cached version of the iConfiguration string, if
 339 *      present for this configuration.
 340 * @intf_assoc: list of any interface association descriptors in this config
 341 * @interface: array of pointers to usb_interface structures, one for each
 342 *      interface in the configuration.  The number of interfaces is stored
 343 *      in desc.bNumInterfaces.  These pointers are valid only while the
 344 *      the configuration is active.
 345 * @intf_cache: array of pointers to usb_interface_cache structures, one
 346 *      for each interface in the configuration.  These structures exist
 347 *      for the entire life of the device.
 348 * @extra: pointer to buffer containing all extra descriptors associated
 349 *      with this configuration (those preceding the first interface
 350 *      descriptor).
 351 * @extralen: length of the extra descriptors buffer.
 352 *
 353 * USB devices may have multiple configurations, but only one can be active
 354 * at any time.  Each encapsulates a different operational environment;
 355 * for example, a dual-speed device would have separate configurations for
 356 * full-speed and high-speed operation.  The number of configurations
 357 * available is stored in the device descriptor as bNumConfigurations.
 358 *
 359 * A configuration can contain multiple interfaces.  Each corresponds to
 360 * a different function of the USB device, and all are available whenever
 361 * the configuration is active.  The USB standard says that interfaces
 362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 363 * of devices get this wrong.  In addition, the interface array is not
 364 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 365 * look up an interface entry based on its number.
 366 *
 367 * Device drivers should not attempt to activate configurations.  The choice
 368 * of which configuration to install is a policy decision based on such
 369 * considerations as available power, functionality provided, and the user's
 370 * desires (expressed through userspace tools).  However, drivers can call
 371 * usb_reset_configuration() to reinitialize the current configuration and
 372 * all its interfaces.
 373 */
 374struct usb_host_config {
 375        struct usb_config_descriptor    desc;
 376
 377        char *string;           /* iConfiguration string, if present */
 378
 379        /* List of any Interface Association Descriptors in this
 380         * configuration. */
 381        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 382
 383        /* the interfaces associated with this configuration,
 384         * stored in no particular order */
 385        struct usb_interface *interface[USB_MAXINTERFACES];
 386
 387        /* Interface information available even when this is not the
 388         * active configuration */
 389        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 390
 391        unsigned char *extra;   /* Extra descriptors */
 392        int extralen;
 393};
 394
 395/* USB2.0 and USB3.0 device BOS descriptor set */
 396struct usb_host_bos {
 397        struct usb_bos_descriptor       *desc;
 398
 399        /* wireless cap descriptor is handled by wusb */
 400        struct usb_ext_cap_descriptor   *ext_cap;
 401        struct usb_ss_cap_descriptor    *ss_cap;
 402        struct usb_ssp_cap_descriptor   *ssp_cap;
 403        struct usb_ss_container_id_descriptor   *ss_id;
 404        struct usb_ptm_cap_descriptor   *ptm_cap;
 405};
 406
 407int __usb_get_extra_descriptor(char *buffer, unsigned size,
 408        unsigned char type, void **ptr, size_t min);
 409#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 410                                __usb_get_extra_descriptor((ifpoint)->extra, \
 411                                (ifpoint)->extralen, \
 412                                type, (void **)ptr, sizeof(**(ptr)))
 413
 414/* ----------------------------------------------------------------------- */
 415
 416/* USB device number allocation bitmap */
 417struct usb_devmap {
 418        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 419};
 420
 421/*
 422 * Allocated per bus (tree of devices) we have:
 423 */
 424struct usb_bus {
 425        struct device *controller;      /* host/master side hardware */
 426        struct device *sysdev;          /* as seen from firmware or bus */
 427        int busnum;                     /* Bus number (in order of reg) */
 428        const char *bus_name;           /* stable id (PCI slot_name etc) */
 429        u8 uses_dma;                    /* Does the host controller use DMA? */
 430        u8 uses_pio_for_control;        /*
 431                                         * Does the host controller use PIO
 432                                         * for control transfers?
 433                                         */
 434        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 435        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 436        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 437        unsigned no_stop_on_short:1;    /*
 438                                         * Quirk: some controllers don't stop
 439                                         * the ep queue on a short transfer
 440                                         * with the URB_SHORT_NOT_OK flag set.
 441                                         */
 442        unsigned no_sg_constraint:1;    /* no sg constraint */
 443        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 444
 445        int devnum_next;                /* Next open device number in
 446                                         * round-robin allocation */
 447        struct mutex devnum_next_mutex; /* devnum_next mutex */
 448
 449        struct usb_devmap devmap;       /* device address allocation map */
 450        struct usb_device *root_hub;    /* Root hub */
 451        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 452
 453        int bandwidth_allocated;        /* on this bus: how much of the time
 454                                         * reserved for periodic (intr/iso)
 455                                         * requests is used, on average?
 456                                         * Units: microseconds/frame.
 457                                         * Limits: Full/low speed reserve 90%,
 458                                         * while high speed reserves 80%.
 459                                         */
 460        int bandwidth_int_reqs;         /* number of Interrupt requests */
 461        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 462
 463        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 464
 465#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 466        struct mon_bus *mon_bus;        /* non-null when associated */
 467        int monitored;                  /* non-zero when monitored */
 468#endif
 469};
 470
 471struct usb_dev_state;
 472
 473/* ----------------------------------------------------------------------- */
 474
 475struct usb_tt;
 476
 477enum usb_device_removable {
 478        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 479        USB_DEVICE_REMOVABLE,
 480        USB_DEVICE_FIXED,
 481};
 482
 483enum usb_port_connect_type {
 484        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 485        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 486        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 487        USB_PORT_NOT_USED,
 488};
 489
 490/*
 491 * USB port quirks.
 492 */
 493
 494/* For the given port, prefer the old (faster) enumeration scheme. */
 495#define USB_PORT_QUIRK_OLD_SCHEME       BIT(0)
 496
 497/* Decrease TRSTRCY to 10ms during device enumeration. */
 498#define USB_PORT_QUIRK_FAST_ENUM        BIT(1)
 499
 500/*
 501 * USB 2.0 Link Power Management (LPM) parameters.
 502 */
 503struct usb2_lpm_parameters {
 504        /* Best effort service latency indicate how long the host will drive
 505         * resume on an exit from L1.
 506         */
 507        unsigned int besl;
 508
 509        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 510         * When the timer counts to zero, the parent hub will initiate a LPM
 511         * transition to L1.
 512         */
 513        int timeout;
 514};
 515
 516/*
 517 * USB 3.0 Link Power Management (LPM) parameters.
 518 *
 519 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 520 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 521 * All three are stored in nanoseconds.
 522 */
 523struct usb3_lpm_parameters {
 524        /*
 525         * Maximum exit latency (MEL) for the host to send a packet to the
 526         * device (either a Ping for isoc endpoints, or a data packet for
 527         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 528         * in the path to transition the links to U0.
 529         */
 530        unsigned int mel;
 531        /*
 532         * Maximum exit latency for a device-initiated LPM transition to bring
 533         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 534         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 535         */
 536        unsigned int pel;
 537
 538        /*
 539         * The System Exit Latency (SEL) includes PEL, and three other
 540         * latencies.  After a device initiates a U0 transition, it will take
 541         * some time from when the device sends the ERDY to when it will finally
 542         * receive the data packet.  Basically, SEL should be the worse-case
 543         * latency from when a device starts initiating a U0 transition to when
 544         * it will get data.
