linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/*
 157 * The default hierarchy, reserved for the subsystems that are otherwise
 158 * unattached - it never has more than a single cgroup, and all tasks are
 159 * part of that cgroup.
 160 */
 161struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 162EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 163
 164/*
 165 * The default hierarchy always exists but is hidden until mounted for the
 166 * first time.  This is for backward compatibility.
 167 */
 168static bool cgrp_dfl_visible;
 169
 170/* some controllers are not supported in the default hierarchy */
 171static u16 cgrp_dfl_inhibit_ss_mask;
 172
 173/* some controllers are implicitly enabled on the default hierarchy */
 174static u16 cgrp_dfl_implicit_ss_mask;
 175
 176/* some controllers can be threaded on the default hierarchy */
 177static u16 cgrp_dfl_threaded_ss_mask;
 178
 179/* The list of hierarchy roots */
 180LIST_HEAD(cgroup_roots);
 181static int cgroup_root_count;
 182
 183/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 184static DEFINE_IDR(cgroup_hierarchy_idr);
 185
 186/*
 187 * Assign a monotonically increasing serial number to csses.  It guarantees
 188 * cgroups with bigger numbers are newer than those with smaller numbers.
 189 * Also, as csses are always appended to the parent's ->children list, it
 190 * guarantees that sibling csses are always sorted in the ascending serial
 191 * number order on the list.  Protected by cgroup_mutex.
 192 */
 193static u64 css_serial_nr_next = 1;
 194
 195/*
 196 * These bitmasks identify subsystems with specific features to avoid
 197 * having to do iterative checks repeatedly.
 198 */
 199static u16 have_fork_callback __read_mostly;
 200static u16 have_exit_callback __read_mostly;
 201static u16 have_release_callback __read_mostly;
 202static u16 have_canfork_callback __read_mostly;
 203
 204/* cgroup namespace for init task */
 205struct cgroup_namespace init_cgroup_ns = {
 206        .count          = REFCOUNT_INIT(2),
 207        .user_ns        = &init_user_ns,
 208        .ns.ops         = &cgroupns_operations,
 209        .ns.inum        = PROC_CGROUP_INIT_INO,
 210        .root_cset      = &init_css_set,
 211};
 212
 213static struct file_system_type cgroup2_fs_type;
 214static struct cftype cgroup_base_files[];
 215
 216static int cgroup_apply_control(struct cgroup *cgrp);
 217static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 218static void css_task_iter_skip(struct css_task_iter *it,
 219                               struct task_struct *task);
 220static int cgroup_destroy_locked(struct cgroup *cgrp);
 221static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 222                                              struct cgroup_subsys *ss);
 223static void css_release(struct percpu_ref *ref);
 224static void kill_css(struct cgroup_subsys_state *css);
 225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 226                              struct cgroup *cgrp, struct cftype cfts[],
 227                              bool is_add);
 228
 229/**
 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 231 * @ssid: subsys ID of interest
 232 *
 233 * cgroup_subsys_enabled() can only be used with literal subsys names which
 234 * is fine for individual subsystems but unsuitable for cgroup core.  This
 235 * is slower static_key_enabled() based test indexed by @ssid.
 236 */
 237bool cgroup_ssid_enabled(int ssid)
 238{
 239        if (CGROUP_SUBSYS_COUNT == 0)
 240                return false;
 241
 242        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 243}
 244
 245/**
 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 247 * @cgrp: the cgroup of interest
 248 *
 249 * The default hierarchy is the v2 interface of cgroup and this function
 250 * can be used to test whether a cgroup is on the default hierarchy for
 251 * cases where a subsystem should behave differnetly depending on the
 252 * interface version.
 253 *
 254 * The set of behaviors which change on the default hierarchy are still
 255 * being determined and the mount option is prefixed with __DEVEL__.
 256 *
 257 * List of changed behaviors:
 258 *
 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 260 *   and "name" are disallowed.
 261 *
 262 * - When mounting an existing superblock, mount options should match.
 263 *
 264 * - Remount is disallowed.
 265 *
 266 * - rename(2) is disallowed.
 267 *
 268 * - "tasks" is removed.  Everything should be at process granularity.  Use
 269 *   "cgroup.procs" instead.
 270 *
 271 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 272 *   recycled inbetween reads.
 273 *
 274 * - "release_agent" and "notify_on_release" are removed.  Replacement
 275 *   notification mechanism will be implemented.
 276 *
 277 * - "cgroup.clone_children" is removed.
 278 *
 279 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 280 *   and its descendants contain no task; otherwise, 1.  The file also
 281 *   generates kernfs notification which can be monitored through poll and
 282 *   [di]notify when the value of the file changes.
 283 *
 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 285 *   take masks of ancestors with non-empty cpus/mems, instead of being
 286 *   moved to an ancestor.
 287 *
 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 289 *   masks of ancestors.
 290 *
 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 292 *   is not created.
 293 *
 294 * - blkcg: blk-throttle becomes properly hierarchical.
 295 *
 296 * - debug: disallowed on the default hierarchy.
 297 */
 298bool cgroup_on_dfl(const struct cgroup *cgrp)
 299{
 300        return cgrp->root == &cgrp_dfl_root;
 301}
 302
 303/* IDR wrappers which synchronize using cgroup_idr_lock */
 304static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 305                            gfp_t gfp_mask)
 306{
 307        int ret;
 308
 309        idr_preload(gfp_mask);
 310        spin_lock_bh(&cgroup_idr_lock);
 311        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 312        spin_unlock_bh(&cgroup_idr_lock);
 313        idr_preload_end();
 314        return ret;
 315}
 316
 317static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 318{
 319        void *ret;
 320
 321        spin_lock_bh(&cgroup_idr_lock);
 322        ret = idr_replace(idr, ptr, id);
 323        spin_unlock_bh(&cgroup_idr_lock);
 324        return ret;
 325}
 326
 327static void cgroup_idr_remove(struct idr *idr, int id)
 328{
 329        spin_lock_bh(&cgroup_idr_lock);
 330        idr_remove(idr, id);
 331        spin_unlock_bh(&cgroup_idr_lock);
 332}
 333
 334static bool cgroup_has_tasks(struct cgroup *cgrp)
 335{
 336        return cgrp->nr_populated_csets;
 337}
 338
 339bool cgroup_is_threaded(struct cgroup *cgrp)
 340{
 341        return cgrp->dom_cgrp != cgrp;
 342}
 343
 344/* can @cgrp host both domain and threaded children? */
 345static bool cgroup_is_mixable(struct cgroup *cgrp)
 346{
 347        /*
 348         * Root isn't under domain level resource control exempting it from
 349         * the no-internal-process constraint, so it can serve as a thread
 350         * root and a parent of resource domains at the same time.
 351         */
 352        return !cgroup_parent(cgrp);
 353}
 354
 355/* can @cgrp become a thread root? should always be true for a thread root */
 356static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 357{
 358        /* mixables don't care */
 359        if (cgroup_is_mixable(cgrp))
 360                return true;
 361
 362        /* domain roots can't be nested under threaded */
 363        if (cgroup_is_threaded(cgrp))
 364                return false;
 365
 366        /* can only have either domain or threaded children */
 367        if (cgrp->nr_populated_domain_children)
 368                return false;
 369
 370        /* and no domain controllers can be enabled */
 371        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 372                return false;
 373
 374        return true;
 375}
 376
 377/* is @cgrp root of a threaded subtree? */
 378bool cgroup_is_thread_root(struct cgroup *cgrp)
 379{
 380        /* thread root should be a domain */
 381        if (cgroup_is_threaded(cgrp))
 382                return false;
 383
 384        /* a domain w/ threaded children is a thread root */
 385        if (cgrp->nr_threaded_children)
 386                return true;
 387
 388        /*
 389         * A domain which has tasks and explicit threaded controllers
 390         * enabled is a thread root.
 391         */
 392        if (cgroup_has_tasks(cgrp) &&
 393            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 394                return true;
 395
 396        return false;
 397}
 398
 399/* a domain which isn't connected to the root w/o brekage can't be used */
 400static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 401{
 402        /* the cgroup itself can be a thread root */
 403        if (cgroup_is_threaded(cgrp))
 404                return false;
 405
 406        /* but the ancestors can't be unless mixable */
 407        while ((cgrp = cgroup_parent(cgrp))) {
 408                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 409                        return false;
 410                if (cgroup_is_threaded(cgrp))
 411                        return false;
 412        }
 413
 414        return true;
 415}
 416
 417/* subsystems visibly enabled on a cgroup */
 418static u16 cgroup_control(struct cgroup *cgrp)
 419{
 420        struct cgroup *parent = cgroup_parent(cgrp);
 421        u16 root_ss_mask = cgrp->root->subsys_mask;
 422
 423        if (parent) {
 424                u16 ss_mask = parent->subtree_control;
 425
 426                /* threaded cgroups can only have threaded controllers */
 427                if (cgroup_is_threaded(cgrp))
 428                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 429                return ss_mask;
 430        }
 431
 432        if (cgroup_on_dfl(cgrp))
 433                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 434                                  cgrp_dfl_implicit_ss_mask);
 435        return root_ss_mask;
 436}
 437
 438/* subsystems enabled on a cgroup */
 439static u16 cgroup_ss_mask(struct cgroup *cgrp)
 440{
 441        struct cgroup *parent = cgroup_parent(cgrp);
 442
 443        if (parent) {
 444                u16 ss_mask = parent->subtree_ss_mask;
 445
 446                /* threaded cgroups can only have threaded controllers */
 447                if (cgroup_is_threaded(cgrp))
 448                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 449                return ss_mask;
 450        }
 451
 452        return cgrp->root->subsys_mask;
 453}
 454
 455/**
 456 * cgroup_css - obtain a cgroup's css for the specified subsystem
 457 * @cgrp: the cgroup of interest
 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 459 *
 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 461 * function must be called either under cgroup_mutex or rcu_read_lock() and
 462 * the caller is responsible for pinning the returned css if it wants to
 463 * keep accessing it outside the said locks.  This function may return
 464 * %NULL if @cgrp doesn't have @subsys_id enabled.
 465 */
 466static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 467                                              struct cgroup_subsys *ss)
 468{
 469        if (ss)
 470                return rcu_dereference_check(cgrp->subsys[ss->id],
 471                                        lockdep_is_held(&cgroup_mutex));
 472        else
 473                return &cgrp->self;
 474}
 475
 476/**
 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 478 * @cgrp: the cgroup of interest
 479 * @ss: the subsystem of interest
 480 *
 481 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 482 * or is offline, %NULL is returned.
 483 */
 484static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 485                                                     struct cgroup_subsys *ss)
 486{
 487        struct cgroup_subsys_state *css;
 488
 489        rcu_read_lock();
 490        css = cgroup_css(cgrp, ss);
 491        if (!css || !css_tryget_online(css))
 492                css = NULL;
 493        rcu_read_unlock();
 494
 495        return css;
 496}
 497
 498/**
 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 500 * @cgrp: the cgroup of interest
 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 502 *
 503 * Similar to cgroup_css() but returns the effective css, which is defined
 504 * as the matching css of the nearest ancestor including self which has @ss
 505 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 506 * function is guaranteed to return non-NULL css.
 507 */
 508static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 509                                                        struct cgroup_subsys *ss)
 510{
 511        lockdep_assert_held(&cgroup_mutex);
 512
 513        if (!ss)
 514                return &cgrp->self;
 515
 516        /*
 517         * This function is used while updating css associations and thus
 518         * can't test the csses directly.  Test ss_mask.
 519         */
 520        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 521                cgrp = cgroup_parent(cgrp);
 522                if (!cgrp)
 523                        return NULL;
 524        }
 525
 526        return cgroup_css(cgrp, ss);
 527}
 528
 529/**
 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 531 * @cgrp: the cgroup of interest
 532 * @ss: the subsystem of interest
 533 *
 534 * Find and get the effective css of @cgrp for @ss.  The effective css is
 535 * defined as the matching css of the nearest ancestor including self which
 536 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 537 * the root css is returned, so this function always returns a valid css.
 538 *
 539 * The returned css is not guaranteed to be online, and therefore it is the
 540 * callers responsiblity to tryget a reference for it.
 541 */
 542struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 543                                         struct cgroup_subsys *ss)
 544{
 545        struct cgroup_subsys_state *css;
 546
 547        do {
 548                css = cgroup_css(cgrp, ss);
 549
 550                if (css)
 551                        return css;
 552                cgrp = cgroup_parent(cgrp);
 553        } while (cgrp);
 554
 555        return init_css_set.subsys[ss->id];
 556}
 557
 558/**
 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 560 * @cgrp: the cgroup of interest
 561 * @ss: the subsystem of interest
 562 *
 563 * Find and get the effective css of @cgrp for @ss.  The effective css is
 564 * defined as the matching css of the nearest ancestor including self which
 565 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 566 * the root css is returned, so this function always returns a valid css.
 567 * The returned css must be put using css_put().
 568 */
 569struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 570                                             struct cgroup_subsys *ss)
 571{
 572        struct cgroup_subsys_state *css;
 573
 574        rcu_read_lock();
 575
 576        do {
 577                css = cgroup_css(cgrp, ss);
 578
 579                if (css && css_tryget_online(css))
 580                        goto out_unlock;
 581                cgrp = cgroup_parent(cgrp);
 582        } while (cgrp);
 583
 584        css = init_css_set.subsys[ss->id];
 585        css_get(css);
 586out_unlock:
 587        rcu_read_unlock();
 588        return css;
 589}
 590
 591static void cgroup_get_live(struct cgroup *cgrp)
 592{
 593        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 594        css_get(&cgrp->self);
 595}
 596
 597/**
 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 599 * is responsible for taking the css_set_lock.
 600 * @cgrp: the cgroup in question
 601 */
 602int __cgroup_task_count(const struct cgroup *cgrp)
 603{
 604        int count = 0;
 605        struct cgrp_cset_link *link;
 606
 607        lockdep_assert_held(&css_set_lock);
 608
 609        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 610                count += link->cset->nr_tasks;
 611
 612        return count;
 613}
 614
 615/**
 616 * cgroup_task_count - count the number of tasks in a cgroup.
 617 * @cgrp: the cgroup in question
 618 */
 619int cgroup_task_count(const struct cgroup *cgrp)
 620{
 621        int count;
 622
 623        spin_lock_irq(&css_set_lock);
 624        count = __cgroup_task_count(cgrp);
 625        spin_unlock_irq(&css_set_lock);
 626
 627        return count;
 628}
 629
 630struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 631{
 632        struct cgroup *cgrp = of->kn->parent->priv;
 633        struct cftype *cft = of_cft(of);
 634
 635        /*
 636         * This is open and unprotected implementation of cgroup_css().
 637         * seq_css() is only called from a kernfs file operation which has
 638         * an active reference on the file.  Because all the subsystem
 639         * files are drained before a css is disassociated with a cgroup,
 640         * the matching css from the cgroup's subsys table is guaranteed to
 641         * be and stay valid until the enclosing operation is complete.
 642         */
 643        if (cft->ss)
 644                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 645        else
 646                return &cgrp->self;
 647}
 648EXPORT_SYMBOL_GPL(of_css);
 649
 650/**
 651 * for_each_css - iterate all css's of a cgroup
 652 * @css: the iteration cursor
 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 654 * @cgrp: the target cgroup to iterate css's of
 655 *
 656 * Should be called under cgroup_[tree_]mutex.
 657 */
 658#define for_each_css(css, ssid, cgrp)                                   \
 659        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 660                if (!((css) = rcu_dereference_check(                    \
 661                                (cgrp)->subsys[(ssid)],                 \
 662                                lockdep_is_held(&cgroup_mutex)))) { }   \
 663                else
 664
 665/**
 666 * for_each_e_css - iterate all effective css's of a cgroup
 667 * @css: the iteration cursor
 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 669 * @cgrp: the target cgroup to iterate css's of
 670 *
 671 * Should be called under cgroup_[tree_]mutex.
 672 */
 673#define for_each_e_css(css, ssid, cgrp)                                     \
 674        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 675                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 676                                                   cgroup_subsys[(ssid)]))) \
 677                        ;                                                   \
 678                else
 679
 680/**
 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 682 * @ss: the iteration cursor
 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 684 * @ss_mask: the bitmask
 685 *
 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 687 * @ss_mask is set.
 688 */
 689#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 690        unsigned long __ss_mask = (ss_mask);                            \
 691        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 692                (ssid) = 0;                                             \
 693                break;                                                  \
 694        }                                                               \
 695        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 696                (ss) = cgroup_subsys[ssid];                             \
 697                {
 698
 699#define while_each_subsys_mask()                                        \
 700                }                                                       \
 701        }                                                               \
 702} while (false)
 703
 704/* iterate over child cgrps, lock should be held throughout iteration */
 705#define cgroup_for_each_live_child(child, cgrp)                         \
 706        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 707                if (({ lockdep_assert_held(&cgroup_mutex);              \
 708                       cgroup_is_dead(child); }))                       \
 709                        ;                                               \
 710                else
 711
 712/* walk live descendants in preorder */
 713#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 714        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 715                if (({ lockdep_assert_held(&cgroup_mutex);              \
 716                       (dsct) = (d_css)->cgroup;                        \
 717                       cgroup_is_dead(dsct); }))                        \
 718                        ;                                               \
 719                else
 720
 721/* walk live descendants in postorder */
 722#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 723        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 724                if (({ lockdep_assert_held(&cgroup_mutex);              \
 725                       (dsct) = (d_css)->cgroup;                        \
 726                       cgroup_is_dead(dsct); }))                        \
 727                        ;                                               \
 728                else
 729
 730/*
 731 * The default css_set - used by init and its children prior to any
 732 * hierarchies being mounted. It contains a pointer to the root state
 733 * for each subsystem. Also used to anchor the list of css_sets. Not
 734 * reference-counted, to improve performance when child cgroups
 735 * haven't been created.
 736 */
 737struct css_set init_css_set = {
 738        .refcount               = REFCOUNT_INIT(1),
 739        .dom_cset               = &init_css_set,
 740        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 741        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 742        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 743        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 744        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 745        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 746        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 747        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 748
 749        /*
 750         * The following field is re-initialized when this cset gets linked
 751         * in cgroup_init().  However, let's initialize the field
 752         * statically too so that the default cgroup can be accessed safely
 753         * early during boot.
 754         */
 755        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 756};
 757
 758static int css_set_count        = 1;    /* 1 for init_css_set */
 759
 760static bool css_set_threaded(struct css_set *cset)
 761{
 762        return cset->dom_cset != cset;
 763}
 764
 765/**
 766 * css_set_populated - does a css_set contain any tasks?
 767 * @cset: target css_set
 768 *
 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 770 * state. However, css_set_populated() can be called while a task is being
 771 * added to or removed from the linked list before the nr_tasks is
 772 * properly updated. Hence, we can't just look at ->nr_tasks here.
 773 */
 774static bool css_set_populated(struct css_set *cset)
 775{
 776        lockdep_assert_held(&css_set_lock);
 777
 778        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 779}
 780
 781/**
 782 * cgroup_update_populated - update the populated count of a cgroup
 783 * @cgrp: the target cgroup
 784 * @populated: inc or dec populated count
 785 *
 786 * One of the css_sets associated with @cgrp is either getting its first
 787 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 788 * count is propagated towards root so that a given cgroup's
 789 * nr_populated_children is zero iff none of its descendants contain any
 790 * tasks.
 791 *
 792 * @cgrp's interface file "cgroup.populated" is zero if both
 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 794 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 795 * that the content of the interface file has changed.  This can be used to
 796 * detect when @cgrp and its descendants become populated or empty.
 797 */
 798static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 799{
 800        struct cgroup *child = NULL;
 801        int adj = populated ? 1 : -1;
 802
 803        lockdep_assert_held(&css_set_lock);
 804
 805        do {
 806                bool was_populated = cgroup_is_populated(cgrp);
 807
 808                if (!child) {
 809                        cgrp->nr_populated_csets += adj;
 810                } else {
 811                        if (cgroup_is_threaded(child))
 812                                cgrp->nr_populated_threaded_children += adj;
 813                        else
 814                                cgrp->nr_populated_domain_children += adj;
 815                }
 816
 817                if (was_populated == cgroup_is_populated(cgrp))
 818                        break;
 819
 820                cgroup1_check_for_release(cgrp);
 821                TRACE_CGROUP_PATH(notify_populated, cgrp,
 822                                  cgroup_is_populated(cgrp));
 823                cgroup_file_notify(&cgrp->events_file);
 824
 825                child = cgrp;
 826                cgrp = cgroup_parent(cgrp);
 827        } while (cgrp);
 828}
 829
 830/**
 831 * css_set_update_populated - update populated state of a css_set
 832 * @cset: target css_set
 833 * @populated: whether @cset is populated or depopulated
 834 *
 835 * @cset is either getting the first task or losing the last.  Update the
 836 * populated counters of all associated cgroups accordingly.
 837 */
 838static void css_set_update_populated(struct css_set *cset, bool populated)
 839{
 840        struct cgrp_cset_link *link;
 841
 842        lockdep_assert_held(&css_set_lock);
 843
 844        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 845                cgroup_update_populated(link->cgrp, populated);
 846}
 847
 848/*
 849 * @task is leaving, advance task iterators which are pointing to it so
 850 * that they can resume at the next position.  Advancing an iterator might
 851 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 852 * details.
 853 */
 854static void css_set_skip_task_iters(struct css_set *cset,
 855                                    struct task_struct *task)
 856{
 857        struct css_task_iter *it, *pos;
 858
 859        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 860                css_task_iter_skip(it, task);
 861}
 862
 863/**
 864 * css_set_move_task - move a task from one css_set to another
 865 * @task: task being moved
 866 * @from_cset: css_set @task currently belongs to (may be NULL)
 867 * @to_cset: new css_set @task is being moved to (may be NULL)
 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 869 *
 870 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 871 * css_set, @from_cset can be NULL.  If @task is being disassociated
 872 * instead of moved, @to_cset can be NULL.
 873 *
 874 * This function automatically handles populated counter updates and
 875 * css_task_iter adjustments but the caller is responsible for managing
 876 * @from_cset and @to_cset's reference counts.
 877 */
 878static void css_set_move_task(struct task_struct *task,
 879                              struct css_set *from_cset, struct css_set *to_cset,
 880                              bool use_mg_tasks)
 881{
 882        lockdep_assert_held(&css_set_lock);
 883
 884        if (to_cset && !css_set_populated(to_cset))
 885                css_set_update_populated(to_cset, true);
 886
 887        if (from_cset) {
 888                WARN_ON_ONCE(list_empty(&task->cg_list));
 889
 890                css_set_skip_task_iters(from_cset, task);
 891                list_del_init(&task->cg_list);
 892                if (!css_set_populated(from_cset))
 893                        css_set_update_populated(from_cset, false);
 894        } else {
 895                WARN_ON_ONCE(!list_empty(&task->cg_list));
 896        }
 897
 898        if (to_cset) {
 899                /*
 900                 * We are synchronized through cgroup_threadgroup_rwsem
 901                 * against PF_EXITING setting such that we can't race
 902                 * against cgroup_exit() changing the css_set to
 903                 * init_css_set and dropping the old one.
 904                 */
 905                WARN_ON_ONCE(task->flags & PF_EXITING);
 906
 907                cgroup_move_task(task, to_cset);
 908                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 909                                                             &to_cset->tasks);
 910        }
 911}
 912
 913/*
 914 * hash table for cgroup groups. This improves the performance to find
 915 * an existing css_set. This hash doesn't (currently) take into
 916 * account cgroups in empty hierarchies.
