linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* bpf/cpumap.c
   3 *
   4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bpf.h>
  20#include <linux/filter.h>
  21#include <linux/ptr_ring.h>
  22#include <net/xdp.h>
  23
  24#include <linux/sched.h>
  25#include <linux/workqueue.h>
  26#include <linux/kthread.h>
  27#include <linux/capability.h>
  28#include <trace/events/xdp.h>
  29
  30#include <linux/netdevice.h>   /* netif_receive_skb_core */
  31#include <linux/etherdevice.h> /* eth_type_trans */
  32
  33/* General idea: XDP packets getting XDP redirected to another CPU,
  34 * will maximum be stored/queued for one driver ->poll() call.  It is
  35 * guaranteed that setting flush bit and flush operation happen on
  36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  37 * which queue in bpf_cpu_map_entry contains packets.
  38 */
  39
  40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  41struct xdp_bulk_queue {
  42        void *q[CPU_MAP_BULK_SIZE];
  43        unsigned int count;
  44};
  45
  46/* Struct for every remote "destination" CPU in map */
  47struct bpf_cpu_map_entry {
  48        u32 cpu;    /* kthread CPU and map index */
  49        int map_id; /* Back reference to map */
  50        u32 qsize;  /* Queue size placeholder for map lookup */
  51
  52        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  53        struct xdp_bulk_queue __percpu *bulkq;
  54
  55        /* Queue with potential multi-producers, and single-consumer kthread */
  56        struct ptr_ring *queue;
  57        struct task_struct *kthread;
  58        struct work_struct kthread_stop_wq;
  59
  60        atomic_t refcnt; /* Control when this struct can be free'ed */
  61        struct rcu_head rcu;
  62};
  63
  64struct bpf_cpu_map {
  65        struct bpf_map map;
  66        /* Below members specific for map type */
  67        struct bpf_cpu_map_entry **cpu_map;
  68        unsigned long __percpu *flush_needed;
  69};
  70
  71static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
  72                             struct xdp_bulk_queue *bq, bool in_napi_ctx);
  73
  74static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
  75{
  76        return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
  77}
  78
  79static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  80{
  81        struct bpf_cpu_map *cmap;
  82        int err = -ENOMEM;
  83        u64 cost;
  84        int ret;
  85
  86        if (!capable(CAP_SYS_ADMIN))
  87                return ERR_PTR(-EPERM);
  88
  89        /* check sanity of attributes */
  90        if (attr->max_entries == 0 || attr->key_size != 4 ||
  91            attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  92                return ERR_PTR(-EINVAL);
  93
  94        cmap = kzalloc(sizeof(*cmap), GFP_USER);
  95        if (!cmap)
  96                return ERR_PTR(-ENOMEM);
  97
  98        bpf_map_init_from_attr(&cmap->map, attr);
  99
 100        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 101        if (cmap->map.max_entries > NR_CPUS) {
 102                err = -E2BIG;
 103                goto free_cmap;
 104        }
 105
 106        /* make sure page count doesn't overflow */
 107        cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
 108        cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
 109        if (cost >= U32_MAX - PAGE_SIZE)
 110                goto free_cmap;
 111        cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 112
 113        /* Notice returns -EPERM on if map size is larger than memlock limit */
 114        ret = bpf_map_precharge_memlock(cmap->map.pages);
 115        if (ret) {
 116                err = ret;
 117                goto free_cmap;
 118        }
 119
 120        /* A per cpu bitfield with a bit per possible CPU in map  */
 121        cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
 122                                            __alignof__(unsigned long));
 123        if (!cmap->flush_needed)
 124                goto free_cmap;
 125
 126        /* Alloc array for possible remote "destination" CPUs */
 127        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 128                                           sizeof(struct bpf_cpu_map_entry *),
 129                                           cmap->map.numa_node);
 130        if (!cmap->cpu_map)
 131                goto free_percpu;
 132
 133        return &cmap->map;
 134free_percpu:
 135        free_percpu(cmap->flush_needed);
 136free_cmap:
 137        kfree(cmap);
 138        return ERR_PTR(err);
 139}
 140
 141static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 142{
 143        atomic_inc(&rcpu->refcnt);
 144}
 145
 146/* called from workqueue, to workaround syscall using preempt_disable */
 147static void cpu_map_kthread_stop(struct work_struct *work)
 148{
 149        struct bpf_cpu_map_entry *rcpu;
 150
 151        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 152
 153        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 154         * as it waits until all in-flight call_rcu() callbacks complete.
