linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/cryptohash.h>
  27#include <linux/kref.h>
  28#include <linux/ktime.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42
  43#include <linux/seq_file.h>
  44#include <linux/memcontrol.h>
  45#include <linux/bpf-cgroup.h>
  46
  47extern struct inet_hashinfo tcp_hashinfo;
  48
  49extern struct percpu_counter tcp_orphan_count;
  50void tcp_time_wait(struct sock *sk, int state, int timeo);
  51
  52#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  53#define MAX_TCP_OPTION_SPACE 40
  54#define TCP_MIN_SND_MSS         48
  55#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  56
  57/*
  58 * Never offer a window over 32767 without using window scaling. Some
  59 * poor stacks do signed 16bit maths!
  60 */
  61#define MAX_TCP_WINDOW          32767U
  62
  63/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  64#define TCP_MIN_MSS             88U
  65
  66/* The least MTU to use for probing */
  67#define TCP_BASE_MSS            1024
  68
  69/* probing interval, default to 10 minutes as per RFC4821 */
  70#define TCP_PROBE_INTERVAL      600
  71
  72/* Specify interval when tcp mtu probing will stop */
  73#define TCP_PROBE_THRESHOLD     8
  74
  75/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  76#define TCP_FASTRETRANS_THRESH 3
  77
  78/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  79#define TCP_MAX_QUICKACKS       16U
  80
  81/* Maximal number of window scale according to RFC1323 */
  82#define TCP_MAX_WSCALE          14U
  83
  84/* urg_data states */
  85#define TCP_URG_VALID   0x0100
  86#define TCP_URG_NOTYET  0x0200
  87#define TCP_URG_READ    0x0400
  88
  89#define TCP_RETR1       3       /*
  90                                 * This is how many retries it does before it
  91                                 * tries to figure out if the gateway is
  92                                 * down. Minimal RFC value is 3; it corresponds
  93                                 * to ~3sec-8min depending on RTO.
  94                                 */
  95
  96#define TCP_RETR2       15      /*
  97                                 * This should take at least
  98                                 * 90 minutes to time out.
  99                                 * RFC1122 says that the limit is 100 sec.
 100                                 * 15 is ~13-30min depending on RTO.
 101                                 */
 102
 103#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 104                                 * when active opening a connection.
 105                                 * RFC1122 says the minimum retry MUST
 106                                 * be at least 180secs.  Nevertheless
 107                                 * this value is corresponding to
 108                                 * 63secs of retransmission with the
 109                                 * current initial RTO.
 110                                 */
 111
 112#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 113                                 * when passive opening a connection.
 114                                 * This is corresponding to 31secs of
 115                                 * retransmission with the current
 116                                 * initial RTO.
 117                                 */
 118
 119#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 120                                  * state, about 60 seconds     */
 121#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 122                                 /* BSD style FIN_WAIT2 deadlock breaker.
 123                                  * It used to be 3min, new value is 60sec,
 124                                  * to combine FIN-WAIT-2 timeout with
 125                                  * TIME-WAIT timer.
 126                                  */
 127
 128#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 129#if HZ >= 100
 130#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 131#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 132#else
 133#define TCP_DELACK_MIN  4U
 134#define TCP_ATO_MIN     4U
 135#endif
 136#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 137#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 138#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 139#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 140#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 141                                                 * used as a fallback RTO for the
 142                                                 * initial data transmission if no
 143                                                 * valid RTT sample has been acquired,
 144                                                 * most likely due to retrans in 3WHS.
 145                                                 */
 146
 147#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 148                                                         * for local resources.
 149                                                         */
 150#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 151#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 152#define TCP_KEEPALIVE_INTVL     (75*HZ)
 153
 154#define MAX_TCP_KEEPIDLE        32767
 155#define MAX_TCP_KEEPINTVL       32767
 156#define MAX_TCP_KEEPCNT         127
 157#define MAX_TCP_SYNCNT          127
 158
 159#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 160
 161#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 162#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 163                                         * after this time. It should be equal
 164                                         * (or greater than) TCP_TIMEWAIT_LEN
 165                                         * to provide reliability equal to one
 166                                         * provided by timewait state.
 167                                         */
 168#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 169                                         * timestamps. It must be less than
 170                                         * minimal timewait lifetime.
 171                                         */
 172/*
 173 *      TCP option
 174 */
 175
 176#define TCPOPT_NOP              1       /* Padding */
 177#define TCPOPT_EOL              0       /* End of options */
 178#define TCPOPT_MSS              2       /* Segment size negotiating */
 179#define TCPOPT_WINDOW           3       /* Window scaling */
 180#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 181#define TCPOPT_SACK             5       /* SACK Block */
 182#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 183#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 184#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 185#define TCPOPT_EXP              254     /* Experimental */
 186/* Magic number to be after the option value for sharing TCP
 187 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 188 */
 189#define TCPOPT_FASTOPEN_MAGIC   0xF989
 190#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 191
 192/*
 193 *     TCP option lengths
 194 */
 195
 196#define TCPOLEN_MSS            4
 197#define TCPOLEN_WINDOW         3
 198#define TCPOLEN_SACK_PERM      2
 199#define TCPOLEN_TIMESTAMP      10
 200#define TCPOLEN_MD5SIG         18
 201#define TCPOLEN_FASTOPEN_BASE  2
 202#define TCPOLEN_EXP_FASTOPEN_BASE  4
 203#define TCPOLEN_EXP_SMC_BASE   6
 204
 205/* But this is what stacks really send out. */
 206#define TCPOLEN_TSTAMP_ALIGNED          12
 207#define TCPOLEN_WSCALE_ALIGNED          4
 208#define TCPOLEN_SACKPERM_ALIGNED        4
 209#define TCPOLEN_SACK_BASE               2
 210#define TCPOLEN_SACK_BASE_ALIGNED       4
 211#define TCPOLEN_SACK_PERBLOCK           8
 212#define TCPOLEN_MD5SIG_ALIGNED          20
 213#define TCPOLEN_MSS_ALIGNED             4
 214#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 215
 216/* Flags in tp->nonagle */
 217#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 218#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 219#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 220
 221/* TCP thin-stream limits */
 222#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 223
 224/* TCP initial congestion window as per rfc6928 */
 225#define TCP_INIT_CWND           10
 226
 227/* Bit Flags for sysctl_tcp_fastopen */
 228#define TFO_CLIENT_ENABLE       1
 229#define TFO_SERVER_ENABLE       2
 230#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 231
 232/* Accept SYN data w/o any cookie option */
 233#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 234
 235/* Force enable TFO on all listeners, i.e., not requiring the
 236 * TCP_FASTOPEN socket option.
 237 */
 238#define TFO_SERVER_WO_SOCKOPT1  0x400
 239
 240
 241/* sysctl variables for tcp */
 242extern int sysctl_tcp_max_orphans;
 243extern long sysctl_tcp_mem[3];
 244
 245#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 246#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 247#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 248
 249extern atomic_long_t tcp_memory_allocated;
 250extern struct percpu_counter tcp_sockets_allocated;
 251extern unsigned long tcp_memory_pressure;
 252
 253/* optimized version of sk_under_memory_pressure() for TCP sockets */
 254static inline bool tcp_under_memory_pressure(const struct sock *sk)
 255{
 256        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 257            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 258                return true;
 259
 260        return tcp_memory_pressure;
 261}
 262/*
 263 * The next routines deal with comparing 32 bit unsigned ints
 264 * and worry about wraparound (automatic with unsigned arithmetic).