 917 */
 918#define CSS_SET_HASH_BITS       7
 919static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 920
 921static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 922{
 923        unsigned long key = 0UL;
 924        struct cgroup_subsys *ss;
 925        int i;
 926
 927        for_each_subsys(ss, i)
 928                key += (unsigned long)css[i];
 929        key = (key >> 16) ^ key;
 930
 931        return key;
 932}
 933
 934void put_css_set_locked(struct css_set *cset)
 935{
 936        struct cgrp_cset_link *link, *tmp_link;
 937        struct cgroup_subsys *ss;
 938        int ssid;
 939
 940        lockdep_assert_held(&css_set_lock);
 941
 942        if (!refcount_dec_and_test(&cset->refcount))
 943                return;
 944
 945        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 946
 947        /* This css_set is dead. unlink it and release cgroup and css refs */
 948        for_each_subsys(ss, ssid) {
 949                list_del(&cset->e_cset_node[ssid]);
 950                css_put(cset->subsys[ssid]);
 951        }
 952        hash_del(&cset->hlist);
 953        css_set_count--;
 954
 955        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 956                list_del(&link->cset_link);
 957                list_del(&link->cgrp_link);
 958                if (cgroup_parent(link->cgrp))
 959                        cgroup_put(link->cgrp);
 960                kfree(link);
 961        }
 962
 963        if (css_set_threaded(cset)) {
 964                list_del(&cset->threaded_csets_node);
 965                put_css_set_locked(cset->dom_cset);
 966        }
 967
 968        kfree_rcu(cset, rcu_head);
 969}
 970
 971/**
 972 * compare_css_sets - helper function for find_existing_css_set().
 973 * @cset: candidate css_set being tested
 974 * @old_cset: existing css_set for a task
 975 * @new_cgrp: cgroup that's being entered by the task
 976 * @template: desired set of css pointers in css_set (pre-calculated)
 977 *
 978 * Returns true if "cset" matches "old_cset" except for the hierarchy
 979 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 980 */
 981static bool compare_css_sets(struct css_set *cset,
 982                             struct css_set *old_cset,
 983                             struct cgroup *new_cgrp,
 984                             struct cgroup_subsys_state *template[])
 985{
 986        struct cgroup *new_dfl_cgrp;
 987        struct list_head *l1, *l2;
 988
 989        /*
 990         * On the default hierarchy, there can be csets which are
 991         * associated with the same set of cgroups but different csses.
 992         * Let's first ensure that csses match.
 993         */
 994        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 995                return false;
 996
 997
 998        /* @cset's domain should match the default cgroup's */
 999        if (cgroup_on_dfl(new_cgrp))
1000                new_dfl_cgrp = new_cgrp;
1001        else
1002                new_dfl_cgrp = old_cset->dfl_cgrp;
1003
1004        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005                return false;
1006
1007        /*
1008         * Compare cgroup pointers in order to distinguish between
1009         * different cgroups in hierarchies.  As different cgroups may
1010         * share the same effective css, this comparison is always
1011         * necessary.
1012         */
1013        l1 = &cset->cgrp_links;
1014        l2 = &old_cset->cgrp_links;
1015        while (1) {
1016                struct cgrp_cset_link *link1, *link2;
1017                struct cgroup *cgrp1, *cgrp2;
1018
1019                l1 = l1->next;
1020                l2 = l2->next;
1021                /* See if we reached the end - both lists are equal length. */
1022                if (l1 == &cset->cgrp_links) {
1023                        BUG_ON(l2 != &old_cset->cgrp_links);
1024                        break;
1025                } else {
1026                        BUG_ON(l2 == &old_cset->cgrp_links);
1027                }
1028                /* Locate the cgroups associated with these links. */
1029                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031                cgrp1 = link1->cgrp;
1032                cgrp2 = link2->cgrp;
1033                /* Hierarchies should be linked in the same order. */
1034                BUG_ON(cgrp1->root != cgrp2->root);
1035
1036                /*
1037                 * If this hierarchy is the hierarchy of the cgroup
1038                 * that's changing, then we need to check that this
1039                 * css_set points to the new cgroup; if it's any other
1040                 * hierarchy, then this css_set should point to the
1041                 * same cgroup as the old css_set.
1042                 */
1043                if (cgrp1->root == new_cgrp->root) {
1044                        if (cgrp1 != new_cgrp)
1045                                return false;
1046                } else {
1047                        if (cgrp1 != cgrp2)
1048                                return false;
1049                }
1050        }
1051        return true;
1052}
1053
1054/**
1055 * find_existing_css_set - init css array and find the matching css_set
1056 * @old_cset: the css_set that we're using before the cgroup transition
1057 * @cgrp: the cgroup that we're moving into
1058 * @template: out param for the new set of csses, should be clear on entry
1059 */
1060static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061                                        struct cgroup *cgrp,
1062                                        struct cgroup_subsys_state *template[])
1063{
1064        struct cgroup_root *root = cgrp->root;
1065        struct cgroup_subsys *ss;
1066        struct css_set *cset;
1067        unsigned long key;
1068        int i;
1069
1070        /*
1071         * Build the set of subsystem state objects that we want to see in the
1072         * new css_set. while subsystems can change globally, the entries here
1073         * won't change, so no need for locking.
1074         */
1075        for_each_subsys(ss, i) {
1076                if (root->subsys_mask & (1UL << i)) {
1077                        /*
1078                         * @ss is in this hierarchy, so we want the
1079                         * effective css from @cgrp.
1080                         */
1081                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082                } else {
1083                        /*
1084                         * @ss is not in this hierarchy, so we don't want
1085                         * to change the css.
1086                         */
1087                        template[i] = old_cset->subsys[i];
1088                }
1089        }
1090
1091        key = css_set_hash(template);
1092        hash_for_each_possible(css_set_table, cset, hlist, key) {
1093                if (!compare_css_sets(cset, old_cset, cgrp, template))
1094                        continue;
1095
1096                /* This css_set matches what we need */
1097                return cset;
1098        }
1099
1100        /* No existing cgroup group matched */
1101        return NULL;
1102}
1103
1104static void free_cgrp_cset_links(struct list_head *links_to_free)
1105{
1106        struct cgrp_cset_link *link, *tmp_link;
1107
1108        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109                list_del(&link->cset_link);
1110                kfree(link);
1111        }
1112}
1113
1114/**
1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116 * @count: the number of links to allocate
1117 * @tmp_links: list_head the allocated links are put on
1118 *
1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120 * through ->cset_link.  Returns 0 on success or -errno.
1121 */
1122static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123{
1124        struct cgrp_cset_link *link;
1125        int i;
1126
1127        INIT_LIST_HEAD(tmp_links);
1128
1129        for (i = 0; i < count; i++) {
1130                link = kzalloc(sizeof(*link), GFP_KERNEL);
1131                if (!link) {
1132                        free_cgrp_cset_links(tmp_links);
1133                        return -ENOMEM;
1134                }
1135                list_add(&link->cset_link, tmp_links);
1136        }
1137        return 0;
1138}
1139
1140/**
1141 * link_css_set - a helper function to link a css_set to a cgroup
1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143 * @cset: the css_set to be linked
1144 * @cgrp: the destination cgroup
1145 */
1146static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147                         struct cgroup *cgrp)
1148{
1149        struct cgrp_cset_link *link;
1150
1151        BUG_ON(list_empty(tmp_links));
1152
1153        if (cgroup_on_dfl(cgrp))
1154                cset->dfl_cgrp = cgrp;
1155
1156        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157        link->cset = cset;
1158        link->cgrp = cgrp;
1159
1160        /*
1161         * Always add links to the tail of the lists so that the lists are
1162         * in choronological order.
1163         */
1164        list_move_tail(&link->cset_link, &cgrp->cset_links);
1165        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166
1167        if (cgroup_parent(cgrp))
1168                cgroup_get_live(cgrp);
1169}
1170
1171/**
1172 * find_css_set - return a new css_set with one cgroup updated
1173 * @old_cset: the baseline css_set
1174 * @cgrp: the cgroup to be updated
1175 *
1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177 * substituted into the appropriate hierarchy.
1178 */
1179static struct css_set *find_css_set(struct css_set *old_cset,
1180                                    struct cgroup *cgrp)
1181{
1182        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183        struct css_set *cset;
1184        struct list_head tmp_links;
1185        struct cgrp_cset_link *link;
1186        struct cgroup_subsys *ss;
1187        unsigned long key;
1188        int ssid;
1189
1190        lockdep_assert_held(&cgroup_mutex);
1191
1192        /* First see if we already have a cgroup group that matches
1193         * the desired set */
1194        spin_lock_irq(&css_set_lock);
1195        cset = find_existing_css_set(old_cset, cgrp, template);
1196        if (cset)
1197                get_css_set(cset);
1198        spin_unlock_irq(&css_set_lock);
1199
1200        if (cset)
1201                return cset;
1202
1203        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204        if (!cset)
1205                return NULL;
1206
1207        /* Allocate all the cgrp_cset_link objects that we'll need */
1208        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209                kfree(cset);
1210                return NULL;
1211        }
1212
1213        refcount_set(&cset->refcount, 1);
1214        cset->dom_cset = cset;
1215        INIT_LIST_HEAD(&cset->tasks);
1216        INIT_LIST_HEAD(&cset->mg_tasks);
1217        INIT_LIST_HEAD(&cset->dying_tasks);
1218        INIT_LIST_HEAD(&cset->task_iters);
1219        INIT_LIST_HEAD(&cset->threaded_csets);
1220        INIT_HLIST_NODE(&cset->hlist);
1221        INIT_LIST_HEAD(&cset->cgrp_links);
1222        INIT_LIST_HEAD(&cset->mg_preload_node);
1223        INIT_LIST_HEAD(&cset->mg_node);
1224
1225        /* Copy the set of subsystem state objects generated in
1226         * find_existing_css_set() */
1227        memcpy(cset->subsys, template, sizeof(cset->subsys));
1228
1229        spin_lock_irq(&css_set_lock);
1230        /* Add reference counts and links from the new css_set. */
1231        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232                struct cgroup *c = link->cgrp;
1233
1234                if (c->root == cgrp->root)
1235                        c = cgrp;
1236                link_css_set(&tmp_links, cset, c);
1237        }
1238
1239        BUG_ON(!list_empty(&tmp_links));
1240
1241        css_set_count++;
1242
1243        /* Add @cset to the hash table */
1244        key = css_set_hash(cset->subsys);
1245        hash_add(css_set_table, &cset->hlist, key);
1246
1247        for_each_subsys(ss, ssid) {
1248                struct cgroup_subsys_state *css = cset->subsys[ssid];
1249
1250                list_add_tail(&cset->e_cset_node[ssid],
1251                              &css->cgroup->e_csets[ssid]);
1252                css_get(css);
1253        }
1254
1255        spin_unlock_irq(&css_set_lock);
1256
1257        /*
1258         * If @cset should be threaded, look up the matching dom_cset and
1259         * link them up.  We first fully initialize @cset then look for the
1260         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1261         * to stay empty until we return.
1262         */
1263        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264                struct css_set *dcset;
1265
1266                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267                if (!dcset) {
1268                        put_css_set(cset);
1269                        return NULL;
1270                }
1271
1272                spin_lock_irq(&css_set_lock);
1273                cset->dom_cset = dcset;
1274                list_add_tail(&cset->threaded_csets_node,
1275                              &dcset->threaded_csets);
1276                spin_unlock_irq(&css_set_lock);
1277        }
1278
1279        return cset;
1280}
1281
1282struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283{
1284        struct cgroup *root_cgrp = kf_root->kn->priv;
1285
1286        return root_cgrp->root;
1287}
1288
1289static int cgroup_init_root_id(struct cgroup_root *root)
1290{
1291        int id;
1292
1293        lockdep_assert_held(&cgroup_mutex);
1294
1295        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296        if (id < 0)
1297                return id;
1298
1299        root->hierarchy_id = id;
1300        return 0;
1301}
1302
1303static void cgroup_exit_root_id(struct cgroup_root *root)
1304{
1305        lockdep_assert_held(&cgroup_mutex);
1306
1307        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308}
1309
1310void cgroup_free_root(struct cgroup_root *root)
1311{
1312        if (root) {
1313                idr_destroy(&root->cgroup_idr);
1314                kfree(root);
1315        }
1316}
1317
1318static void cgroup_destroy_root(struct cgroup_root *root)
1319{
1320        struct cgroup *cgrp = &root->cgrp;
1321        struct cgrp_cset_link *link, *tmp_link;
1322
1323        trace_cgroup_destroy_root(root);
1324
1325        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326
1327        BUG_ON(atomic_read(&root->nr_cgrps));
1328        BUG_ON(!list_empty(&cgrp->self.children));
1329
1330        /* Rebind all subsystems back to the default hierarchy */
1331        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332
1333        /*
1334         * Release all the links from cset_links to this hierarchy's
1335         * root cgroup
1336         */
1337        spin_lock_irq(&css_set_lock);
1338
1339        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340                list_del(&link->cset_link);
1341                list_del(&link->cgrp_link);
1342                kfree(link);
1343        }
1344
1345        spin_unlock_irq(&css_set_lock);
1346
1347        if (!list_empty(&root->root_list)) {
1348                list_del(&root->root_list);
1349                cgroup_root_count--;
1350        }
1351
1352        cgroup_exit_root_id(root);
1353
1354        mutex_unlock(&cgroup_mutex);
1355
1356        kernfs_destroy_root(root->kf_root);
1357        cgroup_free_root(root);
1358}
1359
1360/*
1361 * look up cgroup associated with current task's cgroup namespace on the
1362 * specified hierarchy
1363 */
1364static struct cgroup *
1365current_cgns_cgroup_from_root(struct cgroup_root *root)
1366{
1367        struct cgroup *res = NULL;
1368        struct css_set *cset;
1369
1370        lockdep_assert_held(&css_set_lock);
1371
1372        rcu_read_lock();
1373
1374        cset = current->nsproxy->cgroup_ns->root_cset;
1375        if (cset == &init_css_set) {
1376                res = &root->cgrp;
1377        } else {
1378                struct cgrp_cset_link *link;
1379
1380                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381                        struct cgroup *c = link->cgrp;
1382
1383                        if (c->root == root) {
1384                                res = c;
1385                                break;
1386                        }
1387                }
1388        }
1389        rcu_read_unlock();
1390
1391        BUG_ON(!res);
1392        return res;
1393}
1394
1395/* look up cgroup associated with given css_set on the specified hierarchy */
1396static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397                                            struct cgroup_root *root)
1398{
1399        struct cgroup *res = NULL;
1400
1401        lockdep_assert_held(&cgroup_mutex);
1402        lockdep_assert_held(&css_set_lock);
1403
1404        if (cset == &init_css_set) {
1405                res = &root->cgrp;
1406        } else if (root == &cgrp_dfl_root) {
1407                res = cset->dfl_cgrp;
1408        } else {
1409                struct cgrp_cset_link *link;
1410
1411                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412                        struct cgroup *c = link->cgrp;
1413
1414                        if (c->root == root) {
1415                                res = c;
1416                                break;
1417                        }
1418                }
1419        }
1420
1421        BUG_ON(!res);
1422        return res;
1423}
1424
1425/*
1426 * Return the cgroup for "task" from the given hierarchy. Must be
1427 * called with cgroup_mutex and css_set_lock held.
1428 */
1429struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430                                     struct cgroup_root *root)
1431{
1432        /*
1433         * No need to lock the task - since we hold cgroup_mutex the
1434         * task can't change groups, so the only thing that can happen
1435         * is that it exits and its css is set back to init_css_set.
1436         */
1437        return cset_cgroup_from_root(task_css_set(task), root);
1438}
1439
1440/*
1441 * A task must hold cgroup_mutex to modify cgroups.
1442 *
1443 * Any task can increment and decrement the count field without lock.
1444 * So in general, code holding cgroup_mutex can't rely on the count
1445 * field not changing.  However, if the count goes to zero, then only
1446 * cgroup_attach_task() can increment it again.  Because a count of zero
1447 * means that no tasks are currently attached, therefore there is no
1448 * way a task attached to that cgroup can fork (the other way to
1449 * increment the count).  So code holding cgroup_mutex can safely
1450 * assume that if the count is zero, it will stay zero. Similarly, if
1451 * a task holds cgroup_mutex on a cgroup with zero count, it
1452 * knows that the cgroup won't be removed, as cgroup_rmdir()
1453 * needs that mutex.
1454 *
1455 * A cgroup can only be deleted if both its 'count' of using tasks
1456 * is zero, and its list of 'children' cgroups is empty.  Since all
1457 * tasks in the system use _some_ cgroup, and since there is always at
1458 * least one task in the system (init, pid == 1), therefore, root cgroup
1459 * always has either children cgroups and/or using tasks.  So we don't
1460 * need a special hack to ensure that root cgroup cannot be deleted.
1461 *
1462 * P.S.  One more locking exception.  RCU is used to guard the
1463 * update of a tasks cgroup pointer by cgroup_attach_task()
1464 */
1465
1466static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467
1468static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469                              char *buf)
1470{
1471        struct cgroup_subsys *ss = cft->ss;
1472
1473        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476
1477                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479                         cft->name);
1480        } else {
1481                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482        }
1483        return buf;
1484}
1485
1486/**
1487 * cgroup_file_mode - deduce file mode of a control file
1488 * @cft: the control file in question
1489 *
1490 * S_IRUGO for read, S_IWUSR for write.
1491 */
1492static umode_t cgroup_file_mode(const struct cftype *cft)
1493{
1494        umode_t mode = 0;
1495
1496        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497                mode |= S_IRUGO;
1498
1499        if (cft->write_u64 || cft->write_s64 || cft->write) {
1500                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501                        mode |= S_IWUGO;
1502                else
1503                        mode |= S_IWUSR;
1504        }
1505
1506        return mode;
1507}
1508
1509/**
1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511 * @subtree_control: the new subtree_control mask to consider
1512 * @this_ss_mask: available subsystems
1513 *
1514 * On the default hierarchy, a subsystem may request other subsystems to be
1515 * enabled together through its ->depends_on mask.  In such cases, more
1516 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517 *
1518 * This function calculates which subsystems need to be enabled if
1519 * @subtree_control is to be applied while restricted to @this_ss_mask.
1520 */
1521static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522{
1523        u16 cur_ss_mask = subtree_control;
1524        struct cgroup_subsys *ss;
1525        int ssid;
1526
1527        lockdep_assert_held(&cgroup_mutex);
1528
1529        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530
1531        while (true) {
1532                u16 new_ss_mask = cur_ss_mask;
1533
1534                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535                        new_ss_mask |= ss->depends_on;
1536                } while_each_subsys_mask();
1537
1538                /*
1539                 * Mask out subsystems which aren't available.  This can
1540                 * happen only if some depended-upon subsystems were bound
1541                 * to non-default hierarchies.
1542                 */
1543                new_ss_mask &= this_ss_mask;
1544
1545                if (new_ss_mask == cur_ss_mask)
1546                        break;
1547                cur_ss_mask = new_ss_mask;
1548        }
1549
1550        return cur_ss_mask;
1551}
1552
1553/**
1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555 * @kn: the kernfs_node being serviced
1556 *
1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558 * the method finishes if locking succeeded.  Note that once this function
1559 * returns the cgroup returned by cgroup_kn_lock_live() may become
1560 * inaccessible any time.  If the caller intends to continue to access the
1561 * cgroup, it should pin it before invoking this function.
1562 */
1563void cgroup_kn_unlock(struct kernfs_node *kn)
1564{
1565        struct cgroup *cgrp;
1566
1567        if (kernfs_type(kn) == KERNFS_DIR)
1568                cgrp = kn->priv;
1569        else
1570                cgrp = kn->parent->priv;
1571
1572        mutex_unlock(&cgroup_mutex);
1573
1574        kernfs_unbreak_active_protection(kn);
1575        cgroup_put(cgrp);
1576}
1577
1578/**
1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580 * @kn: the kernfs_node being serviced
1581 * @drain_offline: perform offline draining on the cgroup
1582 *
1583 * This helper is to be used by a cgroup kernfs method currently servicing
1584 * @kn.  It breaks the active protection, performs cgroup locking and
1585 * verifies that the associated cgroup is alive.  Returns the cgroup if
1586 * alive; otherwise, %NULL.  A successful return should be undone by a
1587 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1588 * cgroup is drained of offlining csses before return.
1589 *
1590 * Any cgroup kernfs method implementation which requires locking the
1591 * associated cgroup should use this helper.  It avoids nesting cgroup
1592 * locking under kernfs active protection and allows all kernfs operations
1593 * including self-removal.
1594 */
1595struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596{
1597        struct cgroup *cgrp;
1598
1599        if (kernfs_type(kn) == KERNFS_DIR)
1600                cgrp = kn->priv;
1601        else
1602                cgrp = kn->parent->priv;
1603
1604        /*
1605         * We're gonna grab cgroup_mutex which nests outside kernfs
1606         * active_ref.  cgroup liveliness check alone provides enough
1607         * protection against removal.  Ensure @cgrp stays accessible and
1608         * break the active_ref protection.
1609         */
1610        if (!cgroup_tryget(cgrp))
1611                return NULL;
1612        kernfs_break_active_protection(kn);
1613
1614        if (drain_offline)
1615                cgroup_lock_and_drain_offline(cgrp);
1616        else
1617                mutex_lock(&cgroup_mutex);
1618
1619        if (!cgroup_is_dead(cgrp))
1620                return cgrp;
1621
1622        cgroup_kn_unlock(kn);
1623        return NULL;
1624}
1625
1626static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627{
1628        char name[CGROUP_FILE_NAME_MAX];
1629
1630        lockdep_assert_held(&cgroup_mutex);
1631
1632        if (cft->file_offset) {
1633                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635
1636                spin_lock_irq(&cgroup_file_kn_lock);
1637                cfile->kn = NULL;
1638                spin_unlock_irq(&cgroup_file_kn_lock);
1639
1640                del_timer_sync(&cfile->notify_timer);
1641        }
1642
1643        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644}
1645
1646/**
1647 * css_clear_dir - remove subsys files in a cgroup directory
1648 * @css: taget css
1649 */
1650static void css_clear_dir(struct cgroup_subsys_state *css)
1651{
1652        struct cgroup *cgrp = css->cgroup;
1653        struct cftype *cfts;
1654
1655        if (!(css->flags & CSS_VISIBLE))
1656                return;
1657
1658        css->flags &= ~CSS_VISIBLE;
1659
1660        if (!css->ss) {
1661                if (cgroup_on_dfl(cgrp))
1662                        cfts = cgroup_base_files;
1663                else
1664                        cfts = cgroup1_base_files;
1665
1666                cgroup_addrm_files(css, cgrp, cfts, false);
1667        } else {
1668                list_for_each_entry(cfts, &css->ss->cfts, node)
1669                        cgroup_addrm_files(css, cgrp, cfts, false);
1670        }
1671}
1672
1673/**
1674 * css_populate_dir - create subsys files in a cgroup directory
1675 * @css: target css
1676 *
1677 * On failure, no file is added.
1678 */
1679static int css_populate_dir(struct cgroup_subsys_state *css)
1680{
1681        struct cgroup *cgrp = css->cgroup;
1682        struct cftype *cfts, *failed_cfts;
1683        int ret;
1684
1685        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686                return 0;
1687
1688        if (!css->ss) {
1689                if (cgroup_on_dfl(cgrp))
1690                        cfts = cgroup_base_files;
1691                else
1692                        cfts = cgroup1_base_files;
1693
1694                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695                if (ret < 0)
1696                        return ret;
1697        } else {
1698                list_for_each_entry(cfts, &css->ss->cfts, node) {
1699                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700                        if (ret < 0) {
1701                                failed_cfts = cfts;
1702                                goto err;
1703                        }
1704                }
1705        }
1706
1707        css->flags |= CSS_VISIBLE;
1708
1709        return 0;
1710err:
1711        list_for_each_entry(cfts, &css->ss->cfts, node) {
1712                if (cfts == failed_cfts)
1713                        break;
1714                cgroup_addrm_files(css, cgrp, cfts, false);
1715        }
1716        return ret;
1717}
1718
1719int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720{
1721        struct cgroup *dcgrp = &dst_root->cgrp;
1722        struct cgroup_subsys *ss;
1723        int ssid, i, ret;
1724
1725        lockdep_assert_held(&cgroup_mutex);
1726
1727        do_each_subsys_mask(ss, ssid, ss_mask) {
1728                /*
1729                 * If @ss has non-root csses attached to it, can't move.
