linux/kernel/bpf/lpm_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Longest prefix match list implementation
   4 *
   5 * Copyright (c) 2016,2017 Daniel Mack
   6 * Copyright (c) 2016 David Herrmann
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/btf.h>
  11#include <linux/err.h>
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/vmalloc.h>
  15#include <net/ipv6.h>
  16#include <uapi/linux/btf.h>
  17
  18/* Intermediate node */
  19#define LPM_TREE_NODE_FLAG_IM BIT(0)
  20
  21struct lpm_trie_node;
  22
  23struct lpm_trie_node {
  24        struct rcu_head rcu;
  25        struct lpm_trie_node __rcu      *child[2];
  26        u32                             prefixlen;
  27        u32                             flags;
  28        u8                              data[0];
  29};
  30
  31struct lpm_trie {
  32        struct bpf_map                  map;
  33        struct lpm_trie_node __rcu      *root;
  34        size_t                          n_entries;
  35        size_t                          max_prefixlen;
  36        size_t                          data_size;
  37        raw_spinlock_t                  lock;
  38};
  39
  40/* This trie implements a longest prefix match algorithm that can be used to
  41 * match IP addresses to a stored set of ranges.
  42 *
  43 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
  44 * interpreted as big endian, so data[0] stores the most significant byte.
  45 *
  46 * Match ranges are internally stored in instances of struct lpm_trie_node
  47 * which each contain their prefix length as well as two pointers that may
  48 * lead to more nodes containing more specific matches. Each node also stores
  49 * a value that is defined by and returned to userspace via the update_elem
  50 * and lookup functions.
  51 *
  52 * For instance, let's start with a trie that was created with a prefix length
  53 * of 32, so it can be used for IPv4 addresses, and one single element that
  54 * matches 192.168.0.0/16. The data array would hence contain
  55 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
  56 * stick to IP-address notation for readability though.
  57 *
  58 * As the trie is empty initially, the new node (1) will be places as root
  59 * node, denoted as (R) in the example below. As there are no other node, both
  60 * child pointers are %NULL.
  61 *
  62 *              +----------------+
  63 *              |       (1)  (R) |
  64 *              | 192.168.0.0/16 |
  65 *              |    value: 1    |
  66 *              |   [0]    [1]   |
  67 *              +----------------+
  68 *
  69 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
  70 * a node with the same data and a smaller prefix (ie, a less specific one),
  71 * node (2) will become a child of (1). In child index depends on the next bit
  72 * that is outside of what (1) matches, and that bit is 0, so (2) will be
  73 * child[0] of (1):
  74 *
  75 *              +----------------+
  76 *              |       (1)  (R) |
  77 *              | 192.168.0.0/16 |
  78 *              |    value: 1    |
  79 *              |   [0]    [1]   |
  80 *              +----------------+
  81 *                   |
  82 *    +----------------+
  83 *    |       (2)      |
  84 *    | 192.168.0.0/24 |
  85 *    |    value: 2    |
  86 *    |   [0]    [1]   |
  87 *    +----------------+
  88 *
  89 * The child[1] slot of (1) could be filled with another node which has bit #17
  90 * (the next bit after the ones that (1) matches on) set to 1. For instance,
  91 * 192.168.128.0/24:
  92 *
  93 *              +----------------+
  94 *              |       (1)  (R) |
  95 *              | 192.168.0.0/16 |
  96 *              |    value: 1    |
  97 *              |   [0]    [1]   |
  98 *              +----------------+
  99 *                   |      |
 100 *    +----------------+  +------------------+
 101 *    |       (2)      |  |        (3)       |
 102 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 103 *    |    value: 2    |  |     value: 3     |
 104 *    |   [0]    [1]   |  |    [0]    [1]    |
 105 *    +----------------+  +------------------+
 106 *
 107 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 108 * it, node (1) is looked at first, and because (4) of the semantics laid out
 109 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 110 * However, that slot is already allocated, so a new node is needed in between.