 265 */
 266
 267static inline bool before(__u32 seq1, __u32 seq2)
 268{
 269        return (__s32)(seq1-seq2) < 0;
 270}
 271#define after(seq2, seq1)       before(seq1, seq2)
 272
 273/* is s2<=s1<=s3 ? */
 274static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 275{
 276        return seq3 - seq2 >= seq1 - seq2;
 277}
 278
 279static inline bool tcp_out_of_memory(struct sock *sk)
 280{
 281        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 282            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 283                return true;
 284        return false;
 285}
 286
 287void sk_forced_mem_schedule(struct sock *sk, int size);
 288
 289static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 290{
 291        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 292        int orphans = percpu_counter_read_positive(ocp);
 293
 294        if (orphans << shift > sysctl_tcp_max_orphans) {
 295                orphans = percpu_counter_sum_positive(ocp);
 296                if (orphans << shift > sysctl_tcp_max_orphans)
 297                        return true;
 298        }
 299        return false;
 300}
 301
 302bool tcp_check_oom(struct sock *sk, int shift);
 303
 304
 305extern struct proto tcp_prot;
 306
 307#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 308#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 309#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 310#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 311
 312void tcp_tasklet_init(void);
 313
 314int tcp_v4_err(struct sk_buff *skb, u32);
 315
 316void tcp_shutdown(struct sock *sk, int how);
 317
 318int tcp_v4_early_demux(struct sk_buff *skb);
 319int tcp_v4_rcv(struct sk_buff *skb);
 320
 321int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 322int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 323int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 324int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 325                 int flags);
 326int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 327                        size_t size, int flags);
 328ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 329                 size_t size, int flags);
 330void tcp_release_cb(struct sock *sk);
 331void tcp_wfree(struct sk_buff *skb);
 332void tcp_write_timer_handler(struct sock *sk);
 333void tcp_delack_timer_handler(struct sock *sk);
 334int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 335int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 336void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 337void tcp_rcv_space_adjust(struct sock *sk);
 338int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 339void tcp_twsk_destructor(struct sock *sk);
 340ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 341                        struct pipe_inode_info *pipe, size_t len,
 342                        unsigned int flags);
 343
 344void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 345static inline void tcp_dec_quickack_mode(struct sock *sk,
 346                                         const unsigned int pkts)
 347{
 348        struct inet_connection_sock *icsk = inet_csk(sk);
 349
 350        if (icsk->icsk_ack.quick) {
 351                if (pkts >= icsk->icsk_ack.quick) {
 352                        icsk->icsk_ack.quick = 0;
 353                        /* Leaving quickack mode we deflate ATO. */
 354                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 355                } else
 356                        icsk->icsk_ack.quick -= pkts;
 357        }
 358}
 359
 360#define TCP_ECN_OK              1
 361#define TCP_ECN_QUEUE_CWR       2
 362#define TCP_ECN_DEMAND_CWR      4
 363#define TCP_ECN_SEEN            8
 364
 365enum tcp_tw_status {
 366        TCP_TW_SUCCESS = 0,
 367        TCP_TW_RST = 1,
 368        TCP_TW_ACK = 2,
 369        TCP_TW_SYN = 3
 370};
 371
 372
 373enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 374                                              struct sk_buff *skb,
 375                                              const struct tcphdr *th);
 376struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 377                           struct request_sock *req, bool fastopen,
 378                           bool *lost_race);
 379int tcp_child_process(struct sock *parent, struct sock *child,
 380                      struct sk_buff *skb);
 381void tcp_enter_loss(struct sock *sk);
 382void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 383void tcp_clear_retrans(struct tcp_sock *tp);
 384void tcp_update_metrics(struct sock *sk);
 385void tcp_init_metrics(struct sock *sk);
 386void tcp_metrics_init(void);
 387bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 388void tcp_close(struct sock *sk, long timeout);
 389void tcp_init_sock(struct sock *sk);
 390void tcp_init_transfer(struct sock *sk, int bpf_op);
 391__poll_t tcp_poll(struct file *file, struct socket *sock,
 392                      struct poll_table_struct *wait);
 393int tcp_getsockopt(struct sock *sk, int level, int optname,
 394                   char __user *optval, int __user *optlen);
 395int tcp_setsockopt(struct sock *sk, int level, int optname,
 396                   char __user *optval, unsigned int optlen);
 397int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 398                          char __user *optval, int __user *optlen);
 399int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 400                          char __user *optval, unsigned int optlen);
 401void tcp_set_keepalive(struct sock *sk, int val);
 402void tcp_syn_ack_timeout(const struct request_sock *req);
 403int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 404                int flags, int *addr_len);
 405int tcp_set_rcvlowat(struct sock *sk, int val);
 406void tcp_data_ready(struct sock *sk);
 407#ifdef CONFIG_MMU
 408int tcp_mmap(struct file *file, struct socket *sock,
 409             struct vm_area_struct *vma);
 410#endif
 411void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 412                       struct tcp_options_received *opt_rx,
 413                       int estab, struct tcp_fastopen_cookie *foc);
 414const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 415
 416/*
 417 *      TCP v4 functions exported for the inet6 API
 418 */
 419
 420void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 421void tcp_v4_mtu_reduced(struct sock *sk);
 422void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 423int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 424struct sock *tcp_create_openreq_child(const struct sock *sk,
 425                                      struct request_sock *req,
 426                                      struct sk_buff *skb);
 427void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 428struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 429                                  struct request_sock *req,
 430                                  struct dst_entry *dst,
 431                                  struct request_sock *req_unhash,
 432                                  bool *own_req);
 433int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 434int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 435int tcp_connect(struct sock *sk);
 436enum tcp_synack_type {
 437        TCP_SYNACK_NORMAL,
 438        TCP_SYNACK_FASTOPEN,
 439        TCP_SYNACK_COOKIE,
 440};
 441struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 442                                struct request_sock *req,
 443                                struct tcp_fastopen_cookie *foc,
 444                                enum tcp_synack_type synack_type);
 445int tcp_disconnect(struct sock *sk, int flags);
 446
 447void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 448int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 449void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 450
 451/* From syncookies.c */
 452struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 453                                 struct request_sock *req,
 454                                 struct dst_entry *dst, u32 tsoff);
 455int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 456                      u32 cookie);
 457struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 458#ifdef CONFIG_SYN_COOKIES
 459
 460/* Syncookies use a monotonic timer which increments every 60 seconds.
 461 * This counter is used both as a hash input and partially encoded into
 462 * the cookie value.  A cookie is only validated further if the delta
 463 * between the current counter value and the encoded one is less than this,
 464 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 465 * the counter advances immediately after a cookie is generated).
 466 */
 467#define MAX_SYNCOOKIE_AGE       2
 468#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 469#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 470
 471/* syncookies: remember time of last synqueue overflow
 472 * But do not dirty this field too often (once per second is enough)
 473 * It is racy as we do not hold a lock, but race is very minor.