1730                 * If @ss is an implicit controller, it is exempt from this
1731                 * rule and can be stolen.
1732                 */
1733                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1734                    !ss->implicit_on_dfl)
1735                        return -EBUSY;
1736
1737                /* can't move between two non-dummy roots either */
1738                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1739                        return -EBUSY;
1740        } while_each_subsys_mask();
1741
1742        do_each_subsys_mask(ss, ssid, ss_mask) {
1743                struct cgroup_root *src_root = ss->root;
1744                struct cgroup *scgrp = &src_root->cgrp;
1745                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1746                struct css_set *cset;
1747
1748                WARN_ON(!css || cgroup_css(dcgrp, ss));
1749
1750                /* disable from the source */
1751                src_root->subsys_mask &= ~(1 << ssid);
1752                WARN_ON(cgroup_apply_control(scgrp));
1753                cgroup_finalize_control(scgrp, 0);
1754
1755                /* rebind */
1756                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1757                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1758                ss->root = dst_root;
1759                css->cgroup = dcgrp;
1760
1761                spin_lock_irq(&css_set_lock);
1762                hash_for_each(css_set_table, i, cset, hlist)
1763                        list_move_tail(&cset->e_cset_node[ss->id],
1764                                       &dcgrp->e_csets[ss->id]);
1765                spin_unlock_irq(&css_set_lock);
1766
1767                /* default hierarchy doesn't enable controllers by default */
1768                dst_root->subsys_mask |= 1 << ssid;
1769                if (dst_root == &cgrp_dfl_root) {
1770                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1771                } else {
1772                        dcgrp->subtree_control |= 1 << ssid;
1773                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1774                }
1775
1776                ret = cgroup_apply_control(dcgrp);
1777                if (ret)
1778                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1779                                ss->name, ret);
1780
1781                if (ss->bind)
1782                        ss->bind(css);
1783        } while_each_subsys_mask();
1784
1785        kernfs_activate(dcgrp->kn);
1786        return 0;
1787}
1788
1789int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1790                     struct kernfs_root *kf_root)
1791{
1792        int len = 0;
1793        char *buf = NULL;
1794        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1795        struct cgroup *ns_cgroup;
1796
1797        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1798        if (!buf)
1799                return -ENOMEM;
1800
1801        spin_lock_irq(&css_set_lock);
1802        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1803        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1804        spin_unlock_irq(&css_set_lock);
1805
1806        if (len >= PATH_MAX)
1807                len = -ERANGE;
1808        else if (len > 0) {
1809                seq_escape(sf, buf, " \t\n\\");
1810                len = 0;
1811        }
1812        kfree(buf);
1813        return len;
1814}
1815
1816enum cgroup2_param {
1817        Opt_nsdelegate,
1818        Opt_memory_localevents,
1819        nr__cgroup2_params
1820};
1821
1822static const struct fs_parameter_spec cgroup2_param_specs[] = {
1823        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1824        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1825        {}
1826};
1827
1828static const struct fs_parameter_description cgroup2_fs_parameters = {
1829        .name           = "cgroup2",
1830        .specs          = cgroup2_param_specs,
1831};
1832
1833static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1834{
1835        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1836        struct fs_parse_result result;
1837        int opt;
1838
1839        opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1840        if (opt < 0)
1841                return opt;
1842
1843        switch (opt) {
1844        case Opt_nsdelegate:
1845                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1846                return 0;
1847        case Opt_memory_localevents:
1848                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1849                return 0;
1850        }
1851        return -EINVAL;
1852}
1853
1854static void apply_cgroup_root_flags(unsigned int root_flags)
1855{
1856        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1857                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1858                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1859                else
1860                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1861
1862                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1863                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864                else
1865                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1866        }
1867}
1868
1869static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1870{
1871        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1872                seq_puts(seq, ",nsdelegate");
1873        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874                seq_puts(seq, ",memory_localevents");
1875        return 0;
1876}
1877
1878static int cgroup_reconfigure(struct fs_context *fc)
1879{
1880        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881
1882        apply_cgroup_root_flags(ctx->flags);
1883        return 0;
1884}
1885
1886/*
1887 * To reduce the fork() overhead for systems that are not actually using
1888 * their cgroups capability, we don't maintain the lists running through
1889 * each css_set to its tasks until we see the list actually used - in other
1890 * words after the first mount.
1891 */
1892static bool use_task_css_set_links __read_mostly;
1893
1894static void cgroup_enable_task_cg_lists(void)
1895{
1896        struct task_struct *p, *g;
1897
1898        /*
1899         * We need tasklist_lock because RCU is not safe against
1900         * while_each_thread(). Besides, a forking task that has passed
1901         * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902         * is not guaranteed to have its child immediately visible in the
1903         * tasklist if we walk through it with RCU.
1904         */
1905        read_lock(&tasklist_lock);
1906        spin_lock_irq(&css_set_lock);
1907
1908        if (use_task_css_set_links)
1909                goto out_unlock;
1910
1911        use_task_css_set_links = true;
1912
1913        do_each_thread(g, p) {
1914                WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1915                             task_css_set(p) != &init_css_set);
1916
1917                /*
1918                 * We should check if the process is exiting, otherwise
1919                 * it will race with cgroup_exit() in that the list
1920                 * entry won't be deleted though the process has exited.
1921                 * Do it while holding siglock so that we don't end up
1922                 * racing against cgroup_exit().
1923                 *
1924                 * Interrupts were already disabled while acquiring
1925                 * the css_set_lock, so we do not need to disable it
1926                 * again when acquiring the sighand->siglock here.
1927                 */
1928                spin_lock(&p->sighand->siglock);
1929                if (!(p->flags & PF_EXITING)) {
1930                        struct css_set *cset = task_css_set(p);
1931
1932                        if (!css_set_populated(cset))
1933                                css_set_update_populated(cset, true);
1934                        list_add_tail(&p->cg_list, &cset->tasks);
1935                        get_css_set(cset);
1936                        cset->nr_tasks++;
1937                }
1938                spin_unlock(&p->sighand->siglock);
1939        } while_each_thread(g, p);
1940out_unlock:
1941        spin_unlock_irq(&css_set_lock);
1942        read_unlock(&tasklist_lock);
1943}
1944
1945static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946{
1947        struct cgroup_subsys *ss;
1948        int ssid;
1949
1950        INIT_LIST_HEAD(&cgrp->self.sibling);
1951        INIT_LIST_HEAD(&cgrp->self.children);
1952        INIT_LIST_HEAD(&cgrp->cset_links);
1953        INIT_LIST_HEAD(&cgrp->pidlists);
1954        mutex_init(&cgrp->pidlist_mutex);
1955        cgrp->self.cgroup = cgrp;
1956        cgrp->self.flags |= CSS_ONLINE;
1957        cgrp->dom_cgrp = cgrp;
1958        cgrp->max_descendants = INT_MAX;
1959        cgrp->max_depth = INT_MAX;
1960        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961        prev_cputime_init(&cgrp->prev_cputime);
1962
1963        for_each_subsys(ss, ssid)
1964                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966        init_waitqueue_head(&cgrp->offline_waitq);
1967        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968}
1969
1970void init_cgroup_root(struct cgroup_fs_context *ctx)
1971{
1972        struct cgroup_root *root = ctx->root;
1973        struct cgroup *cgrp = &root->cgrp;
1974
1975        INIT_LIST_HEAD(&root->root_list);
1976        atomic_set(&root->nr_cgrps, 1);
1977        cgrp->root = root;
1978        init_cgroup_housekeeping(cgrp);
1979        idr_init(&root->cgroup_idr);
1980
1981        root->flags = ctx->flags;
1982        if (ctx->release_agent)
1983                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1984        if (ctx->name)
1985                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1986        if (ctx->cpuset_clone_children)
1987                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988}
1989
1990int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991{
1992        LIST_HEAD(tmp_links);
1993        struct cgroup *root_cgrp = &root->cgrp;
1994        struct kernfs_syscall_ops *kf_sops;
1995        struct css_set *cset;
1996        int i, ret;
1997
1998        lockdep_assert_held(&cgroup_mutex);
1999
2000        ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2001        if (ret < 0)
2002                goto out;
2003        root_cgrp->id = ret;
2004        root_cgrp->ancestor_ids[0] = ret;
2005
2006        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2007                              0, GFP_KERNEL);
2008        if (ret)
2009                goto out;
2010
2011        /*
2012         * We're accessing css_set_count without locking css_set_lock here,
2013         * but that's OK - it can only be increased by someone holding
2014         * cgroup_lock, and that's us.  Later rebinding may disable
2015         * controllers on the default hierarchy and thus create new csets,
2016         * which can't be more than the existing ones.  Allocate 2x.
2017         */
2018        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2019        if (ret)
2020                goto cancel_ref;
2021
2022        ret = cgroup_init_root_id(root);
2023        if (ret)
2024                goto cancel_ref;
2025
2026        kf_sops = root == &cgrp_dfl_root ?
2027                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2028
2029        root->kf_root = kernfs_create_root(kf_sops,
2030                                           KERNFS_ROOT_CREATE_DEACTIVATED |
2031                                           KERNFS_ROOT_SUPPORT_EXPORTOP,
2032                                           root_cgrp);
2033        if (IS_ERR(root->kf_root)) {
2034                ret = PTR_ERR(root->kf_root);
2035                goto exit_root_id;
2036        }
2037        root_cgrp->kn = root->kf_root->kn;
2038
2039        ret = css_populate_dir(&root_cgrp->self);
2040        if (ret)
2041                goto destroy_root;
2042
2043        ret = rebind_subsystems(root, ss_mask);
2044        if (ret)
2045                goto destroy_root;
2046
2047        ret = cgroup_bpf_inherit(root_cgrp);
2048        WARN_ON_ONCE(ret);
2049
2050        trace_cgroup_setup_root(root);
2051
2052        /*
2053         * There must be no failure case after here, since rebinding takes
2054         * care of subsystems' refcounts, which are explicitly dropped in
2055         * the failure exit path.
2056         */
2057        list_add(&root->root_list, &cgroup_roots);
2058        cgroup_root_count++;
2059
2060        /*
2061         * Link the root cgroup in this hierarchy into all the css_set
2062         * objects.
2063         */
2064        spin_lock_irq(&css_set_lock);
2065        hash_for_each(css_set_table, i, cset, hlist) {
2066                link_css_set(&tmp_links, cset, root_cgrp);
2067                if (css_set_populated(cset))
2068                        cgroup_update_populated(root_cgrp, true);
2069        }
2070        spin_unlock_irq(&css_set_lock);
2071
2072        BUG_ON(!list_empty(&root_cgrp->self.children));
2073        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074
2075        kernfs_activate(root_cgrp->kn);
2076        ret = 0;
2077        goto out;
2078
2079destroy_root:
2080        kernfs_destroy_root(root->kf_root);
2081        root->kf_root = NULL;
2082exit_root_id:
2083        cgroup_exit_root_id(root);
2084cancel_ref:
2085        percpu_ref_exit(&root_cgrp->self.refcnt);
2086out:
2087        free_cgrp_cset_links(&tmp_links);
2088        return ret;
2089}
2090
2091int cgroup_do_get_tree(struct fs_context *fc)
2092{
2093        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094        int ret;
2095
2096        ctx->kfc.root = ctx->root->kf_root;
2097        if (fc->fs_type == &cgroup2_fs_type)
2098                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099        else
2100                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101        ret = kernfs_get_tree(fc);
2102
2103        /*
2104         * In non-init cgroup namespace, instead of root cgroup's dentry,
2105         * we return the dentry corresponding to the cgroupns->root_cgrp.
2106         */
2107        if (!ret && ctx->ns != &init_cgroup_ns) {
2108                struct dentry *nsdentry;
2109                struct super_block *sb = fc->root->d_sb;
2110                struct cgroup *cgrp;
2111
2112                mutex_lock(&cgroup_mutex);
2113                spin_lock_irq(&css_set_lock);
2114
2115                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116
2117                spin_unlock_irq(&css_set_lock);
2118                mutex_unlock(&cgroup_mutex);
2119
2120                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121                dput(fc->root);
2122                fc->root = nsdentry;
2123                if (IS_ERR(nsdentry)) {
2124                        ret = PTR_ERR(nsdentry);
2125                        deactivate_locked_super(sb);
2126                }
2127        }
2128
2129        if (!ctx->kfc.new_sb_created)
2130                cgroup_put(&ctx->root->cgrp);
2131
2132        return ret;
2133}
2134
2135/*
2136 * Destroy a cgroup filesystem context.
2137 */
2138static void cgroup_fs_context_free(struct fs_context *fc)
2139{
2140        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2141
2142        kfree(ctx->name);
2143        kfree(ctx->release_agent);
2144        put_cgroup_ns(ctx->ns);
2145        kernfs_free_fs_context(fc);
2146        kfree(ctx);
2147}
2148
2149static int cgroup_get_tree(struct fs_context *fc)
2150{
2151        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152        int ret;
2153
2154        cgrp_dfl_visible = true;
2155        cgroup_get_live(&cgrp_dfl_root.cgrp);
2156        ctx->root = &cgrp_dfl_root;
2157
2158        ret = cgroup_do_get_tree(fc);
2159        if (!ret)
2160                apply_cgroup_root_flags(ctx->flags);
2161        return ret;
2162}
2163
2164static const struct fs_context_operations cgroup_fs_context_ops = {
2165        .free           = cgroup_fs_context_free,
2166        .parse_param    = cgroup2_parse_param,
2167        .get_tree       = cgroup_get_tree,
2168        .reconfigure    = cgroup_reconfigure,
2169};
2170
2171static const struct fs_context_operations cgroup1_fs_context_ops = {
2172        .free           = cgroup_fs_context_free,
2173        .parse_param    = cgroup1_parse_param,
2174        .get_tree       = cgroup1_get_tree,
2175        .reconfigure    = cgroup1_reconfigure,
2176};
2177
2178/*
2179 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2180 * we select the namespace we're going to use.
2181 */
2182static int cgroup_init_fs_context(struct fs_context *fc)
2183{
2184        struct cgroup_fs_context *ctx;
2185
2186        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2187        if (!ctx)
2188                return -ENOMEM;
2189
2190        /*
2191         * The first time anyone tries to mount a cgroup, enable the list
2192         * linking each css_set to its tasks and fix up all existing tasks.
2193         */
2194        if (!use_task_css_set_links)
2195                cgroup_enable_task_cg_lists();
2196
2197        ctx->ns = current->nsproxy->cgroup_ns;
2198        get_cgroup_ns(ctx->ns);
2199        fc->fs_private = &ctx->kfc;
2200        if (fc->fs_type == &cgroup2_fs_type)
2201                fc->ops = &cgroup_fs_context_ops;
2202        else
2203                fc->ops = &cgroup1_fs_context_ops;
2204        if (fc->user_ns)
2205                put_user_ns(fc->user_ns);
2206        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2207        fc->global = true;
2208        return 0;
2209}
2210
2211static void cgroup_kill_sb(struct super_block *sb)
2212{
2213        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2214        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2215
2216        /*
2217         * If @root doesn't have any children, start killing it.
2218         * This prevents new mounts by disabling percpu_ref_tryget_live().
2219         * cgroup_mount() may wait for @root's release.
2220         *
2221         * And don't kill the default root.
2222         */
2223        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2224            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2225                percpu_ref_kill(&root->cgrp.self.refcnt);
2226        cgroup_put(&root->cgrp);
2227        kernfs_kill_sb(sb);
2228}
2229
2230struct file_system_type cgroup_fs_type = {
2231        .name                   = "cgroup",
2232        .init_fs_context        = cgroup_init_fs_context,
2233        .parameters             = &cgroup1_fs_parameters,
2234        .kill_sb                = cgroup_kill_sb,
2235        .fs_flags               = FS_USERNS_MOUNT,
2236};
2237
2238static struct file_system_type cgroup2_fs_type = {
2239        .name                   = "cgroup2",
2240        .init_fs_context        = cgroup_init_fs_context,
2241        .parameters             = &cgroup2_fs_parameters,
2242        .kill_sb                = cgroup_kill_sb,
2243        .fs_flags               = FS_USERNS_MOUNT,
2244};
2245
2246int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2247                          struct cgroup_namespace *ns)
2248{
2249        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2250
2251        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2252}
2253
2254int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2255                   struct cgroup_namespace *ns)
2256{
2257        int ret;
2258
2259        mutex_lock(&cgroup_mutex);
2260        spin_lock_irq(&css_set_lock);
2261
2262        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2263
2264        spin_unlock_irq(&css_set_lock);
2265        mutex_unlock(&cgroup_mutex);
2266
2267        return ret;
2268}
2269EXPORT_SYMBOL_GPL(cgroup_path_ns);
2270
2271/**
2272 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2273 * @task: target task
2274 * @buf: the buffer to write the path into
2275 * @buflen: the length of the buffer
2276 *
2277 * Determine @task's cgroup on the first (the one with the lowest non-zero
2278 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2279 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2280 * cgroup controller callbacks.
2281 *
2282 * Return value is the same as kernfs_path().
2283 */
2284int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2285{
2286        struct cgroup_root *root;
2287        struct cgroup *cgrp;
2288        int hierarchy_id = 1;
2289        int ret;
2290
2291        mutex_lock(&cgroup_mutex);
2292        spin_lock_irq(&css_set_lock);
2293
2294        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2295
2296        if (root) {
2297                cgrp = task_cgroup_from_root(task, root);
2298                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2299        } else {
2300                /* if no hierarchy exists, everyone is in "/" */
2301                ret = strlcpy(buf, "/", buflen);
2302        }
2303
2304        spin_unlock_irq(&css_set_lock);
2305        mutex_unlock(&cgroup_mutex);
2306        return ret;
2307}
2308EXPORT_SYMBOL_GPL(task_cgroup_path);
2309
2310/**
2311 * cgroup_migrate_add_task - add a migration target task to a migration context
2312 * @task: target task
2313 * @mgctx: target migration context
2314 *
2315 * Add @task, which is a migration target, to @mgctx->tset.  This function
2316 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2317 * should have been added as a migration source and @task->cg_list will be
2318 * moved from the css_set's tasks list to mg_tasks one.
2319 */
2320static void cgroup_migrate_add_task(struct task_struct *task,
2321                                    struct cgroup_mgctx *mgctx)
2322{
2323        struct css_set *cset;
2324
2325        lockdep_assert_held(&css_set_lock);
2326
2327        /* @task either already exited or can't exit until the end */
2328        if (task->flags & PF_EXITING)
2329                return;
2330
2331        /* leave @task alone if post_fork() hasn't linked it yet */
2332        if (list_empty(&task->cg_list))
2333                return;
2334
2335        cset = task_css_set(task);
2336        if (!cset->mg_src_cgrp)
2337                return;
2338
2339        mgctx->tset.nr_tasks++;
2340
2341        list_move_tail(&task->cg_list, &cset->mg_tasks);
2342        if (list_empty(&cset->mg_node))
2343                list_add_tail(&cset->mg_node,
2344                              &mgctx->tset.src_csets);
2345        if (list_empty(&cset->mg_dst_cset->mg_node))
2346                list_add_tail(&cset->mg_dst_cset->mg_node,
2347                              &mgctx->tset.dst_csets);
2348}
2349
2350/**
2351 * cgroup_taskset_first - reset taskset and return the first task
2352 * @tset: taskset of interest
2353 * @dst_cssp: output variable for the destination css
2354 *
2355 * @tset iteration is initialized and the first task is returned.
2356 */
2357struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2358                                         struct cgroup_subsys_state **dst_cssp)
2359{
2360        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2361        tset->cur_task = NULL;
2362
2363        return cgroup_taskset_next(tset, dst_cssp);
2364}
2365
2366/**
2367 * cgroup_taskset_next - iterate to the next task in taskset
2368 * @tset: taskset of interest
2369 * @dst_cssp: output variable for the destination css
2370 *
2371 * Return the next task in @tset.  Iteration must have been initialized
2372 * with cgroup_taskset_first().
2373 */
2374struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2375                                        struct cgroup_subsys_state **dst_cssp)
2376{
2377        struct css_set *cset = tset->cur_cset;
2378        struct task_struct *task = tset->cur_task;
2379
2380        while (&cset->mg_node != tset->csets) {
2381                if (!task)
2382                        task = list_first_entry(&cset->mg_tasks,
2383                                                struct task_struct, cg_list);
2384                else
2385                        task = list_next_entry(task, cg_list);
2386
2387                if (&task->cg_list != &cset->mg_tasks) {
2388                        tset->cur_cset = cset;
2389                        tset->cur_task = task;
2390
2391                        /*
2392                         * This function may be called both before and
2393                         * after cgroup_taskset_migrate().  The two cases
2394                         * can be distinguished by looking at whether @cset
2395                         * has its ->mg_dst_cset set.
2396                         */
2397                        if (cset->mg_dst_cset)
2398                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2399                        else
2400                                *dst_cssp = cset->subsys[tset->ssid];
2401
2402                        return task;
2403                }
2404
2405                cset = list_next_entry(cset, mg_node);
2406                task = NULL;
2407        }
2408
2409        return NULL;
2410}
2411
2412/**
2413 * cgroup_taskset_migrate - migrate a taskset
2414 * @mgctx: migration context
2415 *
2416 * Migrate tasks in @mgctx as setup by migration preparation functions.
2417 * This function fails iff one of the ->can_attach callbacks fails and
2418 * guarantees that either all or none of the tasks in @mgctx are migrated.
2419 * @mgctx is consumed regardless of success.
2420 */
2421static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2422{
2423        struct cgroup_taskset *tset = &mgctx->tset;
2424        struct cgroup_subsys *ss;
2425        struct task_struct *task, *tmp_task;
2426        struct css_set *cset, *tmp_cset;
2427        int ssid, failed_ssid, ret;
2428
2429        /* check that we can legitimately attach to the cgroup */
2430        if (tset->nr_tasks) {
2431                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2432                        if (ss->can_attach) {
2433                                tset->ssid = ssid;
2434                                ret = ss->can_attach(tset);
2435                                if (ret) {
2436                                        failed_ssid = ssid;
2437                                        goto out_cancel_attach;
2438                                }
2439                        }
2440                } while_each_subsys_mask();
2441        }
2442
2443        /*
2444         * Now that we're guaranteed success, proceed to move all tasks to
2445         * the new cgroup.  There are no failure cases after here, so this
2446         * is the commit point.
2447         */
2448        spin_lock_irq(&css_set_lock);
2449        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2450                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2451                        struct css_set *from_cset = task_css_set(task);
2452                        struct css_set *to_cset = cset->mg_dst_cset;
2453
2454                        get_css_set(to_cset);
2455                        to_cset->nr_tasks++;
2456                        css_set_move_task(task, from_cset, to_cset, true);
2457                        from_cset->nr_tasks--;
2458                        /*
2459                         * If the source or destination cgroup is frozen,
2460                         * the task might require to change its state.
2461                         */
2462                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2463                                                    to_cset->dfl_cgrp);
2464                        put_css_set_locked(from_cset);
2465
2466                }
2467        }
2468        spin_unlock_irq(&css_set_lock);
2469
2470        /*
2471         * Migration is committed, all target tasks are now on dst_csets.