 111 * That node does not have a value attached to it and it will never be
 112 * returned to users as result of a lookup. It is only there to differentiate
 113 * the traversal further. It will get a prefix as wide as necessary to
 114 * distinguish its two children:
 115 *
 116 *                      +----------------+
 117 *                      |       (1)  (R) |
 118 *                      | 192.168.0.0/16 |
 119 *                      |    value: 1    |
 120 *                      |   [0]    [1]   |
 121 *                      +----------------+
 122 *                           |      |
 123 *            +----------------+  +------------------+
 124 *            |       (4)  (I) |  |        (3)       |
 125 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 126 *            |    value: ---  |  |     value: 3     |
 127 *            |   [0]    [1]   |  |    [0]    [1]    |
 128 *            +----------------+  +------------------+
 129 *                 |      |
 130 *  +----------------+  +----------------+
 131 *  |       (2)      |  |       (5)      |
 132 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 133 *  |    value: 2    |  |     value: 5   |
 134 *  |   [0]    [1]   |  |   [0]    [1]   |
 135 *  +----------------+  +----------------+
 136 *
 137 * 192.168.1.1/32 would be a child of (5) etc.
 138 *
 139 * An intermediate node will be turned into a 'real' node on demand. In the
 140 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 141 *
 142 * A fully populated trie would have a height of 32 nodes, as the trie was
 143 * created with a prefix length of 32.
 144 *
 145 * The lookup starts at the root node. If the current node matches and if there
 146 * is a child that can be used to become more specific, the trie is traversed
 147 * downwards. The last node in the traversal that is a non-intermediate one is
 148 * returned.
 149 */
 150
 151static inline int extract_bit(const u8 *data, size_t index)
 152{
 153        return !!(data[index / 8] & (1 << (7 - (index % 8))));
 154}
 155
 156/**
 157 * longest_prefix_match() - determine the longest prefix
 158 * @trie:       The trie to get internal sizes from
 159 * @node:       The node to operate on
 160 * @key:        The key to compare to @node
 161 *
 162 * Determine the longest prefix of @node that matches the bits in @key.
 163 */
 164static size_t longest_prefix_match(const struct lpm_trie *trie,
 165                                   const struct lpm_trie_node *node,
 166                                   const struct bpf_lpm_trie_key *key)
 167{
 168        u32 limit = min(node->prefixlen, key->prefixlen);
 169        u32 prefixlen = 0, i = 0;
 170
 171        BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
 172        BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
 173
 174#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
 175
 176        /* data_size >= 16 has very small probability.
 177         * We do not use a loop for optimal code generation.
 178         */
 179        if (trie->data_size >= 8) {
 180                u64 diff = be64_to_cpu(*(__be64 *)node->data ^
 181                                       *(__be64 *)key->data);
 182
 183                prefixlen = 64 - fls64(diff);
 184                if (prefixlen >= limit)
 185                        return limit;
 186                if (diff)
 187                        return prefixlen;
 188                i = 8;
 189        }
 190#endif
 191
 192        while (trie->data_size >= i + 4) {
 193                u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
 194                                       *(__be32 *)&key->data[i]);
 195
 196                prefixlen += 32 - fls(diff);
 197                if (prefixlen >= limit)
 198                        return limit;
 199                if (diff)
 200                        return prefixlen;
 201                i += 4;
 202        }
 203
 204        if (trie->data_size >= i + 2) {
 205                u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
 206                                       *(__be16 *)&key->data[i]);
 207
 208                prefixlen += 16 - fls(diff);
 209                if (prefixlen >= limit)
 210                        return limit;
 211                if (diff)
 212                        return prefixlen;
 213                i += 2;
 214        }
 215
 216        if (trie->data_size >= i + 1) {
 217                prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
 218
 219                if (prefixlen >= limit)
 220                        return limit;
 221        }
 222
 223        return prefixlen;
 224}
 225
 226/* Called from syscall or from eBPF program */
 227static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 228{
 229        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 230        struct lpm_trie_node *node, *found = NULL;
 231        struct bpf_lpm_trie_key *key = _key;
 232
 233        /* Start walking the trie from the root node ... */
 234
 235        for (node = rcu_dereference(trie->root); node;) {
 236                unsigned int next_bit;
 237                size_t matchlen;
 238
 239                /* Determine the longest prefix of @node that matches @key.
 240                 * If it's the maximum possible prefix for this trie, we have
 241                 * an exact match and can return it directly.