 545         */
 546        unsigned int sel;
 547        /*
 548         * The idle timeout value that is currently programmed into the parent
 549         * hub for this device.  When the timer counts to zero, the parent hub
 550         * will initiate an LPM transition to either U1 or U2.
 551         */
 552        int timeout;
 553};
 554
 555/**
 556 * struct usb_device - kernel's representation of a USB device
 557 * @devnum: device number; address on a USB bus
 558 * @devpath: device ID string for use in messages (e.g., /port/...)
 559 * @route: tree topology hex string for use with xHCI
 560 * @state: device state: configured, not attached, etc.
 561 * @speed: device speed: high/full/low (or error)
 562 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
 563 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
 564 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 565 * @ttport: device port on that tt hub
 566 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 567 * @parent: our hub, unless we're the root
 568 * @bus: bus we're part of
 569 * @ep0: endpoint 0 data (default control pipe)
 570 * @dev: generic device interface
 571 * @descriptor: USB device descriptor
 572 * @bos: USB device BOS descriptor set
 573 * @config: all of the device's configs
 574 * @actconfig: the active configuration
 575 * @ep_in: array of IN endpoints
 576 * @ep_out: array of OUT endpoints
 577 * @rawdescriptors: raw descriptors for each config
 578 * @bus_mA: Current available from the bus
 579 * @portnum: parent port number (origin 1)
 580 * @level: number of USB hub ancestors
 581 * @can_submit: URBs may be submitted
 582 * @persist_enabled:  USB_PERSIST enabled for this device
 583 * @have_langid: whether string_langid is valid
 584 * @authorized: policy has said we can use it;
 585 *      (user space) policy determines if we authorize this device to be
 586 *      used or not. By default, wired USB devices are authorized.
 587 *      WUSB devices are not, until we authorize them from user space.
 588 *      FIXME -- complete doc
 589 * @authenticated: Crypto authentication passed
 590 * @wusb: device is Wireless USB
 591 * @lpm_capable: device supports LPM
 592 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 593 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 594 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 595 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 596 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
 597 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
 598 * @string_langid: language ID for strings
 599 * @product: iProduct string, if present (static)
 600 * @manufacturer: iManufacturer string, if present (static)
 601 * @serial: iSerialNumber string, if present (static)
 602 * @filelist: usbfs files that are open to this device
 603 * @maxchild: number of ports if hub
 604 * @quirks: quirks of the whole device
 605 * @urbnum: number of URBs submitted for the whole device
 606 * @active_duration: total time device is not suspended
 607 * @connect_time: time device was first connected
 608 * @do_remote_wakeup:  remote wakeup should be enabled
 609 * @reset_resume: needs reset instead of resume
 610 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 611 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 612 *      specific data for the device.
 613 * @slot_id: Slot ID assigned by xHCI
 614 * @removable: Device can be physically removed from this port
 615 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 616 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 617 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 618 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 619 *      to keep track of the number of functions that require USB 3.0 Link Power
 620 *      Management to be disabled for this usb_device.  This count should only
 621 *      be manipulated by those functions, with the bandwidth_mutex is held.
 622 * @hub_delay: cached value consisting of:
 623 *              parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
 624 *
 625 *      Will be used as wValue for SetIsochDelay requests.
 626 *
 627 * Notes:
 628 * Usbcore drivers should not set usbdev->state directly.  Instead use
 629 * usb_set_device_state().
 630 */
 631struct usb_device {
 632        int             devnum;
 633        char            devpath[16];
 634        u32             route;
 635        enum usb_device_state   state;
 636        enum usb_device_speed   speed;
 637        unsigned int            rx_lanes;
 638        unsigned int            tx_lanes;
 639
 640        struct usb_tt   *tt;
 641        int             ttport;
 642
 643        unsigned int toggle[2];
 644
 645        struct usb_device *parent;
 646        struct usb_bus *bus;
 647        struct usb_host_endpoint ep0;
 648
 649        struct device dev;
 650
 651        struct usb_device_descriptor descriptor;
 652        struct usb_host_bos *bos;
 653        struct usb_host_config *config;
 654
 655        struct usb_host_config *actconfig;
 656        struct usb_host_endpoint *ep_in[16];
 657        struct usb_host_endpoint *ep_out[16];
 658
 659        char **rawdescriptors;
 660
 661        unsigned short bus_mA;
 662        u8 portnum;
 663        u8 level;
 664
 665        unsigned can_submit:1;
 666        unsigned persist_enabled:1;
 667        unsigned have_langid:1;
 668        unsigned authorized:1;
 669        unsigned authenticated:1;
 670        unsigned wusb:1;
 671        unsigned lpm_capable:1;
 672        unsigned usb2_hw_lpm_capable:1;
 673        unsigned usb2_hw_lpm_besl_capable:1;
 674        unsigned usb2_hw_lpm_enabled:1;
 675        unsigned usb2_hw_lpm_allowed:1;
 676        unsigned usb3_lpm_u1_enabled:1;
 677        unsigned usb3_lpm_u2_enabled:1;
 678        int string_langid;
 679
 680        /* static strings from the device */
 681        char *product;
 682        char *manufacturer;
 683        char *serial;
 684
 685        struct list_head filelist;
 686
 687        int maxchild;
 688
 689        u32 quirks;
 690        atomic_t urbnum;
 691
 692        unsigned long active_duration;
 693
 694#ifdef CONFIG_PM
 695        unsigned long connect_time;
 696
 697        unsigned do_remote_wakeup:1;
 698        unsigned reset_resume:1;
 699        unsigned port_is_suspended:1;
 700#endif
 701        struct wusb_dev *wusb_dev;
 702        int slot_id;
 703        enum usb_device_removable removable;
 704        struct usb2_lpm_parameters l1_params;
 705        struct usb3_lpm_parameters u1_params;
 706        struct usb3_lpm_parameters u2_params;
 707        unsigned lpm_disable_count;
 708
 709        u16 hub_delay;
 710};
 711#define to_usb_device(d) container_of(d, struct usb_device, dev)
 712
 713static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 714{
 715        return to_usb_device(intf->dev.parent);
 716}
 717
 718extern struct usb_device *usb_get_dev(struct usb_device *dev);
 719extern void usb_put_dev(struct usb_device *dev);
 720extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 721        int port1);
 722
 723/**
 724 * usb_hub_for_each_child - iterate over all child devices on the hub
 725 * @hdev:  USB device belonging to the usb hub
 726 * @port1: portnum associated with child device
 727 * @child: child device pointer
 728 */
 729#define usb_hub_for_each_child(hdev, port1, child) \
 730        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 731                        port1 <= hdev->maxchild; \
 732                        child = usb_hub_find_child(hdev, ++port1)) \
 733                if (!child) continue; else
 734
 735/* USB device locking */
 736#define usb_lock_device(udev)                   device_lock(&(udev)->dev)
 737#define usb_unlock_device(udev)                 device_unlock(&(udev)->dev)
 738#define usb_lock_device_interruptible(udev)     device_lock_interruptible(&(udev)->dev)
 739#define usb_trylock_device(udev)                device_trylock(&(udev)->dev)
 740extern int usb_lock_device_for_reset(struct usb_device *udev,
 741                                     const struct usb_interface *iface);
 742
 743/* USB port reset for device reinitialization */
 744extern int usb_reset_device(struct usb_device *dev);
 745extern void usb_queue_reset_device(struct usb_interface *dev);
 746
 747#ifdef CONFIG_ACPI
 748extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 749        bool enable);
 750extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 751#else
 752static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 753        bool enable) { return 0; }
 754static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 755        { return true; }
 756#endif
 757
 758/* USB autosuspend and autoresume */
 759#ifdef CONFIG_PM
 760extern void usb_enable_autosuspend(struct usb_device *udev);
 761extern void usb_disable_autosuspend(struct usb_device *udev);
 762