 474 */
 475static inline void tcp_synq_overflow(const struct sock *sk)
 476{
 477        unsigned int last_overflow;
 478        unsigned int now = jiffies;
 479
 480        if (sk->sk_reuseport) {
 481                struct sock_reuseport *reuse;
 482
 483                reuse = rcu_dereference(sk->sk_reuseport_cb);
 484                if (likely(reuse)) {
 485                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 486                        if (time_after32(now, last_overflow + HZ))
 487                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 488                        return;
 489                }
 490        }
 491
 492        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 493        if (time_after32(now, last_overflow + HZ))
 494                tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 495}
 496
 497/* syncookies: no recent synqueue overflow on this listening socket? */
 498static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 499{
 500        unsigned int last_overflow;
 501        unsigned int now = jiffies;
 502
 503        if (sk->sk_reuseport) {
 504                struct sock_reuseport *reuse;
 505
 506                reuse = rcu_dereference(sk->sk_reuseport_cb);
 507                if (likely(reuse)) {
 508                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 509                        return time_after32(now, last_overflow +
 510                                            TCP_SYNCOOKIE_VALID);
 511                }
 512        }
 513
 514        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 515        return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
 516}
 517
 518static inline u32 tcp_cookie_time(void)
 519{
 520        u64 val = get_jiffies_64();
 521
 522        do_div(val, TCP_SYNCOOKIE_PERIOD);
 523        return val;
 524}
 525
 526u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 527                              u16 *mssp);
 528__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 529u64 cookie_init_timestamp(struct request_sock *req);
 530bool cookie_timestamp_decode(const struct net *net,
 531                             struct tcp_options_received *opt);
 532bool cookie_ecn_ok(const struct tcp_options_received *opt,
 533                   const struct net *net, const struct dst_entry *dst);
 534
 535/* From net/ipv6/syncookies.c */
 536int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 537                      u32 cookie);
 538struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 539
 540u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 541                              const struct tcphdr *th, u16 *mssp);
 542__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 543#endif
 544/* tcp_output.c */
 545
 546void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 547                               int nonagle);
 548int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 549int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 550void tcp_retransmit_timer(struct sock *sk);
 551void tcp_xmit_retransmit_queue(struct sock *);
 552void tcp_simple_retransmit(struct sock *);
 553void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 554int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 555enum tcp_queue {
 556        TCP_FRAG_IN_WRITE_QUEUE,
 557        TCP_FRAG_IN_RTX_QUEUE,
 558};
 559int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 560                 struct sk_buff *skb, u32 len,
 561                 unsigned int mss_now, gfp_t gfp);
 562
 563void tcp_send_probe0(struct sock *);
 564void tcp_send_partial(struct sock *);
 565int tcp_write_wakeup(struct sock *, int mib);
 566void tcp_send_fin(struct sock *sk);
 567void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 568int tcp_send_synack(struct sock *);
 569void tcp_push_one(struct sock *, unsigned int mss_now);
 570void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 571void tcp_send_ack(struct sock *sk);
 572void tcp_send_delayed_ack(struct sock *sk);
 573void tcp_send_loss_probe(struct sock *sk);
 574bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 575void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 576                             const struct sk_buff *next_skb);
 577
 578/* tcp_input.c */
 579void tcp_rearm_rto(struct sock *sk);
 580void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 581void tcp_reset(struct sock *sk);
 582void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 583void tcp_fin(struct sock *sk);
 584
 585/* tcp_timer.c */
 586void tcp_init_xmit_timers(struct sock *);
 587static inline void tcp_clear_xmit_timers(struct sock *sk)
 588{
 589        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 590                __sock_put(sk);
 591
 592        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 593                __sock_put(sk);
 594
 595        inet_csk_clear_xmit_timers(sk);
 596}
 597
 598unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 599unsigned int tcp_current_mss(struct sock *sk);
 600
 601/* Bound MSS / TSO packet size with the half of the window */
 602static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 603{
 604        int cutoff;
 605
 606        /* When peer uses tiny windows, there is no use in packetizing
 607         * to sub-MSS pieces for the sake of SWS or making sure there
 608         * are enough packets in the pipe for fast recovery.
 609         *
 610         * On the other hand, for extremely large MSS devices, handling
 611         * smaller than MSS windows in this way does make sense.
 612         */
 613        if (tp->max_window > TCP_MSS_DEFAULT)
 614                cutoff = (tp->max_window >> 1);
 615        else
 616                cutoff = tp->max_window;
 617
 618        if (cutoff && pktsize > cutoff)
 619                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 620        else
 621                return pktsize;
 622}
 623
 624/* tcp.c */
 625void tcp_get_info(struct sock *, struct tcp_info *);
 626
 627/* Read 'sendfile()'-style from a TCP socket */
 628int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 629                  sk_read_actor_t recv_actor);
 630
 631void tcp_initialize_rcv_mss(struct sock *sk);
 632
 633int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 634int tcp_mss_to_mtu(struct sock *sk, int mss);
 635void tcp_mtup_init(struct sock *sk);
 636void tcp_init_buffer_space(struct sock *sk);
 637
 638static inline void tcp_bound_rto(const struct sock *sk)
 639{
 640        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 641                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 642}
 643
 644static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 645{
 646        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 647}
 648
 649static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 650{
 651        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 652                               ntohl(TCP_FLAG_ACK) |
 653                               snd_wnd);
 654}
 655
 656static inline void tcp_fast_path_on(struct tcp_sock *tp)
 657{
 658        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 659}
 660
 661static inline void tcp_fast_path_check(struct sock *sk)
 662{
 663        struct tcp_sock *tp = tcp_sk(sk);
 664
 665        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 666            tp->rcv_wnd &&
 667            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 668            !tp->urg_data)
 669                tcp_fast_path_on(tp);
 670}
 671
 672/* Compute the actual rto_min value */
 673static inline u32 tcp_rto_min(struct sock *sk)
 674{
 675        const struct dst_entry *dst = __sk_dst_get(sk);
 676        u32 rto_min = TCP_RTO_MIN;
 677
 678        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 679                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 680        return rto_min;
 681}
 682
 683static inline u32 tcp_rto_min_us(struct sock *sk)
 684{
 685        return jiffies_to_usecs(tcp_rto_min(sk));
 686}
 687
 688static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 689{
 690        return dst_metric_locked(dst, RTAX_CC_ALGO);
 691}
 692
 693/* Minimum RTT in usec. ~0 means not available. */
 694static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 695{
 696        return minmax_get(&tp->rtt_min);
 697}
 698
 699/* Compute the actual receive window we are currently advertising.
 700 * Rcv_nxt can be after the window if our peer push more data
 701 * than the offered window.
 702 */
 703static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 704{
 705        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 706
 707        if (win < 0)
 708                win = 0;
 709        return (u32) win;
 710}
 711
 712/* Choose a new window, without checks for shrinking, and without
 713 * scaling applied to the result.  The caller does these things
 714 * if necessary.  This is a "raw" window selection.
 715 */
 716u32 __tcp_select_window(struct sock *sk);
 717
 718void tcp_send_window_probe(struct sock *sk);
 719
 720/* TCP uses 32bit jiffies to save some space.
 721 * Note that this is different from tcp_time_stamp, which
 722 * historically has been the same until linux-4.13.
 723 */
 724#define tcp_jiffies32 ((u32)jiffies)
 725
 726/*
 727 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 728 * It is no longer tied to jiffies, but to 1 ms clock.
 729 * Note: double check if you want to use tcp_jiffies32 instead of this.
 730 */
 731#define TCP_TS_HZ       1000
 732
 733static inline u64 tcp_clock_ns(void)
 734{
 735        return ktime_get_ns();
 736}
 737
 738static inline u64 tcp_clock_us(void)
 739{
 740        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 741}
 742
 743/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 744static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 745{
 746        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 747}
 748
 749/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 750static inline u32 tcp_time_stamp_raw(void)
 751{
 752        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 753}
 754
 755void tcp_mstamp_refresh(struct tcp_sock *tp);
 756
 757static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 758{
 759        return max_t(s64, t1 - t0, 0);
 760}
 761
 762static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 763{
 764        return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
 765}
 766
 767/* provide the departure time in us unit */
 768static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 769{
 770        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 771}
 772
 773
 774#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 775
 776#define TCPHDR_FIN 0x01
 777#define TCPHDR_SYN 0x02
 778#define TCPHDR_RST 0x04
 779#define TCPHDR_PSH 0x08
 780#define TCPHDR_ACK 0x10
 781#define TCPHDR_URG 0x20
 782#define TCPHDR_ECE 0x40
 783#define TCPHDR_CWR 0x80
 784
 785#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 786
 787/* This is what the send packet queuing engine uses to pass
 788 * TCP per-packet control information to the transmission code.
 789 * We also store the host-order sequence numbers in here too.
 790 * This is 44 bytes if IPV6 is enabled.