 155         */
 156        rcu_barrier();
 157
 158        /* kthread_stop will wake_up_process and wait for it to complete */
 159        kthread_stop(rcpu->kthread);
 160}
 161
 162static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
 163                                         struct xdp_frame *xdpf,
 164                                         struct sk_buff *skb)
 165{
 166        unsigned int hard_start_headroom;
 167        unsigned int frame_size;
 168        void *pkt_data_start;
 169
 170        /* Part of headroom was reserved to xdpf */
 171        hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
 172
 173        /* build_skb need to place skb_shared_info after SKB end, and
 174         * also want to know the memory "truesize".  Thus, need to
 175         * know the memory frame size backing xdp_buff.
 176         *
 177         * XDP was designed to have PAGE_SIZE frames, but this
 178         * assumption is not longer true with ixgbe and i40e.  It
 179         * would be preferred to set frame_size to 2048 or 4096
 180         * depending on the driver.
 181         *   frame_size = 2048;
 182         *   frame_len  = frame_size - sizeof(*xdp_frame);
 183         *
 184         * Instead, with info avail, skb_shared_info in placed after
 185         * packet len.  This, unfortunately fakes the truesize.
 186         * Another disadvantage of this approach, the skb_shared_info
 187         * is not at a fixed memory location, with mixed length
 188         * packets, which is bad for cache-line hotness.
 189         */
 190        frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
 191                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 192
 193        pkt_data_start = xdpf->data - hard_start_headroom;
 194        skb = build_skb_around(skb, pkt_data_start, frame_size);
 195        if (unlikely(!skb))
 196                return NULL;
 197
 198        skb_reserve(skb, hard_start_headroom);
 199        __skb_put(skb, xdpf->len);
 200        if (xdpf->metasize)
 201                skb_metadata_set(skb, xdpf->metasize);
 202
 203        /* Essential SKB info: protocol and skb->dev */
 204        skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
 205
 206        /* Optional SKB info, currently missing:
 207         * - HW checksum info           (skb->ip_summed)
 208         * - HW RX hash                 (skb_set_hash)
 209         * - RX ring dev queue index    (skb_record_rx_queue)
 210         */
 211
 212        /* Allow SKB to reuse area used by xdp_frame */
 213        xdp_scrub_frame(xdpf);
 214
 215        return skb;
 216}
 217
 218static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 219{
 220        /* The tear-down procedure should have made sure that queue is
 221         * empty.  See __cpu_map_entry_replace() and work-queue
 222         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 223         * gracefully and warn once.
 224         */
 225        struct xdp_frame *xdpf;
 226
 227        while ((xdpf = ptr_ring_consume(ring)))
 228                if (WARN_ON_ONCE(xdpf))
 229                        xdp_return_frame(xdpf);
 230}
 231
 232static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 233{
 234        if (atomic_dec_and_test(&rcpu->refcnt)) {
 235                /* The queue should be empty at this point */
 236                __cpu_map_ring_cleanup(rcpu->queue);
 237                ptr_ring_cleanup(rcpu->queue, NULL);
 238                kfree(rcpu->queue);
 239                kfree(rcpu);
 240        }
 241}
 242
 243#define CPUMAP_BATCH 8
 244
 245static int cpu_map_kthread_run(void *data)
 246{
 247        struct bpf_cpu_map_entry *rcpu = data;
 248
 249        set_current_state(TASK_INTERRUPTIBLE);
 250
 251        /* When kthread gives stop order, then rcpu have been disconnected
 252         * from map, thus no new packets can enter. Remaining in-flight
 253         * per CPU stored packets are flushed to this queue.  Wait honoring
 254         * kthread_stop signal until queue is empty.
 255         */
 256        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 257                unsigned int drops = 0, sched = 0;
 258                void *frames[CPUMAP_BATCH];
 259                void *skbs[CPUMAP_BATCH];
 260                gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 261                int i, n, m;
 262
 263                /* Release CPU reschedule checks */
 264                if (__ptr_ring_empty(rcpu->queue)) {
 265                        set_current_state(TASK_INTERRUPTIBLE);
 266                        /* Recheck to avoid lost wake-up */
 267                        if (__ptr_ring_empty(rcpu->queue)) {
 268                                schedule();
 269                                sched = 1;
 270                        } else {
 271                                __set_current_state(TASK_RUNNING);
 272                        }
 273                } else {
 274                        sched = cond_resched();
 275                }
 276
 277                /*
 278                 * The bpf_cpu_map_entry is single consumer, with this
 279                 * kthread CPU pinned. Lockless access to ptr_ring
 280                 * consume side valid as no-resize allowed of queue.
