linux/ipc/mqueue.c
<<
>>
Prefs
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *                          Manfred Spraul          (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47        struct ipc_namespace    *ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC    0x19800202
  51#define DIRENT_SIZE     20
  52#define FILENT_SIZE     80
  53
  54#define SEND            0
  55#define RECV            1
  56
  57#define STATE_NONE      0
  58#define STATE_READY     1
  59
  60struct posix_msg_tree_node {
  61        struct rb_node          rb_node;
  62        struct list_head        msg_list;
  63        int                     priority;
  64};
  65
  66struct ext_wait_queue {         /* queue of sleeping tasks */
  67        struct task_struct *task;
  68        struct list_head list;
  69        struct msg_msg *msg;    /* ptr of loaded message */
  70        int state;              /* one of STATE_* values */
  71};
  72
  73struct mqueue_inode_info {
  74        spinlock_t lock;
  75        struct inode vfs_inode;
  76        wait_queue_head_t wait_q;
  77
  78        struct rb_root msg_tree;
  79        struct rb_node *msg_tree_rightmost;
  80        struct posix_msg_tree_node *node_cache;
  81        struct mq_attr attr;
  82
  83        struct sigevent notify;
  84        struct pid *notify_owner;
  85        struct user_namespace *notify_user_ns;
  86        struct user_struct *user;       /* user who created, for accounting */
  87        struct sock *notify_sock;
  88        struct sk_buff *notify_cookie;
  89
  90        /* for tasks waiting for free space and messages, respectively */
  91        struct ext_wait_queue e_wait_q[2];
  92
  93        unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  94};
  95
  96static struct file_system_type mqueue_fs_type;
  97static const struct inode_operations mqueue_dir_inode_operations;
  98static const struct file_operations mqueue_file_operations;
  99static const struct super_operations mqueue_super_ops;
 100static const struct fs_context_operations mqueue_fs_context_ops;
 101static void remove_notification(struct mqueue_inode_info *info);
 102
 103static struct kmem_cache *mqueue_inode_cachep;
 104
 105static struct ctl_table_header *mq_sysctl_table;
 106
 107static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 108{
 109        return container_of(inode, struct mqueue_inode_info, vfs_inode);
 110}
 111
 112/*
 113 * This routine should be called with the mq_lock held.
 114 */
 115static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 116{
 117        return get_ipc_ns(inode->i_sb->s_fs_info);
 118}
 119
 120static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 121{
 122        struct ipc_namespace *ns;
 123
 124        spin_lock(&mq_lock);
 125        ns = __get_ns_from_inode(inode);
 126        spin_unlock(&mq_lock);
 127        return ns;
 128}
 129
 130/* Auxiliary functions to manipulate messages' list */
 131static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 132{
 133        struct rb_node **p, *parent = NULL;
 134        struct posix_msg_tree_node *leaf;
 135        bool rightmost = true;
 136
 137        p = &info->msg_tree.rb_node;
 138        while (*p) {
 139                parent = *p;
 140                leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 141
 142                if (likely(leaf->priority == msg->m_type))
 143                        goto insert_msg;
 144                else if (msg->m_type < leaf->priority) {
 145                        p = &(*p)->rb_left;
 146                        rightmost = false;
 147                } else
 148                        p = &(*p)->rb_right;
 149        }
 150        if (info->node_cache) {
 151                leaf = info->node_cache;
 152                info->node_cache = NULL;
 153        } else {
 154                leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 155                if (!leaf)
 156                        return -ENOMEM;
 157                INIT_LIST_HEAD(&leaf->msg_list);
 158        }
 159        leaf->priority = msg->m_type;
 160
 161        if (rightmost)
 162                info->msg_tree_rightmost = &leaf->rb_node;
 163
 164        rb_link_node(&leaf->rb_node, parent, p);
 165        rb_insert_color(&leaf->rb_node, &info->msg_tree);
 166insert_msg:
 167        info->attr.mq_curmsgs++;
 168        info->qsize += msg->m_ts;
 169        list_add_tail(&msg->m_list, &leaf->msg_list);
 170        return 0;
 171}
 172
 173static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 174                                  struct mqueue_inode_info *info)
 175{
 176        struct rb_node *node = &leaf->rb_node;
 177
 178        if (info->msg_tree_rightmost == node)
 179                info->msg_tree_rightmost = rb_prev(node);
 180
 181        rb_erase(node, &info->msg_tree);
 182        if (info->node_cache) {
 183                kfree(leaf);
 184        } else {
 185                info->node_cache = leaf;
 186        }
 187}
 188
 189static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 190{
 191        struct rb_node *parent = NULL;
 192        struct posix_msg_tree_node *leaf;
 193        struct msg_msg *msg;
 194
 195try_again:
 196        /*
 197         * During insert, low priorities go to the left and high to the
 198         * right.  On receive, we want the highest priorities first, so
 199         * walk all the way to the right.