 242                 */
 243                matchlen = longest_prefix_match(trie, node, key);
 244                if (matchlen == trie->max_prefixlen) {
 245                        found = node;
 246                        break;
 247                }
 248
 249                /* If the number of bits that match is smaller than the prefix
 250                 * length of @node, bail out and return the node we have seen
 251                 * last in the traversal (ie, the parent).
 252                 */
 253                if (matchlen < node->prefixlen)
 254                        break;
 255
 256                /* Consider this node as return candidate unless it is an
 257                 * artificially added intermediate one.
 258                 */
 259                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 260                        found = node;
 261
 262                /* If the node match is fully satisfied, let's see if we can
 263                 * become more specific. Determine the next bit in the key and
 264                 * traverse down.
 265                 */
 266                next_bit = extract_bit(key->data, node->prefixlen);
 267                node = rcu_dereference(node->child[next_bit]);
 268        }
 269
 270        if (!found)
 271                return NULL;
 272
 273        return found->data + trie->data_size;
 274}
 275
 276static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 277                                                 const void *value)
 278{
 279        struct lpm_trie_node *node;
 280        size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 281
 282        if (value)
 283                size += trie->map.value_size;
 284
 285        node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
 286                            trie->map.numa_node);
 287        if (!node)
 288                return NULL;
 289
 290        node->flags = 0;
 291
 292        if (value)
 293                memcpy(node->data + trie->data_size, value,
 294                       trie->map.value_size);
 295
 296        return node;
 297}
 298
 299/* Called from syscall or from eBPF program */
 300static int trie_update_elem(struct bpf_map *map,
 301                            void *_key, void *value, u64 flags)
 302{
 303        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 304        struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 305        struct lpm_trie_node __rcu **slot;
 306        struct bpf_lpm_trie_key *key = _key;
 307        unsigned long irq_flags;
 308        unsigned int next_bit;
 309        size_t matchlen = 0;
 310        int ret = 0;
 311
 312        if (unlikely(flags > BPF_EXIST))
 313                return -EINVAL;
 314
 315        if (key->prefixlen > trie->max_prefixlen)
 316                return -EINVAL;
 317
 318        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 319
 320        /* Allocate and fill a new node */
 321
 322        if (trie->n_entries == trie->map.max_entries) {
 323                ret = -ENOSPC;
 324                goto out;
 325        }
 326
 327        new_node = lpm_trie_node_alloc(trie, value);
 328        if (!new_node) {
 329                ret = -ENOMEM;
 330                goto out;
 331        }
 332
 333        trie->n_entries++;
 334
 335        new_node->prefixlen = key->prefixlen;
 336        RCU_INIT_POINTER(new_node->child[0], NULL);
 337        RCU_INIT_POINTER(new_node->child[1], NULL);
 338        memcpy(new_node->data, key->data, trie->data_size);
 339
 340        /* Now find a slot to attach the new node. To do that, walk the tree
 341         * from the root and match as many bits as possible for each node until
 342         * we either find an empty slot or a slot that needs to be replaced by
 343         * an intermediate node.
 344         */
 345        slot = &trie->root;
 346
 347        while ((node = rcu_dereference_protected(*slot,
 348                                        lockdep_is_held(&trie->lock)))) {
 349                matchlen = longest_prefix_match(trie, node, key);
 350
 351                if (node->prefixlen != matchlen ||
 352                    node->prefixlen == key->prefixlen ||
 353                    node->prefixlen == trie->max_prefixlen)
 354                        break;
 355
 356                next_bit = extract_bit(key->data, node->prefixlen);
 357                slot = &node->child[next_bit];
 358        }
 359
 360        /* If the slot is empty (a free child pointer or an empty root),
 361         * simply assign the @new_node to that slot and be done.
 362         */
 363        if (!node) {
 364                rcu_assign_pointer(*slot, new_node);
 365                goto out;
 366        }
 367
 368        /* If the slot we picked already exists, replace it with @new_node
 369         * which already has the correct data array set.
 370         */
 371        if (node->prefixlen == matchlen) {
 372                new_node->child[0] = node->child[0];
 373                new_node->child[1] = node->child[1];
 374
 375                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 376                        trie->n_entries--;
 377
 378                rcu_assign_pointer(*slot, new_node);
 379                kfree_rcu(node, rcu);
 380
 381                goto out;
 382        }
 383
 384        /* If the new node matches the prefix completely, it must be inserted
 385         * as an ancestor. Simply insert it between @node and *@slot.