 281                 */
 282                n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
 283
 284                for (i = 0; i < n; i++) {
 285                        void *f = frames[i];
 286                        struct page *page = virt_to_page(f);
 287
 288                        /* Bring struct page memory area to curr CPU. Read by
 289                         * build_skb_around via page_is_pfmemalloc(), and when
 290                         * freed written by page_frag_free call.
 291                         */
 292                        prefetchw(page);
 293                }
 294
 295                m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
 296                if (unlikely(m == 0)) {
 297                        for (i = 0; i < n; i++)
 298                                skbs[i] = NULL; /* effect: xdp_return_frame */
 299                        drops = n;
 300                }
 301
 302                local_bh_disable();
 303                for (i = 0; i < n; i++) {
 304                        struct xdp_frame *xdpf = frames[i];
 305                        struct sk_buff *skb = skbs[i];
 306                        int ret;
 307
 308                        skb = cpu_map_build_skb(rcpu, xdpf, skb);
 309                        if (!skb) {
 310                                xdp_return_frame(xdpf);
 311                                continue;
 312                        }
 313
 314                        /* Inject into network stack */
 315                        ret = netif_receive_skb_core(skb);
 316                        if (ret == NET_RX_DROP)
 317                                drops++;
 318                }
 319                /* Feedback loop via tracepoint */
 320                trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
 321
 322                local_bh_enable(); /* resched point, may call do_softirq() */
 323        }
 324        __set_current_state(TASK_RUNNING);
 325
 326        put_cpu_map_entry(rcpu);
 327        return 0;
 328}
 329
 330static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
 331                                                       int map_id)
 332{
 333        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 334        struct bpf_cpu_map_entry *rcpu;
 335        int numa, err;
 336
 337        /* Have map->numa_node, but choose node of redirect target CPU */
 338        numa = cpu_to_node(cpu);
 339
 340        rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
 341        if (!rcpu)
 342                return NULL;
 343
 344        /* Alloc percpu bulkq */
 345        rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
 346                                         sizeof(void *), gfp);
 347        if (!rcpu->bulkq)
 348                goto free_rcu;
 349
 350        /* Alloc queue */
 351        rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 352        if (!rcpu->queue)
 353                goto free_bulkq;
 354
 355        err = ptr_ring_init(rcpu->queue, qsize, gfp);
 356        if (err)
 357                goto free_queue;
 358
 359        rcpu->cpu    = cpu;
 360        rcpu->map_id = map_id;
 361        rcpu->qsize  = qsize;
 362
 363        /* Setup kthread */
 364        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 365                                               "cpumap/%d/map:%d", cpu, map_id);
 366        if (IS_ERR(rcpu->kthread))
 367                goto free_ptr_ring;
 368
 369        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 370        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 371
 372        /* Make sure kthread runs on a single CPU */
 373        kthread_bind(rcpu->kthread, cpu);
 374        wake_up_process(rcpu->kthread);
 375
 376        return rcpu;
 377
 378free_ptr_ring:
 379        ptr_ring_cleanup(rcpu->queue, NULL);
 380free_queue:
 381        kfree(rcpu->queue);
 382free_bulkq:
 383        free_percpu(rcpu->bulkq);
 384free_rcu:
 385        kfree(rcpu);
 386        return NULL;
 387}
 388
 389static void __cpu_map_entry_free(struct rcu_head *rcu)
 390{
 391        struct bpf_cpu_map_entry *rcpu;
 392        int cpu;
 393
 394        /* This cpu_map_entry have been disconnected from map and one
 395         * RCU graze-period have elapsed.  Thus, XDP cannot queue any
 396         * new packets and cannot change/set flush_needed that can
 397         * find this entry.
 398         */
 399        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 400
 401        /* Flush remaining packets in percpu bulkq */
 402        for_each_online_cpu(cpu) {
 403                struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
 404
 405                /* No concurrent bq_enqueue can run at this point */
 406                bq_flush_to_queue(rcpu, bq, false);
 407        }
 408        free_percpu(rcpu->bulkq);
 409        /* Cannot kthread_stop() here, last put free rcpu resources */
 410        put_cpu_map_entry(rcpu);
 411}
 412
 413/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 414 * ensure any driver rcu critical sections have completed, but this
 415 * does not guarantee a flush has happened yet. Because driver side
 416 * rcu_read_lock/unlock only protects the running XDP program.  The
 417 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 418 * pending flush op doesn't fail.