2472         * Nothing is sensitive to fork() after this point.  Notify
2473         * controllers that migration is complete.
2474         */
2475        tset->csets = &tset->dst_csets;
2476
2477        if (tset->nr_tasks) {
2478                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2479                        if (ss->attach) {
2480                                tset->ssid = ssid;
2481                                ss->attach(tset);
2482                        }
2483                } while_each_subsys_mask();
2484        }
2485
2486        ret = 0;
2487        goto out_release_tset;
2488
2489out_cancel_attach:
2490        if (tset->nr_tasks) {
2491                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2492                        if (ssid == failed_ssid)
2493                                break;
2494                        if (ss->cancel_attach) {
2495                                tset->ssid = ssid;
2496                                ss->cancel_attach(tset);
2497                        }
2498                } while_each_subsys_mask();
2499        }
2500out_release_tset:
2501        spin_lock_irq(&css_set_lock);
2502        list_splice_init(&tset->dst_csets, &tset->src_csets);
2503        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2504                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2505                list_del_init(&cset->mg_node);
2506        }
2507        spin_unlock_irq(&css_set_lock);
2508
2509        /*
2510         * Re-initialize the cgroup_taskset structure in case it is reused
2511         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2512         * iteration.
2513         */
2514        tset->nr_tasks = 0;
2515        tset->csets    = &tset->src_csets;
2516        return ret;
2517}
2518
2519/**
2520 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2521 * @dst_cgrp: destination cgroup to test
2522 *
2523 * On the default hierarchy, except for the mixable, (possible) thread root
2524 * and threaded cgroups, subtree_control must be zero for migration
2525 * destination cgroups with tasks so that child cgroups don't compete
2526 * against tasks.
2527 */
2528int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2529{
2530        /* v1 doesn't have any restriction */
2531        if (!cgroup_on_dfl(dst_cgrp))
2532                return 0;
2533
2534        /* verify @dst_cgrp can host resources */
2535        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2536                return -EOPNOTSUPP;
2537
2538        /* mixables don't care */
2539        if (cgroup_is_mixable(dst_cgrp))
2540                return 0;
2541
2542        /*
2543         * If @dst_cgrp is already or can become a thread root or is
2544         * threaded, it doesn't matter.
2545         */
2546        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2547                return 0;
2548
2549        /* apply no-internal-process constraint */
2550        if (dst_cgrp->subtree_control)
2551                return -EBUSY;
2552
2553        return 0;
2554}
2555
2556/**
2557 * cgroup_migrate_finish - cleanup after attach
2558 * @mgctx: migration context
2559 *
2560 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2561 * those functions for details.
2562 */
2563void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2564{
2565        LIST_HEAD(preloaded);
2566        struct css_set *cset, *tmp_cset;
2567
2568        lockdep_assert_held(&cgroup_mutex);
2569
2570        spin_lock_irq(&css_set_lock);
2571
2572        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2573        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2574
2575        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2576                cset->mg_src_cgrp = NULL;
2577                cset->mg_dst_cgrp = NULL;
2578                cset->mg_dst_cset = NULL;
2579                list_del_init(&cset->mg_preload_node);
2580                put_css_set_locked(cset);
2581        }
2582
2583        spin_unlock_irq(&css_set_lock);
2584}
2585
2586/**
2587 * cgroup_migrate_add_src - add a migration source css_set
2588 * @src_cset: the source css_set to add
2589 * @dst_cgrp: the destination cgroup
2590 * @mgctx: migration context
2591 *
2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2593 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2594 * up by cgroup_migrate_finish().
2595 *
2596 * This function may be called without holding cgroup_threadgroup_rwsem
2597 * even if the target is a process.  Threads may be created and destroyed
2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599 * into play and the preloaded css_sets are guaranteed to cover all
2600 * migrations.
2601 */
2602void cgroup_migrate_add_src(struct css_set *src_cset,
2603                            struct cgroup *dst_cgrp,
2604                            struct cgroup_mgctx *mgctx)
2605{
2606        struct cgroup *src_cgrp;
2607
2608        lockdep_assert_held(&cgroup_mutex);
2609        lockdep_assert_held(&css_set_lock);
2610
2611        /*
2612         * If ->dead, @src_set is associated with one or more dead cgroups
2613         * and doesn't contain any migratable tasks.  Ignore it early so
2614         * that the rest of migration path doesn't get confused by it.
2615         */
2616        if (src_cset->dead)
2617                return;
2618
2619        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2620
2621        if (!list_empty(&src_cset->mg_preload_node))
2622                return;
2623
2624        WARN_ON(src_cset->mg_src_cgrp);
2625        WARN_ON(src_cset->mg_dst_cgrp);
2626        WARN_ON(!list_empty(&src_cset->mg_tasks));
2627        WARN_ON(!list_empty(&src_cset->mg_node));
2628
2629        src_cset->mg_src_cgrp = src_cgrp;
2630        src_cset->mg_dst_cgrp = dst_cgrp;
2631        get_css_set(src_cset);
2632        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2633}
2634
2635/**
2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2637 * @mgctx: migration context
2638 *
2639 * Tasks are about to be moved and all the source css_sets have been
2640 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2641 * pins all destination css_sets, links each to its source, and append them
2642 * to @mgctx->preloaded_dst_csets.
2643 *
2644 * This function must be called after cgroup_migrate_add_src() has been
2645 * called on each migration source css_set.  After migration is performed
2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2647 * @mgctx.
2648 */
2649int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2650{
2651        struct css_set *src_cset, *tmp_cset;
2652
2653        lockdep_assert_held(&cgroup_mutex);
2654
2655        /* look up the dst cset for each src cset and link it to src */
2656        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2657                                 mg_preload_node) {
2658                struct css_set *dst_cset;
2659                struct cgroup_subsys *ss;
2660                int ssid;
2661
2662                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2663                if (!dst_cset)
2664                        return -ENOMEM;
2665
2666                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2667
2668                /*
2669                 * If src cset equals dst, it's noop.  Drop the src.
2670                 * cgroup_migrate() will skip the cset too.  Note that we
2671                 * can't handle src == dst as some nodes are used by both.
2672                 */
2673                if (src_cset == dst_cset) {
2674                        src_cset->mg_src_cgrp = NULL;
2675                        src_cset->mg_dst_cgrp = NULL;
2676                        list_del_init(&src_cset->mg_preload_node);
2677                        put_css_set(src_cset);
2678                        put_css_set(dst_cset);
2679                        continue;
2680                }
2681
2682                src_cset->mg_dst_cset = dst_cset;
2683
2684                if (list_empty(&dst_cset->mg_preload_node))
2685                        list_add_tail(&dst_cset->mg_preload_node,
2686                                      &mgctx->preloaded_dst_csets);
2687                else
2688                        put_css_set(dst_cset);
2689
2690                for_each_subsys(ss, ssid)
2691                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2692                                mgctx->ss_mask |= 1 << ssid;
2693        }
2694
2695        return 0;
2696}
2697
2698/**
2699 * cgroup_migrate - migrate a process or task to a cgroup
2700 * @leader: the leader of the process or the task to migrate
2701 * @threadgroup: whether @leader points to the whole process or a single task
2702 * @mgctx: migration context
2703 *
2704 * Migrate a process or task denoted by @leader.  If migrating a process,
2705 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2706 * responsible for invoking cgroup_migrate_add_src() and
2707 * cgroup_migrate_prepare_dst() on the targets before invoking this
2708 * function and following up with cgroup_migrate_finish().
2709 *
2710 * As long as a controller's ->can_attach() doesn't fail, this function is
2711 * guaranteed to succeed.  This means that, excluding ->can_attach()
2712 * failure, when migrating multiple targets, the success or failure can be
2713 * decided for all targets by invoking group_migrate_prepare_dst() before
2714 * actually starting migrating.
2715 */
2716int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2717                   struct cgroup_mgctx *mgctx)
2718{
2719        struct task_struct *task;
2720
2721        /*
2722         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2723         * already PF_EXITING could be freed from underneath us unless we
2724         * take an rcu_read_lock.
2725         */
2726        spin_lock_irq(&css_set_lock);
2727        rcu_read_lock();
2728        task = leader;
2729        do {
2730                cgroup_migrate_add_task(task, mgctx);
2731                if (!threadgroup)
2732                        break;
2733        } while_each_thread(leader, task);
2734        rcu_read_unlock();
2735        spin_unlock_irq(&css_set_lock);
2736
2737        return cgroup_migrate_execute(mgctx);
2738}
2739
2740/**
2741 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2742 * @dst_cgrp: the cgroup to attach to
2743 * @leader: the task or the leader of the threadgroup to be attached
2744 * @threadgroup: attach the whole threadgroup?
2745 *
2746 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2747 */
2748int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2749                       bool threadgroup)
2750{
2751        DEFINE_CGROUP_MGCTX(mgctx);
2752        struct task_struct *task;
2753        int ret;
2754
2755        ret = cgroup_migrate_vet_dst(dst_cgrp);
2756        if (ret)
2757                return ret;
2758
2759        /* look up all src csets */
2760        spin_lock_irq(&css_set_lock);
2761        rcu_read_lock();
2762        task = leader;
2763        do {
2764                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2765                if (!threadgroup)
2766                        break;
2767        } while_each_thread(leader, task);
2768        rcu_read_unlock();
2769        spin_unlock_irq(&css_set_lock);
2770
2771        /* prepare dst csets and commit */
2772        ret = cgroup_migrate_prepare_dst(&mgctx);
2773        if (!ret)
2774                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2775
2776        cgroup_migrate_finish(&mgctx);
2777
2778        if (!ret)
2779                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2780
2781        return ret;
2782}
2783
2784struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2785        __acquires(&cgroup_threadgroup_rwsem)
2786{
2787        struct task_struct *tsk;
2788        pid_t pid;
2789
2790        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2791                return ERR_PTR(-EINVAL);
2792
2793        percpu_down_write(&cgroup_threadgroup_rwsem);
2794
2795        rcu_read_lock();
2796        if (pid) {
2797                tsk = find_task_by_vpid(pid);
2798                if (!tsk) {
2799                        tsk = ERR_PTR(-ESRCH);
2800                        goto out_unlock_threadgroup;
2801                }
2802        } else {
2803                tsk = current;
2804        }
2805
2806        if (threadgroup)
2807                tsk = tsk->group_leader;
2808
2809        /*
2810         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2811         * If userland migrates such a kthread to a non-root cgroup, it can
2812         * become trapped in a cpuset, or RT kthread may be born in a
2813         * cgroup with no rt_runtime allocated.  Just say no.
2814         */
2815        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2816                tsk = ERR_PTR(-EINVAL);
2817                goto out_unlock_threadgroup;
2818        }
2819
2820        get_task_struct(tsk);
2821        goto out_unlock_rcu;
2822
2823out_unlock_threadgroup:
2824        percpu_up_write(&cgroup_threadgroup_rwsem);
2825out_unlock_rcu:
2826        rcu_read_unlock();
2827        return tsk;
2828}
2829
2830void cgroup_procs_write_finish(struct task_struct *task)
2831        __releases(&cgroup_threadgroup_rwsem)
2832{
2833        struct cgroup_subsys *ss;
2834        int ssid;
2835
2836        /* release reference from cgroup_procs_write_start() */
2837        put_task_struct(task);
2838
2839        percpu_up_write(&cgroup_threadgroup_rwsem);
2840        for_each_subsys(ss, ssid)
2841                if (ss->post_attach)
2842                        ss->post_attach();
2843}
2844
2845static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2846{
2847        struct cgroup_subsys *ss;
2848        bool printed = false;
2849        int ssid;
2850
2851        do_each_subsys_mask(ss, ssid, ss_mask) {
2852                if (printed)
2853                        seq_putc(seq, ' ');
2854                seq_printf(seq, "%s", ss->name);
2855                printed = true;
2856        } while_each_subsys_mask();
2857        if (printed)
2858                seq_putc(seq, '\n');
2859}
2860
2861/* show controllers which are enabled from the parent */
2862static int cgroup_controllers_show(struct seq_file *seq, void *v)
2863{
2864        struct cgroup *cgrp = seq_css(seq)->cgroup;
2865
2866        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2867        return 0;
2868}
2869
2870/* show controllers which are enabled for a given cgroup's children */
2871static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2872{
2873        struct cgroup *cgrp = seq_css(seq)->cgroup;
2874
2875        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2876        return 0;
2877}
2878
2879/**
2880 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2881 * @cgrp: root of the subtree to update csses for
2882 *
2883 * @cgrp's control masks have changed and its subtree's css associations
2884 * need to be updated accordingly.  This function looks up all css_sets
2885 * which are attached to the subtree, creates the matching updated css_sets
2886 * and migrates the tasks to the new ones.
2887 */
2888static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2889{
2890        DEFINE_CGROUP_MGCTX(mgctx);
2891        struct cgroup_subsys_state *d_css;
2892        struct cgroup *dsct;
2893        struct css_set *src_cset;
2894        int ret;
2895
2896        lockdep_assert_held(&cgroup_mutex);
2897
2898        percpu_down_write(&cgroup_threadgroup_rwsem);
2899
2900        /* look up all csses currently attached to @cgrp's subtree */
2901        spin_lock_irq(&css_set_lock);
2902        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2903                struct cgrp_cset_link *link;
2904
2905                list_for_each_entry(link, &dsct->cset_links, cset_link)
2906                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2907        }
2908        spin_unlock_irq(&css_set_lock);
2909
2910        /* NULL dst indicates self on default hierarchy */
2911        ret = cgroup_migrate_prepare_dst(&mgctx);
2912        if (ret)
2913                goto out_finish;
2914
2915        spin_lock_irq(&css_set_lock);
2916        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2917                struct task_struct *task, *ntask;
2918
2919                /* all tasks in src_csets need to be migrated */
2920                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2921                        cgroup_migrate_add_task(task, &mgctx);
2922        }
2923        spin_unlock_irq(&css_set_lock);
2924
2925        ret = cgroup_migrate_execute(&mgctx);
2926out_finish:
2927        cgroup_migrate_finish(&mgctx);
2928        percpu_up_write(&cgroup_threadgroup_rwsem);
2929        return ret;
2930}
2931
2932/**
2933 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2934 * @cgrp: root of the target subtree
2935 *
2936 * Because css offlining is asynchronous, userland may try to re-enable a
2937 * controller while the previous css is still around.  This function grabs
2938 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2939 */
2940void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2941        __acquires(&cgroup_mutex)
2942{
2943        struct cgroup *dsct;
2944        struct cgroup_subsys_state *d_css;
2945        struct cgroup_subsys *ss;
2946        int ssid;
2947
2948restart:
2949        mutex_lock(&cgroup_mutex);
2950
2951        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2952                for_each_subsys(ss, ssid) {
2953                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2954                        DEFINE_WAIT(wait);
2955
2956                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2957                                continue;
2958
2959                        cgroup_get_live(dsct);
2960                        prepare_to_wait(&dsct->offline_waitq, &wait,
2961                                        TASK_UNINTERRUPTIBLE);
2962
2963                        mutex_unlock(&cgroup_mutex);
2964                        schedule();
2965                        finish_wait(&dsct->offline_waitq, &wait);
2966
2967                        cgroup_put(dsct);
2968                        goto restart;
2969                }
2970        }
2971}
2972
2973/**
2974 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2978 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2979 * itself.
2980 */
2981static void cgroup_save_control(struct cgroup *cgrp)
2982{
2983        struct cgroup *dsct;
2984        struct cgroup_subsys_state *d_css;
2985
2986        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2987                dsct->old_subtree_control = dsct->subtree_control;
2988                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2989                dsct->old_dom_cgrp = dsct->dom_cgrp;
2990        }
2991}
2992
2993/**
2994 * cgroup_propagate_control - refresh control masks of a subtree
2995 * @cgrp: root of the target subtree
2996 *
2997 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2998 * ->subtree_control and propagate controller availability through the
2999 * subtree so that descendants don't have unavailable controllers enabled.
3000 */
3001static void cgroup_propagate_control(struct cgroup *cgrp)
3002{
3003        struct cgroup *dsct;
3004        struct cgroup_subsys_state *d_css;
3005
3006        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3007                dsct->subtree_control &= cgroup_control(dsct);
3008                dsct->subtree_ss_mask =
3009                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3010                                                    cgroup_ss_mask(dsct));
3011        }
3012}
3013
3014/**
3015 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3016 * @cgrp: root of the target subtree
3017 *
3018 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3019 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3020 * itself.
3021 */
3022static void cgroup_restore_control(struct cgroup *cgrp)
3023{
3024        struct cgroup *dsct;
3025        struct cgroup_subsys_state *d_css;
3026
3027        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3028                dsct->subtree_control = dsct->old_subtree_control;
3029                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3030                dsct->dom_cgrp = dsct->old_dom_cgrp;
3031        }
3032}
3033
3034static bool css_visible(struct cgroup_subsys_state *css)
3035{
3036        struct cgroup_subsys *ss = css->ss;
3037        struct cgroup *cgrp = css->cgroup;
3038
3039        if (cgroup_control(cgrp) & (1 << ss->id))
3040                return true;
3041        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3042                return false;
3043        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3044}
3045
3046/**
3047 * cgroup_apply_control_enable - enable or show csses according to control
3048 * @cgrp: root of the target subtree
3049 *
3050 * Walk @cgrp's subtree and create new csses or make the existing ones
3051 * visible.  A css is created invisible if it's being implicitly enabled
3052 * through dependency.  An invisible css is made visible when the userland
3053 * explicitly enables it.
3054 *
3055 * Returns 0 on success, -errno on failure.  On failure, csses which have
3056 * been processed already aren't cleaned up.  The caller is responsible for
3057 * cleaning up with cgroup_apply_control_disable().
3058 */
3059static int cgroup_apply_control_enable(struct cgroup *cgrp)
3060{
3061        struct cgroup *dsct;
3062        struct cgroup_subsys_state *d_css;
3063        struct cgroup_subsys *ss;
3064        int ssid, ret;
3065
3066        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3067                for_each_subsys(ss, ssid) {
3068                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3069
3070                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3071
3072                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3073                                continue;
3074
3075                        if (!css) {
3076                                css = css_create(dsct, ss);
3077                                if (IS_ERR(css))
3078                                        return PTR_ERR(css);
3079                        }
3080
3081                        if (css_visible(css)) {
3082                                ret = css_populate_dir(css);
3083                                if (ret)
3084                                        return ret;
3085                        }
3086                }
3087        }
3088
3089        return 0;
3090}
3091
3092/**
3093 * cgroup_apply_control_disable - kill or hide csses according to control
3094 * @cgrp: root of the target subtree
3095 *
3096 * Walk @cgrp's subtree and kill and hide csses so that they match
3097 * cgroup_ss_mask() and cgroup_visible_mask().
3098 *
3099 * A css is hidden when the userland requests it to be disabled while other
3100 * subsystems are still depending on it.  The css must not actively control
3101 * resources and be in the vanilla state if it's made visible again later.
3102 * Controllers which may be depended upon should provide ->css_reset() for
3103 * this purpose.
3104 */
3105static void cgroup_apply_control_disable(struct cgroup *cgrp)
3106{
3107        struct cgroup *dsct;
3108        struct cgroup_subsys_state *d_css;
3109        struct cgroup_subsys *ss;
3110        int ssid;
3111
3112        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3113                for_each_subsys(ss, ssid) {
3114                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3115
3116                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3117
3118                        if (!css)
3119                                continue;
3120
3121                        if (css->parent &&
3122                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3123                                kill_css(css);
3124                        } else if (!css_visible(css)) {
3125                                css_clear_dir(css);
3126                                if (ss->css_reset)
3127                                        ss->css_reset(css);
3128                        }
3129                }
3130        }
3131}
3132
3133/**
3134 * cgroup_apply_control - apply control mask updates to the subtree
3135 * @cgrp: root of the target subtree
3136 *
3137 * subsystems can be enabled and disabled in a subtree using the following
3138 * steps.
3139 *
3140 * 1. Call cgroup_save_control() to stash the current state.
3141 * 2. Update ->subtree_control masks in the subtree as desired.
3142 * 3. Call cgroup_apply_control() to apply the changes.
3143 * 4. Optionally perform other related operations.
3144 * 5. Call cgroup_finalize_control() to finish up.
3145 *
3146 * This function implements step 3 and propagates the mask changes
3147 * throughout @cgrp's subtree, updates csses accordingly and perform
3148 * process migrations.
3149 */
3150static int cgroup_apply_control(struct cgroup *cgrp)
3151{
3152        int ret;
3153
3154        cgroup_propagate_control(cgrp);
3155
3156        ret = cgroup_apply_control_enable(cgrp);
3157        if (ret)
3158                return ret;
3159
3160        /*
3161         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3162         * making the following cgroup_update_dfl_csses() properly update
3163         * css associations of all tasks in the subtree.
3164         */
3165        ret = cgroup_update_dfl_csses(cgrp);
3166        if (ret)
3167                return ret;
3168
3169        return 0;
3170}
3171
3172/**
3173 * cgroup_finalize_control - finalize control mask update
3174 * @cgrp: root of the target subtree
3175 * @ret: the result of the update
3176 *
3177 * Finalize control mask update.  See cgroup_apply_control() for more info.
3178 */
3179static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3180{
3181        if (ret) {
3182                cgroup_restore_control(cgrp);
3183                cgroup_propagate_control(cgrp);
3184        }
3185
3186        cgroup_apply_control_disable(cgrp);
3187}
3188
3189static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3190{
3191        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3192
3193        /* if nothing is getting enabled, nothing to worry about */
3194        if (!enable)
3195                return 0;
3196
3197        /* can @cgrp host any resources? */
3198        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3199                return -EOPNOTSUPP;
3200
3201        /* mixables don't care */
3202        if (cgroup_is_mixable(cgrp))
3203                return 0;
3204
3205        if (domain_enable) {
3206                /* can't enable domain controllers inside a thread subtree */
3207                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3208                        return -EOPNOTSUPP;
3209        } else {
3210                /*
3211                 * Threaded controllers can handle internal competitions
3212                 * and are always allowed inside a (prospective) thread
3213                 * subtree.
3214                 */
3215                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3216                        return 0;
3217        }
3218
3219        /*
3220         * Controllers can't be enabled for a cgroup with tasks to avoid
3221         * child cgroups competing against tasks.
3222         */
3223        if (cgroup_has_tasks(cgrp))
3224                return -EBUSY;
3225
3226        return 0;
3227}
3228
3229/* change the enabled child controllers for a cgroup in the default hierarchy */
3230static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3231                                            char *buf, size_t nbytes,
3232                                            loff_t off)
3233{
3234        u16 enable = 0, disable = 0;
3235        struct cgroup *cgrp, *child;
3236        struct cgroup_subsys *ss;
3237        char *tok;
3238        int ssid, ret;
3239
3240        /*
3241         * Parse input - space separated list of subsystem names prefixed
3242         * with either + or -.
