linux/kernel/sched/fair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 */
  23#include "sched.h"
  24
  25#include <trace/events/sched.h>
  26
  27/*
  28 * Targeted preemption latency for CPU-bound tasks:
  29 *
  30 * NOTE: this latency value is not the same as the concept of
  31 * 'timeslice length' - timeslices in CFS are of variable length
  32 * and have no persistent notion like in traditional, time-slice
  33 * based scheduling concepts.
  34 *
  35 * (to see the precise effective timeslice length of your workload,
  36 *  run vmstat and monitor the context-switches (cs) field)
  37 *
  38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  39 */
  40unsigned int sysctl_sched_latency                       = 6000000ULL;
  41static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
  42
  43/*
  44 * The initial- and re-scaling of tunables is configurable
  45 *
  46 * Options are:
  47 *
  48 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  49 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  50 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  51 *
  52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  53 */
  54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  55
  56/*
  57 * Minimal preemption granularity for CPU-bound tasks:
  58 *
  59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60 */
  61unsigned int sysctl_sched_min_granularity                       = 750000ULL;
  62static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
  63
  64/*
  65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  66 */
  67static unsigned int sched_nr_latency = 8;
  68
  69/*
  70 * After fork, child runs first. If set to 0 (default) then
  71 * parent will (try to) run first.
  72 */
  73unsigned int sysctl_sched_child_runs_first __read_mostly;
  74
  75/*
  76 * SCHED_OTHER wake-up granularity.
  77 *
  78 * This option delays the preemption effects of decoupled workloads
  79 * and reduces their over-scheduling. Synchronous workloads will still
  80 * have immediate wakeup/sleep latencies.
  81 *
  82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  83 */
  84unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
  85static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
  86
  87const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
  88
  89#ifdef CONFIG_SMP
  90/*
  91 * For asym packing, by default the lower numbered CPU has higher priority.
  92 */
  93int __weak arch_asym_cpu_priority(int cpu)
  94{
  95        return -cpu;
  96}
  97
  98/*
  99 * The margin used when comparing utilization with CPU capacity:
 100 * util * margin < capacity * 1024
 101 *
 102 * (default: ~20%)
 103 */
 104static unsigned int capacity_margin                     = 1280;
 105#endif
 106
 107#ifdef CONFIG_CFS_BANDWIDTH
 108/*
 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 110 * each time a cfs_rq requests quota.
 111 *
 112 * Note: in the case that the slice exceeds the runtime remaining (either due
 113 * to consumption or the quota being specified to be smaller than the slice)
 114 * we will always only issue the remaining available time.
 115 *
 116 * (default: 5 msec, units: microseconds)
 117 */
 118unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
 119#endif
 120
 121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 122{
 123        lw->weight += inc;
 124        lw->inv_weight = 0;
 125}
 126
 127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 128{
 129        lw->weight -= dec;
 130        lw->inv_weight = 0;
 131}
 132
 133static inline void update_load_set(struct load_weight *lw, unsigned long w)
 134{
 135        lw->weight = w;
 136        lw->inv_weight = 0;
 137}
 138
 139/*
 140 * Increase the granularity value when there are more CPUs,
 141 * because with more CPUs the 'effective latency' as visible
 142 * to users decreases. But the relationship is not linear,
 143 * so pick a second-best guess by going with the log2 of the
 144 * number of CPUs.
 145 *
 146 * This idea comes from the SD scheduler of Con Kolivas:
 147 */
 148static unsigned int get_update_sysctl_factor(void)
 149{
 150        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 151        unsigned int factor;
 152
 153        switch (sysctl_sched_tunable_scaling) {
 154        case SCHED_TUNABLESCALING_NONE:
 155                factor = 1;
 156                break;
 157        case SCHED_TUNABLESCALING_LINEAR:
 158                factor = cpus;
 159                break;
 160        case SCHED_TUNABLESCALING_LOG:
 161        default:
 162                factor = 1 + ilog2(cpus);
 163                break;
 164        }
 165
 166        return factor;
 167}
 168
 169static void update_sysctl(void)
 170{
 171        unsigned int factor = get_update_sysctl_factor();
 172
 173#define SET_SYSCTL(name) \
 174        (sysctl_##name = (factor) * normalized_sysctl_##name)
 175        SET_SYSCTL(sched_min_granularity);
 176        SET_SYSCTL(sched_latency);
 177        SET_SYSCTL(sched_wakeup_granularity);
 178#undef SET_SYSCTL
 179}
 180
 181void sched_init_granularity(void)
 182{
 183        update_sysctl();
 184}
 185
 186#define WMULT_CONST     (~0U)
 187#define WMULT_SHIFT     32
 188
 189static void __update_inv_weight(struct load_weight *lw)
 190{
 191        unsigned long w;
 192
 193        if (likely(lw->inv_weight))
 194                return;
 195
 196        w = scale_load_down(lw->weight);
 197
 198        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 199                lw->inv_weight = 1;
 200        else if (unlikely(!w))
 201                lw->inv_weight = WMULT_CONST;
 202        else
 203                lw->inv_weight = WMULT_CONST / w;
 204}
 205
 206/*
 207 * delta_exec * weight / lw.weight
 208 *   OR
 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 210 *
 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 214 *
 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 217 */
 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 219{
 220        u64 fact = scale_load_down(weight);
 221        int shift = WMULT_SHIFT;
 222
 223        __update_inv_weight(lw);
 224
 225        if (unlikely(fact >> 32)) {
 226                while (fact >> 32) {
 227                        fact >>= 1;
 228                        shift--;
 229                }
 230        }
 231
 232        /* hint to use a 32x32->64 mul */
 233        fact = (u64)(u32)fact * lw->inv_weight;
 234
 235        while (fact >> 32) {
 236                fact >>= 1;
 237                shift--;
 238        }
 239
 240        return mul_u64_u32_shr(delta_exec, fact, shift);
 241}
 242
 243
 244const struct sched_class fair_sched_class;
 245
 246/**************************************************************
 247 * CFS operations on generic schedulable entities:
 248 */
 249
 250#ifdef CONFIG_FAIR_GROUP_SCHED
 251static inline struct task_struct *task_of(struct sched_entity *se)
 252{
 253        SCHED_WARN_ON(!entity_is_task(se));
 254        return container_of(se, struct task_struct, se);
 255}
 256
 257/* Walk up scheduling entities hierarchy */
 258#define for_each_sched_entity(se) \
 259                for (; se; se = se->parent)
 260
 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 262{
 263        return p->se.cfs_rq;
 264}
 265
 266/* runqueue on which this entity is (to be) queued */
 267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 268{
 269        return se->cfs_rq;
 270}
 271
 272/* runqueue "owned" by this group */
 273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 274{
 275        return grp->my_q;
 276}
 277
 278static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 279{
 280        struct rq *rq = rq_of(cfs_rq);
 281        int cpu = cpu_of(rq);
 282
 283        if (cfs_rq->on_list)
 284                return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 285
 286        cfs_rq->on_list = 1;
 287
 288        /*
 289         * Ensure we either appear before our parent (if already
 290         * enqueued) or force our parent to appear after us when it is
 291         * enqueued. The fact that we always enqueue bottom-up
 292         * reduces this to two cases and a special case for the root
 293         * cfs_rq. Furthermore, it also means that we will always reset
 294         * tmp_alone_branch either when the branch is connected
 295         * to a tree or when we reach the top of the tree
 296         */
 297        if (cfs_rq->tg->parent &&
 298            cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 299                /*
 300                 * If parent is already on the list, we add the child
 301                 * just before. Thanks to circular linked property of
 302                 * the list, this means to put the child at the tail
 303                 * of the list that starts by parent.
 304                 */
 305                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 306                        &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 307                /*
 308                 * The branch is now connected to its tree so we can
 309                 * reset tmp_alone_branch to the beginning of the
 310                 * list.
 311                 */
 312                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 313                return true;
 314        }
 315
 316        if (!cfs_rq->tg->parent) {
 317                /*
 318                 * cfs rq without parent should be put
 319                 * at the tail of the list.
 320                 */
 321                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 322                        &rq->leaf_cfs_rq_list);
 323                /*
 324                 * We have reach the top of a tree so we can reset
 325                 * tmp_alone_branch to the beginning of the list.
 326                 */
 327                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 328                return true;
 329        }
 330
 331        /*
 332         * The parent has not already been added so we want to
 333         * make sure that it will be put after us.
 334         * tmp_alone_branch points to the begin of the branch
 335         * where we will add parent.
