linux/include/linux/uwb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Ultra Wide Band
   4 * UWB API
   5 *
   6 * Copyright (C) 2005-2006 Intel Corporation
   7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   8 *
   9 * FIXME: doc: overview of the API, different parts and pointers
  10 */
  11
  12#ifndef __LINUX__UWB_H__
  13#define __LINUX__UWB_H__
  14
  15#include <linux/limits.h>
  16#include <linux/device.h>
  17#include <linux/mutex.h>
  18#include <linux/timer.h>
  19#include <linux/wait.h>
  20#include <linux/workqueue.h>
  21#include <linux/uwb/spec.h>
  22#include <asm/page.h>
  23
  24struct uwb_dev;
  25struct uwb_beca_e;
  26struct uwb_rc;
  27struct uwb_rsv;
  28struct uwb_dbg;
  29
  30/**
  31 * struct uwb_dev - a UWB Device
  32 * @rc: UWB Radio Controller that discovered the device (kind of its
  33 *     parent).
  34 * @bce: a beacon cache entry for this device; or NULL if the device
  35 *     is a local radio controller.
  36 * @mac_addr: the EUI-48 address of this device.
  37 * @dev_addr: the current DevAddr used by this device.
  38 * @beacon_slot: the slot number the beacon is using.
  39 * @streams: bitmap of streams allocated to reservations targeted at
  40 *     this device.  For an RC, this is the streams allocated for
  41 *     reservations targeted at DevAddrs.
  42 *
  43 * A UWB device may either by a neighbor or part of a local radio
  44 * controller.
  45 */
  46struct uwb_dev {
  47        struct mutex mutex;
  48        struct list_head list_node;
  49        struct device dev;
  50        struct uwb_rc *rc;              /* radio controller */
  51        struct uwb_beca_e *bce;         /* Beacon Cache Entry */
  52
  53        struct uwb_mac_addr mac_addr;
  54        struct uwb_dev_addr dev_addr;
  55        int beacon_slot;
  56        DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
  57        DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
  58};
  59#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
  60
  61/**
  62 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
  63 *
  64 * RC[CE]Bs have a 'context ID' field that matches the command with
  65 * the event received to confirm it.
  66 *
  67 * Maximum number of context IDs
  68 */
  69enum { UWB_RC_CTX_MAX = 256 };
  70
  71
  72/** Notification chain head for UWB generated events to listeners */
  73struct uwb_notifs_chain {
  74        struct list_head list;
  75        struct mutex mutex;
  76};
  77
  78/* Beacon cache list */
  79struct uwb_beca {
  80        struct list_head list;
  81        size_t entries;
  82        struct mutex mutex;
  83};
  84
  85/* Event handling thread. */
  86struct uwbd {
  87        int pid;
  88        struct task_struct *task;
  89        wait_queue_head_t wq;
  90        struct list_head event_list;
  91        spinlock_t event_list_lock;
  92};
  93
  94/**
  95 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
  96 * @bm: a bitmap of length #UWB_NUM_MAS
  97 */
  98struct uwb_mas_bm {
  99        DECLARE_BITMAP(bm, UWB_NUM_MAS);
 100        DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
 101        int safe;
 102        int unsafe;
 103};
 104
 105/**
 106 * uwb_rsv_state - UWB Reservation state.
 107 *
 108 * NONE - reservation is not active (no DRP IE being transmitted).
 109 *
 110 * Owner reservation states:
 111 *
 112 * INITIATED - owner has sent an initial DRP request.
 113 * PENDING - target responded with pending Reason Code.
 114 * MODIFIED - reservation manager is modifying an established
 115 * reservation with a different MAS allocation.
 116 * ESTABLISHED - the reservation has been successfully negotiated.
 117 *
 118 * Target reservation states:
 119 *
 120 * DENIED - request is denied.
 121 * ACCEPTED - request is accepted.
 122 * PENDING - PAL has yet to make a decision to whether to accept or
 123 * deny.
 124 *
 125 * FIXME: further target states TBD.