3243         */
3244        buf = strstrip(buf);
3245        while ((tok = strsep(&buf, " "))) {
3246                if (tok[0] == '\0')
3247                        continue;
3248                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3249                        if (!cgroup_ssid_enabled(ssid) ||
3250                            strcmp(tok + 1, ss->name))
3251                                continue;
3252
3253                        if (*tok == '+') {
3254                                enable |= 1 << ssid;
3255                                disable &= ~(1 << ssid);
3256                        } else if (*tok == '-') {
3257                                disable |= 1 << ssid;
3258                                enable &= ~(1 << ssid);
3259                        } else {
3260                                return -EINVAL;
3261                        }
3262                        break;
3263                } while_each_subsys_mask();
3264                if (ssid == CGROUP_SUBSYS_COUNT)
3265                        return -EINVAL;
3266        }
3267
3268        cgrp = cgroup_kn_lock_live(of->kn, true);
3269        if (!cgrp)
3270                return -ENODEV;
3271
3272        for_each_subsys(ss, ssid) {
3273                if (enable & (1 << ssid)) {
3274                        if (cgrp->subtree_control & (1 << ssid)) {
3275                                enable &= ~(1 << ssid);
3276                                continue;
3277                        }
3278
3279                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3280                                ret = -ENOENT;
3281                                goto out_unlock;
3282                        }
3283                } else if (disable & (1 << ssid)) {
3284                        if (!(cgrp->subtree_control & (1 << ssid))) {
3285                                disable &= ~(1 << ssid);
3286                                continue;
3287                        }
3288
3289                        /* a child has it enabled? */
3290                        cgroup_for_each_live_child(child, cgrp) {
3291                                if (child->subtree_control & (1 << ssid)) {
3292                                        ret = -EBUSY;
3293                                        goto out_unlock;
3294                                }
3295                        }
3296                }
3297        }
3298
3299        if (!enable && !disable) {
3300                ret = 0;
3301                goto out_unlock;
3302        }
3303
3304        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3305        if (ret)
3306                goto out_unlock;
3307
3308        /* save and update control masks and prepare csses */
3309        cgroup_save_control(cgrp);
3310
3311        cgrp->subtree_control |= enable;
3312        cgrp->subtree_control &= ~disable;
3313
3314        ret = cgroup_apply_control(cgrp);
3315        cgroup_finalize_control(cgrp, ret);
3316        if (ret)
3317                goto out_unlock;
3318
3319        kernfs_activate(cgrp->kn);
3320out_unlock:
3321        cgroup_kn_unlock(of->kn);
3322        return ret ?: nbytes;
3323}
3324
3325/**
3326 * cgroup_enable_threaded - make @cgrp threaded
3327 * @cgrp: the target cgroup
3328 *
3329 * Called when "threaded" is written to the cgroup.type interface file and
3330 * tries to make @cgrp threaded and join the parent's resource domain.
3331 * This function is never called on the root cgroup as cgroup.type doesn't
3332 * exist on it.
3333 */
3334static int cgroup_enable_threaded(struct cgroup *cgrp)
3335{
3336        struct cgroup *parent = cgroup_parent(cgrp);
3337        struct cgroup *dom_cgrp = parent->dom_cgrp;
3338        struct cgroup *dsct;
3339        struct cgroup_subsys_state *d_css;
3340        int ret;
3341
3342        lockdep_assert_held(&cgroup_mutex);
3343
3344        /* noop if already threaded */
3345        if (cgroup_is_threaded(cgrp))
3346                return 0;
3347
3348        /*
3349         * If @cgroup is populated or has domain controllers enabled, it
3350         * can't be switched.  While the below cgroup_can_be_thread_root()
3351         * test can catch the same conditions, that's only when @parent is
3352         * not mixable, so let's check it explicitly.
3353         */
3354        if (cgroup_is_populated(cgrp) ||
3355            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3356                return -EOPNOTSUPP;
3357
3358        /* we're joining the parent's domain, ensure its validity */
3359        if (!cgroup_is_valid_domain(dom_cgrp) ||
3360            !cgroup_can_be_thread_root(dom_cgrp))
3361                return -EOPNOTSUPP;
3362
3363        /*
3364         * The following shouldn't cause actual migrations and should
3365         * always succeed.
3366         */
3367        cgroup_save_control(cgrp);
3368
3369        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3370                if (dsct == cgrp || cgroup_is_threaded(dsct))
3371                        dsct->dom_cgrp = dom_cgrp;
3372
3373        ret = cgroup_apply_control(cgrp);
3374        if (!ret)
3375                parent->nr_threaded_children++;
3376
3377        cgroup_finalize_control(cgrp, ret);
3378        return ret;
3379}
3380
3381static int cgroup_type_show(struct seq_file *seq, void *v)
3382{
3383        struct cgroup *cgrp = seq_css(seq)->cgroup;
3384
3385        if (cgroup_is_threaded(cgrp))
3386                seq_puts(seq, "threaded\n");
3387        else if (!cgroup_is_valid_domain(cgrp))
3388                seq_puts(seq, "domain invalid\n");
3389        else if (cgroup_is_thread_root(cgrp))
3390                seq_puts(seq, "domain threaded\n");
3391        else
3392                seq_puts(seq, "domain\n");
3393
3394        return 0;
3395}
3396
3397static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3398                                 size_t nbytes, loff_t off)
3399{
3400        struct cgroup *cgrp;
3401        int ret;
3402
3403        /* only switching to threaded mode is supported */
3404        if (strcmp(strstrip(buf), "threaded"))
3405                return -EINVAL;
3406
3407        cgrp = cgroup_kn_lock_live(of->kn, false);
3408        if (!cgrp)
3409                return -ENOENT;
3410
3411        /* threaded can only be enabled */
3412        ret = cgroup_enable_threaded(cgrp);
3413
3414        cgroup_kn_unlock(of->kn);
3415        return ret ?: nbytes;
3416}
3417
3418static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3419{
3420        struct cgroup *cgrp = seq_css(seq)->cgroup;
3421        int descendants = READ_ONCE(cgrp->max_descendants);
3422
3423        if (descendants == INT_MAX)
3424                seq_puts(seq, "max\n");
3425        else
3426                seq_printf(seq, "%d\n", descendants);
3427
3428        return 0;
3429}
3430
3431static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3432                                           char *buf, size_t nbytes, loff_t off)
3433{
3434        struct cgroup *cgrp;
3435        int descendants;
3436        ssize_t ret;
3437
3438        buf = strstrip(buf);
3439        if (!strcmp(buf, "max")) {
3440                descendants = INT_MAX;
3441        } else {
3442                ret = kstrtoint(buf, 0, &descendants);
3443                if (ret)
3444                        return ret;
3445        }
3446
3447        if (descendants < 0)
3448                return -ERANGE;
3449
3450        cgrp = cgroup_kn_lock_live(of->kn, false);
3451        if (!cgrp)
3452                return -ENOENT;
3453
3454        cgrp->max_descendants = descendants;
3455
3456        cgroup_kn_unlock(of->kn);
3457
3458        return nbytes;
3459}
3460
3461static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3462{
3463        struct cgroup *cgrp = seq_css(seq)->cgroup;
3464        int depth = READ_ONCE(cgrp->max_depth);
3465
3466        if (depth == INT_MAX)
3467                seq_puts(seq, "max\n");
3468        else
3469                seq_printf(seq, "%d\n", depth);
3470
3471        return 0;
3472}
3473
3474static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3475                                      char *buf, size_t nbytes, loff_t off)
3476{
3477        struct cgroup *cgrp;
3478        ssize_t ret;
3479        int depth;
3480
3481        buf = strstrip(buf);
3482        if (!strcmp(buf, "max")) {
3483                depth = INT_MAX;
3484        } else {
3485                ret = kstrtoint(buf, 0, &depth);
3486                if (ret)
3487                        return ret;
3488        }
3489
3490        if (depth < 0)
3491                return -ERANGE;
3492
3493        cgrp = cgroup_kn_lock_live(of->kn, false);
3494        if (!cgrp)
3495                return -ENOENT;
3496
3497        cgrp->max_depth = depth;
3498
3499        cgroup_kn_unlock(of->kn);
3500
3501        return nbytes;
3502}
3503
3504static int cgroup_events_show(struct seq_file *seq, void *v)
3505{
3506        struct cgroup *cgrp = seq_css(seq)->cgroup;
3507
3508        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3509        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3510
3511        return 0;
3512}
3513
3514static int cgroup_stat_show(struct seq_file *seq, void *v)
3515{
3516        struct cgroup *cgroup = seq_css(seq)->cgroup;
3517
3518        seq_printf(seq, "nr_descendants %d\n",
3519                   cgroup->nr_descendants);
3520        seq_printf(seq, "nr_dying_descendants %d\n",
3521                   cgroup->nr_dying_descendants);
3522
3523        return 0;
3524}
3525
3526static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3527                                                 struct cgroup *cgrp, int ssid)
3528{
3529        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3530        struct cgroup_subsys_state *css;
3531        int ret;
3532
3533        if (!ss->css_extra_stat_show)
3534                return 0;
3535
3536        css = cgroup_tryget_css(cgrp, ss);
3537        if (!css)
3538                return 0;
3539
3540        ret = ss->css_extra_stat_show(seq, css);
3541        css_put(css);
3542        return ret;
3543}
3544
3545static int cpu_stat_show(struct seq_file *seq, void *v)
3546{
3547        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3548        int ret = 0;
3549
3550        cgroup_base_stat_cputime_show(seq);
3551#ifdef CONFIG_CGROUP_SCHED
3552        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3553#endif
3554        return ret;
3555}
3556
3557#ifdef CONFIG_PSI
3558static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3559{
3560        struct cgroup *cgroup = seq_css(seq)->cgroup;
3561        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3562
3563        return psi_show(seq, psi, PSI_IO);
3564}
3565static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3566{
3567        struct cgroup *cgroup = seq_css(seq)->cgroup;
3568        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3569
3570        return psi_show(seq, psi, PSI_MEM);
3571}
3572static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3573{
3574        struct cgroup *cgroup = seq_css(seq)->cgroup;
3575        struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3576
3577        return psi_show(seq, psi, PSI_CPU);
3578}
3579
3580static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3581                                          size_t nbytes, enum psi_res res)
3582{
3583        struct psi_trigger *new;
3584        struct cgroup *cgrp;
3585
3586        cgrp = cgroup_kn_lock_live(of->kn, false);
3587        if (!cgrp)
3588                return -ENODEV;
3589
3590        cgroup_get(cgrp);
3591        cgroup_kn_unlock(of->kn);
3592
3593        new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3594        if (IS_ERR(new)) {
3595                cgroup_put(cgrp);
3596                return PTR_ERR(new);
3597        }
3598
3599        psi_trigger_replace(&of->priv, new);
3600
3601        cgroup_put(cgrp);
3602
3603        return nbytes;
3604}
3605
3606static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3607                                          char *buf, size_t nbytes,
3608                                          loff_t off)
3609{
3610        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3611}
3612
3613static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3614                                          char *buf, size_t nbytes,
3615                                          loff_t off)
3616{
3617        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3618}
3619
3620static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3621                                          char *buf, size_t nbytes,
3622                                          loff_t off)
3623{
3624        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3625}
3626
3627static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3628                                          poll_table *pt)
3629{
3630        return psi_trigger_poll(&of->priv, of->file, pt);
3631}
3632
3633static void cgroup_pressure_release(struct kernfs_open_file *of)
3634{
3635        psi_trigger_replace(&of->priv, NULL);
3636}
3637#endif /* CONFIG_PSI */
3638
3639static int cgroup_freeze_show(struct seq_file *seq, void *v)
3640{
3641        struct cgroup *cgrp = seq_css(seq)->cgroup;
3642
3643        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3644
3645        return 0;
3646}
3647
3648static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3649                                   char *buf, size_t nbytes, loff_t off)
3650{
3651        struct cgroup *cgrp;
3652        ssize_t ret;
3653        int freeze;
3654
3655        ret = kstrtoint(strstrip(buf), 0, &freeze);
3656        if (ret)
3657                return ret;
3658
3659        if (freeze < 0 || freeze > 1)
3660                return -ERANGE;
3661
3662        cgrp = cgroup_kn_lock_live(of->kn, false);
3663        if (!cgrp)
3664                return -ENOENT;
3665
3666        cgroup_freeze(cgrp, freeze);
3667
3668        cgroup_kn_unlock(of->kn);
3669
3670        return nbytes;
3671}
3672
3673static int cgroup_file_open(struct kernfs_open_file *of)
3674{
3675        struct cftype *cft = of->kn->priv;
3676
3677        if (cft->open)
3678                return cft->open(of);
3679        return 0;
3680}
3681
3682static void cgroup_file_release(struct kernfs_open_file *of)
3683{
3684        struct cftype *cft = of->kn->priv;
3685
3686        if (cft->release)
3687                cft->release(of);
3688}
3689
3690static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3691                                 size_t nbytes, loff_t off)
3692{
3693        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3694        struct cgroup *cgrp = of->kn->parent->priv;
3695        struct cftype *cft = of->kn->priv;
3696        struct cgroup_subsys_state *css;
3697        int ret;
3698
3699        /*
3700         * If namespaces are delegation boundaries, disallow writes to
3701         * files in an non-init namespace root from inside the namespace
3702         * except for the files explicitly marked delegatable -
3703         * cgroup.procs and cgroup.subtree_control.
3704         */
3705        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3706            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3707            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3708                return -EPERM;
3709
3710        if (cft->write)
3711                return cft->write(of, buf, nbytes, off);
3712
3713        /*
3714         * kernfs guarantees that a file isn't deleted with operations in
3715         * flight, which means that the matching css is and stays alive and
3716         * doesn't need to be pinned.  The RCU locking is not necessary
3717         * either.  It's just for the convenience of using cgroup_css().
3718         */
3719        rcu_read_lock();
3720        css = cgroup_css(cgrp, cft->ss);
3721        rcu_read_unlock();
3722
3723        if (cft->write_u64) {
3724                unsigned long long v;
3725                ret = kstrtoull(buf, 0, &v);
3726                if (!ret)
3727                        ret = cft->write_u64(css, cft, v);
3728        } else if (cft->write_s64) {
3729                long long v;
3730                ret = kstrtoll(buf, 0, &v);
3731                if (!ret)
3732                        ret = cft->write_s64(css, cft, v);
3733        } else {
3734                ret = -EINVAL;
3735        }
3736
3737        return ret ?: nbytes;
3738}
3739
3740static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3741{
3742        struct cftype *cft = of->kn->priv;
3743
3744        if (cft->poll)
3745                return cft->poll(of, pt);
3746
3747        return kernfs_generic_poll(of, pt);
3748}
3749
3750static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3751{
3752        return seq_cft(seq)->seq_start(seq, ppos);
3753}
3754
3755static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3756{
3757        return seq_cft(seq)->seq_next(seq, v, ppos);
3758}
3759
3760static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3761{
3762        if (seq_cft(seq)->seq_stop)
3763                seq_cft(seq)->seq_stop(seq, v);
3764}
3765
3766static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3767{
3768        struct cftype *cft = seq_cft(m);
3769        struct cgroup_subsys_state *css = seq_css(m);
3770
3771        if (cft->seq_show)
3772                return cft->seq_show(m, arg);
3773
3774        if (cft->read_u64)
3775                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3776        else if (cft->read_s64)
3777                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3778        else
3779                return -EINVAL;
3780        return 0;
3781}
3782
3783static struct kernfs_ops cgroup_kf_single_ops = {
3784        .atomic_write_len       = PAGE_SIZE,
3785        .open                   = cgroup_file_open,
3786        .release                = cgroup_file_release,
3787        .write                  = cgroup_file_write,
3788        .poll                   = cgroup_file_poll,
3789        .seq_show               = cgroup_seqfile_show,
3790};
3791
3792static struct kernfs_ops cgroup_kf_ops = {
3793        .atomic_write_len       = PAGE_SIZE,
3794        .open                   = cgroup_file_open,
3795        .release                = cgroup_file_release,
3796        .write                  = cgroup_file_write,
3797        .poll                   = cgroup_file_poll,
3798        .seq_start              = cgroup_seqfile_start,
3799        .seq_next               = cgroup_seqfile_next,
3800        .seq_stop               = cgroup_seqfile_stop,
3801        .seq_show               = cgroup_seqfile_show,
3802};
3803
3804/* set uid and gid of cgroup dirs and files to that of the creator */
3805static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3806{
3807        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3808                               .ia_uid = current_fsuid(),
3809                               .ia_gid = current_fsgid(), };
3810
3811        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3812            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3813                return 0;
3814
3815        return kernfs_setattr(kn, &iattr);
3816}
3817
3818static void cgroup_file_notify_timer(struct timer_list *timer)
3819{
3820        cgroup_file_notify(container_of(timer, struct cgroup_file,
3821                                        notify_timer));
3822}
3823
3824static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3825                           struct cftype *cft)
3826{
3827        char name[CGROUP_FILE_NAME_MAX];
3828        struct kernfs_node *kn;
3829        struct lock_class_key *key = NULL;
3830        int ret;
3831
3832#ifdef CONFIG_DEBUG_LOCK_ALLOC
3833        key = &cft->lockdep_key;
3834#endif
3835        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3836                                  cgroup_file_mode(cft),
3837                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3838                                  0, cft->kf_ops, cft,
3839                                  NULL, key);
3840        if (IS_ERR(kn))
3841                return PTR_ERR(kn);
3842
3843        ret = cgroup_kn_set_ugid(kn);
3844        if (ret) {
3845                kernfs_remove(kn);
3846                return ret;
3847        }
3848
3849        if (cft->file_offset) {
3850                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3851
3852                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3853
3854                spin_lock_irq(&cgroup_file_kn_lock);
3855                cfile->kn = kn;
3856                spin_unlock_irq(&cgroup_file_kn_lock);
3857        }
3858
3859        return 0;
3860}
3861
3862/**
3863 * cgroup_addrm_files - add or remove files to a cgroup directory
3864 * @css: the target css
3865 * @cgrp: the target cgroup (usually css->cgroup)
3866 * @cfts: array of cftypes to be added
3867 * @is_add: whether to add or remove
3868 *
3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870 * For removals, this function never fails.
3871 */
3872static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3873                              struct cgroup *cgrp, struct cftype cfts[],
3874                              bool is_add)
3875{
3876        struct cftype *cft, *cft_end = NULL;
3877        int ret = 0;
3878
3879        lockdep_assert_held(&cgroup_mutex);
3880
3881restart:
3882        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3883                /* does cft->flags tell us to skip this file on @cgrp? */
3884                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3885                        continue;
3886                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3887                        continue;
3888                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3889                        continue;
3890                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3891                        continue;
3892                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3893                        continue;
3894                if (is_add) {
3895                        ret = cgroup_add_file(css, cgrp, cft);
3896                        if (ret) {
3897                                pr_warn("%s: failed to add %s, err=%d\n",
3898                                        __func__, cft->name, ret);
3899                                cft_end = cft;
3900                                is_add = false;
3901                                goto restart;
3902                        }
3903                } else {
3904                        cgroup_rm_file(cgrp, cft);
3905                }
3906        }
3907        return ret;
3908}
3909
3910static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3911{
3912        struct cgroup_subsys *ss = cfts[0].ss;
3913        struct cgroup *root = &ss->root->cgrp;
3914        struct cgroup_subsys_state *css;
3915        int ret = 0;
3916
3917        lockdep_assert_held(&cgroup_mutex);
3918
3919        /* add/rm files for all cgroups created before */
3920        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3921                struct cgroup *cgrp = css->cgroup;
3922
3923                if (!(css->flags & CSS_VISIBLE))
3924                        continue;
3925
3926                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3927                if (ret)
3928                        break;
3929        }
3930
3931        if (is_add && !ret)
3932                kernfs_activate(root->kn);
3933        return ret;
3934}
3935
3936static void cgroup_exit_cftypes(struct cftype *cfts)
3937{
3938        struct cftype *cft;
3939
3940        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3941                /* free copy for custom atomic_write_len, see init_cftypes() */
3942                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3943                        kfree(cft->kf_ops);
3944                cft->kf_ops = NULL;
3945                cft->ss = NULL;
3946
3947                /* revert flags set by cgroup core while adding @cfts */
3948                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3949        }
3950}
3951
3952static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3953{
3954        struct cftype *cft;
3955
3956        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3957                struct kernfs_ops *kf_ops;
3958
3959                WARN_ON(cft->ss || cft->kf_ops);
3960
3961                if (cft->seq_start)
3962                        kf_ops = &cgroup_kf_ops;
3963                else
3964                        kf_ops = &cgroup_kf_single_ops;
3965
3966                /*
3967                 * Ugh... if @cft wants a custom max_write_len, we need to
3968                 * make a copy of kf_ops to set its atomic_write_len.
3969                 */
3970                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3971                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3972                        if (!kf_ops) {
3973                                cgroup_exit_cftypes(cfts);
3974                                return -ENOMEM;
3975                        }
3976                        kf_ops->atomic_write_len = cft->max_write_len;
3977                }
3978
3979                cft->kf_ops = kf_ops;
3980                cft->ss = ss;
3981        }
3982
3983        return 0;
3984}
3985
3986static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3987{
3988        lockdep_assert_held(&cgroup_mutex);
3989
3990        if (!cfts || !cfts[0].ss)
3991                return -ENOENT;
3992
3993        list_del(&cfts->node);
3994        cgroup_apply_cftypes(cfts, false);
3995        cgroup_exit_cftypes(cfts);
3996        return 0;
3997}
3998
3999/**
4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001 * @cfts: zero-length name terminated array of cftypes
4002 *
4003 * Unregister @cfts.  Files described by @cfts are removed from all
4004 * existing cgroups and all future cgroups won't have them either.  This
4005 * function can be called anytime whether @cfts' subsys is attached or not.
4006 *
4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4008 * registered.
4009 */
4010int cgroup_rm_cftypes(struct cftype *cfts)
4011{
4012        int ret;
4013
4014        mutex_lock(&cgroup_mutex);
4015        ret = cgroup_rm_cftypes_locked(cfts);
4016        mutex_unlock(&cgroup_mutex);
4017        return ret;
4018}
4019
4020/**
4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022 * @ss: target cgroup subsystem
4023 * @cfts: zero-length name terminated array of cftypes
4024 *
4025 * Register @cfts to @ss.  Files described by @cfts are created for all
4026 * existing cgroups to which @ss is attached and all future cgroups will
4027 * have them too.  This function can be called anytime whether @ss is
4028 * attached or not.
4029 *
4030 * Returns 0 on successful registration, -errno on failure.  Note that this
4031 * function currently returns 0 as long as @cfts registration is successful
4032 * even if some file creation attempts on existing cgroups fail.
4033 */
4034static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4035{
4036        int ret;
4037
4038        if (!cgroup_ssid_enabled(ss->id))
4039                return 0;
4040
4041        if (!cfts || cfts[0].name[0] == '\0')
4042                return 0;
4043
4044        ret = cgroup_init_cftypes(ss, cfts);
4045        if (ret)
4046                return ret;
4047
4048        mutex_lock(&cgroup_mutex);
4049
4050        list_add_tail(&cfts->node, &ss->cfts);
4051        ret = cgroup_apply_cftypes(cfts, true);
4052        if (ret)
4053                cgroup_rm_cftypes_locked(cfts);
4054
4055        mutex_unlock(&cgroup_mutex);
4056        return ret;
4057}
4058
4059/**
4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4063 *
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the default hierarchy.
4066 */
4067int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068{
4069        struct cftype *cft;
4070
4071        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4073        return cgroup_add_cftypes(ss, cfts);
4074}
4075
4076/**
4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078 * @ss: target cgroup subsystem
4079 * @cfts: zero-length name terminated array of cftypes
4080 *
4081 * Similar to cgroup_add_cftypes() but the added files are only used for
4082 * the legacy hierarchies.
4083 */
4084int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4085{
4086        struct cftype *cft;
4087
4088        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4089                cft->flags |= __CFTYPE_NOT_ON_DFL;
4090        return cgroup_add_cftypes(ss, cfts);
4091}
4092
4093/**
4094 * cgroup_file_notify - generate a file modified event for a cgroup_file
4095 * @cfile: target cgroup_file
4096 *
4097 * @cfile must have been obtained by setting cftype->file_offset.