 791 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 792 */
 793struct tcp_skb_cb {
 794        __u32           seq;            /* Starting sequence number     */
 795        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 796        union {
 797                /* Note : tcp_tw_isn is used in input path only
 798                 *        (isn chosen by tcp_timewait_state_process())
 799                 *
 800                 *        tcp_gso_segs/size are used in write queue only,
 801                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 802                 */
 803                __u32           tcp_tw_isn;
 804                struct {
 805                        u16     tcp_gso_segs;
 806                        u16     tcp_gso_size;
 807                };
 808        };
 809        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 810
 811        __u8            sacked;         /* State flags for SACK.        */
 812#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 813#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 814#define TCPCB_LOST              0x04    /* SKB is lost                  */
 815#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 816#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 817#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 818#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 819                                TCPCB_REPAIRED)
 820
 821        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 822        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 823                        eor:1,          /* Is skb MSG_EOR marked? */
 824                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 825                        unused:5;
 826        __u32           ack_seq;        /* Sequence number ACK'd        */
 827        union {
 828                struct {
 829                        /* There is space for up to 24 bytes */
 830                        __u32 in_flight:30,/* Bytes in flight at transmit */
 831                              is_app_limited:1, /* cwnd not fully used? */
 832                              unused:1;
 833                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 834                        __u32 delivered;
 835                        /* start of send pipeline phase */
 836                        u64 first_tx_mstamp;
 837                        /* when we reached the "delivered" count */
 838                        u64 delivered_mstamp;
 839                } tx;   /* only used for outgoing skbs */
 840                union {
 841                        struct inet_skb_parm    h4;
 842#if IS_ENABLED(CONFIG_IPV6)
 843                        struct inet6_skb_parm   h6;
 844#endif
 845                } header;       /* For incoming skbs */
 846                struct {
 847                        __u32 flags;
 848                        struct sock *sk_redir;
 849                        void *data_end;
 850                } bpf;
 851        };
 852};
 853
 854#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 855
 856static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 857{
 858        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 859}
 860
 861static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 862{
 863        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 864}
 865
 866static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 867{
 868        return TCP_SKB_CB(skb)->bpf.sk_redir;
 869}
 870
 871static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 872{
 873        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 874}
 875
 876#if IS_ENABLED(CONFIG_IPV6)
 877/* This is the variant of inet6_iif() that must be used by TCP,
 878 * as TCP moves IP6CB into a different location in skb->cb[]
 879 */
 880static inline int tcp_v6_iif(const struct sk_buff *skb)
 881{
 882        return TCP_SKB_CB(skb)->header.h6.iif;
 883}
 884
 885static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 886{
 887        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 888
 889        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 890}
 891
 892/* TCP_SKB_CB reference means this can not be used from early demux */
 893static inline int tcp_v6_sdif(const struct sk_buff *skb)
 894{
 895#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 896        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 897                return TCP_SKB_CB(skb)->header.h6.iif;
 898#endif
 899        return 0;
 900}
 901#endif
 902
 903static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 904{
 905#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 906        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 907            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 908                return true;
 909#endif
 910        return false;
 911}
 912
 913/* TCP_SKB_CB reference means this can not be used from early demux */
 914static inline int tcp_v4_sdif(struct sk_buff *skb)
 915{
 916#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 917        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 918                return TCP_SKB_CB(skb)->header.h4.iif;
 919#endif
 920        return 0;
 921}
 922
 923/* Due to TSO, an SKB can be composed of multiple actual
 924 * packets.  To keep these tracked properly, we use this.
 925 */
 926static inline int tcp_skb_pcount(const struct sk_buff *skb)
 927{
 928        return TCP_SKB_CB(skb)->tcp_gso_segs;
 929}
 930
 931static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 932{
 933        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 934}
 935
 936static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 937{
 938        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 939}
 940
 941/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 942static inline int tcp_skb_mss(const struct sk_buff *skb)
 943{
 944        return TCP_SKB_CB(skb)->tcp_gso_size;
 945}
 946
 947static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 948{
 949        return likely(!TCP_SKB_CB(skb)->eor);
 950}
 951
 952/* Events passed to congestion control interface */
 953enum tcp_ca_event {
 954        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 955        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 956        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 957        CA_EVENT_LOSS,          /* loss timeout */
 958        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 959        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 960};
 961
 962/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 963enum tcp_ca_ack_event_flags {
 964        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 965        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 966        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 967};
 968
 969/*
 970 * Interface for adding new TCP congestion control handlers
 971 */
 972#define TCP_CA_NAME_MAX 16
 973#define TCP_CA_MAX      128
 974#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
 975
 976#define TCP_CA_UNSPEC   0
 977
 978/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 979#define TCP_CONG_NON_RESTRICTED 0x1
 980/* Requires ECN/ECT set on all packets */
 981#define TCP_CONG_NEEDS_ECN      0x2
 982
 983union tcp_cc_info;
 984
 985struct ack_sample {
 986        u32 pkts_acked;
 987        s32 rtt_us;
 988        u32 in_flight;
 989};
 990
 991/* A rate sample measures the number of (original/retransmitted) data
 992 * packets delivered "delivered" over an interval of time "interval_us".
 993 * The tcp_rate.c code fills in the rate sample, and congestion
 994 * control modules that define a cong_control function to run at the end
 995 * of ACK processing can optionally chose to consult this sample when
 996 * setting cwnd and pacing rate.
 997 * A sample is invalid if "delivered" or "interval_us" is negative.
 998 */
 999struct rate_sample {
1000        u64  prior_mstamp; /* starting timestamp for interval */
1001        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1002        s32  delivered;         /* number of packets delivered over interval */
1003        long interval_us;       /* time for tp->delivered to incr "delivered" */
1004        u32 snd_interval_us;    /* snd interval for delivered packets */
1005        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1006        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1007        int  losses;            /* number of packets marked lost upon ACK */
1008        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1009        u32  prior_in_flight;   /* in flight before this ACK */
1010        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1011        bool is_retrans;        /* is sample from retransmission? */
1012        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1013};
1014
1015struct tcp_congestion_ops {
1016        struct list_head        list;
1017        u32 key;
1018        u32 flags;
1019
1020        /* initialize private data (optional) */
1021        void (*init)(struct sock *sk);
1022        /* cleanup private data  (optional) */
1023        void (*release)(struct sock *sk);
1024
1025        /* return slow start threshold (required) */
1026        u32 (*ssthresh)(struct sock *sk);
1027        /* do new cwnd calculation (required) */
1028        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1029        /* call before changing ca_state (optional) */
1030        void (*set_state)(struct sock *sk, u8 new_state);
1031        /* call when cwnd event occurs (optional) */
1032        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1033        /* call when ack arrives (optional) */
1034        void (*in_ack_event)(struct sock *sk, u32 flags);
1035        /* new value of cwnd after loss (required) */
1036        u32  (*undo_cwnd)(struct sock *sk);
1037        /* hook for packet ack accounting (optional) */
1038        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1039        /* override sysctl_tcp_min_tso_segs */
1040        u32 (*min_tso_segs)(struct sock *sk);
1041        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1042        u32 (*sndbuf_expand)(struct sock *sk);
1043        /* call when packets are delivered to update cwnd and pacing rate,
1044         * after all the ca_state processing. (optional)
1045         */
1046        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1047        /* get info for inet_diag (optional) */
1048        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1049                           union tcp_cc_info *info);
1050
1051        char            name[TCP_CA_NAME_MAX];
1052        struct module   *owner;
1053};
1054
1055int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1056void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1057
1058void tcp_assign_congestion_control(struct sock *sk);
1059void tcp_init_congestion_control(struct sock *sk);
1060void tcp_cleanup_congestion_control(struct sock *sk);
1061int tcp_set_default_congestion_control(struct net *net, const char *name);
1062void tcp_get_default_congestion_control(struct net *net, char *name);
1063void tcp_get_available_congestion_control(char *buf, size_t len);
1064void tcp_get_allowed_congestion_control(char *buf, size_t len);
1065int tcp_set_allowed_congestion_control(char *allowed);
1066int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1067u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1068void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1069
1070u32 tcp_reno_ssthresh(struct sock *sk);
1071u32 tcp_reno_undo_cwnd(struct sock *sk);
1072void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1073extern struct tcp_congestion_ops tcp_reno;
1074
1075struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1076u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1077#ifdef CONFIG_INET
1078char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1079#else
1080static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1081{
1082        return NULL;
1083}
1084#endif
1085
1086static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1087{
1088        const struct inet_connection_sock *icsk = inet_csk(sk);
1089
1090        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1091}
1092
1093static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1094{
1095        struct inet_connection_sock *icsk = inet_csk(sk);
1096
1097        if (icsk->icsk_ca_ops->set_state)
1098                icsk->icsk_ca_ops->set_state(sk, ca_state);
1099        icsk->icsk_ca_state = ca_state;
1100}
1101
1102static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1103{
1104        const struct inet_connection_sock *icsk = inet_csk(sk);
1105
1106        if (icsk->icsk_ca_ops->cwnd_event)
1107                icsk->icsk_ca_ops->cwnd_event(sk, event);
1108}
1109
1110/* From tcp_rate.c */
1111void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1112void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1113                            struct rate_sample *rs);
1114void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1115                  bool is_sack_reneg, struct rate_sample *rs);
1116void tcp_rate_check_app_limited(struct sock *sk);
1117
1118/* These functions determine how the current flow behaves in respect of SACK
1119 * handling. SACK is negotiated with the peer, and therefore it can vary
1120 * between different flows.