 126 */
 127enum uwb_rsv_state {
 128        UWB_RSV_STATE_NONE = 0,
 129        UWB_RSV_STATE_O_INITIATED,
 130        UWB_RSV_STATE_O_PENDING,
 131        UWB_RSV_STATE_O_MODIFIED,
 132        UWB_RSV_STATE_O_ESTABLISHED,
 133        UWB_RSV_STATE_O_TO_BE_MOVED,
 134        UWB_RSV_STATE_O_MOVE_EXPANDING,
 135        UWB_RSV_STATE_O_MOVE_COMBINING,
 136        UWB_RSV_STATE_O_MOVE_REDUCING,
 137        UWB_RSV_STATE_T_ACCEPTED,
 138        UWB_RSV_STATE_T_DENIED,
 139        UWB_RSV_STATE_T_CONFLICT,
 140        UWB_RSV_STATE_T_PENDING,
 141        UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
 142        UWB_RSV_STATE_T_EXPANDING_CONFLICT,
 143        UWB_RSV_STATE_T_EXPANDING_PENDING,
 144        UWB_RSV_STATE_T_EXPANDING_DENIED,
 145        UWB_RSV_STATE_T_RESIZED,
 146
 147        UWB_RSV_STATE_LAST,
 148};
 149
 150enum uwb_rsv_target_type {
 151        UWB_RSV_TARGET_DEV,
 152        UWB_RSV_TARGET_DEVADDR,
 153};
 154
 155/**
 156 * struct uwb_rsv_target - the target of a reservation.
 157 *
 158 * Reservations unicast and targeted at a single device
 159 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
 160 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
 161 */
 162struct uwb_rsv_target {
 163        enum uwb_rsv_target_type type;
 164        union {
 165                struct uwb_dev *dev;
 166                struct uwb_dev_addr devaddr;
 167        };
 168};
 169
 170struct uwb_rsv_move {
 171        struct uwb_mas_bm final_mas;
 172        struct uwb_ie_drp *companion_drp_ie;
 173        struct uwb_mas_bm companion_mas;
 174};
 175
 176/*
 177 * Number of streams reserved for reservations targeted at DevAddrs.
 178 */
 179#define UWB_NUM_GLOBAL_STREAMS 1
 180
 181typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
 182
 183/**
 184 * struct uwb_rsv - a DRP reservation
 185 *
 186 * Data structure management:
 187 *
 188 * @rc:             the radio controller this reservation is for
 189 *                  (as target or owner)
 190 * @rc_node:        a list node for the RC
 191 * @pal_node:       a list node for the PAL
 192 *
 193 * Owner and target parameters:
 194 *
 195 * @owner:          the UWB device owning this reservation
 196 * @target:         the target UWB device
 197 * @type:           reservation type
 198 *
 199 * Owner parameters:
 200 *
 201 * @max_mas:        maxiumum number of MAS
 202 * @min_mas:        minimum number of MAS
 203 * @sparsity:       owner selected sparsity
 204 * @is_multicast:   true iff multicast
 205 *
 206 * @callback:       callback function when the reservation completes
 207 * @pal_priv:       private data for the PAL making the reservation
 208 *
 209 * Reservation status:
 210 *
 211 * @status:         negotiation status
 212 * @stream:         stream index allocated for this reservation
 213 * @tiebreaker:     conflict tiebreaker for this reservation
 214 * @mas:            reserved MAS
 215 * @drp_ie:         the DRP IE
 216 * @ie_valid:       true iff the DRP IE matches the reservation parameters
 217 *
 218 * DRP reservations are uniquely identified by the owner, target and
 219 * stream index.  However, when using a DevAddr as a target (e.g., for
 220 * a WUSB cluster reservation) the responses may be received from
 221 * devices with different DevAddrs.  In this case, reservations are
 222 * uniquely identified by just the stream index.  A number of stream
 223 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
 224 */
 225struct uwb_rsv {
 226        struct uwb_rc *rc;
 227        struct list_head rc_node;
 228        struct list_head pal_node;
 229        struct kref kref;
 230
 231        struct uwb_dev *owner;
 232        struct uwb_rsv_target target;
 233        enum uwb_drp_type type;
 234        int max_mas;
 235        int min_mas;