 763extern int usb_autopm_get_interface(struct usb_interface *intf);
 764extern void usb_autopm_put_interface(struct usb_interface *intf);
 765extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 766extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 767extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 768extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 769
 770static inline void usb_mark_last_busy(struct usb_device *udev)
 771{
 772        pm_runtime_mark_last_busy(&udev->dev);
 773}
 774
 775#else
 776
 777static inline int usb_enable_autosuspend(struct usb_device *udev)
 778{ return 0; }
 779static inline int usb_disable_autosuspend(struct usb_device *udev)
 780{ return 0; }
 781
 782static inline int usb_autopm_get_interface(struct usb_interface *intf)
 783{ return 0; }
 784static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 785{ return 0; }
 786
 787static inline void usb_autopm_put_interface(struct usb_interface *intf)
 788{ }
 789static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 790{ }
 791static inline void usb_autopm_get_interface_no_resume(
 792                struct usb_interface *intf)
 793{ }
 794static inline void usb_autopm_put_interface_no_suspend(
 795                struct usb_interface *intf)
 796{ }
 797static inline void usb_mark_last_busy(struct usb_device *udev)
 798{ }
 799#endif
 800
 801extern int usb_disable_lpm(struct usb_device *udev);
 802extern void usb_enable_lpm(struct usb_device *udev);
 803/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 804extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 805extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 806
 807extern int usb_disable_ltm(struct usb_device *udev);
 808extern void usb_enable_ltm(struct usb_device *udev);
 809
 810static inline bool usb_device_supports_ltm(struct usb_device *udev)
 811{
 812        if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 813                return false;
 814        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 815}
 816
 817static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 818{
 819        return udev && udev->bus && udev->bus->no_sg_constraint;
 820}
 821
 822
 823/*-------------------------------------------------------------------------*/
 824
 825/* for drivers using iso endpoints */
 826extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 827
 828/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 829extern int usb_alloc_streams(struct usb_interface *interface,
 830                struct usb_host_endpoint **eps, unsigned int num_eps,
 831                unsigned int num_streams, gfp_t mem_flags);
 832
 833/* Reverts a group of bulk endpoints back to not using stream IDs. */
 834extern int usb_free_streams(struct usb_interface *interface,
 835                struct usb_host_endpoint **eps, unsigned int num_eps,
 836                gfp_t mem_flags);
 837
 838/* used these for multi-interface device registration */
 839extern int usb_driver_claim_interface(struct usb_driver *driver,
 840                        struct usb_interface *iface, void *priv);
 841
 842/**
 843 * usb_interface_claimed - returns true iff an interface is claimed
 844 * @iface: the interface being checked
 845 *
 846 * Return: %true (nonzero) iff the interface is claimed, else %false
 847 * (zero).
 848 *
 849 * Note:
 850 * Callers must own the driver model's usb bus readlock.  So driver
 851 * probe() entries don't need extra locking, but other call contexts
 852 * may need to explicitly claim that lock.
 853 *
 854 */
 855static inline int usb_interface_claimed(struct usb_interface *iface)
 856{
 857        return (iface->dev.driver != NULL);
 858}
 859
 860extern void usb_driver_release_interface(struct usb_driver *driver,
 861                        struct usb_interface *iface);
 862const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 863                                         const struct usb_device_id *id);
 864extern int usb_match_one_id(struct usb_interface *interface,
 865                            const struct usb_device_id *id);
 866
 867extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 868extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 869                int minor);
 870extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 871                unsigned ifnum);
 872extern struct usb_host_interface *usb_altnum_to_altsetting(
 873                const struct usb_interface *intf, unsigned int altnum);
 874extern struct usb_host_interface *usb_find_alt_setting(
 875                struct usb_host_config *config,
 876                unsigned int iface_num,
 877                unsigned int alt_num);
 878
 879/* port claiming functions */
 880int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 881                struct usb_dev_state *owner);
 882int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 883                struct usb_dev_state *owner);
 884
 885/**
 886 * usb_make_path - returns stable device path in the usb tree
 887 * @dev: the device whose path is being constructed
 888 * @buf: where to put the string
 889 * @size: how big is "buf"?
 890 *
 891 * Return: Length of the string (> 0) or negative if size was too small.
 892 *
 893 * Note:
 894 * This identifier is intended to be "stable", reflecting physical paths in
 895 * hardware such as physical bus addresses for host controllers or ports on
 896 * USB hubs.  That makes it stay the same until systems are physically
 897 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 898 * controllers.  Adding and removing devices, including virtual root hubs
 899 * in host controller driver modules, does not change these path identifiers;
 900 * neither does rebooting or re-enumerating.  These are more useful identifiers
 901 * than changeable ("unstable") ones like bus numbers or device addresses.
 902 *
 903 * With a partial exception for devices connected to USB 2.0 root hubs, these
 904 * identifiers are also predictable.  So long as the device tree isn't changed,
 905 * plugging any USB device into a given hub port always gives it the same path.
 906 * Because of the use of "companion" controllers, devices connected to ports on
 907 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 908 * high speed, and a different one if they are full or low speed.
 909 */
 910static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 911{
 912        int actual;
 913        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 914                          dev->devpath);
 915        return (actual >= (int)size) ? -1 : actual;
 916}
 917
 918/*-------------------------------------------------------------------------*/
 919
 920#define USB_DEVICE_ID_MATCH_DEVICE \
 921                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 922#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 923                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 924#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 925                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 926#define USB_DEVICE_ID_MATCH_DEV_INFO \
 927                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 928                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 929                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 930#define USB_DEVICE_ID_MATCH_INT_INFO \
 931                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 932                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 933                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 934
 935/**
 936 * USB_DEVICE - macro used to describe a specific usb device
 937 * @vend: the 16 bit USB Vendor ID
 938 * @prod: the 16 bit USB Product ID
 939 *
 940 * This macro is used to create a struct usb_device_id that matches a
 941 * specific device.
 942 */
 943#define USB_DEVICE(vend, prod) \
 944        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 945        .idVendor = (vend), \
 946        .idProduct = (prod)
 947/**
 948 * USB_DEVICE_VER - describe a specific usb device with a version range
 949 * @vend: the 16 bit USB Vendor ID
 950 * @prod: the 16 bit USB Product ID
 951 * @lo: the bcdDevice_lo value
 952 * @hi: the bcdDevice_hi value
 953 *
 954 * This macro is used to create a struct usb_device_id that matches a
 955 * specific device, with a version range.
 956 */
 957#define USB_DEVICE_VER(vend, prod, lo, hi) \
 958        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 959        .idVendor = (vend), \
 960        .idProduct = (prod), \
 961        .bcdDevice_lo = (lo), \
 962        .bcdDevice_hi = (hi)
 963
 964/**
 965 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 966 * @vend: the 16 bit USB Vendor ID
 967 * @prod: the 16 bit USB Product ID
 968 * @cl: bInterfaceClass value
 969 *
 970 * This macro is used to create a struct usb_device_id that matches a
 971 * specific interface class of devices.