 419 *
 420 * The bpf_cpu_map_entry is still used by the kthread, and there can
 421 * still be pending packets (in queue and percpu bulkq).  A refcnt
 422 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 423 * resources.
 424 *
 425 * The rcu callback __cpu_map_entry_free flush remaining packets in
 426 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 427 * preemption, cannot call kthread_stop() to make sure queue is empty.
 428 * Instead a work_queue is started for stopping kthread,
 429 * cpu_map_kthread_stop, which waits for an RCU graze period before
 430 * stopping kthread, emptying the queue.
 431 */
 432static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 433                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 434{
 435        struct bpf_cpu_map_entry *old_rcpu;
 436
 437        old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
 438        if (old_rcpu) {
 439                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 440                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 441                schedule_work(&old_rcpu->kthread_stop_wq);
 442        }
 443}
 444
 445static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 446{
 447        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 448        u32 key_cpu = *(u32 *)key;
 449
 450        if (key_cpu >= map->max_entries)
 451                return -EINVAL;
 452
 453        /* notice caller map_delete_elem() use preempt_disable() */
 454        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 455        return 0;
 456}
 457
 458static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 459                               u64 map_flags)
 460{
 461        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 462        struct bpf_cpu_map_entry *rcpu;
 463
 464        /* Array index key correspond to CPU number */
 465        u32 key_cpu = *(u32 *)key;
 466        /* Value is the queue size */
 467        u32 qsize = *(u32 *)value;
 468
 469        if (unlikely(map_flags > BPF_EXIST))
 470                return -EINVAL;
 471        if (unlikely(key_cpu >= cmap->map.max_entries))
 472                return -E2BIG;
 473        if (unlikely(map_flags == BPF_NOEXIST))
 474                return -EEXIST;
 475        if (unlikely(qsize > 16384)) /* sanity limit on qsize */
 476                return -EOVERFLOW;
 477
 478        /* Make sure CPU is a valid possible cpu */
 479        if (!cpu_possible(key_cpu))
 480                return -ENODEV;
 481
 482        if (qsize == 0) {
 483                rcpu = NULL; /* Same as deleting */
 484        } else {
 485                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 486                rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
 487                if (!rcpu)
 488                        return -ENOMEM;
 489        }
 490        rcu_read_lock();
 491        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 492        rcu_read_unlock();
 493        return 0;
 494}
 495
 496static void cpu_map_free(struct bpf_map *map)
 497{
 498        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 499        int cpu;
 500        u32 i;
 501
 502        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 503         * so the bpf programs (can be more than one that used this map) were
 504         * disconnected from events. Wait for outstanding critical sections in
 505         * these programs to complete. The rcu critical section only guarantees
 506         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 507         * It does __not__ ensure pending flush operations (if any) are
 508         * complete.
 509         */
 510
 511        bpf_clear_redirect_map(map);
 512        synchronize_rcu();
 513
 514        /* To ensure all pending flush operations have completed wait for flush
 515         * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
 516         * Because the above synchronize_rcu() ensures the map is disconnected
 517         * from the program we can assume no new bits will be set.
 518         */
 519        for_each_online_cpu(cpu) {
 520                unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
 521
 522                while (!bitmap_empty(bitmap, cmap->map.max_entries))
 523                        cond_resched();
 524        }
 525
 526        /* For cpu_map the remote CPUs can still be using the entries
 527         * (struct bpf_cpu_map_entry).