 236        int max_interval;
 237        bool is_multicast;
 238
 239        uwb_rsv_cb_f callback;
 240        void *pal_priv;
 241
 242        enum uwb_rsv_state state;
 243        bool needs_release_companion_mas;
 244        u8 stream;
 245        u8 tiebreaker;
 246        struct uwb_mas_bm mas;
 247        struct uwb_ie_drp *drp_ie;
 248        struct uwb_rsv_move mv;
 249        bool ie_valid;
 250        struct timer_list timer;
 251        struct work_struct handle_timeout_work;
 252};
 253
 254static const
 255struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
 256
 257static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
 258{
 259        bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
 260}
 261
 262/**
 263 * struct uwb_drp_avail - a radio controller's view of MAS usage
 264 * @global:   MAS unused by neighbors (excluding reservations targeted
 265 *            or owned by the local radio controller) or the beaon period
 266 * @local:    MAS unused by local established reservations
 267 * @pending:  MAS unused by local pending reservations
 268 * @ie:       DRP Availability IE to be included in the beacon
 269 * @ie_valid: true iff @ie is valid and does not need to regenerated from
 270 *            @global and @local
 271 *
 272 * Each radio controller maintains a view of MAS usage or
 273 * availability. MAS available for a new reservation are determined
 274 * from the intersection of @global, @local, and @pending.
 275 *
 276 * The radio controller must transmit a DRP Availability IE that's the
 277 * intersection of @global and @local.
 278 *
 279 * A set bit indicates the MAS is unused and available.
 280 *
 281 * rc->rsvs_mutex should be held before accessing this data structure.
 282 *
 283 * [ECMA-368] section 17.4.3.
 284 */
 285struct uwb_drp_avail {
 286        DECLARE_BITMAP(global, UWB_NUM_MAS);
 287        DECLARE_BITMAP(local, UWB_NUM_MAS);
 288        DECLARE_BITMAP(pending, UWB_NUM_MAS);
 289        struct uwb_ie_drp_avail ie;
 290        bool ie_valid;
 291};
 292
 293struct uwb_drp_backoff_win {
 294        u8 window;
 295        u8 n;
 296        int total_expired;
 297        struct timer_list timer;
 298        bool can_reserve_extra_mases;
 299};
 300
 301const char *uwb_rsv_state_str(enum uwb_rsv_state state);
 302const char *uwb_rsv_type_str(enum uwb_drp_type type);
 303
 304struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
 305                               void *pal_priv);
 306void uwb_rsv_destroy(struct uwb_rsv *rsv);
 307
 308int uwb_rsv_establish(struct uwb_rsv *rsv);
 309int uwb_rsv_modify(struct uwb_rsv *rsv,
 310                   int max_mas, int min_mas, int sparsity);
 311void uwb_rsv_terminate(struct uwb_rsv *rsv);
 312
 313void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
 314
 315void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
 316
 317/**
 318 * Radio Control Interface instance
 319 *
 320 *
 321 * Life cycle rules: those of the UWB Device.
 322 *
 323 * @index:    an index number for this radio controller, as used in the
 324 *            device name.
 325 * @version:  version of protocol supported by this device
 326 * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
 327 * @cmd:      Backend implementation to execute commands; rw and call
 328 *            only  with uwb_dev.dev.sem taken.
 329 * @reset:    Hardware reset of radio controller and any PAL controllers.
 330 * @filter:   Backend implementation to manipulate data to and from device
 331 *            to be compliant to specification assumed by driver (WHCI
 332 *            0.95).
 333 *
 334 *            uwb_dev.dev.mutex is used to execute commands and update
 335 *            the corresponding structures; can't use a spinlock
 336 *            because rc->cmd() can sleep.