 972 */
 973#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 974        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 975                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 976        .idVendor = (vend), \
 977        .idProduct = (prod), \
 978        .bInterfaceClass = (cl)
 979
 980/**
 981 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 982 * @vend: the 16 bit USB Vendor ID
 983 * @prod: the 16 bit USB Product ID
 984 * @pr: bInterfaceProtocol value
 985 *
 986 * This macro is used to create a struct usb_device_id that matches a
 987 * specific interface protocol of devices.
 988 */
 989#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 990        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 991                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 992        .idVendor = (vend), \
 993        .idProduct = (prod), \
 994        .bInterfaceProtocol = (pr)
 995
 996/**
 997 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 998 * @vend: the 16 bit USB Vendor ID
 999 * @prod: the 16 bit USB Product ID
1000 * @num: bInterfaceNumber value
1001 *
1002 * This macro is used to create a struct usb_device_id that matches a
1003 * specific interface number of devices.
1004 */
1005#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1006        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1007                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1008        .idVendor = (vend), \
1009        .idProduct = (prod), \
1010        .bInterfaceNumber = (num)
1011
1012/**
1013 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1014 * @cl: bDeviceClass value
1015 * @sc: bDeviceSubClass value
1016 * @pr: bDeviceProtocol value
1017 *
1018 * This macro is used to create a struct usb_device_id that matches a
1019 * specific class of devices.
1020 */
1021#define USB_DEVICE_INFO(cl, sc, pr) \
1022        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1023        .bDeviceClass = (cl), \
1024        .bDeviceSubClass = (sc), \
1025        .bDeviceProtocol = (pr)
1026
1027/**
1028 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1029 * @cl: bInterfaceClass value
1030 * @sc: bInterfaceSubClass value
1031 * @pr: bInterfaceProtocol value
1032 *
1033 * This macro is used to create a struct usb_device_id that matches a
1034 * specific class of interfaces.
1035 */
1036#define USB_INTERFACE_INFO(cl, sc, pr) \
1037        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1038        .bInterfaceClass = (cl), \
1039        .bInterfaceSubClass = (sc), \
1040        .bInterfaceProtocol = (pr)
1041
1042/**
1043 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1044 * @vend: the 16 bit USB Vendor ID
1045 * @prod: the 16 bit USB Product ID
1046 * @cl: bInterfaceClass value
1047 * @sc: bInterfaceSubClass value
1048 * @pr: bInterfaceProtocol value
1049 *
1050 * This macro is used to create a struct usb_device_id that matches a
1051 * specific device with a specific class of interfaces.
1052 *
1053 * This is especially useful when explicitly matching devices that have
1054 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1055 */
1056#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1057        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1058                | USB_DEVICE_ID_MATCH_DEVICE, \
1059        .idVendor = (vend), \
1060        .idProduct = (prod), \
1061        .bInterfaceClass = (cl), \
1062        .bInterfaceSubClass = (sc), \
1063        .bInterfaceProtocol = (pr)
1064
1065/**
1066 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1067 * @vend: the 16 bit USB Vendor ID
1068 * @cl: bInterfaceClass value
1069 * @sc: bInterfaceSubClass value
1070 * @pr: bInterfaceProtocol value
1071 *
1072 * This macro is used to create a struct usb_device_id that matches a
1073 * specific vendor with a specific class of interfaces.
1074 *
1075 * This is especially useful when explicitly matching devices that have
1076 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1077 */
1078#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1079        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1080                | USB_DEVICE_ID_MATCH_VENDOR, \
1081        .idVendor = (vend), \
1082        .bInterfaceClass = (cl), \
1083        .bInterfaceSubClass = (sc), \
1084        .bInterfaceProtocol = (pr)
1085
1086/* ----------------------------------------------------------------------- */
1087
1088/* Stuff for dynamic usb ids */
1089struct usb_dynids {
1090        spinlock_t lock;
1091        struct list_head list;
1092};
1093
1094struct usb_dynid {
1095        struct list_head node;
1096        struct usb_device_id id;
1097};
1098
1099extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1100                                const struct usb_device_id *id_table,
1101                                struct device_driver *driver,
1102                                const char *buf, size_t count);
1103
1104extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1105
1106/**
1107 * struct usbdrv_wrap - wrapper for driver-model structure
1108 * @driver: The driver-model core driver structure.
1109 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1110 */
1111struct usbdrv_wrap {
1112        struct device_driver driver;
1113        int for_devices;
1114};
1115
1116/**
1117 * struct usb_driver - identifies USB interface driver to usbcore
1118 * @name: The driver name should be unique among USB drivers,
1119 *      and should normally be the same as the module name.
1120 * @probe: Called to see if the driver is willing to manage a particular
1121 *      interface on a device.  If it is, probe returns zero and uses
1122 *      usb_set_intfdata() to associate driver-specific data with the
1123 *      interface.  It may also use usb_set_interface() to specify the
1124 *      appropriate altsetting.  If unwilling to manage the interface,
1125 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1126 *      negative errno value.
1127 * @disconnect: Called when the interface is no longer accessible, usually
1128 *      because its device has been (or is being) disconnected or the
1129 *      driver module is being unloaded.
1130 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1131 *      the "usbfs" filesystem.  This lets devices provide ways to
1132 *      expose information to user space regardless of where they
1133 *      do (or don't) show up otherwise in the filesystem.
1134 * @suspend: Called when the device is going to be suspended by the
1135 *      system either from system sleep or runtime suspend context. The
1136 *      return value will be ignored in system sleep context, so do NOT
1137 *      try to continue using the device if suspend fails in this case.
1138 *      Instead, let the resume or reset-resume routine recover from
1139 *      the failure.
1140 * @resume: Called when the device is being resumed by the system.
1141 * @reset_resume: Called when the suspended device has been reset instead
1142 *      of being resumed.
1143 * @pre_reset: Called by usb_reset_device() when the device is about to be
1144 *      reset.  This routine must not return until the driver has no active
1145 *      URBs for the device, and no more URBs may be submitted until the
1146 *      post_reset method is called.
1147 * @post_reset: Called by usb_reset_device() after the device
1148 *      has been reset
1149 * @id_table: USB drivers use ID table to support hotplugging.
1150 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1151 *      or your driver's probe function will never get called.
1152 * @dynids: used internally to hold the list of dynamically added device
1153 *      ids for this driver.
1154 * @drvwrap: Driver-model core structure wrapper.
1155 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1156 *      added to this driver by preventing the sysfs file from being created.
1157 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1158 *      for interfaces bound to this driver.
1159 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1160 *      endpoints before calling the driver's disconnect method.
1161 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1162 *      to initiate lower power link state transitions when an idle timeout
1163 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1164 *
1165 * USB interface drivers must provide a name, probe() and disconnect()
1166 * methods, and an id_table.  Other driver fields are optional.
1167 *
1168 * The id_table is used in hotplugging.  It holds a set of descriptors,
1169 * and specialized data may be associated with each entry.  That table
1170 * is used by both user and kernel mode hotplugging support.
1171 *
1172 * The probe() and disconnect() methods are called in a context where
1173 * they can sleep, but they should avoid abusing the privilege.  Most
1174 * work to connect to a device should be done when the device is opened,
1175 * and undone at the last close.  The disconnect code needs to address
1176 * concurrency issues with respect to open() and close() methods, as
1177 * well as forcing all pending I/O requests to complete (by unlinking
1178 * them as necessary, and blocking until the unlinks complete).