 386         */
 387        if (matchlen == key->prefixlen) {
 388                next_bit = extract_bit(node->data, matchlen);
 389                rcu_assign_pointer(new_node->child[next_bit], node);
 390                rcu_assign_pointer(*slot, new_node);
 391                goto out;
 392        }
 393
 394        im_node = lpm_trie_node_alloc(trie, NULL);
 395        if (!im_node) {
 396                ret = -ENOMEM;
 397                goto out;
 398        }
 399
 400        im_node->prefixlen = matchlen;
 401        im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 402        memcpy(im_node->data, node->data, trie->data_size);
 403
 404        /* Now determine which child to install in which slot */
 405        if (extract_bit(key->data, matchlen)) {
 406                rcu_assign_pointer(im_node->child[0], node);
 407                rcu_assign_pointer(im_node->child[1], new_node);
 408        } else {
 409                rcu_assign_pointer(im_node->child[0], new_node);
 410                rcu_assign_pointer(im_node->child[1], node);
 411        }
 412
 413        /* Finally, assign the intermediate node to the determined spot */
 414        rcu_assign_pointer(*slot, im_node);
 415
 416out:
 417        if (ret) {
 418                if (new_node)
 419                        trie->n_entries--;
 420
 421                kfree(new_node);
 422                kfree(im_node);
 423        }
 424
 425        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 426
 427        return ret;
 428}
 429
 430/* Called from syscall or from eBPF program */
 431static int trie_delete_elem(struct bpf_map *map, void *_key)
 432{
 433        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 434        struct bpf_lpm_trie_key *key = _key;
 435        struct lpm_trie_node __rcu **trim, **trim2;
 436        struct lpm_trie_node *node, *parent;
 437        unsigned long irq_flags;
 438        unsigned int next_bit;
 439        size_t matchlen = 0;
 440        int ret = 0;
 441
 442        if (key->prefixlen > trie->max_prefixlen)
 443                return -EINVAL;
 444
 445        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 446
 447        /* Walk the tree looking for an exact key/length match and keeping
 448         * track of the path we traverse.  We will need to know the node
 449         * we wish to delete, and the slot that points to the node we want
 450         * to delete.  We may also need to know the nodes parent and the
 451         * slot that contains it.
 452         */
 453        trim = &trie->root;
 454        trim2 = trim;
 455        parent = NULL;
 456        while ((node = rcu_dereference_protected(
 457                       *trim, lockdep_is_held(&trie->lock)))) {
 458                matchlen = longest_prefix_match(trie, node, key);
 459
 460                if (node->prefixlen != matchlen ||
 461                    node->prefixlen == key->prefixlen)
 462                        break;
 463
 464                parent = node;
 465                trim2 = trim;
 466                next_bit = extract_bit(key->data, node->prefixlen);
 467                trim = &node->child[next_bit];
 468        }
 469
 470        if (!node || node->prefixlen != key->prefixlen ||
 471            node->prefixlen != matchlen ||
 472            (node->flags & LPM_TREE_NODE_FLAG_IM)) {
 473                ret = -ENOENT;
 474                goto out;
 475        }
 476
 477        trie->n_entries--;
 478
 479        /* If the node we are removing has two children, simply mark it
 480         * as intermediate and we are done.
 481         */
 482        if (rcu_access_pointer(node->child[0]) &&
 483            rcu_access_pointer(node->child[1])) {
 484                node->flags |= LPM_TREE_NODE_FLAG_IM;
 485                goto out;
 486        }
 487
 488        /* If the parent of the node we are about to delete is an intermediate
 489         * node, and the deleted node doesn't have any children, we can delete
 490         * the intermediate parent as well and promote its other child
 491         * up the tree.  Doing this maintains the invariant that all
 492         * intermediate nodes have exactly 2 children and that there are no
 493         * unnecessary intermediate nodes in the tree.