 337 * @ies:         This is a dynamically allocated array cacheing the
 338 *               IEs (settable by the host) that the beacon of this
 339 *               radio controller is currently sending.
 340 *
 341 *               In reality, we store here the full command we set to
 342 *               the radio controller (which is basically a command
 343 *               prefix followed by all the IEs the beacon currently
 344 *               contains). This way we don't have to realloc and
 345 *               memcpy when setting it.
 346 *
 347 *               We set this up in uwb_rc_ie_setup(), where we alloc
 348 *               this struct, call get_ie() [so we know which IEs are
 349 *               currently being sent, if any].
 350 *
 351 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
 352 *               amount used is given by sizeof(*ies) plus ies->wIELength
 353 *               (which is a little endian quantity all the time).
 354 * @ies_mutex:   protect the IE cache
 355 * @dbg:         information for the debug interface
 356 */
 357struct uwb_rc {
 358        struct uwb_dev uwb_dev;
 359        int index;
 360        u16 version;
 361
 362        struct module *owner;
 363        void *priv;
 364        int (*start)(struct uwb_rc *rc);
 365        void (*stop)(struct uwb_rc *rc);
 366        int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
 367        int (*reset)(struct uwb_rc *rc);
 368        int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
 369        int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
 370                            size_t *, size_t *);
 371
 372        spinlock_t neh_lock;            /* protects neh_* and ctx_* */
 373        struct list_head neh_list;      /* Open NE handles */
 374        unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
 375        u8 ctx_roll;
 376
 377        int beaconing;                  /* Beaconing state [channel number] */
 378        int beaconing_forced;
 379        int scanning;
 380        enum uwb_scan_type scan_type:3;
 381        unsigned ready:1;
 382        struct uwb_notifs_chain notifs_chain;
 383        struct uwb_beca uwb_beca;
 384
 385        struct uwbd uwbd;
 386
 387        struct uwb_drp_backoff_win bow;
 388        struct uwb_drp_avail drp_avail;
 389        struct list_head reservations;
 390        struct list_head cnflt_alien_list;
 391        struct uwb_mas_bm cnflt_alien_bitmap;
 392        struct mutex rsvs_mutex;
 393        spinlock_t rsvs_lock;
 394        struct workqueue_struct *rsv_workq;
 395
 396        struct delayed_work rsv_update_work;
 397        struct delayed_work rsv_alien_bp_work;
 398        int set_drp_ie_pending;
 399        struct mutex ies_mutex;
 400        struct uwb_rc_cmd_set_ie *ies;
 401        size_t ies_capacity;
 402
 403        struct list_head pals;
 404        int active_pals;
 405
 406        struct uwb_dbg *dbg;
 407};
 408
 409
 410/**
 411 * struct uwb_pal - a UWB PAL
 412 * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
 413 * @device:  a device for the PAL.  Used to link the PAL and the radio
 414 *           controller in sysfs.
 415 * @rc:      the radio controller the PAL uses.
 416 * @channel_changed: called when the channel used by the radio changes.
 417 *           A channel of -1 means the channel has been stopped.
 418 * @new_rsv: called when a peer requests a reservation (may be NULL if
 419 *           the PAL cannot accept reservation requests).
 420 * @channel: channel being used by the PAL; 0 if the PAL isn't using
 421 *           the radio; -1 if the PAL wishes to use the radio but
 422 *           cannot.
 423 * @debugfs_dir: a debugfs directory which the PAL can use for its own
 424 *           debugfs files.
 425 *
 426 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
 427 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
 428 *
 429 * The PALs using a radio controller must register themselves to
 430 * permit the UWB stack to coordinate usage of the radio between the
 431 * various PALs or to allow PALs to response to certain requests from
 432 * peers.
 433 *
 434 * A struct uwb_pal should be embedded in a containing structure
 435 * belonging to the PAL and initialized with uwb_pal_init()).  Fields
 436 * should be set appropriately by the PAL before registering the PAL
 437 * with uwb_pal_register().