 200         */
 201        parent = info->msg_tree_rightmost;
 202        if (!parent) {
 203                if (info->attr.mq_curmsgs) {
 204                        pr_warn_once("Inconsistency in POSIX message queue, "
 205                                     "no tree element, but supposedly messages "
 206                                     "should exist!\n");
 207                        info->attr.mq_curmsgs = 0;
 208                }
 209                return NULL;
 210        }
 211        leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 212        if (unlikely(list_empty(&leaf->msg_list))) {
 213                pr_warn_once("Inconsistency in POSIX message queue, "
 214                             "empty leaf node but we haven't implemented "
 215                             "lazy leaf delete!\n");
 216                msg_tree_erase(leaf, info);
 217                goto try_again;
 218        } else {
 219                msg = list_first_entry(&leaf->msg_list,
 220                                       struct msg_msg, m_list);
 221                list_del(&msg->m_list);
 222                if (list_empty(&leaf->msg_list)) {
 223                        msg_tree_erase(leaf, info);
 224                }
 225        }
 226        info->attr.mq_curmsgs--;
 227        info->qsize -= msg->m_ts;
 228        return msg;
 229}
 230
 231static struct inode *mqueue_get_inode(struct super_block *sb,
 232                struct ipc_namespace *ipc_ns, umode_t mode,
 233                struct mq_attr *attr)
 234{
 235        struct user_struct *u = current_user();
 236        struct inode *inode;
 237        int ret = -ENOMEM;
 238
 239        inode = new_inode(sb);
 240        if (!inode)
 241                goto err;
 242
 243        inode->i_ino = get_next_ino();
 244        inode->i_mode = mode;
 245        inode->i_uid = current_fsuid();
 246        inode->i_gid = current_fsgid();
 247        inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 248
 249        if (S_ISREG(mode)) {
 250                struct mqueue_inode_info *info;
 251                unsigned long mq_bytes, mq_treesize;
 252
 253                inode->i_fop = &mqueue_file_operations;
 254                inode->i_size = FILENT_SIZE;
 255                /* mqueue specific info */
 256                info = MQUEUE_I(inode);
 257                spin_lock_init(&info->lock);
 258                init_waitqueue_head(&info->wait_q);
 259                INIT_LIST_HEAD(&info->e_wait_q[0].list);
 260                INIT_LIST_HEAD(&info->e_wait_q[1].list);
 261                info->notify_owner = NULL;
 262                info->notify_user_ns = NULL;
 263                info->qsize = 0;
 264                info->user = NULL;      /* set when all is ok */
 265                info->msg_tree = RB_ROOT;
 266                info->msg_tree_rightmost = NULL;
 267                info->node_cache = NULL;
 268                memset(&info->attr, 0, sizeof(info->attr));
 269                info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 270                                           ipc_ns->mq_msg_default);
 271                info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 272                                            ipc_ns->mq_msgsize_default);
 273                if (attr) {
 274                        info->attr.mq_maxmsg = attr->mq_maxmsg;
 275                        info->attr.mq_msgsize = attr->mq_msgsize;
 276                }
 277                /*
 278                 * We used to allocate a static array of pointers and account
 279                 * the size of that array as well as one msg_msg struct per
 280                 * possible message into the queue size. That's no longer
 281                 * accurate as the queue is now an rbtree and will grow and
 282                 * shrink depending on usage patterns.  We can, however, still
 283                 * account one msg_msg struct per message, but the nodes are
 284                 * allocated depending on priority usage, and most programs
 285                 * only use one, or a handful, of priorities.  However, since
 286                 * this is pinned memory, we need to assume worst case, so
 287                 * that means the min(mq_maxmsg, max_priorities) * struct
 288                 * posix_msg_tree_node.
 289                 */
 290
 291                ret = -EINVAL;
 292                if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 293                        goto out_inode;
 294                if (capable(CAP_SYS_RESOURCE)) {
 295                        if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 296                            info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 297                                goto out_inode;
 298                } else {
 299                        if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 300                                        info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 301                                goto out_inode;
 302                }
 303                ret = -EOVERFLOW;
 304                /* check for overflow */
 305                if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 306                        goto out_inode;
 307                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 308                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 309                        sizeof(struct posix_msg_tree_node);
 310                mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 311                if (mq_bytes + mq_treesize < mq_bytes)
 312                        goto out_inode;
 313                mq_bytes += mq_treesize;
 314                spin_lock(&mq_lock);
 315                if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 316                    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 317                        spin_unlock(&mq_lock);
 318                        /* mqueue_evict_inode() releases info->messages */
 319                        ret = -EMFILE;
 320                        goto out_inode;
 321                }
 322                u->mq_bytes += mq_bytes;
 323                spin_unlock(&mq_lock);
 324
 325                /* all is ok */
 326                info->user = get_uid(u);
 327        } else if (S_ISDIR(mode)) {
 328                inc_nlink(inode);
 329                /* Some things misbehave if size == 0 on a directory */
 330                inode->i_size = 2 * DIRENT_SIZE;
 331                inode->i_op = &mqueue_dir_inode_operations;
 332                inode->i_fop = &simple_dir_operations;
 333        }
 334
 335        return inode;
 336out_inode:
 337        iput(inode);
 338err:
 339        return ERR_PTR(ret);
 340}
 341
 342static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 343{
 344        struct inode *inode;
 345        struct ipc_namespace *ns = sb->s_fs_info;
 346
 347        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 348        sb->s_blocksize = PAGE_SIZE;
 349        sb->s_blocksize_bits = PAGE_SHIFT;
 350        sb->s_magic = MQUEUE_MAGIC;
 351        sb->s_op = &mqueue_super_ops;
 352
 353        inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 354        if (IS_ERR(inode))
 355                return PTR_ERR(inode);
 356
 357        sb->s_root = d_make_root(inode);
 358        if (!sb->s_root)
 359                return -ENOMEM;
 360        return 0;
 361}
 362
 363static int mqueue_get_tree(struct fs_context *fc)
 364{
 365        struct mqueue_fs_context *ctx = fc->fs_private;
 366
 367        put_user_ns(fc->user_ns);
 368        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 369        fc->s_fs_info = ctx->ipc_ns;
 370        return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
 371}
 372
 373static void mqueue_fs_context_free(struct fs_context *fc)
 374{
 375        struct mqueue_fs_context *ctx = fc->fs_private;
 376
 377        if (ctx->ipc_ns)
 378                put_ipc_ns(ctx->ipc_ns);
 379        kfree(ctx);
 380}
 381
 382static int mqueue_init_fs_context(struct fs_context *fc)
 383{
 384        struct mqueue_fs_context *ctx;
 385
 386        ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 387        if (!ctx)
 388                return -ENOMEM;
 389
 390        ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 391        fc->fs_private = ctx;
 392        fc->ops = &mqueue_fs_context_ops;
 393        return 0;
 394}
 395
 396static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 397{
 398        struct mqueue_fs_context *ctx;
 399        struct fs_context *fc;
 400        struct vfsmount *mnt;
 401
 402        fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 403        if (IS_ERR(fc))
 404                return ERR_CAST(fc);
 405
 406        ctx = fc->fs_private;
 407        put_ipc_ns(ctx->ipc_ns);
 408        ctx->ipc_ns = get_ipc_ns(ns);
 409
 410        mnt = fc_mount(fc);
 411        put_fs_context(fc);
 412        return mnt;
 413}
 414
 415static void init_once(void *foo)
 416{
 417        struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 418
 419        inode_init_once(&p->vfs_inode);
 420}
 421
 422static struct inode *mqueue_alloc_inode(struct super_block *sb)
 423{
 424        struct mqueue_inode_info *ei;
 425
 426        ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 427        if (!ei)
 428                return NULL;
 429        return &ei->vfs_inode;
 430}
 431
 432static void mqueue_free_inode(struct inode *inode)
 433{
 434        kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 435}
 436
 437static void mqueue_evict_inode(struct inode *inode)
 438{
 439        struct mqueue_inode_info *info;
 440        struct user_struct *user;
 441        unsigned long mq_bytes, mq_treesize;
 442        struct ipc_namespace *ipc_ns;
 443        struct msg_msg *msg, *nmsg;
 444        LIST_HEAD(tmp_msg);
 445
 446        clear_inode(inode);
 447
 448        if (S_ISDIR(inode->i_mode))
 449                return;
 450
 451        ipc_ns = get_ns_from_inode(inode);
 452        info = MQUEUE_I(inode);
 453        spin_lock(&info->lock);
 454        while ((msg = msg_get(info)) != NULL)
 455                list_add_tail(&msg->m_list, &tmp_msg);
 456        kfree(info->node_cache);
 457        spin_unlock(&info->lock);
 458
 459        list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 460                list_del(&msg->m_list);
 461                free_msg(msg);
 462        }
 463
 464        /* Total amount of bytes accounted for the mqueue */
 465        mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 466                min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 467                sizeof(struct posix_msg_tree_node);
 468
 469        mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 470                                  info->attr.mq_msgsize);
 471
 472        user = info->user;
 473        if (user) {
 474                spin_lock(&mq_lock);
 475                user->mq_bytes -= mq_bytes;
 476                /*
 477                 * get_ns_from_inode() ensures that the
 478                 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 479                 * to which we now hold a reference, or it is NULL.