1121 *
1122 * tcp_is_sack - SACK enabled
1123 * tcp_is_reno - No SACK
1124 */
1125static inline int tcp_is_sack(const struct tcp_sock *tp)
1126{
1127        return likely(tp->rx_opt.sack_ok);
1128}
1129
1130static inline bool tcp_is_reno(const struct tcp_sock *tp)
1131{
1132        return !tcp_is_sack(tp);
1133}
1134
1135static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1136{
1137        return tp->sacked_out + tp->lost_out;
1138}
1139
1140/* This determines how many packets are "in the network" to the best
1141 * of our knowledge.  In many cases it is conservative, but where
1142 * detailed information is available from the receiver (via SACK
1143 * blocks etc.) we can make more aggressive calculations.
1144 *
1145 * Use this for decisions involving congestion control, use just
1146 * tp->packets_out to determine if the send queue is empty or not.
1147 *
1148 * Read this equation as:
1149 *
1150 *      "Packets sent once on transmission queue" MINUS
1151 *      "Packets left network, but not honestly ACKed yet" PLUS
1152 *      "Packets fast retransmitted"
1153 */
1154static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1155{
1156        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1157}
1158
1159#define TCP_INFINITE_SSTHRESH   0x7fffffff
1160
1161static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1162{
1163        return tp->snd_cwnd < tp->snd_ssthresh;
1164}
1165
1166static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1167{
1168        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1169}
1170
1171static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1172{
1173        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1174               (1 << inet_csk(sk)->icsk_ca_state);
1175}
1176
1177/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1178 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1179 * ssthresh.
1180 */
1181static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1182{
1183        const struct tcp_sock *tp = tcp_sk(sk);
1184
1185        if (tcp_in_cwnd_reduction(sk))
1186                return tp->snd_ssthresh;
1187        else
1188                return max(tp->snd_ssthresh,
1189                           ((tp->snd_cwnd >> 1) +
1190                            (tp->snd_cwnd >> 2)));
1191}
1192
1193/* Use define here intentionally to get WARN_ON location shown at the caller */
1194#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1195
1196void tcp_enter_cwr(struct sock *sk);
1197__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1198
1199/* The maximum number of MSS of available cwnd for which TSO defers
1200 * sending if not using sysctl_tcp_tso_win_divisor.
1201 */
1202static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1203{
1204        return 3;
1205}
1206
1207/* Returns end sequence number of the receiver's advertised window */
1208static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1209{
1210        return tp->snd_una + tp->snd_wnd;
1211}
1212
1213/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1214 * flexible approach. The RFC suggests cwnd should not be raised unless
1215 * it was fully used previously. And that's exactly what we do in
1216 * congestion avoidance mode. But in slow start we allow cwnd to grow
1217 * as long as the application has used half the cwnd.
1218 * Example :
1219 *    cwnd is 10 (IW10), but application sends 9 frames.
1220 *    We allow cwnd to reach 18 when all frames are ACKed.
1221 * This check is safe because it's as aggressive as slow start which already
1222 * risks 100% overshoot. The advantage is that we discourage application to
1223 * either send more filler packets or data to artificially blow up the cwnd
1224 * usage, and allow application-limited process to probe bw more aggressively.
1225 */
1226static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1227{
1228        const struct tcp_sock *tp = tcp_sk(sk);
1229
1230        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1231        if (tcp_in_slow_start(tp))
1232                return tp->snd_cwnd < 2 * tp->max_packets_out;
1233
1234        return tp->is_cwnd_limited;
1235}
1236
1237/* BBR congestion control needs pacing.
1238 * Same remark for SO_MAX_PACING_RATE.
1239 * sch_fq packet scheduler is efficiently handling pacing,
1240 * but is not always installed/used.
1241 * Return true if TCP stack should pace packets itself.
1242 */
1243static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1244{
1245        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1246}
1247
1248/* Return in jiffies the delay before one skb is sent.
1249 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1250 */
1251static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1252                                             const struct sk_buff *skb)
1253{
1254        s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1255
1256        pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1257
1258        return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1259}
1260
1261static inline void tcp_reset_xmit_timer(struct sock *sk,
1262                                        const int what,
1263                                        unsigned long when,
1264                                        const unsigned long max_when,
1265                                        const struct sk_buff *skb)
1266{
1267        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1268                                  max_when);
1269}
1270
1271/* Something is really bad, we could not queue an additional packet,
1272 * because qdisc is full or receiver sent a 0 window, or we are paced.
1273 * We do not want to add fuel to the fire, or abort too early,
1274 * so make sure the timer we arm now is at least 200ms in the future,
1275 * regardless of current icsk_rto value (as it could be ~2ms)
1276 */
1277static inline unsigned long tcp_probe0_base(const struct sock *sk)
1278{
1279        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1280}
1281
1282/* Variant of inet_csk_rto_backoff() used for zero window probes */
1283static inline unsigned long tcp_probe0_when(const struct sock *sk,
1284                                            unsigned long max_when)
1285{
1286        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1287
1288        return (unsigned long)min_t(u64, when, max_when);
1289}
1290
1291static inline void tcp_check_probe_timer(struct sock *sk)
1292{
1293        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1294                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1295                                     tcp_probe0_base(sk), TCP_RTO_MAX,
1296                                     NULL);
1297}
1298
1299static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1300{
1301        tp->snd_wl1 = seq;
1302}
1303
1304static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1305{
1306        tp->snd_wl1 = seq;
1307}
1308
1309/*
1310 * Calculate(/check) TCP checksum
1311 */
1312static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1313                                   __be32 daddr, __wsum base)
1314{
1315        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1316}
1317
1318static inline bool tcp_checksum_complete(struct sk_buff *skb)
1319{
1320        return !skb_csum_unnecessary(skb) &&
1321                __skb_checksum_complete(skb);
1322}
1323
1324bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1325int tcp_filter(struct sock *sk, struct sk_buff *skb);
1326void tcp_set_state(struct sock *sk, int state);
1327void tcp_done(struct sock *sk);
1328int tcp_abort(struct sock *sk, int err);
1329
1330static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1331{
1332        rx_opt->dsack = 0;
1333        rx_opt->num_sacks = 0;
1334}
1335
1336u32 tcp_default_init_rwnd(u32 mss);
1337void tcp_cwnd_restart(struct sock *sk, s32 delta);
1338
1339static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1340{
1341        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1342        struct tcp_sock *tp = tcp_sk(sk);
1343        s32 delta;
1344
1345        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1346            ca_ops->cong_control)
1347                return;
1348        delta = tcp_jiffies32 - tp->lsndtime;
1349        if (delta > inet_csk(sk)->icsk_rto)
1350                tcp_cwnd_restart(sk, delta);
1351}
1352
1353/* Determine a window scaling and initial window to offer. */
1354void tcp_select_initial_window(const struct sock *sk, int __space,
1355                               __u32 mss, __u32 *rcv_wnd,
1356                               __u32 *window_clamp, int wscale_ok,
1357                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1358
1359static inline int tcp_win_from_space(const struct sock *sk, int space)
1360{
1361        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1362
1363        return tcp_adv_win_scale <= 0 ?