 336         */
 337        list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
 338        /*
 339         * update tmp_alone_branch to points to the new begin
 340         * of the branch
 341         */
 342        rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 343        return false;
 344}
 345
 346static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 347{
 348        if (cfs_rq->on_list) {
 349                struct rq *rq = rq_of(cfs_rq);
 350
 351                /*
 352                 * With cfs_rq being unthrottled/throttled during an enqueue,
 353                 * it can happen the tmp_alone_branch points the a leaf that
 354                 * we finally want to del. In this case, tmp_alone_branch moves
 355                 * to the prev element but it will point to rq->leaf_cfs_rq_list
 356                 * at the end of the enqueue.
 357                 */
 358                if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
 359                        rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
 360
 361                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 362                cfs_rq->on_list = 0;
 363        }
 364}
 365
 366static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 367{
 368        SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
 369}
 370
 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
 372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
 373        list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,    \
 374                                 leaf_cfs_rq_list)
 375
 376/* Do the two (enqueued) entities belong to the same group ? */
 377static inline struct cfs_rq *
 378is_same_group(struct sched_entity *se, struct sched_entity *pse)
 379{
 380        if (se->cfs_rq == pse->cfs_rq)
 381                return se->cfs_rq;
 382
 383        return NULL;
 384}
 385
 386static inline struct sched_entity *parent_entity(struct sched_entity *se)
 387{
 388        return se->parent;
 389}
 390
 391static void
 392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 393{
 394        int se_depth, pse_depth;
 395
 396        /*
 397         * preemption test can be made between sibling entities who are in the
 398         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 399         * both tasks until we find their ancestors who are siblings of common
 400         * parent.
 401         */
 402
 403        /* First walk up until both entities are at same depth */
 404        se_depth = (*se)->depth;
 405        pse_depth = (*pse)->depth;
 406
 407        while (se_depth > pse_depth) {
 408                se_depth--;
 409                *se = parent_entity(*se);
 410        }
 411
 412        while (pse_depth > se_depth) {
 413                pse_depth--;
 414                *pse = parent_entity(*pse);
 415        }
 416
 417        while (!is_same_group(*se, *pse)) {
 418                *se = parent_entity(*se);
 419                *pse = parent_entity(*pse);
 420        }
 421}
 422
 423#else   /* !CONFIG_FAIR_GROUP_SCHED */
 424
 425static inline struct task_struct *task_of(struct sched_entity *se)
 426{
 427        return container_of(se, struct task_struct, se);
 428}
 429
 430#define for_each_sched_entity(se) \
 431                for (; se; se = NULL)
 432
 433static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 434{
 435        return &task_rq(p)->cfs;
 436}
 437
 438static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 439{
 440        struct task_struct *p = task_of(se);
 441        struct rq *rq = task_rq(p);
 442
 443        return &rq->cfs;
 444}
 445
 446/* runqueue "owned" by this group */
 447static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 448{
 449        return NULL;
 450}
 451
 452static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 453{
 454        return true;
 455}
 456
 457static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 458{
 459}
 460
 461static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 462{
 463}
 464
 465#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
 466                for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 467
 468static inline struct sched_entity *parent_entity(struct sched_entity *se)
 469{
 470        return NULL;
 471}
 472
 473static inline void
 474find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 475{
 476}
 477
 478#endif  /* CONFIG_FAIR_GROUP_SCHED */
 479
 480static __always_inline
 481void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 482
 483/**************************************************************
 484 * Scheduling class tree data structure manipulation methods:
 485 */
 486
 487static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 488{
 489        s64 delta = (s64)(vruntime - max_vruntime);
 490        if (delta > 0)
 491                max_vruntime = vruntime;
 492
 493        return max_vruntime;
 494}
 495
 496static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 497{
 498        s64 delta = (s64)(vruntime - min_vruntime);
 499        if (delta < 0)
 500                min_vruntime = vruntime;
 501
 502        return min_vruntime;
 503}
 504
 505static inline int entity_before(struct sched_entity *a,
 506                                struct sched_entity *b)
 507{
 508        return (s64)(a->vruntime - b->vruntime) < 0;
 509}
 510
 511static void update_min_vruntime(struct cfs_rq *cfs_rq)
 512{
 513        struct sched_entity *curr = cfs_rq->curr;
 514        struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
 515
 516        u64 vruntime = cfs_rq->min_vruntime;
 517
 518        if (curr) {
 519                if (curr->on_rq)
 520                        vruntime = curr->vruntime;
 521                else
 522                        curr = NULL;
 523        }
 524
 525        if (leftmost) { /* non-empty tree */
 526                struct sched_entity *se;
 527                se = rb_entry(leftmost, struct sched_entity, run_node);
 528
 529                if (!curr)
 530                        vruntime = se->vruntime;
 531                else
 532                        vruntime = min_vruntime(vruntime, se->vruntime);
 533        }
 534
 535        /* ensure we never gain time by being placed backwards. */
 536        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 537#ifndef CONFIG_64BIT
 538        smp_wmb();
 539        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 540#endif
 541}
 542
 543/*
 544 * Enqueue an entity into the rb-tree:
 545 */
 546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 547{
 548        struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
 549        struct rb_node *parent = NULL;
 550        struct sched_entity *entry;
 551        bool leftmost = true;
 552
 553        /*
 554         * Find the right place in the rbtree:
 555         */
 556        while (*link) {
 557                parent = *link;
 558                entry = rb_entry(parent, struct sched_entity, run_node);
 559                /*
 560                 * We dont care about collisions. Nodes with
 561                 * the same key stay together.
 562                 */
 563                if (entity_before(se, entry)) {
 564                        link = &parent->rb_left;
 565                } else {
 566                        link = &parent->rb_right;
 567                        leftmost = false;
 568                }
 569        }
 570
 571        rb_link_node(&se->run_node, parent, link);
 572        rb_insert_color_cached(&se->run_node,
 573                               &cfs_rq->tasks_timeline, leftmost);
 574}
 575
 576static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 577{
 578        rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 579}
 580
 581struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 582{
 583        struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 584
 585        if (!left)
 586                return NULL;
 587
 588        return rb_entry(left, struct sched_entity, run_node);
 589}
 590
 591static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 592{
 593        struct rb_node *next = rb_next(&se->run_node);
 594
 595        if (!next)
 596                return NULL;
 597
 598        return rb_entry(next, struct sched_entity, run_node);
 599}
 600
 601#ifdef CONFIG_SCHED_DEBUG
 602struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 603{
 604        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 605
 606        if (!last)
 607                return NULL;
 608
 609        return rb_entry(last, struct sched_entity, run_node);
 610}
 611
 612/**************************************************************
 613 * Scheduling class statistics methods:
 614 */
 615
 616int sched_proc_update_handler(struct ctl_table *table, int write,
 617                void __user *buffer, size_t *lenp,
 618                loff_t *ppos)
 619{
 620        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 621        unsigned int factor = get_update_sysctl_factor();
 622
 623        if (ret || !write)
 624                return ret;
 625
 626        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 627                                        sysctl_sched_min_granularity);
 628
 629#define WRT_SYSCTL(name) \
 630        (normalized_sysctl_##name = sysctl_##name / (factor))
 631        WRT_SYSCTL(sched_min_granularity);
 632        WRT_SYSCTL(sched_latency);
 633        WRT_SYSCTL(sched_wakeup_granularity);
 634#undef WRT_SYSCTL
 635
 636        return 0;
 637}
 638#endif
 639
 640/*
 641 * delta /= w
 642 */
 643static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 644{
 645        if (unlikely(se->load.weight != NICE_0_LOAD))
 646                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 647
 648        return delta;
 649}
 650
 651/*
 652 * The idea is to set a period in which each task runs once.
 653 *
 654 * When there are too many tasks (sched_nr_latency) we have to stretch
 655 * this period because otherwise the slices get too small.
 656 *
 657 * p = (nr <= nl) ? l : l*nr/nl
 658 */
 659static u64 __sched_period(unsigned long nr_running)
 660{
 661        if (unlikely(nr_running > sched_nr_latency))
 662                return nr_running * sysctl_sched_min_granularity;
 663        else
 664                return sysctl_sched_latency;
 665}
 666
 667/*
 668 * We calculate the wall-time slice from the period by taking a part
 669 * proportional to the weight.