4098 */
4099void cgroup_file_notify(struct cgroup_file *cfile)
4100{
4101        unsigned long flags;
4102
4103        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4104        if (cfile->kn) {
4105                unsigned long last = cfile->notified_at;
4106                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4107
4108                if (time_in_range(jiffies, last, next)) {
4109                        timer_reduce(&cfile->notify_timer, next);
4110                } else {
4111                        kernfs_notify(cfile->kn);
4112                        cfile->notified_at = jiffies;
4113                }
4114        }
4115        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4116}
4117
4118/**
4119 * css_next_child - find the next child of a given css
4120 * @pos: the current position (%NULL to initiate traversal)
4121 * @parent: css whose children to walk
4122 *
4123 * This function returns the next child of @parent and should be called
4124 * under either cgroup_mutex or RCU read lock.  The only requirement is
4125 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4126 * be returned regardless of their states.
4127 *
4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129 * css which finished ->css_online() is guaranteed to be visible in the
4130 * future iterations and will stay visible until the last reference is put.
4131 * A css which hasn't finished ->css_online() or already finished
4132 * ->css_offline() may show up during traversal.  It's each subsystem's
4133 * responsibility to synchronize against on/offlining.
4134 */
4135struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4136                                           struct cgroup_subsys_state *parent)
4137{
4138        struct cgroup_subsys_state *next;
4139
4140        cgroup_assert_mutex_or_rcu_locked();
4141
4142        /*
4143         * @pos could already have been unlinked from the sibling list.
4144         * Once a cgroup is removed, its ->sibling.next is no longer
4145         * updated when its next sibling changes.  CSS_RELEASED is set when
4146         * @pos is taken off list, at which time its next pointer is valid,
4147         * and, as releases are serialized, the one pointed to by the next
4148         * pointer is guaranteed to not have started release yet.  This
4149         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150         * critical section, the one pointed to by its next pointer is
4151         * guaranteed to not have finished its RCU grace period even if we
4152         * have dropped rcu_read_lock() inbetween iterations.
4153         *
4154         * If @pos has CSS_RELEASED set, its next pointer can't be
4155         * dereferenced; however, as each css is given a monotonically
4156         * increasing unique serial number and always appended to the
4157         * sibling list, the next one can be found by walking the parent's
4158         * children until the first css with higher serial number than
4159         * @pos's.  While this path can be slower, it happens iff iteration
4160         * races against release and the race window is very small.
4161         */
4162        if (!pos) {
4163                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4164        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4165                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4166        } else {
4167                list_for_each_entry_rcu(next, &parent->children, sibling)
4168                        if (next->serial_nr > pos->serial_nr)
4169                                break;
4170        }
4171
4172        /*
4173         * @next, if not pointing to the head, can be dereferenced and is
4174         * the next sibling.
4175         */
4176        if (&next->sibling != &parent->children)
4177                return next;
4178        return NULL;
4179}
4180
4181/**
4182 * css_next_descendant_pre - find the next descendant for pre-order walk
4183 * @pos: the current position (%NULL to initiate traversal)
4184 * @root: css whose descendants to walk
4185 *
4186 * To be used by css_for_each_descendant_pre().  Find the next descendant
4187 * to visit for pre-order traversal of @root's descendants.  @root is
4188 * included in the iteration and the first node to be visited.
4189 *
4190 * While this function requires cgroup_mutex or RCU read locking, it
4191 * doesn't require the whole traversal to be contained in a single critical
4192 * section.  This function will return the correct next descendant as long
4193 * as both @pos and @root are accessible and @pos is a descendant of @root.
4194 *
4195 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4196 * css which finished ->css_online() is guaranteed to be visible in the
4197 * future iterations and will stay visible until the last reference is put.
4198 * A css which hasn't finished ->css_online() or already finished
4199 * ->css_offline() may show up during traversal.  It's each subsystem's
4200 * responsibility to synchronize against on/offlining.
4201 */
4202struct cgroup_subsys_state *
4203css_next_descendant_pre(struct cgroup_subsys_state *pos,
4204                        struct cgroup_subsys_state *root)
4205{
4206        struct cgroup_subsys_state *next;
4207
4208        cgroup_assert_mutex_or_rcu_locked();
4209
4210        /* if first iteration, visit @root */
4211        if (!pos)
4212                return root;
4213
4214        /* visit the first child if exists */
4215        next = css_next_child(NULL, pos);
4216        if (next)
4217                return next;
4218
4219        /* no child, visit my or the closest ancestor's next sibling */
4220        while (pos != root) {
4221                next = css_next_child(pos, pos->parent);
4222                if (next)
4223                        return next;
4224                pos = pos->parent;
4225        }
4226
4227        return NULL;
4228}
4229
4230/**
4231 * css_rightmost_descendant - return the rightmost descendant of a css
4232 * @pos: css of interest
4233 *
4234 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4235 * is returned.  This can be used during pre-order traversal to skip
4236 * subtree of @pos.
4237 *
4238 * While this function requires cgroup_mutex or RCU read locking, it
4239 * doesn't require the whole traversal to be contained in a single critical
4240 * section.  This function will return the correct rightmost descendant as
4241 * long as @pos is accessible.
4242 */
4243struct cgroup_subsys_state *
4244css_rightmost_descendant(struct cgroup_subsys_state *pos)
4245{
4246        struct cgroup_subsys_state *last, *tmp;
4247
4248        cgroup_assert_mutex_or_rcu_locked();
4249
4250        do {
4251                last = pos;
4252                /* ->prev isn't RCU safe, walk ->next till the end */
4253                pos = NULL;
4254                css_for_each_child(tmp, last)
4255                        pos = tmp;
4256        } while (pos);
4257
4258        return last;
4259}
4260
4261static struct cgroup_subsys_state *
4262css_leftmost_descendant(struct cgroup_subsys_state *pos)
4263{
4264        struct cgroup_subsys_state *last;
4265
4266        do {
4267                last = pos;
4268                pos = css_next_child(NULL, pos);
4269        } while (pos);
4270
4271        return last;
4272}
4273
4274/**
4275 * css_next_descendant_post - find the next descendant for post-order walk
4276 * @pos: the current position (%NULL to initiate traversal)
4277 * @root: css whose descendants to walk
4278 *
4279 * To be used by css_for_each_descendant_post().  Find the next descendant
4280 * to visit for post-order traversal of @root's descendants.  @root is
4281 * included in the iteration and the last node to be visited.
4282 *
4283 * While this function requires cgroup_mutex or RCU read locking, it
4284 * doesn't require the whole traversal to be contained in a single critical
4285 * section.  This function will return the correct next descendant as long
4286 * as both @pos and @cgroup are accessible and @pos is a descendant of
4287 * @cgroup.
4288 *
4289 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4290 * css which finished ->css_online() is guaranteed to be visible in the
4291 * future iterations and will stay visible until the last reference is put.
4292 * A css which hasn't finished ->css_online() or already finished
4293 * ->css_offline() may show up during traversal.  It's each subsystem's
4294 * responsibility to synchronize against on/offlining.
4295 */
4296struct cgroup_subsys_state *
4297css_next_descendant_post(struct cgroup_subsys_state *pos,
4298                         struct cgroup_subsys_state *root)
4299{
4300        struct cgroup_subsys_state *next;
4301
4302        cgroup_assert_mutex_or_rcu_locked();
4303
4304        /* if first iteration, visit leftmost descendant which may be @root */
4305        if (!pos)
4306                return css_leftmost_descendant(root);
4307
4308        /* if we visited @root, we're done */
4309        if (pos == root)
4310                return NULL;
4311
4312        /* if there's an unvisited sibling, visit its leftmost descendant */
4313        next = css_next_child(pos, pos->parent);
4314        if (next)
4315                return css_leftmost_descendant(next);
4316
4317        /* no sibling left, visit parent */
4318        return pos->parent;
4319}
4320
4321/**
4322 * css_has_online_children - does a css have online children
4323 * @css: the target css
4324 *
4325 * Returns %true if @css has any online children; otherwise, %false.  This
4326 * function can be called from any context but the caller is responsible
4327 * for synchronizing against on/offlining as necessary.
4328 */
4329bool css_has_online_children(struct cgroup_subsys_state *css)
4330{
4331        struct cgroup_subsys_state *child;
4332        bool ret = false;
4333
4334        rcu_read_lock();
4335        css_for_each_child(child, css) {
4336                if (child->flags & CSS_ONLINE) {
4337                        ret = true;
4338                        break;
4339                }
4340        }
4341        rcu_read_unlock();
4342        return ret;
4343}
4344
4345static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4346{
4347        struct list_head *l;
4348        struct cgrp_cset_link *link;
4349        struct css_set *cset;
4350
4351        lockdep_assert_held(&css_set_lock);
4352
4353        /* find the next threaded cset */
4354        if (it->tcset_pos) {
4355                l = it->tcset_pos->next;
4356
4357                if (l != it->tcset_head) {
4358                        it->tcset_pos = l;
4359                        return container_of(l, struct css_set,
4360                                            threaded_csets_node);
4361                }
4362
4363                it->tcset_pos = NULL;
4364        }
4365
4366        /* find the next cset */
4367        l = it->cset_pos;
4368        l = l->next;
4369        if (l == it->cset_head) {
4370                it->cset_pos = NULL;
4371                return NULL;
4372        }
4373
4374        if (it->ss) {
4375                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4376        } else {
4377                link = list_entry(l, struct cgrp_cset_link, cset_link);
4378                cset = link->cset;
4379        }
4380
4381        it->cset_pos = l;
4382
4383        /* initialize threaded css_set walking */
4384        if (it->flags & CSS_TASK_ITER_THREADED) {
4385                if (it->cur_dcset)
4386                        put_css_set_locked(it->cur_dcset);
4387                it->cur_dcset = cset;
4388                get_css_set(cset);
4389
4390                it->tcset_head = &cset->threaded_csets;
4391                it->tcset_pos = &cset->threaded_csets;
4392        }
4393
4394        return cset;
4395}
4396
4397/**
4398 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4399 * @it: the iterator to advance
4400 *
4401 * Advance @it to the next css_set to walk.
4402 */
4403static void css_task_iter_advance_css_set(struct css_task_iter *it)
4404{
4405        struct css_set *cset;
4406
4407        lockdep_assert_held(&css_set_lock);
4408
4409        /* Advance to the next non-empty css_set */
4410        do {
4411                cset = css_task_iter_next_css_set(it);
4412                if (!cset) {
4413                        it->task_pos = NULL;
4414                        return;
4415                }
4416        } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4417
4418        if (!list_empty(&cset->tasks))
4419                it->task_pos = cset->tasks.next;
4420        else if (!list_empty(&cset->mg_tasks))
4421                it->task_pos = cset->mg_tasks.next;
4422        else
4423                it->task_pos = cset->dying_tasks.next;
4424
4425        it->tasks_head = &cset->tasks;
4426        it->mg_tasks_head = &cset->mg_tasks;
4427        it->dying_tasks_head = &cset->dying_tasks;
4428
4429        /*
4430         * We don't keep css_sets locked across iteration steps and thus
4431         * need to take steps to ensure that iteration can be resumed after
4432         * the lock is re-acquired.  Iteration is performed at two levels -
4433         * css_sets and tasks in them.
4434         *
4435         * Once created, a css_set never leaves its cgroup lists, so a
4436         * pinned css_set is guaranteed to stay put and we can resume
4437         * iteration afterwards.
4438         *
4439         * Tasks may leave @cset across iteration steps.  This is resolved
4440         * by registering each iterator with the css_set currently being
4441         * walked and making css_set_move_task() advance iterators whose
4442         * next task is leaving.
4443         */
4444        if (it->cur_cset) {
4445                list_del(&it->iters_node);
4446                put_css_set_locked(it->cur_cset);
4447        }
4448        get_css_set(cset);
4449        it->cur_cset = cset;
4450        list_add(&it->iters_node, &cset->task_iters);
4451}
4452
4453static void css_task_iter_skip(struct css_task_iter *it,
4454                               struct task_struct *task)
4455{
4456        lockdep_assert_held(&css_set_lock);
4457
4458        if (it->task_pos == &task->cg_list) {
4459                it->task_pos = it->task_pos->next;
4460                it->flags |= CSS_TASK_ITER_SKIPPED;
4461        }
4462}
4463
4464static void css_task_iter_advance(struct css_task_iter *it)
4465{
4466        struct task_struct *task;
4467
4468        lockdep_assert_held(&css_set_lock);
4469repeat:
4470        if (it->task_pos) {
4471                /*
4472                 * Advance iterator to find next entry.  cset->tasks is
4473                 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4474                 * we move onto the next cset.
4475                 */
4476                if (it->flags & CSS_TASK_ITER_SKIPPED)
4477                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4478                else
4479                        it->task_pos = it->task_pos->next;
4480
4481                if (it->task_pos == it->tasks_head)
4482                        it->task_pos = it->mg_tasks_head->next;
4483                if (it->task_pos == it->mg_tasks_head)
4484                        it->task_pos = it->dying_tasks_head->next;
4485                if (it->task_pos == it->dying_tasks_head)
4486                        css_task_iter_advance_css_set(it);
4487        } else {
4488                /* called from start, proceed to the first cset */
4489                css_task_iter_advance_css_set(it);
4490        }
4491
4492        if (!it->task_pos)
4493                return;
4494
4495        task = list_entry(it->task_pos, struct task_struct, cg_list);
4496
4497        if (it->flags & CSS_TASK_ITER_PROCS) {
4498                /* if PROCS, skip over tasks which aren't group leaders */
4499                if (!thread_group_leader(task))
4500                        goto repeat;
4501
4502                /* and dying leaders w/o live member threads */
4503                if (!atomic_read(&task->signal->live))
4504                        goto repeat;
4505        } else {
4506                /* skip all dying ones */
4507                if (task->flags & PF_EXITING)
4508                        goto repeat;
4509        }
4510}
4511
4512/**
4513 * css_task_iter_start - initiate task iteration
4514 * @css: the css to walk tasks of
4515 * @flags: CSS_TASK_ITER_* flags
4516 * @it: the task iterator to use
4517 *
4518 * Initiate iteration through the tasks of @css.  The caller can call
4519 * css_task_iter_next() to walk through the tasks until the function
4520 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4521 * called.
4522 */
4523void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4524                         struct css_task_iter *it)
4525{
4526        /* no one should try to iterate before mounting cgroups */
4527        WARN_ON_ONCE(!use_task_css_set_links);
4528
4529        memset(it, 0, sizeof(*it));
4530
4531        spin_lock_irq(&css_set_lock);
4532
4533        it->ss = css->ss;
4534        it->flags = flags;
4535
4536        if (it->ss)
4537                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4538        else
4539                it->cset_pos = &css->cgroup->cset_links;
4540
4541        it->cset_head = it->cset_pos;
4542
4543        css_task_iter_advance(it);
4544
4545        spin_unlock_irq(&css_set_lock);
4546}
4547
4548/**
4549 * css_task_iter_next - return the next task for the iterator
4550 * @it: the task iterator being iterated
4551 *
4552 * The "next" function for task iteration.  @it should have been
4553 * initialized via css_task_iter_start().  Returns NULL when the iteration
4554 * reaches the end.
4555 */
4556struct task_struct *css_task_iter_next(struct css_task_iter *it)
4557{
4558        if (it->cur_task) {
4559                put_task_struct(it->cur_task);
4560                it->cur_task = NULL;
4561        }
4562
4563        spin_lock_irq(&css_set_lock);
4564
4565        /* @it may be half-advanced by skips, finish advancing */
4566        if (it->flags & CSS_TASK_ITER_SKIPPED)
4567                css_task_iter_advance(it);
4568
4569        if (it->task_pos) {
4570                it->cur_task = list_entry(it->task_pos, struct task_struct,
4571                                          cg_list);
4572                get_task_struct(it->cur_task);
4573                css_task_iter_advance(it);
4574        }
4575
4576        spin_unlock_irq(&css_set_lock);
4577
4578        return it->cur_task;
4579}
4580
4581/**
4582 * css_task_iter_end - finish task iteration
4583 * @it: the task iterator to finish
4584 *
4585 * Finish task iteration started by css_task_iter_start().
4586 */
4587void css_task_iter_end(struct css_task_iter *it)
4588{
4589        if (it->cur_cset) {
4590                spin_lock_irq(&css_set_lock);
4591                list_del(&it->iters_node);
4592                put_css_set_locked(it->cur_cset);
4593                spin_unlock_irq(&css_set_lock);
4594        }
4595
4596        if (it->cur_dcset)
4597                put_css_set(it->cur_dcset);
4598
4599        if (it->cur_task)
4600                put_task_struct(it->cur_task);
4601}
4602
4603static void cgroup_procs_release(struct kernfs_open_file *of)
4604{
4605        if (of->priv) {
4606                css_task_iter_end(of->priv);
4607                kfree(of->priv);
4608        }
4609}
4610
4611static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4612{
4613        struct kernfs_open_file *of = s->private;
4614        struct css_task_iter *it = of->priv;
4615
4616        return css_task_iter_next(it);
4617}
4618
4619static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4620                                  unsigned int iter_flags)
4621{
4622        struct kernfs_open_file *of = s->private;
4623        struct cgroup *cgrp = seq_css(s)->cgroup;
4624        struct css_task_iter *it = of->priv;
4625
4626        /*
4627         * When a seq_file is seeked, it's always traversed sequentially
4628         * from position 0, so we can simply keep iterating on !0 *pos.
4629         */
4630        if (!it) {
4631                if (WARN_ON_ONCE((*pos)++))
4632                        return ERR_PTR(-EINVAL);
4633
4634                it = kzalloc(sizeof(*it), GFP_KERNEL);
4635                if (!it)
4636                        return ERR_PTR(-ENOMEM);
4637                of->priv = it;
4638                css_task_iter_start(&cgrp->self, iter_flags, it);
4639        } else if (!(*pos)++) {
4640                css_task_iter_end(it);
4641                css_task_iter_start(&cgrp->self, iter_flags, it);
4642        }
4643
4644        return cgroup_procs_next(s, NULL, NULL);
4645}
4646
4647static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4648{
4649        struct cgroup *cgrp = seq_css(s)->cgroup;
4650
4651        /*
4652         * All processes of a threaded subtree belong to the domain cgroup
4653         * of the subtree.  Only threads can be distributed across the
4654         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4655         * They're always empty anyway.
4656         */
4657        if (cgroup_is_threaded(cgrp))
4658                return ERR_PTR(-EOPNOTSUPP);
4659
4660        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4661                                            CSS_TASK_ITER_THREADED);
4662}
4663
4664static int cgroup_procs_show(struct seq_file *s, void *v)
4665{
4666        seq_printf(s, "%d\n", task_pid_vnr(v));
4667        return 0;
4668}
4669
4670static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4671                                         struct cgroup *dst_cgrp,
4672                                         struct super_block *sb)
4673{
4674        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4675        struct cgroup *com_cgrp = src_cgrp;
4676        struct inode *inode;
4677        int ret;
4678
4679        lockdep_assert_held(&cgroup_mutex);
4680
4681        /* find the common ancestor */
4682        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4683                com_cgrp = cgroup_parent(com_cgrp);
4684
4685        /* %current should be authorized to migrate to the common ancestor */
4686        inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4687        if (!inode)
4688                return -ENOMEM;
4689
4690        ret = inode_permission(inode, MAY_WRITE);
4691        iput(inode);
4692        if (ret)
4693                return ret;
4694
4695        /*
4696         * If namespaces are delegation boundaries, %current must be able
4697         * to see both source and destination cgroups from its namespace.
4698         */
4699        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4700            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4701             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4702                return -ENOENT;
4703
4704        return 0;
4705}
4706
4707static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4708                                  char *buf, size_t nbytes, loff_t off)
4709{
4710        struct cgroup *src_cgrp, *dst_cgrp;
4711        struct task_struct *task;
4712        ssize_t ret;
4713
4714        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4715        if (!dst_cgrp)
4716                return -ENODEV;
4717
4718        task = cgroup_procs_write_start(buf, true);
4719        ret = PTR_ERR_OR_ZERO(task);
4720        if (ret)
4721                goto out_unlock;
4722
4723        /* find the source cgroup */
4724        spin_lock_irq(&css_set_lock);
4725        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4726        spin_unlock_irq(&css_set_lock);
4727
4728        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4729                                            of->file->f_path.dentry->d_sb);
4730        if (ret)
4731                goto out_finish;
4732
4733        ret = cgroup_attach_task(dst_cgrp, task, true);
4734
4735out_finish:
4736        cgroup_procs_write_finish(task);
4737out_unlock:
4738        cgroup_kn_unlock(of->kn);
4739
4740        return ret ?: nbytes;
4741}
4742
4743static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4744{
4745        return __cgroup_procs_start(s, pos, 0);
4746}
4747
4748static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4749                                    char *buf, size_t nbytes, loff_t off)
4750{
4751        struct cgroup *src_cgrp, *dst_cgrp;
4752        struct task_struct *task;
4753        ssize_t ret;
4754
4755        buf = strstrip(buf);
4756
4757        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4758        if (!dst_cgrp)
4759                return -ENODEV;
4760
4761        task = cgroup_procs_write_start(buf, false);
4762        ret = PTR_ERR_OR_ZERO(task);
4763        if (ret)
4764                goto out_unlock;
4765
4766        /* find the source cgroup */
4767        spin_lock_irq(&css_set_lock);
4768        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4769        spin_unlock_irq(&css_set_lock);
4770
4771        /* thread migrations follow the cgroup.procs delegation rule */
4772        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4773                                            of->file->f_path.dentry->d_sb);
4774        if (ret)
4775                goto out_finish;
4776
4777        /* and must be contained in the same domain */
4778        ret = -EOPNOTSUPP;
4779        if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4780                goto out_finish;
4781
4782        ret = cgroup_attach_task(dst_cgrp, task, false);
4783
4784out_finish:
4785        cgroup_procs_write_finish(task);
4786out_unlock:
4787        cgroup_kn_unlock(of->kn);
4788
4789        return ret ?: nbytes;
4790}
4791
4792/* cgroup core interface files for the default hierarchy */
4793static struct cftype cgroup_base_files[] = {
4794        {
4795                .name = "cgroup.type",
4796                .flags = CFTYPE_NOT_ON_ROOT,
4797                .seq_show = cgroup_type_show,
4798                .write = cgroup_type_write,
4799        },
4800        {
4801                .name = "cgroup.procs",
4802                .flags = CFTYPE_NS_DELEGATABLE,
4803                .file_offset = offsetof(struct cgroup, procs_file),
4804                .release = cgroup_procs_release,
4805                .seq_start = cgroup_procs_start,
4806                .seq_next = cgroup_procs_next,
4807                .seq_show = cgroup_procs_show,
4808                .write = cgroup_procs_write,
4809        },
4810        {
4811                .name = "cgroup.threads",
4812                .flags = CFTYPE_NS_DELEGATABLE,
4813                .release = cgroup_procs_release,
4814                .seq_start = cgroup_threads_start,
4815                .seq_next = cgroup_procs_next,
4816                .seq_show = cgroup_procs_show,
4817                .write = cgroup_threads_write,
4818        },
4819        {
4820                .name = "cgroup.controllers",
4821                .seq_show = cgroup_controllers_show,
4822        },
4823        {
4824                .name = "cgroup.subtree_control",
4825                .flags = CFTYPE_NS_DELEGATABLE,
4826                .seq_show = cgroup_subtree_control_show,
4827                .write = cgroup_subtree_control_write,
4828        },
4829        {
4830                .name = "cgroup.events",
4831                .flags = CFTYPE_NOT_ON_ROOT,
4832                .file_offset = offsetof(struct cgroup, events_file),
4833                .seq_show = cgroup_events_show,
4834        },
4835        {
4836                .name = "cgroup.max.descendants",
4837                .seq_show = cgroup_max_descendants_show,
4838                .write = cgroup_max_descendants_write,
4839        },
4840        {
4841                .name = "cgroup.max.depth",
4842                .seq_show = cgroup_max_depth_show,
4843                .write = cgroup_max_depth_write,
4844        },
4845        {
4846                .name = "cgroup.stat",
4847                .seq_show = cgroup_stat_show,
4848        },
4849        {
4850                .name = "cgroup.freeze",
4851                .flags = CFTYPE_NOT_ON_ROOT,
4852                .seq_show = cgroup_freeze_show,
4853                .write = cgroup_freeze_write,
4854        },
4855        {
4856                .name = "cpu.stat",
4857                .flags = CFTYPE_NOT_ON_ROOT,
4858                .seq_show = cpu_stat_show,
4859        },
4860#ifdef CONFIG_PSI
4861        {
4862                .name = "io.pressure",
4863                .seq_show = cgroup_io_pressure_show,
4864                .write = cgroup_io_pressure_write,
4865                .poll = cgroup_pressure_poll,
4866                .release = cgroup_pressure_release,
4867        },
4868        {
4869                .name = "memory.pressure",
4870                .seq_show = cgroup_memory_pressure_show,
4871                .write = cgroup_memory_pressure_write,
4872                .poll = cgroup_pressure_poll,
4873                .release = cgroup_pressure_release,
4874        },
4875        {
4876                .name = "cpu.pressure",
4877                .seq_show = cgroup_cpu_pressure_show,
4878                .write = cgroup_cpu_pressure_write,
4879                .poll = cgroup_pressure_poll,
4880                .release = cgroup_pressure_release,
4881        },
4882#endif /* CONFIG_PSI */
4883        { }     /* terminate */
4884};
4885
4886/*
4887 * css destruction is four-stage process.
