linux/kernel/sched/debug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/sched/debug.c
   4 *
   5 * Print the CFS rbtree and other debugging details
   6 *
   7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   8 */
   9#include "sched.h"
  10
  11static DEFINE_SPINLOCK(sched_debug_lock);
  12
  13/*
  14 * This allows printing both to /proc/sched_debug and
  15 * to the console
  16 */
  17#define SEQ_printf(m, x...)                     \
  18 do {                                           \
  19        if (m)                                  \
  20                seq_printf(m, x);               \
  21        else                                    \
  22                pr_cont(x);                     \
  23 } while (0)
  24
  25/*
  26 * Ease the printing of nsec fields:
  27 */
  28static long long nsec_high(unsigned long long nsec)
  29{
  30        if ((long long)nsec < 0) {
  31                nsec = -nsec;
  32                do_div(nsec, 1000000);
  33                return -nsec;
  34        }
  35        do_div(nsec, 1000000);
  36
  37        return nsec;
  38}
  39
  40static unsigned long nsec_low(unsigned long long nsec)
  41{
  42        if ((long long)nsec < 0)
  43                nsec = -nsec;
  44
  45        return do_div(nsec, 1000000);
  46}
  47
  48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  49
  50#define SCHED_FEAT(name, enabled)       \
  51        #name ,
  52
  53static const char * const sched_feat_names[] = {
  54#include "features.h"
  55};
  56
  57#undef SCHED_FEAT
  58
  59static int sched_feat_show(struct seq_file *m, void *v)
  60{
  61        int i;
  62
  63        for (i = 0; i < __SCHED_FEAT_NR; i++) {
  64                if (!(sysctl_sched_features & (1UL << i)))
  65                        seq_puts(m, "NO_");
  66                seq_printf(m, "%s ", sched_feat_names[i]);
  67        }
  68        seq_puts(m, "\n");
  69
  70        return 0;
  71}
  72
  73#ifdef CONFIG_JUMP_LABEL
  74
  75#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  76#define jump_label_key__false STATIC_KEY_INIT_FALSE
  77
  78#define SCHED_FEAT(name, enabled)       \
  79        jump_label_key__##enabled ,
  80
  81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  82#include "features.h"
  83};
  84
  85#undef SCHED_FEAT
  86
  87static void sched_feat_disable(int i)
  88{
  89        static_key_disable_cpuslocked(&sched_feat_keys[i]);
  90}
  91
  92static void sched_feat_enable(int i)
  93{
  94        static_key_enable_cpuslocked(&sched_feat_keys[i]);
  95}
  96#else
  97static void sched_feat_disable(int i) { };
  98static void sched_feat_enable(int i) { };
  99#endif /* CONFIG_JUMP_LABEL */
 100
 101static int sched_feat_set(char *cmp)
 102{
 103        int i;
 104        int neg = 0;
 105
 106        if (strncmp(cmp, "NO_", 3) == 0) {
 107                neg = 1;
 108                cmp += 3;
 109        }
 110
 111        i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 112        if (i < 0)
 113                return i;
 114
 115        if (neg) {
 116                sysctl_sched_features &= ~(1UL << i);
 117                sched_feat_disable(i);
 118        } else {
 119                sysctl_sched_features |= (1UL << i);
 120                sched_feat_enable(i);
 121        }
 122
 123        return 0;
 124}
 125
 126static ssize_t
 127sched_feat_write(struct file *filp, const char __user *ubuf,
 128                size_t cnt, loff_t *ppos)
 129{
 130        char buf[64];
 131        char *cmp;
 132        int ret;
 133        struct inode *inode;
 134
 135        if (cnt > 63)
 136                cnt = 63;
 137
 138        if (copy_from_user(&buf, ubuf, cnt))
 139                return -EFAULT;
 140
 141        buf[cnt] = 0;
 142        cmp = strstrip(buf);
 143
 144        /* Ensure the static_key remains in a consistent state */
 145        inode = file_inode(filp);
 146        cpus_read_lock();
 147        inode_lock(inode);
 148        ret = sched_feat_set(cmp);
 149        inode_unlock(inode);
 150        cpus_read_unlock();
 151        if (ret < 0)
 152                return ret;
 153
 154        *ppos += cnt;
 155
 156        return cnt;
 157}
 158
 159static int sched_feat_open(struct inode *inode, struct file *filp)
 160{
 161        return single_open(filp, sched_feat_show, NULL);
 162}
 163
 164static const struct file_operations sched_feat_fops = {
 165        .open           = sched_feat_open,
 166        .write          = sched_feat_write,
 167        .read           = seq_read,
 168        .llseek         = seq_lseek,
 169        .release        = single_release,
 170};
 171
 172__read_mostly bool sched_debug_enabled;
 173
 174static __init int sched_init_debug(void)
 175{
 176        debugfs_create_file("sched_features", 0644, NULL, NULL,