 480                 * We can't put it here under mq_lock, though.
 481                 */
 482                if (ipc_ns)
 483                        ipc_ns->mq_queues_count--;
 484                spin_unlock(&mq_lock);
 485                free_uid(user);
 486        }
 487        if (ipc_ns)
 488                put_ipc_ns(ipc_ns);
 489}
 490
 491static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 492{
 493        struct inode *dir = dentry->d_parent->d_inode;
 494        struct inode *inode;
 495        struct mq_attr *attr = arg;
 496        int error;
 497        struct ipc_namespace *ipc_ns;
 498
 499        spin_lock(&mq_lock);
 500        ipc_ns = __get_ns_from_inode(dir);
 501        if (!ipc_ns) {
 502                error = -EACCES;
 503                goto out_unlock;
 504        }
 505
 506        if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 507            !capable(CAP_SYS_RESOURCE)) {
 508                error = -ENOSPC;
 509                goto out_unlock;
 510        }
 511        ipc_ns->mq_queues_count++;
 512        spin_unlock(&mq_lock);
 513
 514        inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 515        if (IS_ERR(inode)) {
 516                error = PTR_ERR(inode);
 517                spin_lock(&mq_lock);
 518                ipc_ns->mq_queues_count--;
 519                goto out_unlock;
 520        }
 521
 522        put_ipc_ns(ipc_ns);
 523        dir->i_size += DIRENT_SIZE;
 524        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 525
 526        d_instantiate(dentry, inode);
 527        dget(dentry);
 528        return 0;
 529out_unlock:
 530        spin_unlock(&mq_lock);
 531        if (ipc_ns)
 532                put_ipc_ns(ipc_ns);
 533        return error;
 534}
 535
 536static int mqueue_create(struct inode *dir, struct dentry *dentry,
 537                                umode_t mode, bool excl)
 538{
 539        return mqueue_create_attr(dentry, mode, NULL);
 540}
 541
 542static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 543{
 544        struct inode *inode = d_inode(dentry);
 545
 546        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 547        dir->i_size -= DIRENT_SIZE;
 548        drop_nlink(inode);
 549        dput(dentry);
 550        return 0;
 551}
 552
 553/*
 554*       This is routine for system read from queue file.
 555*       To avoid mess with doing here some sort of mq_receive we allow
 556*       to read only queue size & notification info (the only values
 557*       that are interesting from user point of view and aren't accessible
 558*       through std routines)
 559*/
 560static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 561                                size_t count, loff_t *off)
 562{
 563        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 564        char buffer[FILENT_SIZE];
 565        ssize_t ret;
 566
 567        spin_lock(&info->lock);
 568        snprintf(buffer, sizeof(buffer),
 569                        "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 570                        info->qsize,
 571                        info->notify_owner ? info->notify.sigev_notify : 0,
 572                        (info->notify_owner &&
 573                         info->notify.sigev_notify == SIGEV_SIGNAL) ?
 574                                info->notify.sigev_signo : 0,
 575                        pid_vnr(info->notify_owner));
 576        spin_unlock(&info->lock);
 577        buffer[sizeof(buffer)-1] = '\0';
 578
 579        ret = simple_read_from_buffer(u_data, count, off, buffer,
 580                                strlen(buffer));
 581        if (ret <= 0)
 582                return ret;
 583
 584        file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 585        return ret;
 586}
 587
 588static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 589{
 590        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 591
 592        spin_lock(&info->lock);
 593        if (task_tgid(current) == info->notify_owner)
 594                remove_notification(info);
 595
 596        spin_unlock(&info->lock);
 597        return 0;
 598}
 599
 600static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 601{
 602        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 603        __poll_t retval = 0;
 604
 605        poll_wait(filp, &info->wait_q, poll_tab);
 606
 607        spin_lock(&info->lock);
 608        if (info->attr.mq_curmsgs)
 609                retval = EPOLLIN | EPOLLRDNORM;
 610
 611        if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 612                retval |= EPOLLOUT | EPOLLWRNORM;
 613        spin_unlock(&info->lock);
 614
 615        return retval;
 616}
 617
 618/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 619static void wq_add(struct mqueue_inode_info *info, int sr,
 620                        struct ext_wait_queue *ewp)
 621{
 622        struct ext_wait_queue *walk;
 623
 624        list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 625                if (walk->task->prio <= current->prio) {
 626                        list_add_tail(&ewp->list, &walk->list);
 627                        return;
 628                }
 629        }
 630        list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 631}
 632
 633/*
 634 * Puts current task to sleep. Caller must hold queue lock. After return
 635 * lock isn't held.