1179 */
1180struct usb_driver {
1181        const char *name;
1182
1183        int (*probe) (struct usb_interface *intf,
1184                      const struct usb_device_id *id);
1185
1186        void (*disconnect) (struct usb_interface *intf);
1187
1188        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1189                        void *buf);
1190
1191        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1192        int (*resume) (struct usb_interface *intf);
1193        int (*reset_resume)(struct usb_interface *intf);
1194
1195        int (*pre_reset)(struct usb_interface *intf);
1196        int (*post_reset)(struct usb_interface *intf);
1197
1198        const struct usb_device_id *id_table;
1199
1200        struct usb_dynids dynids;
1201        struct usbdrv_wrap drvwrap;
1202        unsigned int no_dynamic_id:1;
1203        unsigned int supports_autosuspend:1;
1204        unsigned int disable_hub_initiated_lpm:1;
1205        unsigned int soft_unbind:1;
1206};
1207#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1208
1209/**
1210 * struct usb_device_driver - identifies USB device driver to usbcore
1211 * @name: The driver name should be unique among USB drivers,
1212 *      and should normally be the same as the module name.
1213 * @probe: Called to see if the driver is willing to manage a particular
1214 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1215 *      to associate driver-specific data with the device.  If unwilling
1216 *      to manage the device, return a negative errno value.
1217 * @disconnect: Called when the device is no longer accessible, usually
1218 *      because it has been (or is being) disconnected or the driver's
1219 *      module is being unloaded.
1220 * @suspend: Called when the device is going to be suspended by the system.
1221 * @resume: Called when the device is being resumed by the system.
1222 * @drvwrap: Driver-model core structure wrapper.
1223 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1224 *      for devices bound to this driver.
1225 *
1226 * USB drivers must provide all the fields listed above except drvwrap.
1227 */
1228struct usb_device_driver {
1229        const char *name;
1230
1231        int (*probe) (struct usb_device *udev);
1232        void (*disconnect) (struct usb_device *udev);
1233
1234        int (*suspend) (struct usb_device *udev, pm_message_t message);
1235        int (*resume) (struct usb_device *udev, pm_message_t message);
1236        struct usbdrv_wrap drvwrap;
1237        unsigned int supports_autosuspend:1;
1238};
1239#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1240                drvwrap.driver)
1241
1242extern struct bus_type usb_bus_type;
1243
1244/**
1245 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1246 * @name: the usb class device name for this driver.  Will show up in sysfs.
1247 * @devnode: Callback to provide a naming hint for a possible
1248 *      device node to create.
1249 * @fops: pointer to the struct file_operations of this driver.
1250 * @minor_base: the start of the minor range for this driver.
1251 *
1252 * This structure is used for the usb_register_dev() and
1253 * usb_deregister_dev() functions, to consolidate a number of the
1254 * parameters used for them.
1255 */
1256struct usb_class_driver {
1257        char *name;
1258        char *(*devnode)(struct device *dev, umode_t *mode);
1259        const struct file_operations *fops;
1260        int minor_base;
1261};
1262
1263/*
1264 * use these in module_init()/module_exit()
1265 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1266 */
1267extern int usb_register_driver(struct usb_driver *, struct module *,
1268                               const char *);
1269
1270/* use a define to avoid include chaining to get THIS_MODULE & friends */
1271#define usb_register(driver) \
1272        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1273
1274extern void usb_deregister(struct usb_driver *);
1275
1276/**
1277 * module_usb_driver() - Helper macro for registering a USB driver
1278 * @__usb_driver: usb_driver struct
1279 *
1280 * Helper macro for USB drivers which do not do anything special in module
1281 * init/exit. This eliminates a lot of boilerplate. Each module may only
1282 * use this macro once, and calling it replaces module_init() and module_exit()
1283 */
1284#define module_usb_driver(__usb_driver) \
1285        module_driver(__usb_driver, usb_register, \
1286                       usb_deregister)
1287
1288extern int usb_register_device_driver(struct usb_device_driver *,
1289                        struct module *);
1290extern void usb_deregister_device_driver(struct usb_device_driver *);
1291
1292extern int usb_register_dev(struct usb_interface *intf,
1293                            struct usb_class_driver *class_driver);
1294extern void usb_deregister_dev(struct usb_interface *intf,
1295                               struct usb_class_driver *class_driver);
1296
1297extern int usb_disabled(void);
1298
1299/* ----------------------------------------------------------------------- */
1300
1301/*
1302 * URB support, for asynchronous request completions
1303 */
1304
1305/*
1306 * urb->transfer_flags:
1307 *
1308 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1309 */
1310#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1311#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1312                                         * slot in the schedule */
1313#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1314#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1315#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1316                                         * needed */
1317#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1318
1319/* The following flags are used internally by usbcore and HCDs */
1320#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1321#define URB_DIR_OUT             0
1322#define URB_DIR_MASK            URB_DIR_IN
1323
1324#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1325#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1326#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1327#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1328#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1329#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1330#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1331#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1332
1333struct usb_iso_packet_descriptor {
1334        unsigned int offset;
1335        unsigned int length;            /* expected length */
1336        unsigned int actual_length;
1337        int status;
1338};
1339
1340struct urb;
1341
1342struct usb_anchor {
1343        struct list_head urb_list;
1344        wait_queue_head_t wait;
1345        spinlock_t lock;
1346        atomic_t suspend_wakeups;
1347        unsigned int poisoned:1;
1348};
1349
1350static inline void init_usb_anchor(struct usb_anchor *anchor)
1351{
1352        memset(anchor, 0, sizeof(*anchor));
1353        INIT_LIST_HEAD(&anchor->urb_list);
1354        init_waitqueue_head(&anchor->wait);
1355        spin_lock_init(&anchor->lock);
1356}
1357
1358typedef void (*usb_complete_t)(struct urb *);
1359
1360/**
1361 * struct urb - USB Request Block
1362 * @urb_list: For use by current owner of the URB.
1363 * @anchor_list: membership in the list of an anchor
1364 * @anchor: to anchor URBs to a common mooring
1365 * @ep: Points to the endpoint's data structure.  Will eventually
1366 *      replace @pipe.
1367 * @pipe: Holds endpoint number, direction, type, and more.
1368 *      Create these values with the eight macros available;
1369 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1370 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1371 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1372 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1373 *      is a different endpoint (and pipe) from "out" endpoint two.
1374 *      The current configuration controls the existence, type, and
1375 *      maximum packet size of any given endpoint.
1376 * @stream_id: the endpoint's stream ID for bulk streams
1377 * @dev: Identifies the USB device to perform the request.
1378 * @status: This is read in non-iso completion functions to get the
1379 *      status of the particular request.  ISO requests only use it
1380 *      to tell whether the URB was unlinked; detailed status for
1381 *      each frame is in the fields of the iso_frame-desc.
1382 * @transfer_flags: A variety of flags may be used to affect how URB
1383 *      submission, unlinking, or operation are handled.  Different
1384 *      kinds of URB can use different flags.
1385 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1386 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1387 *      (however, do not leave garbage in transfer_buffer even then).
1388 *      This buffer must be suitable for DMA; allocate it with
1389 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1390 *      of this buffer will be modified.  This buffer is used for the data
1391 *      stage of control transfers.
1392 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1393 *      the device driver is saying that it provided this DMA address,
1394 *      which the host controller driver should use in preference to the
1395 *      transfer_buffer.