 177                        &sched_feat_fops);
 178
 179        debugfs_create_bool("sched_debug", 0644, NULL,
 180                        &sched_debug_enabled);
 181
 182        return 0;
 183}
 184late_initcall(sched_init_debug);
 185
 186#ifdef CONFIG_SMP
 187
 188#ifdef CONFIG_SYSCTL
 189
 190static struct ctl_table sd_ctl_dir[] = {
 191        {
 192                .procname       = "sched_domain",
 193                .mode           = 0555,
 194        },
 195        {}
 196};
 197
 198static struct ctl_table sd_ctl_root[] = {
 199        {
 200                .procname       = "kernel",
 201                .mode           = 0555,
 202                .child          = sd_ctl_dir,
 203        },
 204        {}
 205};
 206
 207static struct ctl_table *sd_alloc_ctl_entry(int n)
 208{
 209        struct ctl_table *entry =
 210                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 211
 212        return entry;
 213}
 214
 215static void sd_free_ctl_entry(struct ctl_table **tablep)
 216{
 217        struct ctl_table *entry;
 218
 219        /*
 220         * In the intermediate directories, both the child directory and
 221         * procname are dynamically allocated and could fail but the mode
 222         * will always be set. In the lowest directory the names are
 223         * static strings and all have proc handlers.
 224         */
 225        for (entry = *tablep; entry->mode; entry++) {
 226                if (entry->child)
 227                        sd_free_ctl_entry(&entry->child);
 228                if (entry->proc_handler == NULL)
 229                        kfree(entry->procname);
 230        }
 231
 232        kfree(*tablep);
 233        *tablep = NULL;
 234}
 235
 236static int min_load_idx = 0;
 237static int max_load_idx = CPU_LOAD_IDX_MAX-1;
 238
 239static void
 240set_table_entry(struct ctl_table *entry,
 241                const char *procname, void *data, int maxlen,
 242                umode_t mode, proc_handler *proc_handler,
 243                bool load_idx)
 244{
 245        entry->procname = procname;
 246        entry->data = data;
 247        entry->maxlen = maxlen;
 248        entry->mode = mode;
 249        entry->proc_handler = proc_handler;
 250
 251        if (load_idx) {
 252                entry->extra1 = &min_load_idx;
 253                entry->extra2 = &max_load_idx;
 254        }
 255}
 256
 257static struct ctl_table *
 258sd_alloc_ctl_domain_table(struct sched_domain *sd)
 259{
 260        struct ctl_table *table = sd_alloc_ctl_entry(14);
 261
 262        if (table == NULL)
 263                return NULL;
 264
 265        set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
 266        set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
 267        set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 268        set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 269        set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
 270        set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 271        set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
 272        set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
 273        set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
 274        set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
 275        set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
 276        set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
 277        set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
 278        /* &table[13] is terminator */
 279
 280        return table;
 281}
 282
 283static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 284{
 285        struct ctl_table *entry, *table;
 286        struct sched_domain *sd;
 287        int domain_num = 0, i;
 288        char buf[32];
 289
 290        for_each_domain(cpu, sd)
 291                domain_num++;
 292        entry = table = sd_alloc_ctl_entry(domain_num + 1);
 293        if (table == NULL)
 294                return NULL;
 295
 296        i = 0;
 297        for_each_domain(cpu, sd) {
 298                snprintf(buf, 32, "domain%d", i);
 299                entry->procname = kstrdup(buf, GFP_KERNEL);
 300                entry->mode = 0555;
 301                entry->child = sd_alloc_ctl_domain_table(sd);
 302                entry++;
 303                i++;
 304        }
 305        return table;
 306}
 307
 308static cpumask_var_t            sd_sysctl_cpus;
 309static struct ctl_table_header  *sd_sysctl_header;
 310
 311void register_sched_domain_sysctl(void)
 312{
 313        static struct ctl_table *cpu_entries;
 314        static struct ctl_table **cpu_idx;
 315        static bool init_done = false;
 316        char buf[32];
 317        int i;
 318
 319        if (!cpu_entries) {
 320                cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