 636 * sr: SEND or RECV
 637 */
 638static int wq_sleep(struct mqueue_inode_info *info, int sr,
 639                    ktime_t *timeout, struct ext_wait_queue *ewp)
 640        __releases(&info->lock)
 641{
 642        int retval;
 643        signed long time;
 644
 645        wq_add(info, sr, ewp);
 646
 647        for (;;) {
 648                __set_current_state(TASK_INTERRUPTIBLE);
 649
 650                spin_unlock(&info->lock);
 651                time = schedule_hrtimeout_range_clock(timeout, 0,
 652                        HRTIMER_MODE_ABS, CLOCK_REALTIME);
 653
 654                if (ewp->state == STATE_READY) {
 655                        retval = 0;
 656                        goto out;
 657                }
 658                spin_lock(&info->lock);
 659                if (ewp->state == STATE_READY) {
 660                        retval = 0;
 661                        goto out_unlock;
 662                }
 663                if (signal_pending(current)) {
 664                        retval = -ERESTARTSYS;
 665                        break;
 666                }
 667                if (time == 0) {
 668                        retval = -ETIMEDOUT;
 669                        break;
 670                }
 671        }
 672        list_del(&ewp->list);
 673out_unlock:
 674        spin_unlock(&info->lock);
 675out:
 676        return retval;
 677}
 678
 679/*
 680 * Returns waiting task that should be serviced first or NULL if none exists
 681 */
 682static struct ext_wait_queue *wq_get_first_waiter(
 683                struct mqueue_inode_info *info, int sr)
 684{
 685        struct list_head *ptr;
 686
 687        ptr = info->e_wait_q[sr].list.prev;
 688        if (ptr == &info->e_wait_q[sr].list)
 689                return NULL;
 690        return list_entry(ptr, struct ext_wait_queue, list);
 691}
 692
 693
 694static inline void set_cookie(struct sk_buff *skb, char code)
 695{
 696        ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 697}
 698
 699/*
 700 * The next function is only to split too long sys_mq_timedsend
 701 */
 702static void __do_notify(struct mqueue_inode_info *info)
 703{
 704        /* notification
 705         * invoked when there is registered process and there isn't process
 706         * waiting synchronously for message AND state of queue changed from
 707         * empty to not empty. Here we are sure that no one is waiting
 708         * synchronously. */
 709        if (info->notify_owner &&
 710            info->attr.mq_curmsgs == 1) {
 711                struct kernel_siginfo sig_i;
 712                switch (info->notify.sigev_notify) {
 713                case SIGEV_NONE:
 714                        break;
 715                case SIGEV_SIGNAL:
 716                        /* sends signal */
 717
 718                        clear_siginfo(&sig_i);
 719                        sig_i.si_signo = info->notify.sigev_signo;
 720                        sig_i.si_errno = 0;
 721                        sig_i.si_code = SI_MESGQ;
 722                        sig_i.si_value = info->notify.sigev_value;
 723                        /* map current pid/uid into info->owner's namespaces */
 724                        rcu_read_lock();
 725                        sig_i.si_pid = task_tgid_nr_ns(current,
 726                                                ns_of_pid(info->notify_owner));
 727                        sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 728                        rcu_read_unlock();
 729
 730                        kill_pid_info(info->notify.sigev_signo,
 731                                      &sig_i, info->notify_owner);
 732                        break;
 733                case SIGEV_THREAD:
 734                        set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 735                        netlink_sendskb(info->notify_sock, info->notify_cookie);
 736                        break;
 737                }
 738                /* after notification unregisters process */
 739                put_pid(info->notify_owner);
 740                put_user_ns(info->notify_user_ns);
 741                info->notify_owner = NULL;
 742                info->notify_user_ns = NULL;
 743        }
 744        wake_up(&info->wait_q);
 745}
 746
 747static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 748                           struct timespec64 *ts)
 749{
 750        if (get_timespec64(ts, u_abs_timeout))
 751                return -EFAULT;
 752        if (!timespec64_valid(ts))
 753                return -EINVAL;
 754        return 0;
 755}
 756
 757static void remove_notification(struct mqueue_inode_info *info)
 758{
 759        if (info->notify_owner != NULL &&
 760            info->notify.sigev_notify == SIGEV_THREAD) {
 761                set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 762                netlink_sendskb(info->notify_sock, info->notify_cookie);
 763        }
 764        put_pid(info->notify_owner);
 765        put_user_ns(info->notify_user_ns);
 766        info->notify_owner = NULL;
 767        info->notify_user_ns = NULL;
 768}
 769
 770static int prepare_open(struct dentry *dentry, int oflag, int ro,
 771                        umode_t mode, struct filename *name,
 772                        struct mq_attr *attr)
 773{
 774        static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 775                                                  MAY_READ | MAY_WRITE };
 776        int acc;
 777
 778        if (d_really_is_negative(dentry)) {
 779                if (!(oflag & O_CREAT))
 780                        return -ENOENT;
 781                if (ro)
 782                        return ro;
 783                audit_inode_parent_hidden(name, dentry->d_parent);
 784                return vfs_mkobj(dentry, mode & ~current_umask(),
 785                                  mqueue_create_attr, attr);
 786        }
 787        /* it already existed */
 788        audit_inode(name, dentry, 0);
 789        if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 790                return -EEXIST;
 791        if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 792                return -EINVAL;
 793        acc = oflag2acc[oflag & O_ACCMODE];
 794        return inode_permission(d_inode(dentry), acc);
 795}
 796
 797static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 798                      struct mq_attr *attr)
 799{
 800        struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 801        struct dentry *root = mnt->mnt_root;
 802        struct filename *name;
 803        struct path path;
 804        int fd, error;
 805        int ro;
 806
 807        audit_mq_open(oflag, mode, attr);
 808
 809        if (IS_ERR(name = getname(u_name)))
 810                return PTR_ERR(name);
 811
 812        fd = get_unused_fd_flags(O_CLOEXEC);
 813        if (fd < 0)
 814                goto out_putname;
 815
 816        ro = mnt_want_write(mnt);       /* we'll drop it in any case */
 817        inode_lock(d_inode(root));
 818        path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 819        if (IS_ERR(path.dentry)) {
 820                error = PTR_ERR(path.dentry);
 821                goto out_putfd;
 822        }
 823        path.mnt = mntget(mnt);
 824        error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 825        if (!error) {
 826                struct file *file = dentry_open(&path, oflag, current_cred());
 827                if (!IS_ERR(file))
 828                        fd_install(fd, file);
 829                else
 830                        error = PTR_ERR(file);
 831        }
 832        path_put(&path);
 833out_putfd:
 834        if (error) {
 835                put_unused_fd(fd);
 836                fd = error;
 837        }
 838        inode_unlock(d_inode(root));
 839        if (!ro)
 840                mnt_drop_write(mnt);
 841out_putname:
 842        putname(name);
 843        return fd;
 844}
 845
 846SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 847                struct mq_attr __user *, u_attr)
 848{
 849        struct mq_attr attr;
 850        if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 851                return -EFAULT;
 852
 853        return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 854}
 855
 856SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 857{
 858        int err;
 859        struct filename *name;
 860        struct dentry *dentry;
 861        struct inode *inode = NULL;
 862        struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 863        struct vfsmount *mnt = ipc_ns->mq_mnt;
 864
 865        name = getname(u_name);
 866        if (IS_ERR(name))
 867                return PTR_ERR(name);
 868
 869        audit_inode_parent_hidden(name, mnt->mnt_root);
 870        err = mnt_want_write(mnt);
 871        if (err)
 872                goto out_name;
 873        inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 874        dentry = lookup_one_len(name->name, mnt->mnt_root,
 875                                strlen(name->name));
 876        if (IS_ERR(dentry)) {
 877                err = PTR_ERR(dentry);
 878                goto out_unlock;
 879        }
 880
 881        inode = d_inode(dentry);
 882        if (!inode) {
 883                err = -ENOENT;
 884        } else {
 885                ihold(inode);
 886                err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 887        }
 888        dput(dentry);
 889
 890out_unlock:
 891        inode_unlock(d_inode(mnt->mnt_root));
 892        if (inode)
 893                iput(inode);
 894        mnt_drop_write(mnt);
 895out_name:
 896        putname(name);
 897
 898        return err;
 899}
 900
 901/* Pipelined send and receive functions.