4888 *
4889 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4890 *    Implemented in kill_css().
4891 *
4892 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4893 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4894 *    offlined by invoking offline_css().  After offlining, the base ref is
4895 *    put.  Implemented in css_killed_work_fn().
4896 *
4897 * 3. When the percpu_ref reaches zero, the only possible remaining
4898 *    accessors are inside RCU read sections.  css_release() schedules the
4899 *    RCU callback.
4900 *
4901 * 4. After the grace period, the css can be freed.  Implemented in
4902 *    css_free_work_fn().
4903 *
4904 * It is actually hairier because both step 2 and 4 require process context
4905 * and thus involve punting to css->destroy_work adding two additional
4906 * steps to the already complex sequence.
4907 */
4908static void css_free_rwork_fn(struct work_struct *work)
4909{
4910        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4911                                struct cgroup_subsys_state, destroy_rwork);
4912        struct cgroup_subsys *ss = css->ss;
4913        struct cgroup *cgrp = css->cgroup;
4914
4915        percpu_ref_exit(&css->refcnt);
4916
4917        if (ss) {
4918                /* css free path */
4919                struct cgroup_subsys_state *parent = css->parent;
4920                int id = css->id;
4921
4922                ss->css_free(css);
4923                cgroup_idr_remove(&ss->css_idr, id);
4924                cgroup_put(cgrp);
4925
4926                if (parent)
4927                        css_put(parent);
4928        } else {
4929                /* cgroup free path */
4930                atomic_dec(&cgrp->root->nr_cgrps);
4931                cgroup1_pidlist_destroy_all(cgrp);
4932                cancel_work_sync(&cgrp->release_agent_work);
4933
4934                if (cgroup_parent(cgrp)) {
4935                        /*
4936                         * We get a ref to the parent, and put the ref when
4937                         * this cgroup is being freed, so it's guaranteed
4938                         * that the parent won't be destroyed before its
4939                         * children.
4940                         */
4941                        cgroup_put(cgroup_parent(cgrp));
4942                        kernfs_put(cgrp->kn);
4943                        psi_cgroup_free(cgrp);
4944                        if (cgroup_on_dfl(cgrp))
4945                                cgroup_rstat_exit(cgrp);
4946                        kfree(cgrp);
4947                } else {
4948                        /*
4949                         * This is root cgroup's refcnt reaching zero,
4950                         * which indicates that the root should be
4951                         * released.
4952                         */
4953                        cgroup_destroy_root(cgrp->root);
4954                }
4955        }
4956}
4957
4958static void css_release_work_fn(struct work_struct *work)
4959{
4960        struct cgroup_subsys_state *css =
4961                container_of(work, struct cgroup_subsys_state, destroy_work);
4962        struct cgroup_subsys *ss = css->ss;
4963        struct cgroup *cgrp = css->cgroup;
4964
4965        mutex_lock(&cgroup_mutex);
4966
4967        css->flags |= CSS_RELEASED;
4968        list_del_rcu(&css->sibling);
4969
4970        if (ss) {
4971                /* css release path */
4972                if (!list_empty(&css->rstat_css_node)) {
4973                        cgroup_rstat_flush(cgrp);
4974                        list_del_rcu(&css->rstat_css_node);
4975                }
4976
4977                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4978                if (ss->css_released)
4979                        ss->css_released(css);
4980        } else {
4981                struct cgroup *tcgrp;
4982
4983                /* cgroup release path */
4984                TRACE_CGROUP_PATH(release, cgrp);
4985
4986                if (cgroup_on_dfl(cgrp))
4987                        cgroup_rstat_flush(cgrp);
4988
4989                spin_lock_irq(&css_set_lock);
4990                for (tcgrp = cgroup_parent(cgrp); tcgrp;
4991                     tcgrp = cgroup_parent(tcgrp))
4992                        tcgrp->nr_dying_descendants--;
4993                spin_unlock_irq(&css_set_lock);
4994
4995                cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4996                cgrp->id = -1;
4997
4998                /*
4999                 * There are two control paths which try to determine
5000                 * cgroup from dentry without going through kernfs -
5001                 * cgroupstats_build() and css_tryget_online_from_dir().
5002                 * Those are supported by RCU protecting clearing of
5003                 * cgrp->kn->priv backpointer.
5004                 */
5005                if (cgrp->kn)
5006                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5007                                         NULL);
5008
5009                cgroup_bpf_put(cgrp);
5010        }
5011
5012        mutex_unlock(&cgroup_mutex);
5013
5014        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5015        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5016}
5017
5018static void css_release(struct percpu_ref *ref)
5019{
5020        struct cgroup_subsys_state *css =
5021                container_of(ref, struct cgroup_subsys_state, refcnt);
5022
5023        INIT_WORK(&css->destroy_work, css_release_work_fn);
5024        queue_work(cgroup_destroy_wq, &css->destroy_work);
5025}
5026
5027static void init_and_link_css(struct cgroup_subsys_state *css,
5028                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5029{
5030        lockdep_assert_held(&cgroup_mutex);
5031
5032        cgroup_get_live(cgrp);
5033
5034        memset(css, 0, sizeof(*css));
5035        css->cgroup = cgrp;
5036        css->ss = ss;
5037        css->id = -1;
5038        INIT_LIST_HEAD(&css->sibling);
5039        INIT_LIST_HEAD(&css->children);
5040        INIT_LIST_HEAD(&css->rstat_css_node);
5041        css->serial_nr = css_serial_nr_next++;
5042        atomic_set(&css->online_cnt, 0);
5043
5044        if (cgroup_parent(cgrp)) {
5045                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5046                css_get(css->parent);
5047        }
5048
5049        if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5050                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5051
5052        BUG_ON(cgroup_css(cgrp, ss));
5053}
5054
5055/* invoke ->css_online() on a new CSS and mark it online if successful */
5056static int online_css(struct cgroup_subsys_state *css)
5057{
5058        struct cgroup_subsys *ss = css->ss;
5059        int ret = 0;
5060
5061        lockdep_assert_held(&cgroup_mutex);
5062
5063        if (ss->css_online)
5064                ret = ss->css_online(css);
5065        if (!ret) {
5066                css->flags |= CSS_ONLINE;
5067                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5068
5069                atomic_inc(&css->online_cnt);
5070                if (css->parent)
5071                        atomic_inc(&css->parent->online_cnt);
5072        }
5073        return ret;
5074}
5075
5076/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5077static void offline_css(struct cgroup_subsys_state *css)
5078{
5079        struct cgroup_subsys *ss = css->ss;
5080
5081        lockdep_assert_held(&cgroup_mutex);
5082
5083        if (!(css->flags & CSS_ONLINE))
5084                return;
5085
5086        if (ss->css_offline)
5087                ss->css_offline(css);
5088
5089        css->flags &= ~CSS_ONLINE;
5090        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5091
5092        wake_up_all(&css->cgroup->offline_waitq);
5093}
5094
5095/**
5096 * css_create - create a cgroup_subsys_state
5097 * @cgrp: the cgroup new css will be associated with
5098 * @ss: the subsys of new css
5099 *
5100 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5101 * css is online and installed in @cgrp.  This function doesn't create the
5102 * interface files.  Returns 0 on success, -errno on failure.
5103 */
5104static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5105                                              struct cgroup_subsys *ss)
5106{
5107        struct cgroup *parent = cgroup_parent(cgrp);
5108        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5109        struct cgroup_subsys_state *css;
5110        int err;
5111
5112        lockdep_assert_held(&cgroup_mutex);
5113
5114        css = ss->css_alloc(parent_css);
5115        if (!css)
5116                css = ERR_PTR(-ENOMEM);
5117        if (IS_ERR(css))
5118                return css;
5119
5120        init_and_link_css(css, ss, cgrp);
5121
5122        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5123        if (err)
5124                goto err_free_css;
5125
5126        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5127        if (err < 0)
5128                goto err_free_css;
5129        css->id = err;
5130
5131        /* @css is ready to be brought online now, make it visible */
5132        list_add_tail_rcu(&css->sibling, &parent_css->children);
5133        cgroup_idr_replace(&ss->css_idr, css, css->id);
5134
5135        err = online_css(css);
5136        if (err)
5137                goto err_list_del;
5138
5139        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5140            cgroup_parent(parent)) {
5141                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5142                        current->comm, current->pid, ss->name);
5143                if (!strcmp(ss->name, "memory"))
5144                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5145                ss->warned_broken_hierarchy = true;
5146        }
5147
5148        return css;
5149
5150err_list_del:
5151        list_del_rcu(&css->sibling);
5152err_free_css:
5153        list_del_rcu(&css->rstat_css_node);
5154        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5155        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5156        return ERR_PTR(err);
5157}
5158
5159/*
5160 * The returned cgroup is fully initialized including its control mask, but
5161 * it isn't associated with its kernfs_node and doesn't have the control
5162 * mask applied.
5163 */
5164static struct cgroup *cgroup_create(struct cgroup *parent)
5165{
5166        struct cgroup_root *root = parent->root;
5167        struct cgroup *cgrp, *tcgrp;
5168        int level = parent->level + 1;
5169        int ret;
5170
5171        /* allocate the cgroup and its ID, 0 is reserved for the root */
5172        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5173                       GFP_KERNEL);
5174        if (!cgrp)
5175                return ERR_PTR(-ENOMEM);
5176
5177        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5178        if (ret)
5179                goto out_free_cgrp;
5180
5181        if (cgroup_on_dfl(parent)) {
5182                ret = cgroup_rstat_init(cgrp);
5183                if (ret)
5184                        goto out_cancel_ref;
5185        }
5186
5187        /*
5188         * Temporarily set the pointer to NULL, so idr_find() won't return
5189         * a half-baked cgroup.
5190         */
5191        cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5192        if (cgrp->id < 0) {
5193                ret = -ENOMEM;
5194                goto out_stat_exit;
5195        }
5196
5197        init_cgroup_housekeeping(cgrp);
5198
5199        cgrp->self.parent = &parent->self;
5200        cgrp->root = root;
5201        cgrp->level = level;
5202
5203        ret = psi_cgroup_alloc(cgrp);
5204        if (ret)
5205                goto out_idr_free;
5206
5207        ret = cgroup_bpf_inherit(cgrp);
5208        if (ret)
5209                goto out_psi_free;
5210
5211        /*
5212         * New cgroup inherits effective freeze counter, and
5213         * if the parent has to be frozen, the child has too.
5214         */
5215        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5216        if (cgrp->freezer.e_freeze)
5217                set_bit(CGRP_FROZEN, &cgrp->flags);
5218
5219        spin_lock_irq(&css_set_lock);
5220        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5221                cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5222
5223                if (tcgrp != cgrp) {
5224                        tcgrp->nr_descendants++;
5225
5226                        /*
5227                         * If the new cgroup is frozen, all ancestor cgroups
5228                         * get a new frozen descendant, but their state can't
5229                         * change because of this.
5230                         */
5231                        if (cgrp->freezer.e_freeze)
5232                                tcgrp->freezer.nr_frozen_descendants++;
5233                }
5234        }
5235        spin_unlock_irq(&css_set_lock);
5236
5237        if (notify_on_release(parent))
5238                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5239
5240        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5241                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5242
5243        cgrp->self.serial_nr = css_serial_nr_next++;
5244
5245        /* allocation complete, commit to creation */
5246        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5247        atomic_inc(&root->nr_cgrps);
5248        cgroup_get_live(parent);
5249
5250        /*
5251         * @cgrp is now fully operational.  If something fails after this
5252         * point, it'll be released via the normal destruction path.
5253         */
5254        cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5255
5256        /*
5257         * On the default hierarchy, a child doesn't automatically inherit
5258         * subtree_control from the parent.  Each is configured manually.
5259         */
5260        if (!cgroup_on_dfl(cgrp))
5261                cgrp->subtree_control = cgroup_control(cgrp);
5262
5263        cgroup_propagate_control(cgrp);
5264
5265        return cgrp;
5266
5267out_psi_free:
5268        psi_cgroup_free(cgrp);
5269out_idr_free:
5270        cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5271out_stat_exit:
5272        if (cgroup_on_dfl(parent))
5273                cgroup_rstat_exit(cgrp);
5274out_cancel_ref:
5275        percpu_ref_exit(&cgrp->self.refcnt);
5276out_free_cgrp:
5277        kfree(cgrp);
5278        return ERR_PTR(ret);
5279}
5280
5281static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5282{
5283        struct cgroup *cgroup;
5284        int ret = false;
5285        int level = 1;
5286
5287        lockdep_assert_held(&cgroup_mutex);
5288
5289        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5290                if (cgroup->nr_descendants >= cgroup->max_descendants)
5291                        goto fail;
5292
5293                if (level > cgroup->max_depth)
5294                        goto fail;
5295
5296                level++;
5297        }
5298
5299        ret = true;
5300fail:
5301        return ret;
5302}
5303
5304int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5305{
5306        struct cgroup *parent, *cgrp;
5307        struct kernfs_node *kn;
5308        int ret;
5309
5310        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5311        if (strchr(name, '\n'))
5312                return -EINVAL;
5313
5314        parent = cgroup_kn_lock_live(parent_kn, false);
5315        if (!parent)
5316                return -ENODEV;
5317
5318        if (!cgroup_check_hierarchy_limits(parent)) {
5319                ret = -EAGAIN;
5320                goto out_unlock;
5321        }
5322
5323        cgrp = cgroup_create(parent);
5324        if (IS_ERR(cgrp)) {
5325                ret = PTR_ERR(cgrp);
5326                goto out_unlock;
5327        }
5328
5329        /* create the directory */
5330        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5331        if (IS_ERR(kn)) {
5332                ret = PTR_ERR(kn);
5333                goto out_destroy;
5334        }
5335        cgrp->kn = kn;
5336
5337        /*
5338         * This extra ref will be put in cgroup_free_fn() and guarantees
5339         * that @cgrp->kn is always accessible.
5340         */
5341        kernfs_get(kn);
5342
5343        ret = cgroup_kn_set_ugid(kn);
5344        if (ret)
5345                goto out_destroy;
5346
5347        ret = css_populate_dir(&cgrp->self);
5348        if (ret)
5349                goto out_destroy;
5350
5351        ret = cgroup_apply_control_enable(cgrp);
5352        if (ret)
5353                goto out_destroy;
5354
5355        TRACE_CGROUP_PATH(mkdir, cgrp);
5356
5357        /* let's create and online css's */
5358        kernfs_activate(kn);
5359
5360        ret = 0;
5361        goto out_unlock;
5362
5363out_destroy:
5364        cgroup_destroy_locked(cgrp);
5365out_unlock:
5366        cgroup_kn_unlock(parent_kn);
5367        return ret;
5368}
5369
5370/*
5371 * This is called when the refcnt of a css is confirmed to be killed.
5372 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5373 * initate destruction and put the css ref from kill_css().
5374 */
5375static void css_killed_work_fn(struct work_struct *work)
5376{
5377        struct cgroup_subsys_state *css =
5378                container_of(work, struct cgroup_subsys_state, destroy_work);
5379
5380        mutex_lock(&cgroup_mutex);
5381
5382        do {
5383                offline_css(css);
5384                css_put(css);
5385                /* @css can't go away while we're holding cgroup_mutex */
5386                css = css->parent;
5387        } while (css && atomic_dec_and_test(&css->online_cnt));
5388
5389        mutex_unlock(&cgroup_mutex);
5390}
5391
5392/* css kill confirmation processing requires process context, bounce */
5393static void css_killed_ref_fn(struct percpu_ref *ref)
5394{
5395        struct cgroup_subsys_state *css =
5396                container_of(ref, struct cgroup_subsys_state, refcnt);
5397
5398        if (atomic_dec_and_test(&css->online_cnt)) {
5399                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5400                queue_work(cgroup_destroy_wq, &css->destroy_work);
5401        }
5402}
5403
5404/**
5405 * kill_css - destroy a css
5406 * @css: css to destroy
5407 *
5408 * This function initiates destruction of @css by removing cgroup interface
5409 * files and putting its base reference.  ->css_offline() will be invoked
5410 * asynchronously once css_tryget_online() is guaranteed to fail and when
5411 * the reference count reaches zero, @css will be released.
5412 */
5413static void kill_css(struct cgroup_subsys_state *css)
5414{
5415        lockdep_assert_held(&cgroup_mutex);
5416
5417        if (css->flags & CSS_DYING)
5418                return;
5419
5420        css->flags |= CSS_DYING;
5421
5422        /*
5423         * This must happen before css is disassociated with its cgroup.
5424         * See seq_css() for details.
5425         */
5426        css_clear_dir(css);
5427
5428        /*
5429         * Killing would put the base ref, but we need to keep it alive
5430         * until after ->css_offline().
5431         */
5432        css_get(css);
5433
5434        /*
5435         * cgroup core guarantees that, by the time ->css_offline() is
5436         * invoked, no new css reference will be given out via
5437         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5438         * proceed to offlining css's because percpu_ref_kill() doesn't
5439         * guarantee that the ref is seen as killed on all CPUs on return.
5440         *
5441         * Use percpu_ref_kill_and_confirm() to get notifications as each
5442         * css is confirmed to be seen as killed on all CPUs.
5443         */
5444        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5445}
5446
5447/**
5448 * cgroup_destroy_locked - the first stage of cgroup destruction
5449 * @cgrp: cgroup to be destroyed
5450 *
5451 * css's make use of percpu refcnts whose killing latency shouldn't be
5452 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5453 * guarantee that css_tryget_online() won't succeed by the time
5454 * ->css_offline() is invoked.  To satisfy all the requirements,
5455 * destruction is implemented in the following two steps.
5456 *
5457 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5458 *     userland visible parts and start killing the percpu refcnts of
5459 *     css's.  Set up so that the next stage will be kicked off once all
5460 *     the percpu refcnts are confirmed to be killed.
5461 *
5462 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5463 *     rest of destruction.  Once all cgroup references are gone, the
5464 *     cgroup is RCU-freed.
5465 *
5466 * This function implements s1.  After this step, @cgrp is gone as far as
5467 * the userland is concerned and a new cgroup with the same name may be
5468 * created.  As cgroup doesn't care about the names internally, this
5469 * doesn't cause any problem.
5470 */
5471static int cgroup_destroy_locked(struct cgroup *cgrp)
5472        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5473{
5474        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5475        struct cgroup_subsys_state *css;
5476        struct cgrp_cset_link *link;
5477        int ssid;
5478
5479        lockdep_assert_held(&cgroup_mutex);
5480
5481        /*
5482         * Only migration can raise populated from zero and we're already
5483         * holding cgroup_mutex.
5484         */
5485        if (cgroup_is_populated(cgrp))
5486                return -EBUSY;
5487
5488        /*
5489         * Make sure there's no live children.  We can't test emptiness of
5490         * ->self.children as dead children linger on it while being
5491         * drained; otherwise, "rmdir parent/child parent" may fail.
5492         */
5493        if (css_has_online_children(&cgrp->self))
5494                return -EBUSY;
5495
5496        /*
5497         * Mark @cgrp and the associated csets dead.  The former prevents
5498         * further task migration and child creation by disabling
5499         * cgroup_lock_live_group().  The latter makes the csets ignored by
5500         * the migration path.
5501         */
5502        cgrp->self.flags &= ~CSS_ONLINE;
5503
5504        spin_lock_irq(&css_set_lock);
5505        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5506                link->cset->dead = true;
5507        spin_unlock_irq(&css_set_lock);
5508
5509        /* initiate massacre of all css's */
5510        for_each_css(css, ssid, cgrp)
5511                kill_css(css);
5512
5513        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5514        css_clear_dir(&cgrp->self);
5515        kernfs_remove(cgrp->kn);
5516
5517        if (parent && cgroup_is_threaded(cgrp))
5518                parent->nr_threaded_children--;
5519
5520        spin_lock_irq(&css_set_lock);
5521        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5522                tcgrp->nr_descendants--;
5523                tcgrp->nr_dying_descendants++;
5524                /*
5525                 * If the dying cgroup is frozen, decrease frozen descendants
5526                 * counters of ancestor cgroups.
5527                 */
5528                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5529                        tcgrp->freezer.nr_frozen_descendants--;
5530        }
5531        spin_unlock_irq(&css_set_lock);
5532
5533        cgroup1_check_for_release(parent);
5534
5535        /* put the base reference */
5536        percpu_ref_kill(&cgrp->self.refcnt);
5537
5538        return 0;
5539};
5540
5541int cgroup_rmdir(struct kernfs_node *kn)
5542{
5543        struct cgroup *cgrp;
5544        int ret = 0;
5545
5546        cgrp = cgroup_kn_lock_live(kn, false);
5547        if (!cgrp)
5548                return 0;
5549
5550        ret = cgroup_destroy_locked(cgrp);
5551        if (!ret)
5552                TRACE_CGROUP_PATH(rmdir, cgrp);
5553
5554        cgroup_kn_unlock(kn);
5555        return ret;
5556}
5557
5558static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5559        .show_options           = cgroup_show_options,
5560        .mkdir                  = cgroup_mkdir,
5561        .rmdir                  = cgroup_rmdir,
5562        .show_path              = cgroup_show_path,
5563};
5564
5565static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5566{
5567        struct cgroup_subsys_state *css;
5568
5569        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5570
5571        mutex_lock(&cgroup_mutex);
5572
5573        idr_init(&ss->css_idr);
5574        INIT_LIST_HEAD(&ss->cfts);
5575
5576        /* Create the root cgroup state for this subsystem */
5577        ss->root = &cgrp_dfl_root;
5578        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5579        /* We don't handle early failures gracefully */
5580        BUG_ON(IS_ERR(css));
5581        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5582
5583        /*
5584         * Root csses are never destroyed and we can't initialize
5585         * percpu_ref during early init.  Disable refcnting.