 321                if (!cpu_entries)
 322                        return;
 323
 324                WARN_ON(sd_ctl_dir[0].child);
 325                sd_ctl_dir[0].child = cpu_entries;
 326        }
 327
 328        if (!cpu_idx) {
 329                struct ctl_table *e = cpu_entries;
 330
 331                cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
 332                if (!cpu_idx)
 333                        return;
 334
 335                /* deal with sparse possible map */
 336                for_each_possible_cpu(i) {
 337                        cpu_idx[i] = e;
 338                        e++;
 339                }
 340        }
 341
 342        if (!cpumask_available(sd_sysctl_cpus)) {
 343                if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 344                        return;
 345        }
 346
 347        if (!init_done) {
 348                init_done = true;
 349                /* init to possible to not have holes in @cpu_entries */
 350                cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 351        }
 352
 353        for_each_cpu(i, sd_sysctl_cpus) {
 354                struct ctl_table *e = cpu_idx[i];
 355
 356                if (e->child)
 357                        sd_free_ctl_entry(&e->child);
 358
 359                if (!e->procname) {
 360                        snprintf(buf, 32, "cpu%d", i);
 361                        e->procname = kstrdup(buf, GFP_KERNEL);
 362                }
 363                e->mode = 0555;
 364                e->child = sd_alloc_ctl_cpu_table(i);
 365
 366                __cpumask_clear_cpu(i, sd_sysctl_cpus);
 367        }
 368
 369        WARN_ON(sd_sysctl_header);
 370        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 371}
 372
 373void dirty_sched_domain_sysctl(int cpu)
 374{
 375        if (cpumask_available(sd_sysctl_cpus))
 376                __cpumask_set_cpu(cpu, sd_sysctl_cpus);
 377}
 378
 379/* may be called multiple times per register */
 380void unregister_sched_domain_sysctl(void)
 381{
 382        unregister_sysctl_table(sd_sysctl_header);
 383        sd_sysctl_header = NULL;
 384}
 385#endif /* CONFIG_SYSCTL */
 386#endif /* CONFIG_SMP */
 387
 388#ifdef CONFIG_FAIR_GROUP_SCHED
 389static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 390{
 391        struct sched_entity *se = tg->se[cpu];
 392
 393#define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
 394#define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
 395#define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 396#define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 397
 398        if (!se)
 399                return;
 400
 401        PN(se->exec_start);
 402        PN(se->vruntime);
 403        PN(se->sum_exec_runtime);
 404
 405        if (schedstat_enabled()) {
 406                PN_SCHEDSTAT(se->statistics.wait_start);
 407                PN_SCHEDSTAT(se->statistics.sleep_start);
 408                PN_SCHEDSTAT(se->statistics.block_start);
 409                PN_SCHEDSTAT(se->statistics.sleep_max);
 410                PN_SCHEDSTAT(se->statistics.block_max);
 411                PN_SCHEDSTAT(se->statistics.exec_max);
 412                PN_SCHEDSTAT(se->statistics.slice_max);
 413                PN_SCHEDSTAT(se->statistics.wait_max);
 414                PN_SCHEDSTAT(se->statistics.wait_sum);
 415                P_SCHEDSTAT(se->statistics.wait_count);
 416        }
 417
 418        P(se->load.weight);
 419        P(se->runnable_weight);
 420#ifdef CONFIG_SMP
 421        P(se->avg.load_avg);
 422        P(se->avg.util_avg);
 423        P(se->avg.runnable_load_avg);
 424#endif
 425
 426#undef PN_SCHEDSTAT
 427#undef PN
 428#undef P_SCHEDSTAT
 429#undef P
 430}
 431#endif
 432
 433#ifdef CONFIG_CGROUP_SCHED
 434static char group_path[PATH_MAX];
 435
 436static char *task_group_path(struct task_group *tg)
 437{
 438        if (autogroup_path(tg, group_path, PATH_MAX))
 439                return group_path;
 440
 441        cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 442
 443        return group_path;
 444}
 445#endif
 446
 447static void
 448print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 449{
 450        if (rq->curr == p)
 451                SEQ_printf(m, ">R");
 452        else
 453                SEQ_printf(m, " %c", task_state_to_char(p));
 454
 455        SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 456                p->comm, task_pid_nr(p),
 457                SPLIT_NS(p->se.vruntime),
 458                (long long)(p->nvcsw + p->nivcsw),
 459                p->prio);
 460
 461        SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 462                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 463                SPLIT_NS(p->se.sum_exec_runtime),