1396 * @sg: scatter gather buffer list, the buffer size of each element in
1397 *      the list (except the last) must be divisible by the endpoint's
1398 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1399 * @num_mapped_sgs: (internal) number of mapped sg entries
1400 * @num_sgs: number of entries in the sg list
1401 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1402 *      be broken up into chunks according to the current maximum packet
1403 *      size for the endpoint, which is a function of the configuration
1404 *      and is encoded in the pipe.  When the length is zero, neither
1405 *      transfer_buffer nor transfer_dma is used.
1406 * @actual_length: This is read in non-iso completion functions, and
1407 *      it tells how many bytes (out of transfer_buffer_length) were
1408 *      transferred.  It will normally be the same as requested, unless
1409 *      either an error was reported or a short read was performed.
1410 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1411 *      short reads be reported as errors.
1412 * @setup_packet: Only used for control transfers, this points to eight bytes
1413 *      of setup data.  Control transfers always start by sending this data
1414 *      to the device.  Then transfer_buffer is read or written, if needed.
1415 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1416 *      this field; setup_packet must point to a valid buffer.
1417 * @start_frame: Returns the initial frame for isochronous transfers.
1418 * @number_of_packets: Lists the number of ISO transfer buffers.
1419 * @interval: Specifies the polling interval for interrupt or isochronous
1420 *      transfers.  The units are frames (milliseconds) for full and low
1421 *      speed devices, and microframes (1/8 millisecond) for highspeed
1422 *      and SuperSpeed devices.
1423 * @error_count: Returns the number of ISO transfers that reported errors.
1424 * @context: For use in completion functions.  This normally points to
1425 *      request-specific driver context.
1426 * @complete: Completion handler. This URB is passed as the parameter to the
1427 *      completion function.  The completion function may then do what
1428 *      it likes with the URB, including resubmitting or freeing it.
1429 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1430 *      collect the transfer status for each buffer.
1431 *
1432 * This structure identifies USB transfer requests.  URBs must be allocated by
1433 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1434 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1435 * are submitted using usb_submit_urb(), and pending requests may be canceled
1436 * using usb_unlink_urb() or usb_kill_urb().
1437 *
1438 * Data Transfer Buffers:
1439 *
1440 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1441 * taken from the general page pool.  That is provided by transfer_buffer
1442 * (control requests also use setup_packet), and host controller drivers
1443 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1444 * mapping operations can be expensive on some platforms (perhaps using a dma
1445 * bounce buffer or talking to an IOMMU),
1446 * although they're cheap on commodity x86 and ppc hardware.
1447 *
1448 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1449 * which tells the host controller driver that no such mapping is needed for
1450 * the transfer_buffer since
1451 * the device driver is DMA-aware.  For example, a device driver might
1452 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1453 * When this transfer flag is provided, host controller drivers will
1454 * attempt to use the dma address found in the transfer_dma
1455 * field rather than determining a dma address themselves.
1456 *
1457 * Note that transfer_buffer must still be set if the controller
1458 * does not support DMA (as indicated by bus.uses_dma) and when talking
1459 * to root hub. If you have to trasfer between highmem zone and the device
1460 * on such controller, create a bounce buffer or bail out with an error.
1461 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1462 * capable, assign NULL to it, so that usbmon knows not to use the value.
1463 * The setup_packet must always be set, so it cannot be located in highmem.
1464 *
1465 * Initialization:
1466 *
1467 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1468 * zero), and complete fields.  All URBs must also initialize
1469 * transfer_buffer and transfer_buffer_length.  They may provide the
1470 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1471 * to be treated as errors; that flag is invalid for write requests.
1472 *
1473 * Bulk URBs may
1474 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1475 * should always terminate with a short packet, even if it means adding an
1476 * extra zero length packet.
1477 *
1478 * Control URBs must provide a valid pointer in the setup_packet field.
1479 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1480 * beforehand.
1481 *
1482 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1483 * or, for highspeed devices, 125 microsecond units)
1484 * to poll for transfers.  After the URB has been submitted, the interval
1485 * field reflects how the transfer was actually scheduled.
1486 * The polling interval may be more frequent than requested.
1487 * For example, some controllers have a maximum interval of 32 milliseconds,
1488 * while others support intervals of up to 1024 milliseconds.
1489 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1490 * endpoints, as well as high speed interrupt endpoints, the encoding of
1491 * the transfer interval in the endpoint descriptor is logarithmic.
1492 * Device drivers must convert that value to linear units themselves.)
1493 *
1494 * If an isochronous endpoint queue isn't already running, the host
1495 * controller will schedule a new URB to start as soon as bandwidth
1496 * utilization allows.  If the queue is running then a new URB will be
1497 * scheduled to start in the first transfer slot following the end of the
1498 * preceding URB, if that slot has not already expired.  If the slot has
1499 * expired (which can happen when IRQ delivery is delayed for a long time),
1500 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1501 * is clear then the URB will be scheduled to start in the expired slot,
1502 * implying that some of its packets will not be transferred; if the flag
1503 * is set then the URB will be scheduled in the first unexpired slot,
1504 * breaking the queue's synchronization.  Upon URB completion, the
1505 * start_frame field will be set to the (micro)frame number in which the
1506 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1507 * and can go from as low as 256 to as high as 65536 frames.
1508 *
1509 * Isochronous URBs have a different data transfer model, in part because
1510 * the quality of service is only "best effort".  Callers provide specially
1511 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1512 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1513 * URBs are normally queued, submitted by drivers to arrange that
1514 * transfers are at least double buffered, and then explicitly resubmitted
1515 * in completion handlers, so
1516 * that data (such as audio or video) streams at as constant a rate as the
1517 * host controller scheduler can support.
1518 *
1519 * Completion Callbacks:
1520 *
1521 * The completion callback is made in_interrupt(), and one of the first
1522 * things that a completion handler should do is check the status field.
1523 * The status field is provided for all URBs.  It is used to report
1524 * unlinked URBs, and status for all non-ISO transfers.  It should not
1525 * be examined before the URB is returned to the completion handler.
1526 *
1527 * The context field is normally used to link URBs back to the relevant
1528 * driver or request state.
1529 *
1530 * When the completion callback is invoked for non-isochronous URBs, the
1531 * actual_length field tells how many bytes were transferred.  This field
1532 * is updated even when the URB terminated with an error or was unlinked.
1533 *
1534 * ISO transfer status is reported in the status and actual_length fields
1535 * of the iso_frame_desc array, and the number of errors is reported in
1536 * error_count.  Completion callbacks for ISO transfers will normally
1537 * (re)submit URBs to ensure a constant transfer rate.
1538 *
1539 * Note that even fields marked "public" should not be touched by the driver
1540 * when the urb is owned by the hcd, that is, since the call to
1541 * usb_submit_urb() till the entry into the completion routine.