 438 */
 439struct uwb_pal {
 440        struct list_head node;
 441        const char *name;
 442        struct device *device;
 443        struct uwb_rc *rc;
 444
 445        void (*channel_changed)(struct uwb_pal *pal, int channel);
 446        void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
 447
 448        int channel;
 449        struct dentry *debugfs_dir;
 450};
 451
 452void uwb_pal_init(struct uwb_pal *pal);
 453int uwb_pal_register(struct uwb_pal *pal);
 454void uwb_pal_unregister(struct uwb_pal *pal);
 455
 456int uwb_radio_start(struct uwb_pal *pal);
 457void uwb_radio_stop(struct uwb_pal *pal);
 458
 459/*
 460 * General public API
 461 *
 462 * This API can be used by UWB device drivers or by those implementing
 463 * UWB Radio Controllers
 464 */
 465struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
 466                                       const struct uwb_dev_addr *devaddr);
 467struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
 468static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
 469{
 470        get_device(&uwb_dev->dev);
 471}
 472static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
 473{
 474        put_device(&uwb_dev->dev);
 475}
 476struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
 477
 478/**
 479 * Callback function for 'uwb_{dev,rc}_foreach()'.
 480 *
 481 * @dev:  Linux device instance
 482 *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
 483 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
 484 *
 485 * @returns: 0 to continue the iterations, any other val to stop
 486 *           iterating and return the value to the caller of
 487 *           _foreach().
 488 */
 489typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
 490int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
 491
 492struct uwb_rc *uwb_rc_alloc(void);
 493struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
 494struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
 495void uwb_rc_put(struct uwb_rc *rc);
 496
 497typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
 498                                struct uwb_rceb *reply, ssize_t reply_size);
 499
 500int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
 501                     struct uwb_rccb *cmd, size_t cmd_size,
 502                     u8 expected_type, u16 expected_event,
 503                     uwb_rc_cmd_cb_f cb, void *arg);
 504ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
 505                   struct uwb_rccb *cmd, size_t cmd_size,
 506                   struct uwb_rceb *reply, size_t reply_size);
 507ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
 508                    struct uwb_rccb *cmd, size_t cmd_size,
 509                    u8 expected_type, u16 expected_event,
 510                    struct uwb_rceb **preply);
 511
 512size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
 513
 514int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
 515int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
 516int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
 517int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
 518int __uwb_mac_addr_assigned_check(struct device *, void *);
 519int __uwb_dev_addr_assigned_check(struct device *, void *);
 520
 521/* Print in @buf a pretty repr of @addr */
 522static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
 523                                        const struct uwb_dev_addr *addr)
 524{
 525        return __uwb_addr_print(buf, buf_size, addr->data, 0);
 526}
 527
 528/* Print in @buf a pretty repr of @addr */
 529static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
 530                                        const struct uwb_mac_addr *addr)
 531{
 532        return __uwb_addr_print(buf, buf_size, addr->data, 1);
 533}
 534
 535/* @returns 0 if device addresses @addr2 and @addr1 are equal */
 536static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
 537                                   const struct uwb_dev_addr *addr2)
 538{
 539        return memcmp(addr1, addr2, sizeof(*addr1));
 540}
 541
 542/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
 543static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
 544                                   const struct uwb_mac_addr *addr2)
 545{
 546        return memcmp(addr1, addr2, sizeof(*addr1));
 547}
 548
 549/* @returns !0 if a MAC @addr is a broadcast address */
 550static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
 551{
 552        struct uwb_mac_addr bcast = {
 553                .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
 554        };
 555        return !uwb_mac_addr_cmp(addr, &bcast);
 556}
 557
 558/* @returns !0 if a MAC @addr is all zeroes*/
 559static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
 560{
 561        struct uwb_mac_addr unset = {
 562                .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 563        };
 564        return !uwb_mac_addr_cmp(addr, &unset);
 565}
 566
 567/* @returns !0 if the address is in use. */
 568static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
 569                                               struct uwb_dev_addr *addr)
 570{
 571        return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
 572}
 573
 574/*
 575 * UWB Radio Controller API
 576 *
 577 * This API is used (in addition to the general API) to implement UWB
 578 * Radio Controllers.