 494         */
 495        if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
 496            !node->child[0] && !node->child[1]) {
 497                if (node == rcu_access_pointer(parent->child[0]))
 498                        rcu_assign_pointer(
 499                                *trim2, rcu_access_pointer(parent->child[1]));
 500                else
 501                        rcu_assign_pointer(
 502                                *trim2, rcu_access_pointer(parent->child[0]));
 503                kfree_rcu(parent, rcu);
 504                kfree_rcu(node, rcu);
 505                goto out;
 506        }
 507
 508        /* The node we are removing has either zero or one child. If there
 509         * is a child, move it into the removed node's slot then delete
 510         * the node.  Otherwise just clear the slot and delete the node.
 511         */
 512        if (node->child[0])
 513                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
 514        else if (node->child[1])
 515                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
 516        else
 517                RCU_INIT_POINTER(*trim, NULL);
 518        kfree_rcu(node, rcu);
 519
 520out:
 521        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 522
 523        return ret;
 524}
 525
 526#define LPM_DATA_SIZE_MAX       256
 527#define LPM_DATA_SIZE_MIN       1
 528
 529#define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 530                                 sizeof(struct lpm_trie_node))
 531#define LPM_VAL_SIZE_MIN        1
 532
 533#define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key) + (X))
 534#define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 535#define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 536
 537#define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |  \
 538                                 BPF_F_ACCESS_MASK)
 539
 540static struct bpf_map *trie_alloc(union bpf_attr *attr)
 541{
 542        struct lpm_trie *trie;
 543        u64 cost = sizeof(*trie), cost_per_node;
 544        int ret;
 545
 546        if (!capable(CAP_SYS_ADMIN))
 547                return ERR_PTR(-EPERM);
 548
 549        /* check sanity of attributes */
 550        if (attr->max_entries == 0 ||
 551            !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 552            attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 553            !bpf_map_flags_access_ok(attr->map_flags) ||
 554            attr->key_size < LPM_KEY_SIZE_MIN ||
 555            attr->key_size > LPM_KEY_SIZE_MAX ||
 556            attr->value_size < LPM_VAL_SIZE_MIN ||
 557            attr->value_size > LPM_VAL_SIZE_MAX)
 558                return ERR_PTR(-EINVAL);
 559
 560        trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
 561        if (!trie)
 562                return ERR_PTR(-ENOMEM);
 563
 564        /* copy mandatory map attributes */
 565        bpf_map_init_from_attr(&trie->map, attr);
 566        trie->data_size = attr->key_size -
 567                          offsetof(struct bpf_lpm_trie_key, data);
 568        trie->max_prefixlen = trie->data_size * 8;
 569
 570        cost_per_node = sizeof(struct lpm_trie_node) +
 571                        attr->value_size + trie->data_size;
 572        cost += (u64) attr->max_entries * cost_per_node;
 573        if (cost >= U32_MAX - PAGE_SIZE) {
 574                ret = -E2BIG;
 575                goto out_err;
 576        }
 577
 578        trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 579
 580        ret = bpf_map_precharge_memlock(trie->map.pages);
 581        if (ret)
 582                goto out_err;
 583
 584        raw_spin_lock_init(&trie->lock);
 585
 586        return &trie->map;
 587out_err:
 588        kfree(trie);
 589        return ERR_PTR(ret);
 590}
 591
 592static void trie_free(struct bpf_map *map)
 593{
 594        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 595        struct lpm_trie_node __rcu **slot;
 596        struct lpm_trie_node *node;
 597
 598        /* Wait for outstanding programs to complete
 599         * update/lookup/delete/get_next_key and free the trie.
 600         */
 601        synchronize_rcu();
 602
 603        /* Always start at the root and walk down to a node that has no
 604         * children. Then free that node, nullify its reference in the parent
 605         * and start over.