 464                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 465
 466#ifdef CONFIG_NUMA_BALANCING
 467        SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 468#endif
 469#ifdef CONFIG_CGROUP_SCHED
 470        SEQ_printf(m, " %s", task_group_path(task_group(p)));
 471#endif
 472
 473        SEQ_printf(m, "\n");
 474}
 475
 476static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 477{
 478        struct task_struct *g, *p;
 479
 480        SEQ_printf(m, "\n");
 481        SEQ_printf(m, "runnable tasks:\n");
 482        SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
 483                   "     wait-time             sum-exec        sum-sleep\n");
 484        SEQ_printf(m, "-------------------------------------------------------"
 485                   "----------------------------------------------------\n");
 486
 487        rcu_read_lock();
 488        for_each_process_thread(g, p) {
 489                if (task_cpu(p) != rq_cpu)
 490                        continue;
 491
 492                print_task(m, rq, p);
 493        }
 494        rcu_read_unlock();
 495}
 496
 497void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 498{
 499        s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 500                spread, rq0_min_vruntime, spread0;
 501        struct rq *rq = cpu_rq(cpu);
 502        struct sched_entity *last;
 503        unsigned long flags;
 504
 505#ifdef CONFIG_FAIR_GROUP_SCHED
 506        SEQ_printf(m, "\n");
 507        SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 508#else
 509        SEQ_printf(m, "\n");
 510        SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 511#endif
 512        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 513                        SPLIT_NS(cfs_rq->exec_clock));
 514
 515        raw_spin_lock_irqsave(&rq->lock, flags);
 516        if (rb_first_cached(&cfs_rq->tasks_timeline))
 517                MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 518        last = __pick_last_entity(cfs_rq);
 519        if (last)
 520                max_vruntime = last->vruntime;
 521        min_vruntime = cfs_rq->min_vruntime;
 522        rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 523        raw_spin_unlock_irqrestore(&rq->lock, flags);
 524        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 525                        SPLIT_NS(MIN_vruntime));
 526        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 527                        SPLIT_NS(min_vruntime));
 528        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 529                        SPLIT_NS(max_vruntime));
 530        spread = max_vruntime - MIN_vruntime;
 531        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 532                        SPLIT_NS(spread));
 533        spread0 = min_vruntime - rq0_min_vruntime;
 534        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 535                        SPLIT_NS(spread0));
 536        SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 537                        cfs_rq->nr_spread_over);
 538        SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 539        SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 540#ifdef CONFIG_SMP
 541        SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
 542        SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 543                        cfs_rq->avg.load_avg);
 544        SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
 545                        cfs_rq->avg.runnable_load_avg);
 546        SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 547                        cfs_rq->avg.util_avg);
 548        SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 549                        cfs_rq->avg.util_est.enqueued);
 550        SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 551                        cfs_rq->removed.load_avg);
 552        SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 553                        cfs_rq->removed.util_avg);
 554        SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
 555                        cfs_rq->removed.runnable_sum);
 556#ifdef CONFIG_FAIR_GROUP_SCHED
 557        SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 558                        cfs_rq->tg_load_avg_contrib);
 559        SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 560                        atomic_long_read(&cfs_rq->tg->load_avg));
 561#endif
 562#endif
 563#ifdef CONFIG_CFS_BANDWIDTH
 564        SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 565                        cfs_rq->throttled);
 566        SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 567                        cfs_rq->throttle_count);
 568#endif
 569
 570#ifdef CONFIG_FAIR_GROUP_SCHED
 571        print_cfs_group_stats(m, cpu, cfs_rq->tg);