 579 */
 580void uwb_rc_init(struct uwb_rc *);
 581int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
 582void uwb_rc_rm(struct uwb_rc *);
 583void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
 584void uwb_rc_neh_error(struct uwb_rc *, int);
 585void uwb_rc_reset_all(struct uwb_rc *rc);
 586void uwb_rc_pre_reset(struct uwb_rc *rc);
 587int uwb_rc_post_reset(struct uwb_rc *rc);
 588
 589/**
 590 * uwb_rsv_is_owner - is the owner of this reservation the RC?
 591 * @rsv: the reservation
 592 */
 593static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
 594{
 595        return rsv->owner == &rsv->rc->uwb_dev;
 596}
 597
 598/**
 599 * enum uwb_notifs - UWB events that can be passed to any listeners
 600 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
 601 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
 602 *
 603 * Higher layers can register callback functions with the radio
 604 * controller using uwb_notifs_register(). The radio controller
 605 * maintains a list of all registered handlers and will notify all
 606 * nodes when an event occurs.
 607 */
 608enum uwb_notifs {
 609        UWB_NOTIF_ONAIR,
 610        UWB_NOTIF_OFFAIR,
 611};
 612
 613/* Callback function registered with UWB */
 614struct uwb_notifs_handler {
 615        struct list_head list_node;
 616        void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
 617        void *data;
 618};
 619
 620int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
 621int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
 622
 623
 624/**
 625 * UWB radio controller Event Size Entry (for creating entry tables)
 626 *
 627 * WUSB and WHCI define events and notifications, and they might have
 628 * fixed or variable size.
 629 *
 630 * Each event/notification has a size which is not necessarily known
 631 * in advance based on the event code. As well, vendor specific
 632 * events/notifications will have a size impossible to determine
 633 * unless we know about the device's specific details.
 634 *
 635 * It was way too smart of the spec writers not to think that it would
 636 * be impossible for a generic driver to skip over vendor specific
 637 * events/notifications if there are no LENGTH fields in the HEADER of
 638 * each message...the transaction size cannot be counted on as the
 639 * spec does not forbid to pack more than one event in a single
 640 * transaction.
 641 *
 642 * Thus, we guess sizes with tables (or for events, when you know the
 643 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
 644 * register tables with the known events and their sizes, and then we
 645 * traverse those tables. For those with variable length, we provide a
 646 * way to lookup the size inside the event/notification's
 647 * payload. This allows device-specific event size tables to be
 648 * registered.
 649 *
 650 * @size:   Size of the payload
 651 *
 652 * @offset: if != 0, at offset @offset-1 starts a field with a length
 653 *          that has to be added to @size. The format of the field is
 654 *          given by @type.
 655 *
 656 * @type:   Type and length of the offset field. Most common is LE 16
 657 *          bits (that's why that is zero); others are there mostly to
 658 *          cover for bugs and weirdos.
 659 */
 660struct uwb_est_entry {
 661        size_t size;
 662        unsigned offset;
 663        enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
 664};
 665
 666int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
 667                     const struct uwb_est_entry *, size_t entries);
 668int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
 669                       const struct uwb_est_entry *, size_t entries);
 670ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
 671                          size_t len);
 672
 673/* -- Misc */
 674
 675enum {
 676        EDC_MAX_ERRORS = 10,
 677        EDC_ERROR_TIMEFRAME = HZ,
 678};
 679
 680/* error density counter */
 681struct edc {
 682        unsigned long timestart;
 683        u16 errorcount;
 684};
 685
 686static inline
 687void edc_init(struct edc *edc)
 688{
 689        edc->timestart = jiffies;
 690}
 691
 692/* Called when an error occurred.