1364                (space>>(-tcp_adv_win_scale)) :
1365                space - (space>>tcp_adv_win_scale);
1366}
1367
1368/* Note: caller must be prepared to deal with negative returns */
1369static inline int tcp_space(const struct sock *sk)
1370{
1371        return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1372                                  atomic_read(&sk->sk_rmem_alloc));
1373}
1374
1375static inline int tcp_full_space(const struct sock *sk)
1376{
1377        return tcp_win_from_space(sk, sk->sk_rcvbuf);
1378}
1379
1380extern void tcp_openreq_init_rwin(struct request_sock *req,
1381                                  const struct sock *sk_listener,
1382                                  const struct dst_entry *dst);
1383
1384void tcp_enter_memory_pressure(struct sock *sk);
1385void tcp_leave_memory_pressure(struct sock *sk);
1386
1387static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1388{
1389        struct net *net = sock_net((struct sock *)tp);
1390
1391        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1392}
1393
1394static inline int keepalive_time_when(const struct tcp_sock *tp)
1395{
1396        struct net *net = sock_net((struct sock *)tp);
1397
1398        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1399}
1400
1401static inline int keepalive_probes(const struct tcp_sock *tp)
1402{
1403        struct net *net = sock_net((struct sock *)tp);
1404
1405        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1406}
1407
1408static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1409{
1410        const struct inet_connection_sock *icsk = &tp->inet_conn;
1411
1412        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1413                          tcp_jiffies32 - tp->rcv_tstamp);
1414}
1415
1416static inline int tcp_fin_time(const struct sock *sk)
1417{
1418        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1419        const int rto = inet_csk(sk)->icsk_rto;
1420
1421        if (fin_timeout < (rto << 2) - (rto >> 1))
1422                fin_timeout = (rto << 2) - (rto >> 1);
1423
1424        return fin_timeout;
1425}
1426
1427static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1428                                  int paws_win)
1429{
1430        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1431                return true;
1432        if (unlikely(!time_before32(ktime_get_seconds(),
1433                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1434                return true;
1435        /*
1436         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1437         * then following tcp messages have valid values. Ignore 0 value,
1438         * or else 'negative' tsval might forbid us to accept their packets.
1439         */
1440        if (!rx_opt->ts_recent)
1441                return true;
1442        return false;
1443}
1444
1445static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1446                                   int rst)
1447{
1448        if (tcp_paws_check(rx_opt, 0))
1449                return false;
1450
1451        /* RST segments are not recommended to carry timestamp,
1452           and, if they do, it is recommended to ignore PAWS because
1453           "their cleanup function should take precedence over timestamps."
1454           Certainly, it is mistake. It is necessary to understand the reasons
1455           of this constraint to relax it: if peer reboots, clock may go
1456           out-of-sync and half-open connections will not be reset.
1457           Actually, the problem would be not existing if all
1458           the implementations followed draft about maintaining clock
1459           via reboots. Linux-2.2 DOES NOT!
1460
1461           However, we can relax time bounds for RST segments to MSL.
1462         */
1463        if (rst && !time_before32(ktime_get_seconds(),
1464                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1465                return false;
1466        return true;
1467}
1468
1469bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1470                          int mib_idx, u32 *last_oow_ack_time);
1471
1472static inline void tcp_mib_init(struct net *net)
1473{
1474        /* See RFC 2012 */
1475        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1476        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1477        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1478        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1479}
1480
1481/* from STCP */
1482static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1483{
1484        tp->lost_skb_hint = NULL;
1485}
1486
1487static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1488{
1489        tcp_clear_retrans_hints_partial(tp);
1490        tp->retransmit_skb_hint = NULL;
1491}
1492
1493union tcp_md5_addr {
1494        struct in_addr  a4;
1495#if IS_ENABLED(CONFIG_IPV6)
1496        struct in6_addr a6;
1497#endif
1498};
1499
1500/* - key database */
1501struct tcp_md5sig_key {
1502        struct hlist_node       node;
1503        u8                      keylen;
1504        u8                      family; /* AF_INET or AF_INET6 */
1505        union tcp_md5_addr      addr;
1506        u8                      prefixlen;
1507        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1508        struct rcu_head         rcu;
1509};
1510
1511/* - sock block */
1512struct tcp_md5sig_info {
1513        struct hlist_head       head;
1514        struct rcu_head         rcu;
1515};
1516
1517/* - pseudo header */
1518struct tcp4_pseudohdr {
1519        __be32          saddr;
1520        __be32          daddr;
1521        __u8            pad;
1522        __u8            protocol;
1523        __be16          len;
1524};
1525
1526struct tcp6_pseudohdr {
1527        struct in6_addr saddr;
1528        struct in6_addr daddr;
1529        __be32          len;
1530        __be32          protocol;       /* including padding */
1531};
1532
1533union tcp_md5sum_block {
1534        struct tcp4_pseudohdr ip4;
1535#if IS_ENABLED(CONFIG_IPV6)
1536        struct tcp6_pseudohdr ip6;
1537#endif
1538};
1539
1540/* - pool: digest algorithm, hash description and scratch buffer */
1541struct tcp_md5sig_pool {
1542        struct ahash_request    *md5_req;
1543        void                    *scratch;
1544};
1545
1546/* - functions */
1547int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1548                        const struct sock *sk, const struct sk_buff *skb);
1549int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1550                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1551                   gfp_t gfp);
1552int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1553                   int family, u8 prefixlen);
1554struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1555                                         const struct sock *addr_sk);
1556
1557#ifdef CONFIG_TCP_MD5SIG
1558#include <linux/jump_label.h>
1559extern struct static_key_false tcp_md5_needed;
1560struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1561                                           const union tcp_md5_addr *addr,
1562                                           int family);
1563static inline struct tcp_md5sig_key *
1564tcp_md5_do_lookup(const struct sock *sk,
1565                  const union tcp_md5_addr *addr,
1566                  int family)
1567{
1568        if (!static_branch_unlikely(&tcp_md5_needed))
1569                return NULL;
1570        return __tcp_md5_do_lookup(sk, addr, family);
1571}
1572
1573#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1574#else
1575static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1576                                         const union tcp_md5_addr *addr,
1577                                         int family)
1578{
1579        return NULL;
1580}
1581#define tcp_twsk_md5_key(twsk)  NULL
1582#endif
1583
1584bool tcp_alloc_md5sig_pool(void);
1585
1586struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1587static inline void tcp_put_md5sig_pool(void)
1588{
1589        local_bh_enable();
1590}
1591
1592int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1593                          unsigned int header_len);
1594int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1595                     const struct tcp_md5sig_key *key);
1596
1597/* From tcp_fastopen.c */
1598void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1599                            struct tcp_fastopen_cookie *cookie);
1600void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1601                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1602                            u16 try_exp);
1603struct tcp_fastopen_request {
1604        /* Fast Open cookie. Size 0 means a cookie request */
1605        struct tcp_fastopen_cookie      cookie;
1606        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1607        size_t                          size;
1608        int                             copied; /* queued in tcp_connect() */
1609        struct ubuf_info                *uarg;
1610};
1611void tcp_free_fastopen_req(struct tcp_sock *tp);
1612void tcp_fastopen_destroy_cipher(struct sock *sk);
1613void tcp_fastopen_ctx_destroy(struct net *net);
1614int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1615                              void *key, unsigned int len);
1616void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1617struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1618                              struct request_sock *req,
1619                              struct tcp_fastopen_cookie *foc,
1620                              const struct dst_entry *dst);
1621void tcp_fastopen_init_key_once(struct net *net);
1622bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1623                             struct tcp_fastopen_cookie *cookie);
1624bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1625#define TCP_FASTOPEN_KEY_LENGTH 16
1626
1627/* Fastopen key context */
1628struct tcp_fastopen_context {
1629        struct crypto_cipher    *tfm;
1630        __u8                    key[TCP_FASTOPEN_KEY_LENGTH];
1631        struct rcu_head         rcu;
1632};
1633
1634extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1635void tcp_fastopen_active_disable(struct sock *sk);
1636bool tcp_fastopen_active_should_disable(struct sock *sk);
1637void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1638void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1639
1640/* Latencies incurred by various limits for a sender. They are
1641 * chronograph-like stats that are mutually exclusive.