 670 *
 671 * s = p*P[w/rw]
 672 */
 673static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 674{
 675        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 676
 677        for_each_sched_entity(se) {
 678                struct load_weight *load;
 679                struct load_weight lw;
 680
 681                cfs_rq = cfs_rq_of(se);
 682                load = &cfs_rq->load;
 683
 684                if (unlikely(!se->on_rq)) {
 685                        lw = cfs_rq->load;
 686
 687                        update_load_add(&lw, se->load.weight);
 688                        load = &lw;
 689                }
 690                slice = __calc_delta(slice, se->load.weight, load);
 691        }
 692        return slice;
 693}
 694
 695/*
 696 * We calculate the vruntime slice of a to-be-inserted task.
 697 *
 698 * vs = s/w
 699 */
 700static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 701{
 702        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 703}
 704
 705#include "pelt.h"
 706#ifdef CONFIG_SMP
 707
 708static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 709static unsigned long task_h_load(struct task_struct *p);
 710static unsigned long capacity_of(int cpu);
 711
 712/* Give new sched_entity start runnable values to heavy its load in infant time */
 713void init_entity_runnable_average(struct sched_entity *se)
 714{
 715        struct sched_avg *sa = &se->avg;
 716
 717        memset(sa, 0, sizeof(*sa));
 718
 719        /*
 720         * Tasks are initialized with full load to be seen as heavy tasks until
 721         * they get a chance to stabilize to their real load level.
 722         * Group entities are initialized with zero load to reflect the fact that
 723         * nothing has been attached to the task group yet.
 724         */
 725        if (entity_is_task(se))
 726                sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
 727
 728        se->runnable_weight = se->load.weight;
 729
 730        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 731}
 732
 733static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 734static void attach_entity_cfs_rq(struct sched_entity *se);
 735
 736/*
 737 * With new tasks being created, their initial util_avgs are extrapolated
 738 * based on the cfs_rq's current util_avg:
 739 *
 740 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 741 *
 742 * However, in many cases, the above util_avg does not give a desired
 743 * value. Moreover, the sum of the util_avgs may be divergent, such
 744 * as when the series is a harmonic series.
 745 *
 746 * To solve this problem, we also cap the util_avg of successive tasks to
 747 * only 1/2 of the left utilization budget:
 748 *
 749 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 750 *
 751 * where n denotes the nth task and cpu_scale the CPU capacity.
 752 *
 753 * For example, for a CPU with 1024 of capacity, a simplest series from
 754 * the beginning would be like:
 755 *
 756 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 758 *
 759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 760 * if util_avg > util_avg_cap.
 761 */
 762void post_init_entity_util_avg(struct task_struct *p)
 763{
 764        struct sched_entity *se = &p->se;
 765        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 766        struct sched_avg *sa = &se->avg;
 767        long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
 768        long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 769
 770        if (cap > 0) {
 771                if (cfs_rq->avg.util_avg != 0) {
 772                        sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 773                        sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 774
 775                        if (sa->util_avg > cap)
 776                                sa->util_avg = cap;
 777                } else {
 778                        sa->util_avg = cap;
 779                }
 780        }
 781
 782        if (p->sched_class != &fair_sched_class) {
 783                /*
 784                 * For !fair tasks do:
 785                 *
 786                update_cfs_rq_load_avg(now, cfs_rq);
 787                attach_entity_load_avg(cfs_rq, se, 0);
 788                switched_from_fair(rq, p);
 789                 *
 790                 * such that the next switched_to_fair() has the
 791                 * expected state.
 792                 */
 793                se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
 794                return;
 795        }
 796
 797        attach_entity_cfs_rq(se);
 798}
 799
 800#else /* !CONFIG_SMP */
 801void init_entity_runnable_average(struct sched_entity *se)
 802{
 803}
 804void post_init_entity_util_avg(struct task_struct *p)
 805{
 806}
 807static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 808{
 809}
 810#endif /* CONFIG_SMP */
 811
 812/*
 813 * Update the current task's runtime statistics.
 814 */
 815static void update_curr(struct cfs_rq *cfs_rq)
 816{
 817        struct sched_entity *curr = cfs_rq->curr;
 818        u64 now = rq_clock_task(rq_of(cfs_rq));
 819        u64 delta_exec;
 820
 821        if (unlikely(!curr))
 822                return;
 823
 824        delta_exec = now - curr->exec_start;
 825        if (unlikely((s64)delta_exec <= 0))
 826                return;
 827
 828        curr->exec_start = now;
 829
 830        schedstat_set(curr->statistics.exec_max,
 831                      max(delta_exec, curr->statistics.exec_max));
 832
 833        curr->sum_exec_runtime += delta_exec;
 834        schedstat_add(cfs_rq->exec_clock, delta_exec);
 835
 836        curr->vruntime += calc_delta_fair(delta_exec, curr);
 837        update_min_vruntime(cfs_rq);
 838
 839        if (entity_is_task(curr)) {
 840                struct task_struct *curtask = task_of(curr);
 841
 842                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 843                cgroup_account_cputime(curtask, delta_exec);
 844                account_group_exec_runtime(curtask, delta_exec);
 845        }
 846
 847        account_cfs_rq_runtime(cfs_rq, delta_exec);
 848}
 849
 850static void update_curr_fair(struct rq *rq)
 851{
 852        update_curr(cfs_rq_of(&rq->curr->se));
 853}
 854
 855static inline void
 856update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 857{
 858        u64 wait_start, prev_wait_start;
 859
 860        if (!schedstat_enabled())
 861                return;
 862
 863        wait_start = rq_clock(rq_of(cfs_rq));
 864        prev_wait_start = schedstat_val(se->statistics.wait_start);
 865
 866        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 867            likely(wait_start > prev_wait_start))
 868                wait_start -= prev_wait_start;
 869
 870        __schedstat_set(se->statistics.wait_start, wait_start);
 871}
 872
 873static inline void
 874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 875{
 876        struct task_struct *p;
 877        u64 delta;
 878
 879        if (!schedstat_enabled())
 880                return;
 881
 882        delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 883
 884        if (entity_is_task(se)) {
 885                p = task_of(se);
 886                if (task_on_rq_migrating(p)) {
 887                        /*
 888                         * Preserve migrating task's wait time so wait_start
 889                         * time stamp can be adjusted to accumulate wait time
 890                         * prior to migration.
 891                         */
 892                        __schedstat_set(se->statistics.wait_start, delta);
 893                        return;
 894                }
 895                trace_sched_stat_wait(p, delta);
 896        }
 897
 898        __schedstat_set(se->statistics.wait_max,
 899                      max(schedstat_val(se->statistics.wait_max), delta));
 900        __schedstat_inc(se->statistics.wait_count);
 901        __schedstat_add(se->statistics.wait_sum, delta);
 902        __schedstat_set(se->statistics.wait_start, 0);
 903}
 904
 905static inline void
 906update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 907{
 908        struct task_struct *tsk = NULL;
 909        u64 sleep_start, block_start;
 910
 911        if (!schedstat_enabled())
 912                return;
 913
 914        sleep_start = schedstat_val(se->statistics.sleep_start);
 915        block_start = schedstat_val(se->statistics.block_start);
 916
 917        if (entity_is_task(se))
 918                tsk = task_of(se);
 919
 920        if (sleep_start) {
 921                u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 922
 923                if ((s64)delta < 0)
 924                        delta = 0;
 925
 926                if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 927                        __schedstat_set(se->statistics.sleep_max, delta);
 928
 929                __schedstat_set(se->statistics.sleep_start, 0);
 930                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 931
 932                if (tsk) {
 933                        account_scheduler_latency(tsk, delta >> 10, 1);
 934                        trace_sched_stat_sleep(tsk, delta);
 935                }
 936        }
 937        if (block_start) {
 938                u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 939
 940                if ((s64)delta < 0)
 941                        delta = 0;
 942
 943                if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 944                        __schedstat_set(se->statistics.block_max, delta);
 945
 946                __schedstat_set(se->statistics.block_start, 0);
 947                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 948
 949                if (tsk) {
 950                        if (tsk->in_iowait) {
 951                                __schedstat_add(se->statistics.iowait_sum, delta);
 952                                __schedstat_inc(se->statistics.iowait_count);
 953                                trace_sched_stat_iowait(tsk, delta);
 954                        }
 955
 956                        trace_sched_stat_blocked(tsk, delta);
 957
 958                        /*
 959                         * Blocking time is in units of nanosecs, so shift by
 960                         * 20 to get a milliseconds-range estimation of the
 961                         * amount of time that the task spent sleeping:
 962                         */
 963                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 964                                profile_hits(SLEEP_PROFILING,
 965                                                (void *)get_wchan(tsk),
 966                                                delta >> 20);
 967                        }
 968                        account_scheduler_latency(tsk, delta >> 10, 0);
 969                }
 970        }
 971}
 972
 973/*
 974 * Task is being enqueued - update stats:
 975 */
 976static inline void
 977update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 978{
 979        if (!schedstat_enabled())
 980                return;
 981
 982        /*
 983         * Are we enqueueing a waiting task? (for current tasks
 984         * a dequeue/enqueue event is a NOP)
 985         */
 986        if (se != cfs_rq->curr)
 987                update_stats_wait_start(cfs_rq, se);
 988
 989        if (flags & ENQUEUE_WAKEUP)
 990                update_stats_enqueue_sleeper(cfs_rq, se);
 991}
 992
 993static inline void
 994update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 995{
 996
 997        if (!schedstat_enabled())
 998                return;
 999
1000        /*
1001         * Mark the end of the wait period if dequeueing a
1002         * waiting task:
1003         */
1004        if (se != cfs_rq->curr)
1005                update_stats_wait_end(cfs_rq, se);
1006
1007        if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008                struct task_struct *tsk = task_of(se);
1009
1010                if (tsk->state & TASK_INTERRUPTIBLE)
1011                        __schedstat_set(se->statistics.sleep_start,
1012                                      rq_clock(rq_of(cfs_rq)));
1013                if (tsk->state & TASK_UNINTERRUPTIBLE)
1014                        __schedstat_set(se->statistics.block_start,
1015                                      rq_clock(rq_of(cfs_rq)));
1016        }
1017}
1018
1019/*
1020 * We are picking a new current task - update its stats:
1021 */
1022static inline void
1023update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1024{
1025        /*
1026         * We are starting a new run period:
1027         */
1028        se->exec_start = rq_clock_task(rq_of(cfs_rq));
1029}
1030
1031/**************************************************
1032 * Scheduling class queueing methods:
1033 */
1034
1035#ifdef CONFIG_NUMA_BALANCING
1036/*
1037 * Approximate time to scan a full NUMA task in ms. The task scan period is
1038 * calculated based on the tasks virtual memory size and
1039 * numa_balancing_scan_size.