 693 * This is way to determine if the number of acceptable errors per time
 694 * period has been exceeded. It is not accurate as there are cases in which
 695 * this scheme will not work, for example if there are periodic occurrences
 696 * of errors that straddle updates to the start time. This scheme is
 697 * sufficient for our usage.
 698 *
 699 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
 700 */
 701static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
 702{
 703        unsigned long now;
 704
 705        now = jiffies;
 706        if (now - err_hist->timestart > timeframe) {
 707                err_hist->errorcount = 1;
 708                err_hist->timestart = now;
 709        } else if (++err_hist->errorcount > max_err) {
 710                        err_hist->errorcount = 0;
 711                        err_hist->timestart = now;
 712                        return 1;
 713        }
 714        return 0;
 715}
 716
 717
 718/* Information Element handling */
 719
 720struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
 721int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
 722int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
 723
 724/*
 725 * Transmission statistics
 726 *
 727 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
 728 * strength and line quality indication. We do quick and dirty
 729 * averages of those. They are signed values, btw.
 730 *
 731 * For 8 bit quantities, we keep the min, the max, an accumulator
 732 * (@sigma) and a # of samples. When @samples gets to 255, we compute
 733 * the average (@sigma / @samples), place it in @sigma and reset
 734 * @samples to 1 (so we use it as the first sample).
 735 *
 736 * Now, statistically speaking, probably I am kicking the kidneys of
 737 * some books I have in my shelves collecting dust, but I just want to
 738 * get an approx, not the Nobel.
 739 *
 740 * LOCKING: there is no locking per se, but we try to keep a lockless
 741 * schema. Only _add_samples() modifies the values--as long as you
 742 * have other locking on top that makes sure that no two calls of
 743 * _add_sample() happen at the same time, then we are fine. Now, for
 744 * resetting the values we just set @samples to 0 and that makes the
 745 * next _add_sample() to start with defaults. Reading the values in
 746 * _show() currently can race, so you need to make sure the calls are
 747 * under the same lock that protects calls to _add_sample(). FIXME:
 748 * currently unlocked (It is not ultraprecise but does the trick. Bite
 749 * me).
 750 */
 751struct stats {
 752        s8 min, max;
 753        s16 sigma;
 754        atomic_t samples;
 755};
 756
 757static inline
 758void stats_init(struct stats *stats)
 759{
 760        atomic_set(&stats->samples, 0);
 761        wmb();
 762}
 763
 764static inline
 765void stats_add_sample(struct stats *stats, s8 sample)
 766{
 767        s8 min, max;
 768        s16 sigma;
 769        unsigned samples = atomic_read(&stats->samples);
 770        if (samples == 0) {     /* it was zero before, so we initialize */
 771                min = 127;
 772                max = -128;
 773                sigma = 0;
 774        } else {
 775                min = stats->min;
 776                max = stats->max;
 777                sigma = stats->sigma;
 778        }
 779
 780        if (sample < min)       /* compute new values */
 781                min = sample;
 782        else if (sample > max)
 783                max = sample;
 784        sigma += sample;
 785
 786        stats->min = min;       /* commit */
 787        stats->max = max;
 788        stats->sigma = sigma;
 789        if (atomic_add_return(1, &stats->samples) > 255) {
 790                /* wrapped around! reset */
 791                stats->sigma = sigma / 256;
 792                atomic_set(&stats->samples, 1);
 793        }
 794}
 795
 796static inline ssize_t stats_show(struct stats *stats, char *buf)
 797{
 798        int min, max, avg;
 799        int samples = atomic_read(&stats->samples);
 800        if (samples == 0)
 801                min = max = avg = 0;
 802        else {
 803                min = stats->min;
 804                max = stats->max;
 805                avg = stats->sigma / samples;
 806        }
 807        return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
 808}
 809
 810static inline ssize_t stats_store(struct stats *stats, const char *buf,
 811                                  size_t size)
 812{
 813        stats_init(stats);
 814        return size;
 815}
 816
 817#endif /* #ifndef __LINUX__UWB_H__ */
 818