1642 */
1643enum tcp_chrono {
1644        TCP_CHRONO_UNSPEC,
1645        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1646        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1647        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1648        __TCP_CHRONO_MAX,
1649};
1650
1651void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1652void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1653
1654/* This helper is needed, because skb->tcp_tsorted_anchor uses
1655 * the same memory storage than skb->destructor/_skb_refdst
1656 */
1657static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1658{
1659        skb->destructor = NULL;
1660        skb->_skb_refdst = 0UL;
1661}
1662
1663#define tcp_skb_tsorted_save(skb) {             \
1664        unsigned long _save = skb->_skb_refdst; \
1665        skb->_skb_refdst = 0UL;
1666
1667#define tcp_skb_tsorted_restore(skb)            \
1668        skb->_skb_refdst = _save;               \
1669}
1670
1671void tcp_write_queue_purge(struct sock *sk);
1672
1673static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1674{
1675        return skb_rb_first(&sk->tcp_rtx_queue);
1676}
1677
1678static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1679{
1680        return skb_peek(&sk->sk_write_queue);
1681}
1682
1683static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1684{
1685        return skb_peek_tail(&sk->sk_write_queue);
1686}
1687
1688#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1689        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1690
1691static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1692{
1693        return skb_peek(&sk->sk_write_queue);
1694}
1695
1696static inline bool tcp_skb_is_last(const struct sock *sk,
1697                                   const struct sk_buff *skb)
1698{
1699        return skb_queue_is_last(&sk->sk_write_queue, skb);
1700}
1701
1702static inline bool tcp_write_queue_empty(const struct sock *sk)
1703{
1704        return skb_queue_empty(&sk->sk_write_queue);
1705}
1706
1707static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1708{
1709        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1710}
1711
1712static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1713{
1714        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1715}
1716
1717static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1718{
1719        __skb_queue_tail(&sk->sk_write_queue, skb);
1720
1721        /* Queue it, remembering where we must start sending. */
1722        if (sk->sk_write_queue.next == skb)
1723                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1724}
1725
1726/* Insert new before skb on the write queue of sk.  */
1727static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1728                                                  struct sk_buff *skb,
1729                                                  struct sock *sk)
1730{
1731        __skb_queue_before(&sk->sk_write_queue, skb, new);
1732}
1733
1734static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1735{
1736        tcp_skb_tsorted_anchor_cleanup(skb);
1737        __skb_unlink(skb, &sk->sk_write_queue);
1738}
1739
1740void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1741
1742static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1743{
1744        tcp_skb_tsorted_anchor_cleanup(skb);
1745        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1746}
1747
1748static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1749{
1750        list_del(&skb->tcp_tsorted_anchor);
1751        tcp_rtx_queue_unlink(skb, sk);
1752        sk_wmem_free_skb(sk, skb);
1753}
1754
1755static inline void tcp_push_pending_frames(struct sock *sk)
1756{
1757        if (tcp_send_head(sk)) {
1758                struct tcp_sock *tp = tcp_sk(sk);
1759
1760                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1761        }
1762}
1763
1764/* Start sequence of the skb just after the highest skb with SACKed
1765 * bit, valid only if sacked_out > 0 or when the caller has ensured
1766 * validity by itself.
1767 */
1768static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1769{
1770        if (!tp->sacked_out)
1771                return tp->snd_una;
1772
1773        if (tp->highest_sack == NULL)
1774                return tp->snd_nxt;
1775
1776        return TCP_SKB_CB(tp->highest_sack)->seq;
1777}
1778
1779static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1780{
1781        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1782}
1783
1784static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1785{
1786        return tcp_sk(sk)->highest_sack;
1787}
1788
1789static inline void tcp_highest_sack_reset(struct sock *sk)
1790{
1791        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1792}
1793
1794/* Called when old skb is about to be deleted and replaced by new skb */
1795static inline void tcp_highest_sack_replace(struct sock *sk,
1796                                            struct sk_buff *old,
1797                                            struct sk_buff *new)
1798{
1799        if (old == tcp_highest_sack(sk))
1800                tcp_sk(sk)->highest_sack = new;
1801}
1802
1803/* This helper checks if socket has IP_TRANSPARENT set */
1804static inline bool inet_sk_transparent(const struct sock *sk)
1805{
1806        switch (sk->sk_state) {
1807        case TCP_TIME_WAIT:
1808                return inet_twsk(sk)->tw_transparent;
1809        case TCP_NEW_SYN_RECV:
1810                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1811        }
1812        return inet_sk(sk)->transparent;
1813}
1814
1815/* Determines whether this is a thin stream (which may suffer from
1816 * increased latency). Used to trigger latency-reducing mechanisms.
1817 */
1818static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1819{
1820        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1821}
1822
1823/* /proc */
1824enum tcp_seq_states {
1825        TCP_SEQ_STATE_LISTENING,
1826        TCP_SEQ_STATE_ESTABLISHED,
1827};
1828
1829void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1830void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1831void tcp_seq_stop(struct seq_file *seq, void *v);
1832
1833struct tcp_seq_afinfo {
1834        sa_family_t                     family;
1835};
1836
1837struct tcp_iter_state {
1838        struct seq_net_private  p;
1839        enum tcp_seq_states     state;
1840        struct sock             *syn_wait_sk;
1841        int                     bucket, offset, sbucket, num;
1842        loff_t                  last_pos;
1843};
1844
1845extern struct request_sock_ops tcp_request_sock_ops;
1846extern struct request_sock_ops tcp6_request_sock_ops;
1847
1848void tcp_v4_destroy_sock(struct sock *sk);
1849
1850struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1851                                netdev_features_t features);
1852struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1853int tcp_gro_complete(struct sk_buff *skb);
1854
1855void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1856
1857static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1858{
1859        struct net *net = sock_net((struct sock *)tp);
1860        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1861}
1862
1863/* @wake is one when sk_stream_write_space() calls us.
1864 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1865 * This mimics the strategy used in sock_def_write_space().