 902 *
 903 * If a receiver finds no waiting message, then it registers itself in the
 904 * list of waiting receivers. A sender checks that list before adding the new
 905 * message into the message array. If there is a waiting receiver, then it
 906 * bypasses the message array and directly hands the message over to the
 907 * receiver. The receiver accepts the message and returns without grabbing the
 908 * queue spinlock:
 909 *
 910 * - Set pointer to message.
 911 * - Queue the receiver task for later wakeup (without the info->lock).
 912 * - Update its state to STATE_READY. Now the receiver can continue.
 913 * - Wake up the process after the lock is dropped. Should the process wake up
 914 *   before this wakeup (due to a timeout or a signal) it will either see
 915 *   STATE_READY and continue or acquire the lock to check the state again.
 916 *
 917 * The same algorithm is used for senders.
 918 */
 919
 920/* pipelined_send() - send a message directly to the task waiting in
 921 * sys_mq_timedreceive() (without inserting message into a queue).
 922 */
 923static inline void pipelined_send(struct wake_q_head *wake_q,
 924                                  struct mqueue_inode_info *info,
 925                                  struct msg_msg *message,
 926                                  struct ext_wait_queue *receiver)
 927{
 928        receiver->msg = message;
 929        list_del(&receiver->list);
 930        wake_q_add(wake_q, receiver->task);
 931        /*
 932         * Rely on the implicit cmpxchg barrier from wake_q_add such
 933         * that we can ensure that updating receiver->state is the last
 934         * write operation: As once set, the receiver can continue,
 935         * and if we don't have the reference count from the wake_q,
 936         * yet, at that point we can later have a use-after-free
 937         * condition and bogus wakeup.
 938         */
 939        receiver->state = STATE_READY;
 940}
 941
 942/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 943 * gets its message and put to the queue (we have one free place for sure). */
 944static inline void pipelined_receive(struct wake_q_head *wake_q,
 945                                     struct mqueue_inode_info *info)
 946{
 947        struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 948
 949        if (!sender) {
 950                /* for poll */
 951                wake_up_interruptible(&info->wait_q);
 952                return;
 953        }
 954        if (msg_insert(sender->msg, info))
 955                return;
 956
 957        list_del(&sender->list);
 958        wake_q_add(wake_q, sender->task);
 959        sender->state = STATE_READY;
 960}
 961
 962static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 963                size_t msg_len, unsigned int msg_prio,
 964                struct timespec64 *ts)
 965{
 966        struct fd f;
 967        struct inode *inode;
 968        struct ext_wait_queue wait;
 969        struct ext_wait_queue *receiver;
 970        struct msg_msg *msg_ptr;
 971        struct mqueue_inode_info *info;
 972        ktime_t expires, *timeout = NULL;
 973        struct posix_msg_tree_node *new_leaf = NULL;
 974        int ret = 0;
 975        DEFINE_WAKE_Q(wake_q);
 976
 977        if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 978                return -EINVAL;
 979
 980        if (ts) {
 981                expires = timespec64_to_ktime(*ts);
 982                timeout = &expires;
 983        }
 984
 985        audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 986
 987        f = fdget(mqdes);
 988        if (unlikely(!f.file)) {
 989                ret = -EBADF;
 990                goto out;
 991        }
 992
 993        inode = file_inode(f.file);
 994        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 995                ret = -EBADF;
 996                goto out_fput;
 997        }
 998        info = MQUEUE_I(inode);
 999        audit_file(f.file);
1000
1001        if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1002                ret = -EBADF;
1003                goto out_fput;
1004        }
1005
1006        if (unlikely(msg_len > info->attr.mq_msgsize)) {
1007                ret = -EMSGSIZE;
1008                goto out_fput;
1009        }
1010
1011        /* First try to allocate memory, before doing anything with
1012         * existing queues. */
1013        msg_ptr = load_msg(u_msg_ptr, msg_len);
1014        if (IS_ERR(msg_ptr)) {
1015                ret = PTR_ERR(msg_ptr);
1016                goto out_fput;
1017        }
1018        msg_ptr->m_ts = msg_len;
1019        msg_ptr->m_type = msg_prio;
1020
1021        /*
1022         * msg_insert really wants us to have a valid, spare node struct so
1023         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1024         * fall back to that if necessary.