 528         */
 529        for (i = 0; i < cmap->map.max_entries; i++) {
 530                struct bpf_cpu_map_entry *rcpu;
 531
 532                rcpu = READ_ONCE(cmap->cpu_map[i]);
 533                if (!rcpu)
 534                        continue;
 535
 536                /* bq flush and cleanup happens after RCU graze-period */
 537                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 538        }
 539        free_percpu(cmap->flush_needed);
 540        bpf_map_area_free(cmap->cpu_map);
 541        kfree(cmap);
 542}
 543
 544struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 545{
 546        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 547        struct bpf_cpu_map_entry *rcpu;
 548
 549        if (key >= map->max_entries)
 550                return NULL;
 551
 552        rcpu = READ_ONCE(cmap->cpu_map[key]);
 553        return rcpu;
 554}
 555
 556static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 557{
 558        struct bpf_cpu_map_entry *rcpu =
 559                __cpu_map_lookup_elem(map, *(u32 *)key);
 560
 561        return rcpu ? &rcpu->qsize : NULL;
 562}
 563
 564static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 565{
 566        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 567        u32 index = key ? *(u32 *)key : U32_MAX;
 568        u32 *next = next_key;
 569
 570        if (index >= cmap->map.max_entries) {
 571                *next = 0;
 572                return 0;
 573        }
 574
 575        if (index == cmap->map.max_entries - 1)
 576                return -ENOENT;
 577        *next = index + 1;
 578        return 0;
 579}
 580
 581const struct bpf_map_ops cpu_map_ops = {
 582        .map_alloc              = cpu_map_alloc,
 583        .map_free               = cpu_map_free,
 584        .map_delete_elem        = cpu_map_delete_elem,
 585        .map_update_elem        = cpu_map_update_elem,
 586        .map_lookup_elem        = cpu_map_lookup_elem,
 587        .map_get_next_key       = cpu_map_get_next_key,
 588        .map_check_btf          = map_check_no_btf,
 589};
 590
 591static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
 592                             struct xdp_bulk_queue *bq, bool in_napi_ctx)
 593{
 594        unsigned int processed = 0, drops = 0;
 595        const int to_cpu = rcpu->cpu;
 596        struct ptr_ring *q;
 597        int i;
 598
 599        if (unlikely(!bq->count))
 600                return 0;
 601
 602        q = rcpu->queue;
 603        spin_lock(&q->producer_lock);
 604
 605        for (i = 0; i < bq->count; i++) {
 606                struct xdp_frame *xdpf = bq->q[i];
 607                int err;
 608
 609                err = __ptr_ring_produce(q, xdpf);
 610                if (err) {
 611                        drops++;
 612                        if (likely(in_napi_ctx))
 613                                xdp_return_frame_rx_napi(xdpf);
 614                        else
 615                                xdp_return_frame(xdpf);
 616                }
 617                processed++;
 618        }
 619        bq->count = 0;
 620        spin_unlock(&q->producer_lock);
 621
 622        /* Feedback loop via tracepoints */
 623        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 624        return 0;
 625}
 626
 627/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 628 * Thus, safe percpu variable access.
 629 */
 630static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 631{
 632        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 633
 634        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 635                bq_flush_to_queue(rcpu, bq, true);
 636
 637        /* Notice, xdp_buff/page MUST be queued here, long enough for
 638         * driver to code invoking us to finished, due to driver
 639         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 640         *
 641         * Thus, incoming xdp_frame is always queued here (else we race
 642         * with another CPU on page-refcnt and remaining driver code).
 643         * Queue time is very short, as driver will invoke flush
 644         * operation, when completing napi->poll call.
 645         */
 646        bq->q[bq->count++] = xdpf;
 647        return 0;
 648}
 649
 650int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
 651                    struct net_device *dev_rx)
 652{
 653        struct xdp_frame *xdpf;
 654
 655        xdpf = convert_to_xdp_frame(xdp);
 656        if (unlikely(!xdpf))
 657                return -EOVERFLOW;
 658
 659        /* Info needed when constructing SKB on remote CPU */
 660        xdpf->dev_rx = dev_rx;
 661
 662        bq_enqueue(rcpu, xdpf);
 663        return 0;
 664}
 665
 666void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
 667{
 668        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 669        unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
 670
 671        __set_bit(bit, bitmap);
 672}
 673
 674void __cpu_map_flush(struct bpf_map *map)
 675{
 676        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 677        unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
 678        u32 bit;
 679
 680        /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
 681         * and __cpu_map_flush() happen on same CPU. Thus, the percpu
 682         * bitmap indicate which percpu bulkq have packets.
 683         */
 684        for_each_set_bit(bit, bitmap, map->max_entries) {
 685                struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
 686                struct xdp_bulk_queue *bq;
 687
 688                /* This is possible if entry is removed by user space
 689                 * between xdp redirect and flush op.
 690                 */
 691                if (unlikely(!rcpu))
 692                        continue;
 693
 694                __clear_bit(bit, bitmap);
 695
 696                /* Flush all frames in bulkq to real queue */
 697                bq = this_cpu_ptr(rcpu->bulkq);
 698                bq_flush_to_queue(rcpu, bq, true);
 699
 700                /* If already running, costs spin_lock_irqsave + smb_mb */
 701                wake_up_process(rcpu->kthread);
 702        }
 703}
 704