1040 */
1041unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043
1044/* Portion of address space to scan in MB */
1045unsigned int sysctl_numa_balancing_scan_size = 256;
1046
1047/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049
1050struct numa_group {
1051        refcount_t refcount;
1052
1053        spinlock_t lock; /* nr_tasks, tasks */
1054        int nr_tasks;
1055        pid_t gid;
1056        int active_nodes;
1057
1058        struct rcu_head rcu;
1059        unsigned long total_faults;
1060        unsigned long max_faults_cpu;
1061        /*
1062         * Faults_cpu is used to decide whether memory should move
1063         * towards the CPU. As a consequence, these stats are weighted
1064         * more by CPU use than by memory faults.
1065         */
1066        unsigned long *faults_cpu;
1067        unsigned long faults[0];
1068};
1069
1070static inline unsigned long group_faults_priv(struct numa_group *ng);
1071static inline unsigned long group_faults_shared(struct numa_group *ng);
1072
1073static unsigned int task_nr_scan_windows(struct task_struct *p)
1074{
1075        unsigned long rss = 0;
1076        unsigned long nr_scan_pages;
1077
1078        /*
1079         * Calculations based on RSS as non-present and empty pages are skipped
1080         * by the PTE scanner and NUMA hinting faults should be trapped based
1081         * on resident pages
1082         */
1083        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084        rss = get_mm_rss(p->mm);
1085        if (!rss)
1086                rss = nr_scan_pages;
1087
1088        rss = round_up(rss, nr_scan_pages);
1089        return rss / nr_scan_pages;
1090}
1091
1092/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093#define MAX_SCAN_WINDOW 2560
1094
1095static unsigned int task_scan_min(struct task_struct *p)
1096{
1097        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098        unsigned int scan, floor;
1099        unsigned int windows = 1;
1100
1101        if (scan_size < MAX_SCAN_WINDOW)
1102                windows = MAX_SCAN_WINDOW / scan_size;
1103        floor = 1000 / windows;
1104
1105        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106        return max_t(unsigned int, floor, scan);
1107}
1108
1109static unsigned int task_scan_start(struct task_struct *p)
1110{
1111        unsigned long smin = task_scan_min(p);
1112        unsigned long period = smin;
1113
1114        /* Scale the maximum scan period with the amount of shared memory. */
1115        if (p->numa_group) {
1116                struct numa_group *ng = p->numa_group;
1117                unsigned long shared = group_faults_shared(ng);
1118                unsigned long private = group_faults_priv(ng);
1119
1120                period *= refcount_read(&ng->refcount);
1121                period *= shared + 1;
1122                period /= private + shared + 1;
1123        }
1124
1125        return max(smin, period);
1126}
1127
1128static unsigned int task_scan_max(struct task_struct *p)
1129{
1130        unsigned long smin = task_scan_min(p);
1131        unsigned long smax;
1132
1133        /* Watch for min being lower than max due to floor calculations */
1134        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1135
1136        /* Scale the maximum scan period with the amount of shared memory. */
1137        if (p->numa_group) {
1138                struct numa_group *ng = p->numa_group;
1139                unsigned long shared = group_faults_shared(ng);
1140                unsigned long private = group_faults_priv(ng);
1141                unsigned long period = smax;
1142
1143                period *= refcount_read(&ng->refcount);
1144                period *= shared + 1;
1145                period /= private + shared + 1;
1146
1147                smax = max(smax, period);
1148        }
1149
1150        return max(smin, smax);
1151}
1152
1153void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154{
1155        int mm_users = 0;
1156        struct mm_struct *mm = p->mm;
1157
1158        if (mm) {
1159                mm_users = atomic_read(&mm->mm_users);
1160                if (mm_users == 1) {
1161                        mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162                        mm->numa_scan_seq = 0;
1163                }
1164        }
1165        p->node_stamp                   = 0;
1166        p->numa_scan_seq                = mm ? mm->numa_scan_seq : 0;
1167        p->numa_scan_period             = sysctl_numa_balancing_scan_delay;
1168        p->numa_work.next               = &p->numa_work;
1169        p->numa_faults                  = NULL;
1170        p->numa_group                   = NULL;
1171        p->last_task_numa_placement     = 0;
1172        p->last_sum_exec_runtime        = 0;
1173
1174        /* New address space, reset the preferred nid */
1175        if (!(clone_flags & CLONE_VM)) {
1176                p->numa_preferred_nid = NUMA_NO_NODE;
1177                return;
1178        }
1179
1180        /*
1181         * New thread, keep existing numa_preferred_nid which should be copied
1182         * already by arch_dup_task_struct but stagger when scans start.
1183         */
1184        if (mm) {
1185                unsigned int delay;
1186
1187                delay = min_t(unsigned int, task_scan_max(current),
1188                        current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189                delay += 2 * TICK_NSEC;
1190                p->node_stamp = delay;
1191        }
1192}
1193
1194static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195{
1196        rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198}
1199
1200static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201{
1202        rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204}
1205
1206/* Shared or private faults. */
1207#define NR_NUMA_HINT_FAULT_TYPES 2
1208
1209/* Memory and CPU locality */
1210#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211
1212/* Averaged statistics, and temporary buffers. */
1213#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214
1215pid_t task_numa_group_id(struct task_struct *p)
1216{
1217        return p->numa_group ? p->numa_group->gid : 0;
1218}
1219
1220/*
1221 * The averaged statistics, shared & private, memory & CPU,
1222 * occupy the first half of the array. The second half of the
1223 * array is for current counters, which are averaged into the
1224 * first set by task_numa_placement.
1225 */
1226static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1227{
1228        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1229}
1230
1231static inline unsigned long task_faults(struct task_struct *p, int nid)
1232{
1233        if (!p->numa_faults)
1234                return 0;
1235
1236        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1238}
1239
1240static inline unsigned long group_faults(struct task_struct *p, int nid)
1241{
1242        if (!p->numa_group)
1243                return 0;
1244
1245        return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246                p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247}
1248
1249static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250{
1251        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1253}
1254
1255static inline unsigned long group_faults_priv(struct numa_group *ng)
1256{
1257        unsigned long faults = 0;
1258        int node;
1259
1260        for_each_online_node(node) {
1261                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262        }
1263
1264        return faults;
1265}
1266
1267static inline unsigned long group_faults_shared(struct numa_group *ng)
1268{
1269        unsigned long faults = 0;
1270        int node;
1271
1272        for_each_online_node(node) {
1273                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274        }
1275
1276        return faults;
1277}
1278
1279/*
1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281 * considered part of a numa group's pseudo-interleaving set. Migrations
1282 * between these nodes are slowed down, to allow things to settle down.