1025         */
1026        if (!info->node_cache)
1027                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1028
1029        spin_lock(&info->lock);
1030
1031        if (!info->node_cache && new_leaf) {
1032                /* Save our speculative allocation into the cache */
1033                INIT_LIST_HEAD(&new_leaf->msg_list);
1034                info->node_cache = new_leaf;
1035                new_leaf = NULL;
1036        } else {
1037                kfree(new_leaf);
1038        }
1039
1040        if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1041                if (f.file->f_flags & O_NONBLOCK) {
1042                        ret = -EAGAIN;
1043                } else {
1044                        wait.task = current;
1045                        wait.msg = (void *) msg_ptr;
1046                        wait.state = STATE_NONE;
1047                        ret = wq_sleep(info, SEND, timeout, &wait);
1048                        /*
1049                         * wq_sleep must be called with info->lock held, and
1050                         * returns with the lock released
1051                         */
1052                        goto out_free;
1053                }
1054        } else {
1055                receiver = wq_get_first_waiter(info, RECV);
1056                if (receiver) {
1057                        pipelined_send(&wake_q, info, msg_ptr, receiver);
1058                } else {
1059                        /* adds message to the queue */
1060                        ret = msg_insert(msg_ptr, info);
1061                        if (ret)
1062                                goto out_unlock;
1063                        __do_notify(info);
1064                }
1065                inode->i_atime = inode->i_mtime = inode->i_ctime =
1066                                current_time(inode);
1067        }
1068out_unlock:
1069        spin_unlock(&info->lock);
1070        wake_up_q(&wake_q);
1071out_free:
1072        if (ret)
1073                free_msg(msg_ptr);
1074out_fput:
1075        fdput(f);
1076out:
1077        return ret;
1078}
1079
1080static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1081                size_t msg_len, unsigned int __user *u_msg_prio,
1082                struct timespec64 *ts)
1083{
1084        ssize_t ret;
1085        struct msg_msg *msg_ptr;
1086        struct fd f;
1087        struct inode *inode;
1088        struct mqueue_inode_info *info;
1089        struct ext_wait_queue wait;
1090        ktime_t expires, *timeout = NULL;
1091        struct posix_msg_tree_node *new_leaf = NULL;
1092
1093        if (ts) {
1094                expires = timespec64_to_ktime(*ts);
1095                timeout = &expires;
1096        }
1097
1098        audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1099
1100        f = fdget(mqdes);
1101        if (unlikely(!f.file)) {
1102                ret = -EBADF;
1103                goto out;
1104        }
1105
1106        inode = file_inode(f.file);
1107        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108                ret = -EBADF;
1109                goto out_fput;
1110        }
1111        info = MQUEUE_I(inode);
1112        audit_file(f.file);
1113
1114        if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115                ret = -EBADF;
1116                goto out_fput;
1117        }
1118
1119        /* checks if buffer is big enough */
1120        if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121                ret = -EMSGSIZE;
1122                goto out_fput;
1123        }
1124
1125        /*
1126         * msg_insert really wants us to have a valid, spare node struct so
1127         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128         * fall back to that if necessary.
1129         */
1130        if (!info->node_cache)
1131                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132
1133        spin_lock(&info->lock);
1134
1135        if (!info->node_cache && new_leaf) {
1136                /* Save our speculative allocation into the cache */
1137                INIT_LIST_HEAD(&new_leaf->msg_list);
1138                info->node_cache = new_leaf;
1139        } else {
1140                kfree(new_leaf);
1141        }
1142
1143        if (info->attr.mq_curmsgs == 0) {
1144                if (f.file->f_flags & O_NONBLOCK) {
1145                        spin_unlock(&info->lock);
1146                        ret = -EAGAIN;
1147                } else {
1148                        wait.task = current;
1149                        wait.state = STATE_NONE;
1150                        ret = wq_sleep(info, RECV, timeout, &wait);
1151                        msg_ptr = wait.msg;
1152                }
1153        } else {
1154                DEFINE_WAKE_Q(wake_q);
1155
1156                msg_ptr = msg_get(info);
1157
1158                inode->i_atime = inode->i_mtime = inode->i_ctime =
1159                                current_time(inode);
1160
1161                /* There is now free space in queue. */
1162                pipelined_receive(&wake_q, info);
1163                spin_unlock(&info->lock);
1164                wake_up_q(&wake_q);
1165                ret = 0;
1166        }
1167        if (ret == 0) {
1168                ret = msg_ptr->m_ts;
1169
1170                if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171                        store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172                        ret = -EFAULT;
1173                }
1174                free_msg(msg_ptr);
1175        }
1176out_fput:
1177        fdput(f);
1178out:
1179        return ret;
1180}
1181
1182SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1183                size_t, msg_len, unsigned int, msg_prio,
1184                const struct __kernel_timespec __user *, u_abs_timeout)
1185{
1186        struct timespec64 ts, *p = NULL;
1187        if (u_abs_timeout) {
1188                int res = prepare_timeout(u_abs_timeout, &ts);
1189                if (res)
1190                        return res;
1191                p = &ts;
1192        }
1193        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1194}
1195
1196SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1197                size_t, msg_len, unsigned int __user *, u_msg_prio,
1198                const struct __kernel_timespec __user *, u_abs_timeout)
1199{
1200        struct timespec64 ts, *p = NULL;
1201        if (u_abs_timeout) {
1202                int res = prepare_timeout(u_abs_timeout, &ts);
1203                if (res)
1204                        return res;
1205                p = &ts;
1206        }
1207        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1208}
1209
1210/*
1211 * Notes: the case when user wants us to deregister (with NULL as pointer)
1212 * and he isn't currently owner of notification, will be silently discarded.
1213 * It isn't explicitly defined in the POSIX.