 572#endif
 573}
 574
 575void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 576{
 577#ifdef CONFIG_RT_GROUP_SCHED
 578        SEQ_printf(m, "\n");
 579        SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 580#else
 581        SEQ_printf(m, "\n");
 582        SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 583#endif
 584
 585#define P(x) \
 586        SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 587#define PU(x) \
 588        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 589#define PN(x) \
 590        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 591
 592        PU(rt_nr_running);
 593#ifdef CONFIG_SMP
 594        PU(rt_nr_migratory);
 595#endif
 596        P(rt_throttled);
 597        PN(rt_time);
 598        PN(rt_runtime);
 599
 600#undef PN
 601#undef PU
 602#undef P
 603}
 604
 605void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 606{
 607        struct dl_bw *dl_bw;
 608
 609        SEQ_printf(m, "\n");
 610        SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 611
 612#define PU(x) \
 613        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 614
 615        PU(dl_nr_running);
 616#ifdef CONFIG_SMP
 617        PU(dl_nr_migratory);
 618        dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 619#else
 620        dl_bw = &dl_rq->dl_bw;
 621#endif
 622        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 623        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 624
 625#undef PU
 626}
 627
 628static void print_cpu(struct seq_file *m, int cpu)
 629{
 630        struct rq *rq = cpu_rq(cpu);
 631        unsigned long flags;
 632
 633#ifdef CONFIG_X86
 634        {
 635                unsigned int freq = cpu_khz ? : 1;
 636
 637                SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 638                           cpu, freq / 1000, (freq % 1000));
 639        }
 640#else
 641        SEQ_printf(m, "cpu#%d\n", cpu);
 642#endif
 643
 644#define P(x)                                                            \
 645do {                                                                    \
 646        if (sizeof(rq->x) == 4)                                         \
 647                SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
 648        else                                                            \
 649                SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 650} while (0)
 651
 652#define PN(x) \
 653        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 654
 655        P(nr_running);
 656        SEQ_printf(m, "  .%-30s: %lu\n", "load",
 657                   rq->load.weight);
 658        P(nr_switches);
 659        P(nr_load_updates);
 660        P(nr_uninterruptible);
 661        PN(next_balance);
 662        SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 663        PN(clock);
 664        PN(clock_task);
 665        P(cpu_load[0]);
 666        P(cpu_load[1]);
 667        P(cpu_load[2]);
 668        P(cpu_load[3]);
 669        P(cpu_load[4]);
 670#undef P
 671#undef PN
 672
 673#ifdef CONFIG_SMP
 674#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 675        P64(avg_idle);
 676        P64(max_idle_balance_cost);
 677#undef P64
 678#endif
 679
 680#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 681        if (schedstat_enabled()) {
 682                P(yld_count);
 683                P(sched_count);
 684                P(sched_goidle);
 685                P(ttwu_count);
 686                P(ttwu_local);
 687        }
 688#undef P
 689
 690        spin_lock_irqsave(&sched_debug_lock, flags);
 691        print_cfs_stats(m, cpu);
 692        print_rt_stats(m, cpu);
 693        print_dl_stats(m, cpu);
 694
 695        print_rq(m, rq, cpu);
 696        spin_unlock_irqrestore(&sched_debug_lock, flags);
 697        SEQ_printf(m, "\n");
 698}
 699
 700static const char *sched_tunable_scaling_names[] = {
 701        "none",
 702        "logarithmic",
 703        "linear"
 704};
 705
 706static void sched_debug_header(struct seq_file *m)
 707{
 708        u64 ktime, sched_clk, cpu_clk;
 709        unsigned long flags;
 710
 711        local_irq_save(flags);
 712        ktime = ktime_to_ns(ktime_get());
 713        sched_clk = sched_clock();
 714        cpu_clk = local_clock();
 715        local_irq_restore(flags);
 716
 717        SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 718                init_utsname()->release,
 719                (int)strcspn(init_utsname()->version, " "),
 720                init_utsname()->version);
 721
 722#define P(x) \
 723        SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 724#define PN(x) \
 725        SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 726        PN(ktime);
 727        PN(sched_clk);
 728        PN(cpu_clk);