1283 */
1284#define ACTIVE_NODE_FRACTION 3
1285
1286static bool numa_is_active_node(int nid, struct numa_group *ng)
1287{
1288        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289}
1290
1291/* Handle placement on systems where not all nodes are directly connected. */
1292static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293                                        int maxdist, bool task)
1294{
1295        unsigned long score = 0;
1296        int node;
1297
1298        /*
1299         * All nodes are directly connected, and the same distance
1300         * from each other. No need for fancy placement algorithms.
1301         */
1302        if (sched_numa_topology_type == NUMA_DIRECT)
1303                return 0;
1304
1305        /*
1306         * This code is called for each node, introducing N^2 complexity,
1307         * which should be ok given the number of nodes rarely exceeds 8.
1308         */
1309        for_each_online_node(node) {
1310                unsigned long faults;
1311                int dist = node_distance(nid, node);
1312
1313                /*
1314                 * The furthest away nodes in the system are not interesting
1315                 * for placement; nid was already counted.
1316                 */
1317                if (dist == sched_max_numa_distance || node == nid)
1318                        continue;
1319
1320                /*
1321                 * On systems with a backplane NUMA topology, compare groups
1322                 * of nodes, and move tasks towards the group with the most
1323                 * memory accesses. When comparing two nodes at distance
1324                 * "hoplimit", only nodes closer by than "hoplimit" are part
1325                 * of each group. Skip other nodes.
1326                 */
1327                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1328                                        dist >= maxdist)
1329                        continue;
1330
1331                /* Add up the faults from nearby nodes. */
1332                if (task)
1333                        faults = task_faults(p, node);
1334                else
1335                        faults = group_faults(p, node);
1336
1337                /*
1338                 * On systems with a glueless mesh NUMA topology, there are
1339                 * no fixed "groups of nodes". Instead, nodes that are not
1340                 * directly connected bounce traffic through intermediate
1341                 * nodes; a numa_group can occupy any set of nodes.
1342                 * The further away a node is, the less the faults count.
1343                 * This seems to result in good task placement.
1344                 */
1345                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346                        faults *= (sched_max_numa_distance - dist);
1347                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348                }
1349
1350                score += faults;
1351        }
1352
1353        return score;
1354}
1355
1356/*
1357 * These return the fraction of accesses done by a particular task, or
1358 * task group, on a particular numa node.  The group weight is given a
1359 * larger multiplier, in order to group tasks together that are almost
1360 * evenly spread out between numa nodes.
1361 */
1362static inline unsigned long task_weight(struct task_struct *p, int nid,
1363                                        int dist)
1364{
1365        unsigned long faults, total_faults;
1366
1367        if (!p->numa_faults)
1368                return 0;
1369
1370        total_faults = p->total_numa_faults;
1371
1372        if (!total_faults)
1373                return 0;
1374
1375        faults = task_faults(p, nid);
1376        faults += score_nearby_nodes(p, nid, dist, true);
1377
1378        return 1000 * faults / total_faults;
1379}
1380
1381static inline unsigned long group_weight(struct task_struct *p, int nid,
1382                                         int dist)
1383{
1384        unsigned long faults, total_faults;
1385
1386        if (!p->numa_group)
1387                return 0;
1388
1389        total_faults = p->numa_group->total_faults;
1390
1391        if (!total_faults)
1392                return 0;
1393
1394        faults = group_faults(p, nid);
1395        faults += score_nearby_nodes(p, nid, dist, false);
1396
1397        return 1000 * faults / total_faults;
1398}
1399
1400bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401                                int src_nid, int dst_cpu)
1402{
1403        struct numa_group *ng = p->numa_group;
1404        int dst_nid = cpu_to_node(dst_cpu);
1405        int last_cpupid, this_cpupid;
1406
1407        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1408        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409
1410        /*
1411         * Allow first faults or private faults to migrate immediately early in
1412         * the lifetime of a task. The magic number 4 is based on waiting for
1413         * two full passes of the "multi-stage node selection" test that is
1414         * executed below.
1415         */
1416        if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1417            (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418                return true;
1419
1420        /*
1421         * Multi-stage node selection is used in conjunction with a periodic
1422         * migration fault to build a temporal task<->page relation. By using
1423         * a two-stage filter we remove short/unlikely relations.
1424         *
1425         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426         * a task's usage of a particular page (n_p) per total usage of this
1427         * page (n_t) (in a given time-span) to a probability.
1428         *
1429         * Our periodic faults will sample this probability and getting the
1430         * same result twice in a row, given these samples are fully
1431         * independent, is then given by P(n)^2, provided our sample period
1432         * is sufficiently short compared to the usage pattern.
1433         *
1434         * This quadric squishes small probabilities, making it less likely we
1435         * act on an unlikely task<->page relation.
1436         */
1437        if (!cpupid_pid_unset(last_cpupid) &&
1438                                cpupid_to_nid(last_cpupid) != dst_nid)
1439                return false;
1440
1441        /* Always allow migrate on private faults */
1442        if (cpupid_match_pid(p, last_cpupid))
1443                return true;
1444
1445        /* A shared fault, but p->numa_group has not been set up yet. */
1446        if (!ng)
1447                return true;
1448
1449        /*
1450         * Destination node is much more heavily used than the source
1451         * node? Allow migration.
1452         */
1453        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454                                        ACTIVE_NODE_FRACTION)
1455                return true;
1456
1457        /*
1458         * Distribute memory according to CPU & memory use on each node,
1459         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460         *
1461         * faults_cpu(dst)   3   faults_cpu(src)
1462         * --------------- * - > ---------------
1463         * faults_mem(dst)   4   faults_mem(src)
1464         */
1465        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1467}
1468
1469static unsigned long weighted_cpuload(struct rq *rq);
1470static unsigned long source_load(int cpu, int type);
1471static unsigned long target_load(int cpu, int type);
1472
1473/* Cached statistics for all CPUs within a node */
1474struct numa_stats {
1475        unsigned long load;
1476
1477        /* Total compute capacity of CPUs on a node */
1478        unsigned long compute_capacity;
1479};
1480
1481/*
1482 * XXX borrowed from update_sg_lb_stats
1483 */
1484static void update_numa_stats(struct numa_stats *ns, int nid)
1485{
1486        int cpu;
1487
1488        memset(ns, 0, sizeof(*ns));
1489        for_each_cpu(cpu, cpumask_of_node(nid)) {
1490                struct rq *rq = cpu_rq(cpu);
1491
1492                ns->load += weighted_cpuload(rq);
1493                ns->compute_capacity += capacity_of(cpu);
1494        }
1495
1496}
1497
1498struct task_numa_env {
1499        struct task_struct *p;
1500
1501        int src_cpu, src_nid;
1502        int dst_cpu, dst_nid;
1503
1504        struct numa_stats src_stats, dst_stats;
1505
1506        int imbalance_pct;
1507        int dist;
1508
1509        struct task_struct *best_task;
1510        long best_imp;
1511        int best_cpu;
1512};
1513
1514static void task_numa_assign(struct task_numa_env *env,
1515                             struct task_struct *p, long imp)
1516{
1517        struct rq *rq = cpu_rq(env->dst_cpu);
1518
1519        /* Bail out if run-queue part of active NUMA balance. */
1520        if (xchg(&rq->numa_migrate_on, 1))
1521                return;
1522
1523        /*
1524         * Clear previous best_cpu/rq numa-migrate flag, since task now
1525         * found a better CPU to move/swap.
1526         */
1527        if (env->best_cpu != -1) {
1528                rq = cpu_rq(env->best_cpu);
1529                WRITE_ONCE(rq->numa_migrate_on, 0);
1530        }
1531
1532        if (env->best_task)
1533                put_task_struct(env->best_task);
1534        if (p)
1535                get_task_struct(p);
1536
1537        env->best_task = p;
1538        env->best_imp = imp;
1539        env->best_cpu = env->dst_cpu;
1540}
1541
1542static bool load_too_imbalanced(long src_load, long dst_load,
1543                                struct task_numa_env *env)
1544{
1545        long imb, old_imb;
1546        long orig_src_load, orig_dst_load;
1547        long src_capacity, dst_capacity;
1548
1549        /*
1550         * The load is corrected for the CPU capacity available on each node.