5586         */
5587        css->flags |= CSS_NO_REF;
5588
5589        if (early) {
5590                /* allocation can't be done safely during early init */
5591                css->id = 1;
5592        } else {
5593                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5594                BUG_ON(css->id < 0);
5595        }
5596
5597        /* Update the init_css_set to contain a subsys
5598         * pointer to this state - since the subsystem is
5599         * newly registered, all tasks and hence the
5600         * init_css_set is in the subsystem's root cgroup. */
5601        init_css_set.subsys[ss->id] = css;
5602
5603        have_fork_callback |= (bool)ss->fork << ss->id;
5604        have_exit_callback |= (bool)ss->exit << ss->id;
5605        have_release_callback |= (bool)ss->release << ss->id;
5606        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5607
5608        /* At system boot, before all subsystems have been
5609         * registered, no tasks have been forked, so we don't
5610         * need to invoke fork callbacks here. */
5611        BUG_ON(!list_empty(&init_task.tasks));
5612
5613        BUG_ON(online_css(css));
5614
5615        mutex_unlock(&cgroup_mutex);
5616}
5617
5618/**
5619 * cgroup_init_early - cgroup initialization at system boot
5620 *
5621 * Initialize cgroups at system boot, and initialize any
5622 * subsystems that request early init.
5623 */
5624int __init cgroup_init_early(void)
5625{
5626        static struct cgroup_fs_context __initdata ctx;
5627        struct cgroup_subsys *ss;
5628        int i;
5629
5630        ctx.root = &cgrp_dfl_root;
5631        init_cgroup_root(&ctx);
5632        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5633
5634        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5635
5636        for_each_subsys(ss, i) {
5637                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5638                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5639                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5640                     ss->id, ss->name);
5641                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5642                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5643
5644                ss->id = i;
5645                ss->name = cgroup_subsys_name[i];
5646                if (!ss->legacy_name)
5647                        ss->legacy_name = cgroup_subsys_name[i];
5648
5649                if (ss->early_init)
5650                        cgroup_init_subsys(ss, true);
5651        }
5652        return 0;
5653}
5654
5655static u16 cgroup_disable_mask __initdata;
5656
5657/**
5658 * cgroup_init - cgroup initialization
5659 *
5660 * Register cgroup filesystem and /proc file, and initialize
5661 * any subsystems that didn't request early init.
5662 */
5663int __init cgroup_init(void)
5664{
5665        struct cgroup_subsys *ss;
5666        int ssid;
5667
5668        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5669        BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5670        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5671        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5672
5673        cgroup_rstat_boot();
5674
5675        /*
5676         * The latency of the synchronize_rcu() is too high for cgroups,
5677         * avoid it at the cost of forcing all readers into the slow path.
5678         */
5679        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5680
5681        get_user_ns(init_cgroup_ns.user_ns);
5682
5683        mutex_lock(&cgroup_mutex);
5684
5685        /*
5686         * Add init_css_set to the hash table so that dfl_root can link to
5687         * it during init.
5688         */
5689        hash_add(css_set_table, &init_css_set.hlist,
5690                 css_set_hash(init_css_set.subsys));
5691
5692        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5693
5694        mutex_unlock(&cgroup_mutex);
5695
5696        for_each_subsys(ss, ssid) {
5697                if (ss->early_init) {
5698                        struct cgroup_subsys_state *css =
5699                                init_css_set.subsys[ss->id];
5700
5701                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5702                                                   GFP_KERNEL);
5703                        BUG_ON(css->id < 0);
5704                } else {
5705                        cgroup_init_subsys(ss, false);
5706                }
5707
5708                list_add_tail(&init_css_set.e_cset_node[ssid],
5709                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5710
5711                /*
5712                 * Setting dfl_root subsys_mask needs to consider the
5713                 * disabled flag and cftype registration needs kmalloc,
5714                 * both of which aren't available during early_init.
5715                 */
5716                if (cgroup_disable_mask & (1 << ssid)) {
5717                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5718                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5719                               ss->name);
5720                        continue;
5721                }
5722
5723                if (cgroup1_ssid_disabled(ssid))
5724                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5725                               ss->name);
5726
5727                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5728
5729                /* implicit controllers must be threaded too */
5730                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5731
5732                if (ss->implicit_on_dfl)
5733                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5734                else if (!ss->dfl_cftypes)
5735                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5736
5737                if (ss->threaded)
5738                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5739
5740                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5741                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5742                } else {
5743                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5744                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5745                }
5746
5747                if (ss->bind)
5748                        ss->bind(init_css_set.subsys[ssid]);
5749
5750                mutex_lock(&cgroup_mutex);
5751                css_populate_dir(init_css_set.subsys[ssid]);
5752                mutex_unlock(&cgroup_mutex);
5753        }
5754
5755        /* init_css_set.subsys[] has been updated, re-hash */
5756        hash_del(&init_css_set.hlist);
5757        hash_add(css_set_table, &init_css_set.hlist,
5758                 css_set_hash(init_css_set.subsys));
5759
5760        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5761        WARN_ON(register_filesystem(&cgroup_fs_type));
5762        WARN_ON(register_filesystem(&cgroup2_fs_type));
5763        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5764
5765        return 0;
5766}
5767
5768static int __init cgroup_wq_init(void)
5769{
5770        /*
5771         * There isn't much point in executing destruction path in
5772         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5773         * Use 1 for @max_active.
5774         *
5775         * We would prefer to do this in cgroup_init() above, but that
5776         * is called before init_workqueues(): so leave this until after.
5777         */
5778        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5779        BUG_ON(!cgroup_destroy_wq);
5780        return 0;
5781}
5782core_initcall(cgroup_wq_init);
5783
5784void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5785                                        char *buf, size_t buflen)
5786{
5787        struct kernfs_node *kn;
5788
5789        kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5790        if (!kn)
5791                return;
5792        kernfs_path(kn, buf, buflen);
5793        kernfs_put(kn);
5794}
5795
5796/*
5797 * proc_cgroup_show()
5798 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5799 *  - Used for /proc/<pid>/cgroup.
5800 */
5801int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5802                     struct pid *pid, struct task_struct *tsk)
5803{
5804        char *buf;
5805        int retval;
5806        struct cgroup_root *root;
5807
5808        retval = -ENOMEM;
5809        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5810        if (!buf)
5811                goto out;
5812
5813        mutex_lock(&cgroup_mutex);
5814        spin_lock_irq(&css_set_lock);
5815
5816        for_each_root(root) {
5817                struct cgroup_subsys *ss;
5818                struct cgroup *cgrp;
5819                int ssid, count = 0;
5820
5821                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5822                        continue;
5823
5824                seq_printf(m, "%d:", root->hierarchy_id);
5825                if (root != &cgrp_dfl_root)
5826                        for_each_subsys(ss, ssid)
5827                                if (root->subsys_mask & (1 << ssid))
5828                                        seq_printf(m, "%s%s", count++ ? "," : "",
5829                                                   ss->legacy_name);
5830                if (strlen(root->name))
5831                        seq_printf(m, "%sname=%s", count ? "," : "",
5832                                   root->name);
5833                seq_putc(m, ':');
5834
5835                cgrp = task_cgroup_from_root(tsk, root);
5836
5837                /*
5838                 * On traditional hierarchies, all zombie tasks show up as
5839                 * belonging to the root cgroup.  On the default hierarchy,
5840                 * while a zombie doesn't show up in "cgroup.procs" and
5841                 * thus can't be migrated, its /proc/PID/cgroup keeps
5842                 * reporting the cgroup it belonged to before exiting.  If
5843                 * the cgroup is removed before the zombie is reaped,
5844                 * " (deleted)" is appended to the cgroup path.
5845                 */
5846                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5847                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5848                                                current->nsproxy->cgroup_ns);
5849                        if (retval >= PATH_MAX)
5850                                retval = -ENAMETOOLONG;
5851                        if (retval < 0)
5852                                goto out_unlock;
5853
5854                        seq_puts(m, buf);
5855                } else {
5856                        seq_puts(m, "/");
5857                }
5858
5859                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5860                        seq_puts(m, " (deleted)\n");
5861                else
5862                        seq_putc(m, '\n');
5863        }
5864
5865        retval = 0;
5866out_unlock:
5867        spin_unlock_irq(&css_set_lock);
5868        mutex_unlock(&cgroup_mutex);
5869        kfree(buf);
5870out:
5871        return retval;
5872}
5873
5874/**
5875 * cgroup_fork - initialize cgroup related fields during copy_process()
5876 * @child: pointer to task_struct of forking parent process.
5877 *
5878 * A task is associated with the init_css_set until cgroup_post_fork()
5879 * attaches it to the parent's css_set.  Empty cg_list indicates that
5880 * @child isn't holding reference to its css_set.
5881 */
5882void cgroup_fork(struct task_struct *child)
5883{
5884        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5885        INIT_LIST_HEAD(&child->cg_list);
5886}
5887
5888/**
5889 * cgroup_can_fork - called on a new task before the process is exposed
5890 * @child: the task in question.
5891 *
5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893 * returns an error, the fork aborts with that error code. This allows for
5894 * a cgroup subsystem to conditionally allow or deny new forks.
5895 */
5896int cgroup_can_fork(struct task_struct *child)
5897{
5898        struct cgroup_subsys *ss;
5899        int i, j, ret;
5900
5901        do_each_subsys_mask(ss, i, have_canfork_callback) {
5902                ret = ss->can_fork(child);
5903                if (ret)
5904                        goto out_revert;
5905        } while_each_subsys_mask();
5906
5907        return 0;
5908
5909out_revert:
5910        for_each_subsys(ss, j) {
5911                if (j >= i)
5912                        break;
5913                if (ss->cancel_fork)
5914                        ss->cancel_fork(child);
5915        }
5916
5917        return ret;
5918}
5919
5920/**
5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922 * @child: the task in question
5923 *
5924 * This calls the cancel_fork() callbacks if a fork failed *after*
5925 * cgroup_can_fork() succeded.
5926 */
5927void cgroup_cancel_fork(struct task_struct *child)
5928{
5929        struct cgroup_subsys *ss;
5930        int i;
5931
5932        for_each_subsys(ss, i)
5933                if (ss->cancel_fork)
5934                        ss->cancel_fork(child);
5935}
5936
5937/**
5938 * cgroup_post_fork - called on a new task after adding it to the task list
5939 * @child: the task in question
5940 *
5941 * Adds the task to the list running through its css_set if necessary and
5942 * call the subsystem fork() callbacks.  Has to be after the task is
5943 * visible on the task list in case we race with the first call to
5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5945 * list.
5946 */
5947void cgroup_post_fork(struct task_struct *child)
5948{
5949        struct cgroup_subsys *ss;
5950        int i;
5951
5952        /*
5953         * This may race against cgroup_enable_task_cg_lists().  As that
5954         * function sets use_task_css_set_links before grabbing
5955         * tasklist_lock and we just went through tasklist_lock to add
5956         * @child, it's guaranteed that either we see the set
5957         * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958         * @child during its iteration.
5959         *
5960         * If we won the race, @child is associated with %current's
5961         * css_set.  Grabbing css_set_lock guarantees both that the
5962         * association is stable, and, on completion of the parent's
5963         * migration, @child is visible in the source of migration or
5964         * already in the destination cgroup.  This guarantee is necessary
5965         * when implementing operations which need to migrate all tasks of
5966         * a cgroup to another.
5967         *
5968         * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969         * will remain in init_css_set.  This is safe because all tasks are
5970         * in the init_css_set before cg_links is enabled and there's no
5971         * operation which transfers all tasks out of init_css_set.
5972         */
5973        if (use_task_css_set_links) {
5974                struct css_set *cset;
5975
5976                spin_lock_irq(&css_set_lock);
5977                cset = task_css_set(current);
5978                if (list_empty(&child->cg_list)) {
5979                        get_css_set(cset);
5980                        cset->nr_tasks++;
5981                        css_set_move_task(child, NULL, cset, false);
5982                }
5983
5984                /*
5985                 * If the cgroup has to be frozen, the new task has too.
5986                 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5987                 * the task into the frozen state.
5988                 */
5989                if (unlikely(cgroup_task_freeze(child))) {
5990                        spin_lock(&child->sighand->siglock);
5991                        WARN_ON_ONCE(child->frozen);
5992                        child->jobctl |= JOBCTL_TRAP_FREEZE;
5993                        spin_unlock(&child->sighand->siglock);
5994
5995                        /*
5996                         * Calling cgroup_update_frozen() isn't required here,
5997                         * because it will be called anyway a bit later
5998                         * from do_freezer_trap(). So we avoid cgroup's
5999                         * transient switch from the frozen state and back.
6000                         */
6001                }
6002
6003                spin_unlock_irq(&css_set_lock);
6004        }
6005
6006        /*
6007         * Call ss->fork().  This must happen after @child is linked on
6008         * css_set; otherwise, @child might change state between ->fork()
6009         * and addition to css_set.
6010         */
6011        do_each_subsys_mask(ss, i, have_fork_callback) {
6012                ss->fork(child);
6013        } while_each_subsys_mask();
6014}
6015
6016/**
6017 * cgroup_exit - detach cgroup from exiting task
6018 * @tsk: pointer to task_struct of exiting process
6019 *
6020 * Description: Detach cgroup from @tsk and release it.
6021 *
6022 * Note that cgroups marked notify_on_release force every task in
6023 * them to take the global cgroup_mutex mutex when exiting.
6024 * This could impact scaling on very large systems.  Be reluctant to
6025 * use notify_on_release cgroups where very high task exit scaling
6026 * is required on large systems.
6027 *
6028 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
6029 * call cgroup_exit() while the task is still competent to handle
6030 * notify_on_release(), then leave the task attached to the root cgroup in
6031 * each hierarchy for the remainder of its exit.  No need to bother with
6032 * init_css_set refcnting.  init_css_set never goes away and we can't race
6033 * with migration path - PF_EXITING is visible to migration path.
6034 */
6035void cgroup_exit(struct task_struct *tsk)
6036{
6037        struct cgroup_subsys *ss;
6038        struct css_set *cset;
6039        int i;
6040
6041        /*
6042         * Unlink from @tsk from its css_set.  As migration path can't race
6043         * with us, we can check css_set and cg_list without synchronization.
6044         */
6045        cset = task_css_set(tsk);
6046
6047        if (!list_empty(&tsk->cg_list)) {
6048                spin_lock_irq(&css_set_lock);
6049                css_set_move_task(tsk, cset, NULL, false);
6050                list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6051                cset->nr_tasks--;
6052
6053                WARN_ON_ONCE(cgroup_task_frozen(tsk));
6054                if (unlikely(cgroup_task_freeze(tsk)))
6055                        cgroup_update_frozen(task_dfl_cgroup(tsk));
6056
6057                spin_unlock_irq(&css_set_lock);
6058        } else {
6059                get_css_set(cset);
6060        }
6061
6062        /* see cgroup_post_fork() for details */
6063        do_each_subsys_mask(ss, i, have_exit_callback) {
6064                ss->exit(tsk);
6065        } while_each_subsys_mask();
6066}
6067
6068void cgroup_release(struct task_struct *task)
6069{
6070        struct cgroup_subsys *ss;
6071        int ssid;
6072
6073        do_each_subsys_mask(ss, ssid, have_release_callback) {
6074                ss->release(task);
6075        } while_each_subsys_mask();
6076
6077        if (use_task_css_set_links) {
6078                spin_lock_irq(&css_set_lock);
6079                css_set_skip_task_iters(task_css_set(task), task);
6080                list_del_init(&task->cg_list);
6081                spin_unlock_irq(&css_set_lock);
6082        }
6083}
6084
6085void cgroup_free(struct task_struct *task)
6086{
6087        struct css_set *cset = task_css_set(task);
6088        put_css_set(cset);
6089}
6090
6091static int __init cgroup_disable(char *str)
6092{
6093        struct cgroup_subsys *ss;
6094        char *token;
6095        int i;
6096
6097        while ((token = strsep(&str, ",")) != NULL) {
6098                if (!*token)
6099                        continue;
6100
6101                for_each_subsys(ss, i) {
6102                        if (strcmp(token, ss->name) &&
6103                            strcmp(token, ss->legacy_name))
6104                                continue;
6105                        cgroup_disable_mask |= 1 << i;
6106                }
6107        }
6108        return 1;
6109}
6110__setup("cgroup_disable=", cgroup_disable);
6111
6112void __init __weak enable_debug_cgroup(void) { }
6113
6114static int __init enable_cgroup_debug(char *str)
6115{
6116        cgroup_debug = true;
6117        enable_debug_cgroup();
6118        return 1;
6119}
6120__setup("cgroup_debug", enable_cgroup_debug);
6121
6122/**
6123 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6124 * @dentry: directory dentry of interest
6125 * @ss: subsystem of interest
6126 *
6127 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6128 * to get the corresponding css and return it.  If such css doesn't exist
6129 * or can't be pinned, an ERR_PTR value is returned.
6130 */
6131struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6132                                                       struct cgroup_subsys *ss)
6133{
6134        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6135        struct file_system_type *s_type = dentry->d_sb->s_type;
6136        struct cgroup_subsys_state *css = NULL;
6137        struct cgroup *cgrp;
6138
6139        /* is @dentry a cgroup dir? */
6140        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6141            !kn || kernfs_type(kn) != KERNFS_DIR)
6142                return ERR_PTR(-EBADF);
6143
6144        rcu_read_lock();
6145
6146        /*
6147         * This path doesn't originate from kernfs and @kn could already
6148         * have been or be removed at any point.  @kn->priv is RCU
6149         * protected for this access.  See css_release_work_fn() for details.
6150         */
6151        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6152        if (cgrp)
6153                css = cgroup_css(cgrp, ss);
6154
6155        if (!css || !css_tryget_online(css))
6156                css = ERR_PTR(-ENOENT);
6157
6158        rcu_read_unlock();
6159        return css;
6160}
6161
6162/**
6163 * css_from_id - lookup css by id
6164 * @id: the cgroup id
6165 * @ss: cgroup subsys to be looked into
6166 *
6167 * Returns the css if there's valid one with @id, otherwise returns NULL.
6168 * Should be called under rcu_read_lock().
6169 */
6170struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6171{
6172        WARN_ON_ONCE(!rcu_read_lock_held());
6173        return idr_find(&ss->css_idr, id);
6174}
6175
6176/**
6177 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6178 * @path: path on the default hierarchy
6179 *
6180 * Find the cgroup at @path on the default hierarchy, increment its
6181 * reference count and return it.  Returns pointer to the found cgroup on
6182 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6183 * if @path points to a non-directory.
6184 */
6185struct cgroup *cgroup_get_from_path(const char *path)
6186{
6187        struct kernfs_node *kn;
6188        struct cgroup *cgrp;
6189
6190        mutex_lock(&cgroup_mutex);
6191
6192        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6193        if (kn) {
6194                if (kernfs_type(kn) == KERNFS_DIR) {
6195                        cgrp = kn->priv;
6196                        cgroup_get_live(cgrp);
6197                } else {
6198                        cgrp = ERR_PTR(-ENOTDIR);
6199                }
6200                kernfs_put(kn);
6201        } else {
6202                cgrp = ERR_PTR(-ENOENT);
6203        }
6204
6205        mutex_unlock(&cgroup_mutex);
6206        return cgrp;
6207}
6208EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6209
6210/**
6211 * cgroup_get_from_fd - get a cgroup pointer from a fd
6212 * @fd: fd obtained by open(cgroup2_dir)
6213 *
6214 * Find the cgroup from a fd which should be obtained
6215 * by opening a cgroup directory.  Returns a pointer to the
6216 * cgroup on success. ERR_PTR is returned if the cgroup
6217 * cannot be found.
6218 */
6219struct cgroup *cgroup_get_from_fd(int fd)
6220{
6221        struct cgroup_subsys_state *css;
6222        struct cgroup *cgrp;
6223        struct file *f;
6224
6225        f = fget_raw(fd);
6226        if (!f)
6227                return ERR_PTR(-EBADF);
6228
6229        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6230        fput(f);
6231        if (IS_ERR(css))
6232                return ERR_CAST(css);
6233
6234        cgrp = css->cgroup;
6235        if (!cgroup_on_dfl(cgrp)) {
6236                cgroup_put(cgrp);
6237                return ERR_PTR(-EBADF);
6238        }
6239
6240        return cgrp;
6241}
6242EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6243
6244/*
6245 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6246 * definition in cgroup-defs.h.
6247 */
6248#ifdef CONFIG_SOCK_CGROUP_DATA
6249
6250#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6251
6252DEFINE_SPINLOCK(cgroup_sk_update_lock);
6253static bool cgroup_sk_alloc_disabled __read_mostly;
6254
6255void cgroup_sk_alloc_disable(void)
6256{
6257        if (cgroup_sk_alloc_disabled)
6258                return;
6259        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6260        cgroup_sk_alloc_disabled = true;
6261}
6262
6263#else
6264
6265#define cgroup_sk_alloc_disabled        false
6266
6267#endif
6268
6269void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6270{
6271        if (cgroup_sk_alloc_disabled)
6272                return;
6273
6274        /* Socket clone path */
6275        if (skcd->val) {
6276                /*
6277                 * We might be cloning a socket which is left in an empty
6278                 * cgroup and the cgroup might have already been rmdir'd.
6279                 * Don't use cgroup_get_live().
6280                 */
6281                cgroup_get(sock_cgroup_ptr(skcd));
6282                return;
6283        }
6284
6285        rcu_read_lock();
6286
6287        while (true) {
6288                struct css_set *cset;
6289
6290                cset = task_css_set(current);
6291                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6292                        skcd->val = (unsigned long)cset->dfl_cgrp;
6293                        break;
6294                }
6295                cpu_relax();
6296        }
6297
6298        rcu_read_unlock();
6299}
6300
6301void cgroup_sk_free(struct sock_cgroup_data *skcd)
6302{
6303        cgroup_put(sock_cgroup_ptr(skcd));
6304}
6305
6306#endif  /* CONFIG_SOCK_CGROUP_DATA */
6307
6308#ifdef CONFIG_CGROUP_BPF
6309int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6310                      enum bpf_attach_type type, u32 flags)
6311{
6312        int ret;
6313
6314        mutex_lock(&cgroup_mutex);
6315        ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6316        mutex_unlock(&cgroup_mutex);
6317        return ret;
6318}
6319int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6320                      enum bpf_attach_type type, u32 flags)
6321{
6322        int ret;
6323
6324        mutex_lock(&cgroup_mutex);
6325        ret = __cgroup_bpf_detach(cgrp, prog, type);
6326        mutex_unlock(&cgroup_mutex);
6327        return ret;
6328}
6329int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6330                     union bpf_attr __user *uattr)
6331{
6332        int ret;
6333
6334        mutex_lock(&cgroup_mutex);
6335        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6336        mutex_unlock(&cgroup_mutex);
6337        return ret;
6338}
6339#endif /* CONFIG_CGROUP_BPF */
6340
6341#ifdef CONFIG_SYSFS
6342static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6343                                      ssize_t size, const char *prefix)
6344{
6345        struct cftype *cft;
6346        ssize_t ret = 0;
6347
6348        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6349                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6350                        continue;
6351
6352                if (prefix)
6353                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6354
6355                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6356
6357                if (WARN_ON(ret >= size))
6358                        break;
6359        }
6360
6361        return ret;
6362}
6363
6364static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6365                              char *buf)
6366{
6367        struct cgroup_subsys *ss;
6368        int ssid;
6369        ssize_t ret = 0;
6370
6371        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6372                                     NULL);
6373
6374        for_each_subsys(ss, ssid)
6375                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6376                                              PAGE_SIZE - ret,
6377                                              cgroup_subsys_name[ssid]);
6378
6379        return ret;
6380}
6381static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6382
6383static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6384                             char *buf)
6385{
6386        return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6387}
6388static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6389
6390static struct attribute *cgroup_sysfs_attrs[] = {
6391        &cgroup_delegate_attr.attr,
6392        &cgroup_features_attr.attr,
6393        NULL,
6394};
6395
6396static const struct attribute_group cgroup_sysfs_attr_group = {
6397        .attrs = cgroup_sysfs_attrs,
6398        .name = "cgroup",
6399};
6400
6401static int __init cgroup_sysfs_init(void)
6402{
6403        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6404}
6405subsys_initcall(cgroup_sysfs_init);
6406#endif /* CONFIG_SYSFS */
6407