 606         */
 607
 608        for (;;) {
 609                slot = &trie->root;
 610
 611                for (;;) {
 612                        node = rcu_dereference_protected(*slot, 1);
 613                        if (!node)
 614                                goto out;
 615
 616                        if (rcu_access_pointer(node->child[0])) {
 617                                slot = &node->child[0];
 618                                continue;
 619                        }
 620
 621                        if (rcu_access_pointer(node->child[1])) {
 622                                slot = &node->child[1];
 623                                continue;
 624                        }
 625
 626                        kfree(node);
 627                        RCU_INIT_POINTER(*slot, NULL);
 628                        break;
 629                }
 630        }
 631
 632out:
 633        kfree(trie);
 634}
 635
 636static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
 637{
 638        struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
 639        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 640        struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
 641        struct lpm_trie_node **node_stack = NULL;
 642        int err = 0, stack_ptr = -1;
 643        unsigned int next_bit;
 644        size_t matchlen;
 645
 646        /* The get_next_key follows postorder. For the 4 node example in
 647         * the top of this file, the trie_get_next_key() returns the following
 648         * one after another:
 649         *   192.168.0.0/24
 650         *   192.168.1.0/24
 651         *   192.168.128.0/24
 652         *   192.168.0.0/16
 653         *
 654         * The idea is to return more specific keys before less specific ones.
 655         */
 656
 657        /* Empty trie */
 658        search_root = rcu_dereference(trie->root);
 659        if (!search_root)
 660                return -ENOENT;
 661
 662        /* For invalid key, find the leftmost node in the trie */
 663        if (!key || key->prefixlen > trie->max_prefixlen)
 664                goto find_leftmost;
 665
 666        node_stack = kmalloc_array(trie->max_prefixlen,
 667                                   sizeof(struct lpm_trie_node *),
 668                                   GFP_ATOMIC | __GFP_NOWARN);
 669        if (!node_stack)
 670                return -ENOMEM;
 671
 672        /* Try to find the exact node for the given key */
 673        for (node = search_root; node;) {
 674                node_stack[++stack_ptr] = node;
 675                matchlen = longest_prefix_match(trie, node, key);
 676                if (node->prefixlen != matchlen ||
 677                    node->prefixlen == key->prefixlen)
 678                        break;
 679
 680                next_bit = extract_bit(key->data, node->prefixlen);
 681                node = rcu_dereference(node->child[next_bit]);
 682        }
 683        if (!node || node->prefixlen != key->prefixlen ||
 684            (node->flags & LPM_TREE_NODE_FLAG_IM))
 685                goto find_leftmost;
 686
 687        /* The node with the exactly-matching key has been found,
 688         * find the first node in postorder after the matched node.
 689         */
 690        node = node_stack[stack_ptr];
 691        while (stack_ptr > 0) {
 692                parent = node_stack[stack_ptr - 1];
 693                if (rcu_dereference(parent->child[0]) == node) {
 694                        search_root = rcu_dereference(parent->child[1]);
 695                        if (search_root)
 696                                goto find_leftmost;
 697                }
 698                if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
 699                        next_node = parent;
 700                        goto do_copy;
 701                }
 702
 703                node = parent;
 704                stack_ptr--;
 705        }
 706
 707        /* did not find anything */
 708        err = -ENOENT;
 709        goto free_stack;
 710
 711find_leftmost:
 712        /* Find the leftmost non-intermediate node, all intermediate nodes
 713         * have exact two children, so this function will never return NULL.
 714         */
 715        for (node = search_root; node;) {
 716                if (node->flags & LPM_TREE_NODE_FLAG_IM) {
 717                        node = rcu_dereference(node->child[0]);
 718                } else {
 719                        next_node = node;
 720                        node = rcu_dereference(node->child[0]);
 721                        if (!node)
 722                                node = rcu_dereference(next_node->child[1]);
 723                }
 724        }
 725do_copy:
 726        next_key->prefixlen = next_node->prefixlen;
 727        memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
 728               next_node->data, trie->data_size);
 729free_stack:
 730        kfree(node_stack);
 731        return err;
 732}
 733
 734static int trie_check_btf(const struct bpf_map *map,
 735                          const struct btf *btf,
 736                          const struct btf_type *key_type,
 737                          const struct btf_type *value_type)
 738{
 739        /* Keys must have struct bpf_lpm_trie_key embedded. */
 740        return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
 741               -EINVAL : 0;
 742}
 743
 744const struct bpf_map_ops trie_map_ops = {
 745        .map_alloc = trie_alloc,
 746        .map_free = trie_free,
 747        .map_get_next_key = trie_get_next_key,
 748        .map_lookup_elem = trie_lookup_elem,
 749        .map_update_elem = trie_update_elem,
 750        .map_delete_elem = trie_delete_elem,
 751        .map_check_btf = trie_check_btf,
 752};
 753