1551         *
1552         * src_load        dst_load
1553         * ------------ vs ---------
1554         * src_capacity    dst_capacity
1555         */
1556        src_capacity = env->src_stats.compute_capacity;
1557        dst_capacity = env->dst_stats.compute_capacity;
1558
1559        imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560
1561        orig_src_load = env->src_stats.load;
1562        orig_dst_load = env->dst_stats.load;
1563
1564        old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565
1566        /* Would this change make things worse? */
1567        return (imb > old_imb);
1568}
1569
1570/*
1571 * Maximum NUMA importance can be 1998 (2*999);
1572 * SMALLIMP @ 30 would be close to 1998/64.
1573 * Used to deter task migration.
1574 */
1575#define SMALLIMP        30
1576
1577/*
1578 * This checks if the overall compute and NUMA accesses of the system would
1579 * be improved if the source tasks was migrated to the target dst_cpu taking
1580 * into account that it might be best if task running on the dst_cpu should
1581 * be exchanged with the source task
1582 */
1583static void task_numa_compare(struct task_numa_env *env,
1584                              long taskimp, long groupimp, bool maymove)
1585{
1586        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587        struct task_struct *cur;
1588        long src_load, dst_load;
1589        long load;
1590        long imp = env->p->numa_group ? groupimp : taskimp;
1591        long moveimp = imp;
1592        int dist = env->dist;
1593
1594        if (READ_ONCE(dst_rq->numa_migrate_on))
1595                return;
1596
1597        rcu_read_lock();
1598        cur = task_rcu_dereference(&dst_rq->curr);
1599        if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1600                cur = NULL;
1601
1602        /*
1603         * Because we have preemption enabled we can get migrated around and
1604         * end try selecting ourselves (current == env->p) as a swap candidate.
1605         */
1606        if (cur == env->p)
1607                goto unlock;
1608
1609        if (!cur) {
1610                if (maymove && moveimp >= env->best_imp)
1611                        goto assign;
1612                else
1613                        goto unlock;
1614        }
1615
1616        /*
1617         * "imp" is the fault differential for the source task between the
1618         * source and destination node. Calculate the total differential for
1619         * the source task and potential destination task. The more negative
1620         * the value is, the more remote accesses that would be expected to
1621         * be incurred if the tasks were swapped.
1622         */
1623        /* Skip this swap candidate if cannot move to the source cpu */
1624        if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625                goto unlock;
1626
1627        /*
1628         * If dst and source tasks are in the same NUMA group, or not
1629         * in any group then look only at task weights.
1630         */
1631        if (cur->numa_group == env->p->numa_group) {
1632                imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633                      task_weight(cur, env->dst_nid, dist);
1634                /*
1635                 * Add some hysteresis to prevent swapping the
1636                 * tasks within a group over tiny differences.
1637                 */
1638                if (cur->numa_group)
1639                        imp -= imp / 16;
1640        } else {
1641                /*
1642                 * Compare the group weights. If a task is all by itself
1643                 * (not part of a group), use the task weight instead.
1644                 */
1645                if (cur->numa_group && env->p->numa_group)
1646                        imp += group_weight(cur, env->src_nid, dist) -
1647                               group_weight(cur, env->dst_nid, dist);
1648                else
1649                        imp += task_weight(cur, env->src_nid, dist) -
1650                               task_weight(cur, env->dst_nid, dist);
1651        }
1652
1653        if (maymove && moveimp > imp && moveimp > env->best_imp) {
1654                imp = moveimp;
1655                cur = NULL;
1656                goto assign;
1657        }
1658
1659        /*
1660         * If the NUMA importance is less than SMALLIMP,
1661         * task migration might only result in ping pong
1662         * of tasks and also hurt performance due to cache
1663         * misses.
1664         */
1665        if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666                goto unlock;
1667
1668        /*
1669         * In the overloaded case, try and keep the load balanced.
1670         */
1671        load = task_h_load(env->p) - task_h_load(cur);
1672        if (!load)
1673                goto assign;
1674
1675        dst_load = env->dst_stats.load + load;
1676        src_load = env->src_stats.load - load;
1677
1678        if (load_too_imbalanced(src_load, dst_load, env))
1679                goto unlock;
1680
1681assign:
1682        /*
1683         * One idle CPU per node is evaluated for a task numa move.
1684         * Call select_idle_sibling to maybe find a better one.
1685         */
1686        if (!cur) {
1687                /*
1688                 * select_idle_siblings() uses an per-CPU cpumask that
1689                 * can be used from IRQ context.
1690                 */
1691                local_irq_disable();
1692                env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693                                                   env->dst_cpu);
1694                local_irq_enable();
1695        }
1696
1697        task_numa_assign(env, cur, imp);
1698unlock:
1699        rcu_read_unlock();
1700}
1701
1702static void task_numa_find_cpu(struct task_numa_env *env,
1703                                long taskimp, long groupimp)
1704{
1705        long src_load, dst_load, load;
1706        bool maymove = false;
1707        int cpu;
1708
1709        load = task_h_load(env->p);
1710        dst_load = env->dst_stats.load + load;
1711        src_load = env->src_stats.load - load;
1712
1713        /*
1714         * If the improvement from just moving env->p direction is better
1715         * than swapping tasks around, check if a move is possible.
1716         */
1717        maymove = !load_too_imbalanced(src_load, dst_load, env);
1718
1719        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720                /* Skip this CPU if the source task cannot migrate */
1721                if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722                        continue;
1723
1724                env->dst_cpu = cpu;
1725                task_numa_compare(env, taskimp, groupimp, maymove);
1726        }
1727}
1728
1729static int task_numa_migrate(struct task_struct *p)
1730{
1731        struct task_numa_env env = {
1732                .p = p,
1733
1734                .src_cpu = task_cpu(p),
1735                .src_nid = task_node(p),
1736
1737                .imbalance_pct = 112,
1738
1739                .best_task = NULL,
1740                .best_imp = 0,
1741                .best_cpu = -1,
1742        };
1743        struct sched_domain *sd;
1744        struct rq *best_rq;
1745        unsigned long taskweight, groupweight;
1746        int nid, ret, dist;
1747        long taskimp, groupimp;
1748
1749        /*
1750         * Pick the lowest SD_NUMA domain, as that would have the smallest
1751         * imbalance and would be the first to start moving tasks about.
1752         *
1753         * And we want to avoid any moving of tasks about, as that would create
1754         * random movement of tasks -- counter the numa conditions we're trying
1755         * to satisfy here.
1756         */
1757        rcu_read_lock();
1758        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1759        if (sd)
1760                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1761        rcu_read_unlock();
1762
1763        /*
1764         * Cpusets can break the scheduler domain tree into smaller
1765         * balance domains, some of which do not cross NUMA boundaries.
1766         * Tasks that are "trapped" in such domains cannot be migrated
1767         * elsewhere, so there is no point in (re)trying.
1768         */
1769        if (unlikely(!sd)) {
1770                sched_setnuma(p, task_node(p));
1771                return -EINVAL;
1772        }
1773
1774        env.dst_nid = p->numa_preferred_nid;
1775        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776        taskweight = task_weight(p, env.src_nid, dist);
1777        groupweight = group_weight(p, env.src_nid, dist);
1778        update_numa_stats(&env.src_stats, env.src_nid);
1779        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1781        update_numa_stats(&env.dst_stats, env.dst_nid);
1782
1783        /* Try to find a spot on the preferred nid. */
1784        task_numa_find_cpu(&env, taskimp, groupimp);
1785
1786        /*
1787         * Look at other nodes in these cases:
1788         * - there is no space available on the preferred_nid
1789         * - the task is part of a numa_group that is interleaved across
1790         *   multiple NUMA nodes; in order to better consolidate the group,
1791         *   we need to check other locations.
1792         */
1793        if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1794                for_each_online_node(nid) {
1795                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796                                continue;
1797
1798                        dist = node_distance(env.src_nid, env.dst_nid);
1799                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800                                                dist != env.dist) {
1801                                taskweight = task_weight(p, env.src_nid, dist);
1802                                groupweight = group_weight(p, env.src_nid, dist);
1803                        }
1804
1805                        /* Only consider nodes where both task and groups benefit */
1806                        taskimp = task_weight(p, nid, dist) - taskweight;
1807                        groupimp = group_weight(p, nid, dist) - groupweight;
1808                        if (taskimp < 0 && groupimp < 0)
1809                                continue;
1810
1811                        env.dist = dist;
1812                        env.dst_nid = nid;
1813                        update_numa_stats(&env.dst_stats, env.dst_nid);
1814                        task_numa_find_cpu(&env, taskimp, groupimp);
1815                }
1816        }
1817
1818        /*
1819         * If the task is part of a workload that spans multiple NUMA nodes,
1820         * and is migrating into one of the workload's active nodes, remember
1821         * this node as the task's preferred numa node, so the workload can
1822         * settle down.