1214 */
1215static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1216{
1217        int ret;
1218        struct fd f;
1219        struct sock *sock;
1220        struct inode *inode;
1221        struct mqueue_inode_info *info;
1222        struct sk_buff *nc;
1223
1224        audit_mq_notify(mqdes, notification);
1225
1226        nc = NULL;
1227        sock = NULL;
1228        if (notification != NULL) {
1229                if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1230                             notification->sigev_notify != SIGEV_SIGNAL &&
1231                             notification->sigev_notify != SIGEV_THREAD))
1232                        return -EINVAL;
1233                if (notification->sigev_notify == SIGEV_SIGNAL &&
1234                        !valid_signal(notification->sigev_signo)) {
1235                        return -EINVAL;
1236                }
1237                if (notification->sigev_notify == SIGEV_THREAD) {
1238                        long timeo;
1239
1240                        /* create the notify skb */
1241                        nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1242                        if (!nc) {
1243                                ret = -ENOMEM;
1244                                goto out;
1245                        }
1246                        if (copy_from_user(nc->data,
1247                                        notification->sigev_value.sival_ptr,
1248                                        NOTIFY_COOKIE_LEN)) {
1249                                ret = -EFAULT;
1250                                goto out;
1251                        }
1252
1253                        /* TODO: add a header? */
1254                        skb_put(nc, NOTIFY_COOKIE_LEN);
1255                        /* and attach it to the socket */
1256retry:
1257                        f = fdget(notification->sigev_signo);
1258                        if (!f.file) {
1259                                ret = -EBADF;
1260                                goto out;
1261                        }
1262                        sock = netlink_getsockbyfilp(f.file);
1263                        fdput(f);
1264                        if (IS_ERR(sock)) {
1265                                ret = PTR_ERR(sock);
1266                                sock = NULL;
1267                                goto out;
1268                        }
1269
1270                        timeo = MAX_SCHEDULE_TIMEOUT;
1271                        ret = netlink_attachskb(sock, nc, &timeo, NULL);
1272                        if (ret == 1) {
1273                                sock = NULL;
1274                                goto retry;
1275                        }
1276                        if (ret) {
1277                                sock = NULL;
1278                                nc = NULL;
1279                                goto out;
1280                        }
1281                }
1282        }
1283
1284        f = fdget(mqdes);
1285        if (!f.file) {
1286                ret = -EBADF;
1287                goto out;
1288        }
1289
1290        inode = file_inode(f.file);
1291        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1292                ret = -EBADF;
1293                goto out_fput;
1294        }
1295        info = MQUEUE_I(inode);
1296
1297        ret = 0;
1298        spin_lock(&info->lock);
1299        if (notification == NULL) {
1300                if (info->notify_owner == task_tgid(current)) {
1301                        remove_notification(info);
1302                        inode->i_atime = inode->i_ctime = current_time(inode);
1303                }
1304        } else if (info->notify_owner != NULL) {
1305                ret = -EBUSY;
1306        } else {
1307                switch (notification->sigev_notify) {
1308                case SIGEV_NONE:
1309                        info->notify.sigev_notify = SIGEV_NONE;
1310                        break;
1311                case SIGEV_THREAD:
1312                        info->notify_sock = sock;
1313                        info->notify_cookie = nc;
1314                        sock = NULL;
1315                        nc = NULL;
1316                        info->notify.sigev_notify = SIGEV_THREAD;
1317                        break;
1318                case SIGEV_SIGNAL:
1319                        info->notify.sigev_signo = notification->sigev_signo;
1320                        info->notify.sigev_value = notification->sigev_value;
1321                        info->notify.sigev_notify = SIGEV_SIGNAL;
1322                        break;
1323                }
1324
1325                info->notify_owner = get_pid(task_tgid(current));
1326                info->notify_user_ns = get_user_ns(current_user_ns());
1327                inode->i_atime = inode->i_ctime = current_time(inode);
1328        }
1329        spin_unlock(&info->lock);
1330out_fput:
1331        fdput(f);
1332out:
1333        if (sock)
1334                netlink_detachskb(sock, nc);
1335        else if (nc)
1336                dev_kfree_skb(nc);
1337
1338        return ret;
1339}
1340
1341SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1342                const struct sigevent __user *, u_notification)
1343{
1344        struct sigevent n, *p = NULL;
1345        if (u_notification) {
1346                if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1347                        return -EFAULT;
1348                p = &n;
1349        }
1350        return do_mq_notify(mqdes, p);
1351}
1352
1353static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1354{
1355        struct fd f;
1356        struct inode *inode;
1357        struct mqueue_inode_info *info;
1358
1359        if (new && (new->mq_flags & (~O_NONBLOCK)))
1360                return -EINVAL;
1361
1362        f = fdget(mqdes);
1363        if (!f.file)
1364                return -EBADF;
1365
1366        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1367                fdput(f);
1368                return -EBADF;
1369        }
1370
1371        inode = file_inode(f.file);
1372        info = MQUEUE_I(inode);
1373
1374        spin_lock(&info->lock);
1375
1376        if (old) {
1377                *old = info->attr;
1378                old->mq_flags = f.file->f_flags & O_NONBLOCK;
1379        }
1380        if (new) {
1381                audit_mq_getsetattr(mqdes, new);
1382                spin_lock(&f.file->f_lock);
1383                if (new->mq_flags & O_NONBLOCK)
1384                        f.file->f_flags |= O_NONBLOCK;
1385                else
1386                        f.file->f_flags &= ~O_NONBLOCK;
1387                spin_unlock(&f.file->f_lock);
1388
1389                inode->i_atime = inode->i_ctime = current_time(inode);
1390        }
1391
1392        spin_unlock(&info->lock);
1393        fdput(f);
1394        return 0;
1395}
1396
1397SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1398                const struct mq_attr __user *, u_mqstat,
1399                struct mq_attr __user *, u_omqstat)
1400{
1401        int ret;
1402        struct mq_attr mqstat, omqstat;
1403        struct mq_attr *new = NULL, *old = NULL;
1404
1405        if (u_mqstat) {
1406                new = &mqstat;
1407                if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1408                        return -EFAULT;
1409        }
1410        if (u_omqstat)
1411                old = &omqstat;
1412
1413        ret = do_mq_getsetattr(mqdes, new, old);
1414        if (ret || !old)
1415                return ret;
1416
1417        if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1418                return -EFAULT;
1419        return 0;
1420}
1421
1422#ifdef CONFIG_COMPAT
1423
1424struct compat_mq_attr {
1425        compat_long_t mq_flags;      /* message queue flags                  */