 729        P(jiffies);
 730#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 731        P(sched_clock_stable());
 732#endif
 733#undef PN
 734#undef P
 735
 736        SEQ_printf(m, "\n");
 737        SEQ_printf(m, "sysctl_sched\n");
 738
 739#define P(x) \
 740        SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 741#define PN(x) \
 742        SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 743        PN(sysctl_sched_latency);
 744        PN(sysctl_sched_min_granularity);
 745        PN(sysctl_sched_wakeup_granularity);
 746        P(sysctl_sched_child_runs_first);
 747        P(sysctl_sched_features);
 748#undef PN
 749#undef P
 750
 751        SEQ_printf(m, "  .%-40s: %d (%s)\n",
 752                "sysctl_sched_tunable_scaling",
 753                sysctl_sched_tunable_scaling,
 754                sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 755        SEQ_printf(m, "\n");
 756}
 757
 758static int sched_debug_show(struct seq_file *m, void *v)
 759{
 760        int cpu = (unsigned long)(v - 2);
 761
 762        if (cpu != -1)
 763                print_cpu(m, cpu);
 764        else
 765                sched_debug_header(m);
 766
 767        return 0;
 768}
 769
 770void sysrq_sched_debug_show(void)
 771{
 772        int cpu;
 773
 774        sched_debug_header(NULL);
 775        for_each_online_cpu(cpu)
 776                print_cpu(NULL, cpu);
 777
 778}
 779
 780/*
 781 * This itererator needs some explanation.
 782 * It returns 1 for the header position.
 783 * This means 2 is CPU 0.
 784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 785 * to use cpumask_* to iterate over the CPUs.
 786 */
 787static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 788{
 789        unsigned long n = *offset;
 790
 791        if (n == 0)
 792                return (void *) 1;
 793
 794        n--;
 795
 796        if (n > 0)
 797                n = cpumask_next(n - 1, cpu_online_mask);
 798        else
 799                n = cpumask_first(cpu_online_mask);
 800
 801        *offset = n + 1;
 802
 803        if (n < nr_cpu_ids)
 804                return (void *)(unsigned long)(n + 2);
 805
 806        return NULL;
 807}
 808
 809static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 810{
 811        (*offset)++;
 812        return sched_debug_start(file, offset);
 813}
 814
 815static void sched_debug_stop(struct seq_file *file, void *data)
 816{
 817}
 818
 819static const struct seq_operations sched_debug_sops = {
 820        .start          = sched_debug_start,
 821        .next           = sched_debug_next,
 822        .stop           = sched_debug_stop,
 823        .show           = sched_debug_show,
 824};
 825
 826static int __init init_sched_debug_procfs(void)
 827{
 828        if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
 829                return -ENOMEM;
 830        return 0;
 831}
 832
 833__initcall(init_sched_debug_procfs);
 834
 835#define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
 836#define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
 837#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 838#define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 839
 840
 841#ifdef CONFIG_NUMA_BALANCING
 842void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 843                unsigned long tpf, unsigned long gsf, unsigned long gpf)
 844{
 845        SEQ_printf(m, "numa_faults node=%d ", node);
 846        SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 847        SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 848}
 849#endif
 850
 851
 852static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 853{
 854#ifdef CONFIG_NUMA_BALANCING
 855        struct mempolicy *pol;
 856
 857        if (p->mm)
 858                P(mm->numa_scan_seq);
 859
 860        task_lock(p);
 861        pol = p->mempolicy;
 862        if (pol && !(pol->flags & MPOL_F_MORON))
 863                pol = NULL;
 864        mpol_get(pol);
 865        task_unlock(p);
 866
 867        P(numa_pages_migrated);
 868        P(numa_preferred_nid);
 869        P(total_numa_faults);
 870        SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 871                        task_node(p), task_numa_group_id(p));
 872        show_numa_stats(p, m);
 873        mpol_put(pol);
 874#endif
 875}
 876
 877void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 878                                                  struct seq_file *m)
 879{
 880        unsigned long nr_switches;
 881
 882        SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 883                                                get_nr_threads(p));
 884        SEQ_printf(m,
 885                "---------------------------------------------------------"
 886                "----------\n");
 887#define __P(F) \