1823         * A task that migrated to a second choice node will be better off
1824         * trying for a better one later. Do not set the preferred node here.
1825         */
1826        if (p->numa_group) {
1827                if (env.best_cpu == -1)
1828                        nid = env.src_nid;
1829                else
1830                        nid = cpu_to_node(env.best_cpu);
1831
1832                if (nid != p->numa_preferred_nid)
1833                        sched_setnuma(p, nid);
1834        }
1835
1836        /* No better CPU than the current one was found. */
1837        if (env.best_cpu == -1)
1838                return -EAGAIN;
1839
1840        best_rq = cpu_rq(env.best_cpu);
1841        if (env.best_task == NULL) {
1842                ret = migrate_task_to(p, env.best_cpu);
1843                WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844                if (ret != 0)
1845                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1846                return ret;
1847        }
1848
1849        ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1850        WRITE_ONCE(best_rq->numa_migrate_on, 0);
1851
1852        if (ret != 0)
1853                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1854        put_task_struct(env.best_task);
1855        return ret;
1856}
1857
1858/* Attempt to migrate a task to a CPU on the preferred node. */
1859static void numa_migrate_preferred(struct task_struct *p)
1860{
1861        unsigned long interval = HZ;
1862
1863        /* This task has no NUMA fault statistics yet */
1864        if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1865                return;
1866
1867        /* Periodically retry migrating the task to the preferred node */
1868        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1869        p->numa_migrate_retry = jiffies + interval;
1870
1871        /* Success if task is already running on preferred CPU */
1872        if (task_node(p) == p->numa_preferred_nid)
1873                return;
1874
1875        /* Otherwise, try migrate to a CPU on the preferred node */
1876        task_numa_migrate(p);
1877}
1878
1879/*
1880 * Find out how many nodes on the workload is actively running on. Do this by
1881 * tracking the nodes from which NUMA hinting faults are triggered. This can
1882 * be different from the set of nodes where the workload's memory is currently
1883 * located.
1884 */
1885static void numa_group_count_active_nodes(struct numa_group *numa_group)
1886{
1887        unsigned long faults, max_faults = 0;
1888        int nid, active_nodes = 0;
1889
1890        for_each_online_node(nid) {
1891                faults = group_faults_cpu(numa_group, nid);
1892                if (faults > max_faults)
1893                        max_faults = faults;
1894        }
1895
1896        for_each_online_node(nid) {
1897                faults = group_faults_cpu(numa_group, nid);
1898                if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899                        active_nodes++;
1900        }
1901
1902        numa_group->max_faults_cpu = max_faults;
1903        numa_group->active_nodes = active_nodes;
1904}
1905
1906/*
1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908 * increments. The more local the fault statistics are, the higher the scan
1909 * period will be for the next scan window. If local/(local+remote) ratio is
1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911 * the scan period will decrease. Aim for 70% local accesses.
1912 */
1913#define NUMA_PERIOD_SLOTS 10
1914#define NUMA_PERIOD_THRESHOLD 7
1915
1916/*
1917 * Increase the scan period (slow down scanning) if the majority of
1918 * our memory is already on our local node, or if the majority of
1919 * the page accesses are shared with other processes.
1920 * Otherwise, decrease the scan period.
1921 */
1922static void update_task_scan_period(struct task_struct *p,
1923                        unsigned long shared, unsigned long private)
1924{
1925        unsigned int period_slot;
1926        int lr_ratio, ps_ratio;
1927        int diff;
1928
1929        unsigned long remote = p->numa_faults_locality[0];
1930        unsigned long local = p->numa_faults_locality[1];
1931
1932        /*
1933         * If there were no record hinting faults then either the task is
1934         * completely idle or all activity is areas that are not of interest
1935         * to automatic numa balancing. Related to that, if there were failed
1936         * migration then it implies we are migrating too quickly or the local
1937         * node is overloaded. In either case, scan slower
1938         */
1939        if (local + shared == 0 || p->numa_faults_locality[2]) {
1940                p->numa_scan_period = min(p->numa_scan_period_max,
1941                        p->numa_scan_period << 1);
1942
1943                p->mm->numa_next_scan = jiffies +
1944                        msecs_to_jiffies(p->numa_scan_period);
1945
1946                return;
1947        }
1948
1949        /*
1950         * Prepare to scale scan period relative to the current period.
1951         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1952         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954         */
1955        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1956        lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957        ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958
1959        if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960                /*
1961                 * Most memory accesses are local. There is no need to
1962                 * do fast NUMA scanning, since memory is already local.
1963                 */
1964                int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965                if (!slot)
1966                        slot = 1;
1967                diff = slot * period_slot;
1968        } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969                /*
1970                 * Most memory accesses are shared with other tasks.
1971                 * There is no point in continuing fast NUMA scanning,
1972                 * since other tasks may just move the memory elsewhere.
1973                 */
1974                int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1975                if (!slot)
1976                        slot = 1;
1977                diff = slot * period_slot;
1978        } else {
1979                /*
1980                 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981                 * yet they are not on the local NUMA node. Speed up
1982                 * NUMA scanning to get the memory moved over.
1983                 */
1984                int ratio = max(lr_ratio, ps_ratio);
1985                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1986        }
1987
1988        p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989                        task_scan_min(p), task_scan_max(p));
1990        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991}
1992
1993/*
1994 * Get the fraction of time the task has been running since the last
1995 * NUMA placement cycle. The scheduler keeps similar statistics, but
1996 * decays those on a 32ms period, which is orders of magnitude off
1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998 * stats only if the task is so new there are no NUMA statistics yet.
1999 */
2000static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001{
2002        u64 runtime, delta, now;
2003        /* Use the start of this time slice to avoid calculations. */
2004        now = p->se.exec_start;
2005        runtime = p->se.sum_exec_runtime;
2006
2007        if (p->last_task_numa_placement) {
2008                delta = runtime - p->last_sum_exec_runtime;
2009                *period = now - p->last_task_numa_placement;
2010
2011                /* Avoid time going backwards, prevent potential divide error: */
2012                if (unlikely((s64)*period < 0))
2013                        *period = 0;
2014        } else {
2015                delta = p->se.avg.load_sum;
2016                *period = LOAD_AVG_MAX;
2017        }
2018
2019        p->last_sum_exec_runtime = runtime;
2020        p->last_task_numa_placement = now;
2021
2022        return delta;
2023}
2024
2025/*
2026 * Determine the preferred nid for a task in a numa_group. This needs to
2027 * be done in a way that produces consistent results with group_weight,
2028 * otherwise workloads might not converge.
2029 */
2030static int preferred_group_nid(struct task_struct *p, int nid)
2031{
2032        nodemask_t nodes;
2033        int dist;
2034
2035        /* Direct connections between all NUMA nodes. */
2036        if (sched_numa_topology_type == NUMA_DIRECT)
2037                return nid;
2038
2039        /*
2040         * On a system with glueless mesh NUMA topology, group_weight
2041         * scores nodes according to the number of NUMA hinting faults on
2042         * both the node itself, and on nearby nodes.
2043         */
2044        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2045                unsigned long score, max_score = 0;
2046                int node, max_node = nid;
2047
2048                dist = sched_max_numa_distance;
2049
2050                for_each_online_node(node) {
2051                        score = group_weight(p, node, dist);
2052                        if (score > max_score) {
2053                                max_score = score;
2054                                max_node = node;
2055                        }
2056                }
2057                return max_node;
2058        }
2059
2060        /*
2061         * Finding the preferred nid in a system with NUMA backplane
2062         * interconnect topology is more involved. The goal is to locate
2063         * tasks from numa_groups near each other in the system, and
2064         * untangle workloads from different sides of the system. This requires
2065         * searching down the hierarchy of node groups, recursively searching
2066         * inside the highest scoring group of nodes. The nodemask tricks
2067         * keep the complexity of the search down.
2068         */
2069        nodes = node_online_map;
2070        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2071                unsigned long max_faults = 0;
2072                nodemask_t max_group = NODE_MASK_NONE;
2073                int a, b;
2074
2075                /* Are there nodes at this distance from each other? */
2076                if (!find_numa_distance(dist))
2077                        continue;
2078
2079                for_each_node_mask(a, nodes) {
2080                        unsigned long faults = 0;
2081                        nodemask_t this_group;
2082                        nodes_clear(this_group);
2083
2084                        /* Sum group's NUMA faults; includes a==b case. */
2085                        for_each_node_mask(b, nodes) {
2086                                if (node_distance(a, b) < dist) {
2087                                        faults += group_faults(p, b);
2088                                        node_set(b, this_group);
2089                                        node_clear(b, nodes);
2090                                }
2091                        }
2092
2093                        /* Remember the top group. */
2094                        if (faults > max_faults) {
2095                                max_faults = faults;
2096                                max_group = this_group;
2097                                /*
2098                                 * subtle: at the smallest distance there is
2099                                 * just one node left in each "group", the
2100                                 * winner is the preferred nid.