1426        compat_long_t mq_maxmsg;     /* maximum number of messages           */
1427        compat_long_t mq_msgsize;    /* maximum message size                 */
1428        compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1429        compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1430};
1431
1432static inline int get_compat_mq_attr(struct mq_attr *attr,
1433                        const struct compat_mq_attr __user *uattr)
1434{
1435        struct compat_mq_attr v;
1436
1437        if (copy_from_user(&v, uattr, sizeof(*uattr)))
1438                return -EFAULT;
1439
1440        memset(attr, 0, sizeof(*attr));
1441        attr->mq_flags = v.mq_flags;
1442        attr->mq_maxmsg = v.mq_maxmsg;
1443        attr->mq_msgsize = v.mq_msgsize;
1444        attr->mq_curmsgs = v.mq_curmsgs;
1445        return 0;
1446}
1447
1448static inline int put_compat_mq_attr(const struct mq_attr *attr,
1449                        struct compat_mq_attr __user *uattr)
1450{
1451        struct compat_mq_attr v;
1452
1453        memset(&v, 0, sizeof(v));
1454        v.mq_flags = attr->mq_flags;
1455        v.mq_maxmsg = attr->mq_maxmsg;
1456        v.mq_msgsize = attr->mq_msgsize;
1457        v.mq_curmsgs = attr->mq_curmsgs;
1458        if (copy_to_user(uattr, &v, sizeof(*uattr)))
1459                return -EFAULT;
1460        return 0;
1461}
1462
1463COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1464                       int, oflag, compat_mode_t, mode,
1465                       struct compat_mq_attr __user *, u_attr)
1466{
1467        struct mq_attr attr, *p = NULL;
1468        if (u_attr && oflag & O_CREAT) {
1469                p = &attr;
1470                if (get_compat_mq_attr(&attr, u_attr))
1471                        return -EFAULT;
1472        }
1473        return do_mq_open(u_name, oflag, mode, p);
1474}
1475
1476COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1477                       const struct compat_sigevent __user *, u_notification)
1478{
1479        struct sigevent n, *p = NULL;
1480        if (u_notification) {
1481                if (get_compat_sigevent(&n, u_notification))
1482                        return -EFAULT;
1483                if (n.sigev_notify == SIGEV_THREAD)
1484                        n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1485                p = &n;
1486        }
1487        return do_mq_notify(mqdes, p);
1488}
1489
1490COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1491                       const struct compat_mq_attr __user *, u_mqstat,
1492                       struct compat_mq_attr __user *, u_omqstat)
1493{
1494        int ret;
1495        struct mq_attr mqstat, omqstat;
1496        struct mq_attr *new = NULL, *old = NULL;
1497
1498        if (u_mqstat) {
1499                new = &mqstat;
1500                if (get_compat_mq_attr(new, u_mqstat))
1501                        return -EFAULT;
1502        }
1503        if (u_omqstat)
1504                old = &omqstat;
1505
1506        ret = do_mq_getsetattr(mqdes, new, old);
1507        if (ret || !old)
1508                return ret;
1509
1510        if (put_compat_mq_attr(old, u_omqstat))
1511                return -EFAULT;
1512        return 0;
1513}
1514#endif
1515
1516#ifdef CONFIG_COMPAT_32BIT_TIME
1517static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1518                                   struct timespec64 *ts)
1519{
1520        if (get_old_timespec32(ts, p))
1521                return -EFAULT;
1522        if (!timespec64_valid(ts))
1523                return -EINVAL;
1524        return 0;
1525}
1526
1527SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1528                const char __user *, u_msg_ptr,
1529                unsigned int, msg_len, unsigned int, msg_prio,
1530                const struct old_timespec32 __user *, u_abs_timeout)
1531{
1532        struct timespec64 ts, *p = NULL;
1533        if (u_abs_timeout) {
1534                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1535                if (res)
1536                        return res;
1537                p = &ts;
1538        }
1539        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1540}
1541
1542SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1543                char __user *, u_msg_ptr,
1544                unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1545                const struct old_timespec32 __user *, u_abs_timeout)
1546{
1547        struct timespec64 ts, *p = NULL;
1548        if (u_abs_timeout) {
1549                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1550                if (res)
1551                        return res;
1552                p = &ts;
1553        }
1554        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1555}
1556#endif
1557
1558static const struct inode_operations mqueue_dir_inode_operations = {
1559        .lookup = simple_lookup,
1560        .create = mqueue_create,
1561        .unlink = mqueue_unlink,
1562};
1563
1564static const struct file_operations mqueue_file_operations = {
1565        .flush = mqueue_flush_file,
1566        .poll = mqueue_poll_file,
1567        .read = mqueue_read_file,
1568        .llseek = default_llseek,
1569};
1570
1571static const struct super_operations mqueue_super_ops = {
1572        .alloc_inode = mqueue_alloc_inode,
1573        .free_inode = mqueue_free_inode,
1574        .evict_inode = mqueue_evict_inode,
1575        .statfs = simple_statfs,
1576};
1577
1578static const struct fs_context_operations mqueue_fs_context_ops = {
1579        .free           = mqueue_fs_context_free,
1580        .get_tree       = mqueue_get_tree,
1581};
1582
1583static struct file_system_type mqueue_fs_type = {
1584        .name                   = "mqueue",
1585        .init_fs_context        = mqueue_init_fs_context,
1586        .kill_sb                = kill_litter_super,
1587        .fs_flags               = FS_USERNS_MOUNT,
1588};
1589
1590int mq_init_ns(struct ipc_namespace *ns)
1591{
1592        struct vfsmount *m;
1593
1594        ns->mq_queues_count  = 0;
1595        ns->mq_queues_max    = DFLT_QUEUESMAX;
1596        ns->mq_msg_max       = DFLT_MSGMAX;
1597        ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1598        ns->mq_msg_default   = DFLT_MSG;
1599        ns->mq_msgsize_default  = DFLT_MSGSIZE;
1600
1601        m = mq_create_mount(ns);
1602        if (IS_ERR(m))
1603                return PTR_ERR(m);
1604        ns->mq_mnt = m;
1605        return 0;
1606}
1607
1608void mq_clear_sbinfo(struct ipc_namespace *ns)
1609{
1610        ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1611}
1612
1613void mq_put_mnt(struct ipc_namespace *ns)
1614{
1615        kern_unmount(ns->mq_mnt);
1616}
1617
1618static int __init init_mqueue_fs(void)
1619{
1620        int error;
1621
1622        mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1623                                sizeof(struct mqueue_inode_info), 0,
1624                                SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1625        if (mqueue_inode_cachep == NULL)
1626                return -ENOMEM;
1627
1628        /* ignore failures - they are not fatal */
1629        mq_sysctl_table = mq_register_sysctl_table();
1630
1631        error = register_filesystem(&mqueue_fs_type);
1632        if (error)
1633                goto out_sysctl;
1634
1635        spin_lock_init(&mq_lock);
1636
1637        error = mq_init_ns(&init_ipc_ns);
1638        if (error)
1639                goto out_filesystem;
1640
1641        return 0;
1642
1643out_filesystem:
1644        unregister_filesystem(&mqueue_fs_type);
1645out_sysctl:
1646        if (mq_sysctl_table)
1647                unregister_sysctl_table(mq_sysctl_table);
1648        kmem_cache_destroy(mqueue_inode_cachep);
1649        return error;
1650}
1651
1652device_initcall(init_mqueue_fs);
1653