 888        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
 889#define P(F) \
 890        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
 891#define P_SCHEDSTAT(F) \
 892        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
 893#define __PN(F) \
 894        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 895#define PN(F) \
 896        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 897#define PN_SCHEDSTAT(F) \
 898        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
 899
 900        PN(se.exec_start);
 901        PN(se.vruntime);
 902        PN(se.sum_exec_runtime);
 903
 904        nr_switches = p->nvcsw + p->nivcsw;
 905
 906        P(se.nr_migrations);
 907
 908        if (schedstat_enabled()) {
 909                u64 avg_atom, avg_per_cpu;
 910
 911                PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 912                PN_SCHEDSTAT(se.statistics.wait_start);
 913                PN_SCHEDSTAT(se.statistics.sleep_start);
 914                PN_SCHEDSTAT(se.statistics.block_start);
 915                PN_SCHEDSTAT(se.statistics.sleep_max);
 916                PN_SCHEDSTAT(se.statistics.block_max);
 917                PN_SCHEDSTAT(se.statistics.exec_max);
 918                PN_SCHEDSTAT(se.statistics.slice_max);
 919                PN_SCHEDSTAT(se.statistics.wait_max);
 920                PN_SCHEDSTAT(se.statistics.wait_sum);
 921                P_SCHEDSTAT(se.statistics.wait_count);
 922                PN_SCHEDSTAT(se.statistics.iowait_sum);
 923                P_SCHEDSTAT(se.statistics.iowait_count);
 924                P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 925                P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 926                P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 927                P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 928                P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 929                P_SCHEDSTAT(se.statistics.nr_wakeups);
 930                P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 931                P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 932                P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 933                P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 934                P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 935                P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 936                P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 937                P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 938
 939                avg_atom = p->se.sum_exec_runtime;
 940                if (nr_switches)
 941                        avg_atom = div64_ul(avg_atom, nr_switches);
 942                else
 943                        avg_atom = -1LL;
 944
 945                avg_per_cpu = p->se.sum_exec_runtime;
 946                if (p->se.nr_migrations) {
 947                        avg_per_cpu = div64_u64(avg_per_cpu,
 948                                                p->se.nr_migrations);
 949                } else {
 950                        avg_per_cpu = -1LL;
 951                }
 952
 953                __PN(avg_atom);
 954                __PN(avg_per_cpu);
 955        }
 956
 957        __P(nr_switches);
 958        SEQ_printf(m, "%-45s:%21Ld\n",
 959                   "nr_voluntary_switches", (long long)p->nvcsw);
 960        SEQ_printf(m, "%-45s:%21Ld\n",
 961                   "nr_involuntary_switches", (long long)p->nivcsw);
 962
 963        P(se.load.weight);
 964        P(se.runnable_weight);
 965#ifdef CONFIG_SMP
 966        P(se.avg.load_sum);
 967        P(se.avg.runnable_load_sum);
 968        P(se.avg.util_sum);
 969        P(se.avg.load_avg);
 970        P(se.avg.runnable_load_avg);
 971        P(se.avg.util_avg);
 972        P(se.avg.last_update_time);
 973        P(se.avg.util_est.ewma);
 974        P(se.avg.util_est.enqueued);
 975#endif
 976        P(policy);
 977        P(prio);
 978        if (task_has_dl_policy(p)) {
 979                P(dl.runtime);
 980                P(dl.deadline);
 981        }
 982#undef PN_SCHEDSTAT
 983#undef PN
 984#undef __PN
 985#undef P_SCHEDSTAT
 986#undef P
 987#undef __P
 988
 989        {
 990                unsigned int this_cpu = raw_smp_processor_id();
 991                u64 t0, t1;
 992
 993                t0 = cpu_clock(this_cpu);
 994                t1 = cpu_clock(this_cpu);
 995                SEQ_printf(m, "%-45s:%21Ld\n",
 996                           "clock-delta", (long long)(t1-t0));
 997        }
 998
 999        sched_show_numa(p, m);
1000}
1001
1002void proc_sched_set_task(struct task_struct *p)
1003{
1004#ifdef CONFIG_SCHEDSTATS
1005        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1006#endif
1007}
1008