1542 */
1543struct urb {
1544        /* private: usb core and host controller only fields in the urb */
1545        struct kref kref;               /* reference count of the URB */
1546        int unlinked;                   /* unlink error code */
1547        void *hcpriv;                   /* private data for host controller */
1548        atomic_t use_count;             /* concurrent submissions counter */
1549        atomic_t reject;                /* submissions will fail */
1550
1551        /* public: documented fields in the urb that can be used by drivers */
1552        struct list_head urb_list;      /* list head for use by the urb's
1553                                         * current owner */
1554        struct list_head anchor_list;   /* the URB may be anchored */
1555        struct usb_anchor *anchor;
1556        struct usb_device *dev;         /* (in) pointer to associated device */
1557        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1558        unsigned int pipe;              /* (in) pipe information */
1559        unsigned int stream_id;         /* (in) stream ID */
1560        int status;                     /* (return) non-ISO status */
1561        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1562        void *transfer_buffer;          /* (in) associated data buffer */
1563        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1564        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1565        int num_mapped_sgs;             /* (internal) mapped sg entries */
1566        int num_sgs;                    /* (in) number of entries in the sg list */
1567        u32 transfer_buffer_length;     /* (in) data buffer length */
1568        u32 actual_length;              /* (return) actual transfer length */
1569        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1570        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1571        int start_frame;                /* (modify) start frame (ISO) */
1572        int number_of_packets;          /* (in) number of ISO packets */
1573        int interval;                   /* (modify) transfer interval
1574                                         * (INT/ISO) */
1575        int error_count;                /* (return) number of ISO errors */
1576        void *context;                  /* (in) context for completion */
1577        usb_complete_t complete;        /* (in) completion routine */
1578        struct usb_iso_packet_descriptor iso_frame_desc[0];
1579                                        /* (in) ISO ONLY */
1580};
1581
1582/* ----------------------------------------------------------------------- */
1583
1584/**
1585 * usb_fill_control_urb - initializes a control urb
1586 * @urb: pointer to the urb to initialize.
1587 * @dev: pointer to the struct usb_device for this urb.
1588 * @pipe: the endpoint pipe
1589 * @setup_packet: pointer to the setup_packet buffer
1590 * @transfer_buffer: pointer to the transfer buffer
1591 * @buffer_length: length of the transfer buffer
1592 * @complete_fn: pointer to the usb_complete_t function
1593 * @context: what to set the urb context to.
1594 *
1595 * Initializes a control urb with the proper information needed to submit
1596 * it to a device.
1597 */
1598static inline void usb_fill_control_urb(struct urb *urb,
1599                                        struct usb_device *dev,
1600                                        unsigned int pipe,
1601                                        unsigned char *setup_packet,
1602                                        void *transfer_buffer,
1603                                        int buffer_length,
1604                                        usb_complete_t complete_fn,
1605                                        void *context)
1606{
1607        urb->dev = dev;
1608        urb->pipe = pipe;
1609        urb->setup_packet = setup_packet;
1610        urb->transfer_buffer = transfer_buffer;
1611        urb->transfer_buffer_length = buffer_length;
1612        urb->complete = complete_fn;
1613        urb->context = context;
1614}
1615
1616/**
1617 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1618 * @urb: pointer to the urb to initialize.
1619 * @dev: pointer to the struct usb_device for this urb.
1620 * @pipe: the endpoint pipe
1621 * @transfer_buffer: pointer to the transfer buffer
1622 * @buffer_length: length of the transfer buffer
1623 * @complete_fn: pointer to the usb_complete_t function
1624 * @context: what to set the urb context to.
1625 *
1626 * Initializes a bulk urb with the proper information needed to submit it
1627 * to a device.
1628 */
1629static inline void usb_fill_bulk_urb(struct urb *urb,
1630                                     struct usb_device *dev,
1631                                     unsigned int pipe,
1632                                     void *transfer_buffer,
1633                                     int buffer_length,
1634                                     usb_complete_t complete_fn,
1635                                     void *context)
1636{
1637        urb->dev = dev;
1638        urb->pipe = pipe;
1639        urb->transfer_buffer = transfer_buffer;
1640        urb->transfer_buffer_length = buffer_length;
1641        urb->complete = complete_fn;
1642        urb->context = context;
1643}
1644
1645/**
1646 * usb_fill_int_urb - macro to help initialize a interrupt urb
1647 * @urb: pointer to the urb to initialize.
1648 * @dev: pointer to the struct usb_device for this urb.
1649 * @pipe: the endpoint pipe
1650 * @transfer_buffer: pointer to the transfer buffer
1651 * @buffer_length: length of the transfer buffer
1652 * @complete_fn: pointer to the usb_complete_t function
1653 * @context: what to set the urb context to.
1654 * @interval: what to set the urb interval to, encoded like
1655 *      the endpoint descriptor's bInterval value.
1656 *
1657 * Initializes a interrupt urb with the proper information needed to submit
1658 * it to a device.
1659 *
1660 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1661 * encoding of the endpoint interval, and express polling intervals in
1662 * microframes (eight per millisecond) rather than in frames (one per
1663 * millisecond).
1664 *
1665 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1666 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1667 * through to the host controller, rather than being translated into microframe
1668 * units.
1669 */
1670static inline void usb_fill_int_urb(struct urb *urb,
1671                                    struct usb_device *dev,
1672                                    unsigned int pipe,
1673                                    void *transfer_buffer,
1674                                    int buffer_length,
1675                                    usb_complete_t complete_fn,
1676                                    void *context,
1677                                    int interval)
1678{
1679        urb->dev = dev;
1680        urb->pipe = pipe;
1681        urb->transfer_buffer = transfer_buffer;
1682        urb->transfer_buffer_length = buffer_length;
1683        urb->complete = complete_fn;
1684        urb->context = context;
1685
1686        if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1687                /* make sure interval is within allowed range */
1688                interval = clamp(interval, 1, 16);
1689
1690                urb->interval = 1 << (interval - 1);
1691        } else {
1692                urb->interval = interval;
1693        }
1694
1695        urb->start_frame = -1;
1696}
1697
1698extern void usb_init_urb(struct urb *urb);
1699extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1700extern void usb_free_urb(struct urb *urb);
1701#define usb_put_urb usb_free_urb
1702extern struct urb *usb_get_urb(struct urb *urb);
1703extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1704extern int usb_unlink_urb(struct urb *urb);
1705extern void usb_kill_urb(struct urb *urb);
1706extern void usb_poison_urb(struct urb *urb);
1707extern void usb_unpoison_urb(struct urb *urb);
1708extern void usb_block_urb(struct urb *urb);
1709extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1710extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1711extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1712extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1713extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1714extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1715extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1716extern void usb_unanchor_urb(struct urb *urb);
1717extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1718                                         unsigned int timeout);
1719extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1720extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1721extern int usb_anchor_empty(struct usb_anchor *anchor);
1722
1723#define usb_unblock_urb usb_unpoison_urb
1724
1725/**
1726 * usb_urb_dir_in - check if an URB describes an IN transfer
1727 * @urb: URB to be checked
1728 *
1729 * Return: 1 if @urb describes an IN transfer (device-to-host),
1730 * otherwise 0.
1731 */
1732static inline int usb_urb_dir_in(struct urb *urb)
1733{
1734        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1735}
1736
1737/**
1738 * usb_urb_dir_out - check if an URB describes an OUT transfer
1739 * @urb: URB to be checked
1740 *
1741 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1742 * otherwise 0.