1866 */
1867static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1868{
1869        const struct tcp_sock *tp = tcp_sk(sk);
1870        u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1871
1872        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1873}
1874
1875#ifdef CONFIG_PROC_FS
1876int tcp4_proc_init(void);
1877void tcp4_proc_exit(void);
1878#endif
1879
1880int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1881int tcp_conn_request(struct request_sock_ops *rsk_ops,
1882                     const struct tcp_request_sock_ops *af_ops,
1883                     struct sock *sk, struct sk_buff *skb);
1884
1885/* TCP af-specific functions */
1886struct tcp_sock_af_ops {
1887#ifdef CONFIG_TCP_MD5SIG
1888        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1889                                                const struct sock *addr_sk);
1890        int             (*calc_md5_hash)(char *location,
1891                                         const struct tcp_md5sig_key *md5,
1892                                         const struct sock *sk,
1893                                         const struct sk_buff *skb);
1894        int             (*md5_parse)(struct sock *sk,
1895                                     int optname,
1896                                     char __user *optval,
1897                                     int optlen);
1898#endif
1899};
1900
1901struct tcp_request_sock_ops {
1902        u16 mss_clamp;
1903#ifdef CONFIG_TCP_MD5SIG
1904        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1905                                                 const struct sock *addr_sk);
1906        int             (*calc_md5_hash) (char *location,
1907                                          const struct tcp_md5sig_key *md5,
1908                                          const struct sock *sk,
1909                                          const struct sk_buff *skb);
1910#endif
1911        void (*init_req)(struct request_sock *req,
1912                         const struct sock *sk_listener,
1913                         struct sk_buff *skb);
1914#ifdef CONFIG_SYN_COOKIES
1915        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1916                                 __u16 *mss);
1917#endif
1918        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1919                                       const struct request_sock *req);
1920        u32 (*init_seq)(const struct sk_buff *skb);
1921        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1922        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1923                           struct flowi *fl, struct request_sock *req,
1924                           struct tcp_fastopen_cookie *foc,
1925                           enum tcp_synack_type synack_type);
1926};
1927
1928#ifdef CONFIG_SYN_COOKIES
1929static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1930                                         const struct sock *sk, struct sk_buff *skb,
1931                                         __u16 *mss)
1932{
1933        tcp_synq_overflow(sk);
1934        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1935        return ops->cookie_init_seq(skb, mss);
1936}
1937#else
1938static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1939                                         const struct sock *sk, struct sk_buff *skb,
1940                                         __u16 *mss)
1941{
1942        return 0;
1943}
1944#endif
1945
1946int tcpv4_offload_init(void);
1947
1948void tcp_v4_init(void);
1949void tcp_init(void);
1950
1951/* tcp_recovery.c */
1952void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1953void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1954extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1955                                u32 reo_wnd);
1956extern void tcp_rack_mark_lost(struct sock *sk);
1957extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1958                             u64 xmit_time);
1959extern void tcp_rack_reo_timeout(struct sock *sk);
1960extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1961
1962/* At how many usecs into the future should the RTO fire? */
1963static inline s64 tcp_rto_delta_us(const struct sock *sk)
1964{
1965        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1966        u32 rto = inet_csk(sk)->icsk_rto;
1967        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1968
1969        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1970}
1971
1972/*
1973 * Save and compile IPv4 options, return a pointer to it
1974 */
1975static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1976                                                         struct sk_buff *skb)
1977{
1978        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1979        struct ip_options_rcu *dopt = NULL;
1980
1981        if (opt->optlen) {
1982                int opt_size = sizeof(*dopt) + opt->optlen;
1983
1984                dopt = kmalloc(opt_size, GFP_ATOMIC);
1985                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1986                        kfree(dopt);
1987                        dopt = NULL;
1988                }
1989        }
1990        return dopt;
1991}
1992
1993/* locally generated TCP pure ACKs have skb->truesize == 2
1994 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1995 * This is much faster than dissecting the packet to find out.
1996 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1997 */
1998static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1999{
2000        return skb->truesize == 2;
2001}
2002
2003static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2004{
2005        skb->truesize = 2;
2006}
2007
2008static inline int tcp_inq(struct sock *sk)
2009{
2010        struct tcp_sock *tp = tcp_sk(sk);
2011        int answ;
2012
2013        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2014                answ = 0;
2015        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2016                   !tp->urg_data ||
2017                   before(tp->urg_seq, tp->copied_seq) ||
2018                   !before(tp->urg_seq, tp->rcv_nxt)) {
2019
2020                answ = tp->rcv_nxt - tp->copied_seq;
2021
2022                /* Subtract 1, if FIN was received */
2023                if (answ && sock_flag(sk, SOCK_DONE))
2024                        answ--;
2025        } else {
2026                answ = tp->urg_seq - tp->copied_seq;
2027        }
2028
2029        return answ;
2030}
2031
2032int tcp_peek_len(struct socket *sock);
2033
2034static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2035{
2036        u16 segs_in;
2037
2038        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2039        tp->segs_in += segs_in;
2040        if (skb->len > tcp_hdrlen(skb))
2041                tp->data_segs_in += segs_in;
2042}
2043
2044/*
2045 * TCP listen path runs lockless.
2046 * We forced "struct sock" to be const qualified to make sure
2047 * we don't modify one of its field by mistake.
2048 * Here, we increment sk_drops which is an atomic_t, so we can safely
2049 * make sock writable again.
2050 */
2051static inline void tcp_listendrop(const struct sock *sk)
2052{
2053        atomic_inc(&((struct sock *)sk)->sk_drops);
2054        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2055}
2056
2057enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2058
2059/*
2060 * Interface for adding Upper Level Protocols over TCP
2061 */
2062
2063#define TCP_ULP_NAME_MAX        16
2064#define TCP_ULP_MAX             128
2065#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2066
2067struct tcp_ulp_ops {
2068        struct list_head        list;
2069
2070        /* initialize ulp */
2071        int (*init)(struct sock *sk);
2072        /* cleanup ulp */
2073        void (*release)(struct sock *sk);
2074
2075        char            name[TCP_ULP_NAME_MAX];
2076        struct module   *owner;
2077};
2078int tcp_register_ulp(struct tcp_ulp_ops *type);
2079void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2080int tcp_set_ulp(struct sock *sk, const char *name);
2081void tcp_get_available_ulp(char *buf, size_t len);
2082void tcp_cleanup_ulp(struct sock *sk);
2083
2084#define MODULE_ALIAS_TCP_ULP(name)                              \
2085        __MODULE_INFO(alias, alias_userspace, name);            \
2086        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2087
2088struct sk_msg;
2089struct sk_psock;
2090
2091int tcp_bpf_init(struct sock *sk);
2092void tcp_bpf_reinit(struct sock *sk);
2093int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2094                          int flags);
2095int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2096                    int nonblock, int flags, int *addr_len);
2097int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2098                      struct msghdr *msg, int len, int flags);
2099
2100/* Call BPF_SOCK_OPS program that returns an int. If the return value
2101 * is < 0, then the BPF op failed (for example if the loaded BPF
2102 * program does not support the chosen operation or there is no BPF
2103 * program loaded).
2104 */
2105#ifdef CONFIG_BPF
2106static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2107{
2108        struct bpf_sock_ops_kern sock_ops;
2109        int ret;
2110
2111        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2112        if (sk_fullsock(sk)) {
2113                sock_ops.is_fullsock = 1;
2114                sock_owned_by_me(sk);
2115        }
2116
2117        sock_ops.sk = sk;
2118        sock_ops.op = op;
2119        if (nargs > 0)
2120                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2121
2122        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2123        if (ret == 0)
2124                ret = sock_ops.reply;
2125        else
2126                ret = -1;
2127        return ret;
2128}
2129
2130static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2131{
2132        u32 args[2] = {arg1, arg2};
2133
2134        return tcp_call_bpf(sk, op, 2, args);
2135}
2136
2137static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2138                                    u32 arg3)
2139{
2140        u32 args[3] = {arg1, arg2, arg3};
2141
2142        return tcp_call_bpf(sk, op, 3, args);
2143}
2144
2145#else
2146static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2147{
2148        return -EPERM;
2149}
2150
2151static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2152{
2153        return -EPERM;
2154}
2155
2156static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2157                                    u32 arg3)
2158{
2159        return -EPERM;
2160}
2161
2162#endif
2163
2164static inline u32 tcp_timeout_init(struct sock *sk)
2165{
2166        int timeout;
2167
2168        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2169
2170        if (timeout <= 0)
2171                timeout = TCP_TIMEOUT_INIT;
2172        return timeout;
2173}
2174
2175static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2176{
2177        int rwnd;
2178
2179        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2180
2181        if (rwnd < 0)
2182                rwnd = 0;
2183        return rwnd;
2184}
2185
2186static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2187{
2188        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2189}
2190
2191#if IS_ENABLED(CONFIG_SMC)
2192extern struct static_key_false tcp_have_smc;
2193#endif
2194
2195#if IS_ENABLED(CONFIG_TLS_DEVICE)
2196void clean_acked_data_enable(struct inet_connection_sock *icsk,
2197                             void (*cad)(struct sock *sk, u32 ack_seq));
2198void clean_acked_data_disable(struct inet_connection_sock *icsk);
2199void clean_acked_data_flush(void);
2200#endif
2201
2202#endif  /* _TCP_H */
2203