1743 */
1744static inline int usb_urb_dir_out(struct urb *urb)
1745{
1746        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1747}
1748
1749int usb_urb_ep_type_check(const struct urb *urb);
1750
1751void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1752        gfp_t mem_flags, dma_addr_t *dma);
1753void usb_free_coherent(struct usb_device *dev, size_t size,
1754        void *addr, dma_addr_t dma);
1755
1756#if 0
1757struct urb *usb_buffer_map(struct urb *urb);
1758void usb_buffer_dmasync(struct urb *urb);
1759void usb_buffer_unmap(struct urb *urb);
1760#endif
1761
1762struct scatterlist;
1763int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1764                      struct scatterlist *sg, int nents);
1765#if 0
1766void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1767                           struct scatterlist *sg, int n_hw_ents);
1768#endif
1769void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1770                         struct scatterlist *sg, int n_hw_ents);
1771
1772/*-------------------------------------------------------------------*
1773 *                         SYNCHRONOUS CALL SUPPORT                  *
1774 *-------------------------------------------------------------------*/
1775
1776extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1777        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1778        void *data, __u16 size, int timeout);
1779extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1780        void *data, int len, int *actual_length, int timeout);
1781extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1782        void *data, int len, int *actual_length,
1783        int timeout);
1784
1785/* wrappers around usb_control_msg() for the most common standard requests */
1786extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1787        unsigned char descindex, void *buf, int size);
1788extern int usb_get_status(struct usb_device *dev,
1789        int recip, int type, int target, void *data);
1790
1791static inline int usb_get_std_status(struct usb_device *dev,
1792        int recip, int target, void *data)
1793{
1794        return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1795                data);
1796}
1797
1798static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1799{
1800        return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1801                0, data);
1802}
1803
1804extern int usb_string(struct usb_device *dev, int index,
1805        char *buf, size_t size);
1806
1807/* wrappers that also update important state inside usbcore */
1808extern int usb_clear_halt(struct usb_device *dev, int pipe);
1809extern int usb_reset_configuration(struct usb_device *dev);
1810extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1811extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1812
1813/* this request isn't really synchronous, but it belongs with the others */
1814extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1815
1816/* choose and set configuration for device */
1817extern int usb_choose_configuration(struct usb_device *udev);
1818extern int usb_set_configuration(struct usb_device *dev, int configuration);
1819
1820/*
1821 * timeouts, in milliseconds, used for sending/receiving control messages
1822 * they typically complete within a few frames (msec) after they're issued
1823 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1824 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1825 */
1826#define USB_CTRL_GET_TIMEOUT    5000
1827#define USB_CTRL_SET_TIMEOUT    5000
1828
1829
1830/**
1831 * struct usb_sg_request - support for scatter/gather I/O
1832 * @status: zero indicates success, else negative errno
1833 * @bytes: counts bytes transferred.
1834 *
1835 * These requests are initialized using usb_sg_init(), and then are used
1836 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1837 * members of the request object aren't for driver access.
1838 *
1839 * The status and bytecount values are valid only after usb_sg_wait()
1840 * returns.  If the status is zero, then the bytecount matches the total
1841 * from the request.
1842 *
1843 * After an error completion, drivers may need to clear a halt condition
1844 * on the endpoint.
1845 */
1846struct usb_sg_request {
1847        int                     status;
1848        size_t                  bytes;
1849
1850        /* private:
1851         * members below are private to usbcore,
1852         * and are not provided for driver access!
1853         */
1854        spinlock_t              lock;
1855
1856        struct usb_device       *dev;
1857        int                     pipe;
1858
1859        int                     entries;
1860        struct urb              **urbs;
1861
1862        int                     count;
1863        struct completion       complete;
1864};
1865
1866int usb_sg_init(
1867        struct usb_sg_request   *io,
1868        struct usb_device       *dev,
1869        unsigned                pipe,
1870        unsigned                period,
1871        struct scatterlist      *sg,
1872        int                     nents,
1873        size_t                  length,
1874        gfp_t                   mem_flags
1875);
1876void usb_sg_cancel(struct usb_sg_request *io);
1877void usb_sg_wait(struct usb_sg_request *io);
1878
1879
1880/* ----------------------------------------------------------------------- */
1881
1882/*
1883 * For various legacy reasons, Linux has a small cookie that's paired with
1884 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1885 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1886 * an unsigned int encoded as:
1887 *
1888 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1889 *                                       1 = Device-to-Host [In] ...
1890 *                                      like endpoint bEndpointAddress)
1891 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1892 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1893 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1894 *                                       10 = control, 11 = bulk)
1895 *
1896 * Given the device address and endpoint descriptor, pipes are redundant.
1897 */
1898
1899/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1900/* (yet ... they're the values used by usbfs) */
1901#define PIPE_ISOCHRONOUS                0
1902#define PIPE_INTERRUPT                  1
1903#define PIPE_CONTROL                    2
1904#define PIPE_BULK                       3
1905
1906#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1907#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1908
1909#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1910#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1911
1912#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1913#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1914#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1915#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1916#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1917
1918static inline unsigned int __create_pipe(struct usb_device *dev,
1919                unsigned int endpoint)
1920{
1921        return (dev->devnum << 8) | (endpoint << 15);
1922}
1923
1924/* Create various pipes... */
1925#define usb_sndctrlpipe(dev, endpoint)  \
1926        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1927#define usb_rcvctrlpipe(dev, endpoint)  \
1928        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1929#define usb_sndisocpipe(dev, endpoint)  \
1930        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1931#define usb_rcvisocpipe(dev, endpoint)  \
1932        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1933#define usb_sndbulkpipe(dev, endpoint)  \
1934        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1935#define usb_rcvbulkpipe(dev, endpoint)  \
1936        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1937#define usb_sndintpipe(dev, endpoint)   \
1938        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1939#define usb_rcvintpipe(dev, endpoint)   \
1940        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1941
1942static inline struct usb_host_endpoint *
1943usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1944{
1945        struct usb_host_endpoint **eps;
1946        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1947        return eps[usb_pipeendpoint(pipe)];
1948}
1949
1950/*-------------------------------------------------------------------------*/
1951
1952static inline __u16
1953usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1954{
1955        struct usb_host_endpoint        *ep;
1956        unsigned                        epnum = usb_pipeendpoint(pipe);
1957
1958        if (is_out) {
1959                WARN_ON(usb_pipein(pipe));
1960                ep = udev->ep_out[epnum];
1961        } else {
1962                WARN_ON(usb_pipeout(pipe));
1963                ep = udev->ep_in[epnum];
1964        }
1965        if (!ep)
1966                return 0;
1967
1968        /* NOTE:  only 0x07ff bits are for packet size... */
1969        return usb_endpoint_maxp(&ep->desc);
1970}
1971
1972/* ----------------------------------------------------------------------- */
1973
1974/* translate USB error codes to codes user space understands */
1975static inline int usb_translate_errors(int error_code)
1976{
1977        switch (error_code) {
1978        case 0:
1979        case -ENOMEM:
1980        case -ENODEV:
1981        case -EOPNOTSUPP:
1982                return error_code;
1983        default:
1984                return -EIO;
1985        }
1986}
1987
1988/* Events from the usb core */
1989#define USB_DEVICE_ADD          0x0001
1990#define USB_DEVICE_REMOVE       0x0002
1991#define USB_BUS_ADD             0x0003
1992#define USB_BUS_REMOVE          0x0004
1993extern void usb_register_notify(struct notifier_block *nb);
1994extern void usb_unregister_notify(struct notifier_block *nb);
1995
1996/* debugfs stuff */
1997extern struct dentry *usb_debug_root;
1998
1999/* LED triggers */
2000enum usb_led_event {
2001        USB_LED_EVENT_HOST = 0,
2002        USB_LED_EVENT_GADGET = 1,
2003};
2004
2005#ifdef CONFIG_USB_LED_TRIG
2006extern void usb_led_activity(enum usb_led_event ev);
2007#else
2008static inline void usb_led_activity(enum usb_led_event ev) {}
2009#endif
2010
2011#endif  /* __KERNEL__ */
2012
2013#endif
2014