2101                                 */
2102                                nid = a;
2103                        }
2104                }
2105                /* Next round, evaluate the nodes within max_group. */
2106                if (!max_faults)
2107                        break;
2108                nodes = max_group;
2109        }
2110        return nid;
2111}
2112
2113static void task_numa_placement(struct task_struct *p)
2114{
2115        int seq, nid, max_nid = NUMA_NO_NODE;
2116        unsigned long max_faults = 0;
2117        unsigned long fault_types[2] = { 0, 0 };
2118        unsigned long total_faults;
2119        u64 runtime, period;
2120        spinlock_t *group_lock = NULL;
2121
2122        /*
2123         * The p->mm->numa_scan_seq field gets updated without
2124         * exclusive access. Use READ_ONCE() here to ensure
2125         * that the field is read in a single access:
2126         */
2127        seq = READ_ONCE(p->mm->numa_scan_seq);
2128        if (p->numa_scan_seq == seq)
2129                return;
2130        p->numa_scan_seq = seq;
2131        p->numa_scan_period_max = task_scan_max(p);
2132
2133        total_faults = p->numa_faults_locality[0] +
2134                       p->numa_faults_locality[1];
2135        runtime = numa_get_avg_runtime(p, &period);
2136
2137        /* If the task is part of a group prevent parallel updates to group stats */
2138        if (p->numa_group) {
2139                group_lock = &p->numa_group->lock;
2140                spin_lock_irq(group_lock);
2141        }
2142
2143        /* Find the node with the highest number of faults */
2144        for_each_online_node(nid) {
2145                /* Keep track of the offsets in numa_faults array */
2146                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2147                unsigned long faults = 0, group_faults = 0;
2148                int priv;
2149
2150                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2151                        long diff, f_diff, f_weight;
2152
2153                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2154                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2155                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2156                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2157
2158                        /* Decay existing window, copy faults since last scan */
2159                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2160                        fault_types[priv] += p->numa_faults[membuf_idx];
2161                        p->numa_faults[membuf_idx] = 0;
2162
2163                        /*
2164                         * Normalize the faults_from, so all tasks in a group
2165                         * count according to CPU use, instead of by the raw
2166                         * number of faults. Tasks with little runtime have
2167                         * little over-all impact on throughput, and thus their
2168                         * faults are less important.
2169                         */
2170                        f_weight = div64_u64(runtime << 16, period + 1);
2171                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2172                                   (total_faults + 1);
2173                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2174                        p->numa_faults[cpubuf_idx] = 0;
2175
2176                        p->numa_faults[mem_idx] += diff;
2177                        p->numa_faults[cpu_idx] += f_diff;
2178                        faults += p->numa_faults[mem_idx];
2179                        p->total_numa_faults += diff;
2180                        if (p->numa_group) {
2181                                /*
2182                                 * safe because we can only change our own group
2183                                 *
2184                                 * mem_idx represents the offset for a given
2185                                 * nid and priv in a specific region because it
2186                                 * is at the beginning of the numa_faults array.
2187                                 */
2188                                p->numa_group->faults[mem_idx] += diff;
2189                                p->numa_group->faults_cpu[mem_idx] += f_diff;
2190                                p->numa_group->total_faults += diff;
2191                                group_faults += p->numa_group->faults[mem_idx];
2192                        }
2193                }
2194
2195                if (!p->numa_group) {
2196                        if (faults > max_faults) {
2197                                max_faults = faults;
2198                                max_nid = nid;
2199                        }
2200                } else if (group_faults > max_faults) {
2201                        max_faults = group_faults;
2202                        max_nid = nid;
2203                }
2204        }
2205
2206        if (p->numa_group) {
2207                numa_group_count_active_nodes(p->numa_group);
2208                spin_unlock_irq(group_lock);
2209                max_nid = preferred_group_nid(p, max_nid);
2210        }
2211
2212        if (max_faults) {
2213                /* Set the new preferred node */
2214                if (max_nid != p->numa_preferred_nid)
2215                        sched_setnuma(p, max_nid);
2216        }
2217
2218        update_task_scan_period(p, fault_types[0], fault_types[1]);
2219}
2220
2221static inline int get_numa_group(struct numa_group *grp)
2222{
2223        return refcount_inc_not_zero(&grp->refcount);
2224}
2225
2226static inline void put_numa_group(struct numa_group *grp)
2227{
2228        if (refcount_dec_and_test(&grp->refcount))
2229                kfree_rcu(grp, rcu);
2230}
2231
2232static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2233                        int *priv)
2234{
2235        struct numa_group *grp, *my_grp;
2236        struct task_struct *tsk;
2237        bool join = false;
2238        int cpu = cpupid_to_cpu(cpupid);
2239        int i;
2240
2241        if (unlikely(!p->numa_group)) {
2242                unsigned int size = sizeof(struct numa_group) +
2243                                    4*nr_node_ids*sizeof(unsigned long);
2244
2245                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2246                if (!grp)
2247                        return;
2248
2249                refcount_set(&grp->refcount, 1);
2250                grp->active_nodes = 1;
2251                grp->max_faults_cpu = 0;
2252                spin_lock_init(&grp->lock);
2253                grp->gid = p->pid;
2254                /* Second half of the array tracks nids where faults happen */
2255                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2256                                                nr_node_ids;
2257
2258                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2259                        grp->faults[i] = p->numa_faults[i];
2260
2261                grp->total_faults = p->total_numa_faults;
2262
2263                grp->nr_tasks++;
2264                rcu_assign_pointer(p->numa_group, grp);
2265        }
2266
2267        rcu_read_lock();
2268        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2269
2270        if (!cpupid_match_pid(tsk, cpupid))
2271                goto no_join;
2272
2273        grp = rcu_dereference(tsk->numa_group);
2274        if (!grp)
2275                goto no_join;
2276
2277        my_grp = p->numa_group;
2278        if (grp == my_grp)
2279                goto no_join;
2280
2281        /*
2282         * Only join the other group if its bigger; if we're the bigger group,
2283         * the other task will join us.
2284         */
2285        if (my_grp->nr_tasks > grp->nr_tasks)
2286                goto no_join;
2287
2288        /*
2289         * Tie-break on the grp address.
2290         */
2291        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2292                goto no_join;
2293
2294        /* Always join threads in the same process. */
2295        if (tsk->mm == current->mm)
2296                join = true;
2297
2298        /* Simple filter to avoid false positives due to PID collisions */
2299        if (flags & TNF_SHARED)
2300                join = true;
2301
2302        /* Update priv based on whether false sharing was detected */
2303        *priv = !join;
2304
2305        if (join && !get_numa_group(grp))
2306                goto no_join;
2307
2308        rcu_read_unlock();
2309
2310        if (!join)
2311                return;
2312
2313        BUG_ON(irqs_disabled());
2314        double_lock_irq(&my_grp->lock, &grp->lock);
2315
2316        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2317                my_grp->faults[i] -= p->numa_faults[i];
2318                grp->faults[i] += p->numa_faults[i];
2319        }
2320        my_grp->total_faults -= p->total_numa_faults;
2321        grp->total_faults += p->total_numa_faults;
2322
2323        my_grp->nr_tasks--;
2324        grp->nr_tasks++;
2325
2326        spin_unlock(&my_grp->lock);
2327        spin_unlock_irq(&grp->lock);
2328
2329        rcu_assign_pointer(p->numa_group, grp);
2330
2331        put_numa_group(my_grp);
2332        return;
2333
2334no_join:
2335        rcu_read_unlock();
2336        return;
2337}
2338
2339void task_numa_free(struct task_struct *p)
2340{
2341        struct numa_group *grp = p->numa_group;
2342        void *numa_faults = p->numa_faults;
2343        unsigned long flags;
2344        int i;
2345
2346        if (grp) {
2347                spin_lock_irqsave(&grp->lock, flags);
2348                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2349                        grp->faults[i] -= p->numa_faults[i];
2350                grp->total_faults -= p->total_numa_faults;
2351
2352                grp->nr_tasks--;
2353                spin_unlock_irqrestore(&grp->lock, flags);
2354                RCU_INIT_POINTER(p->numa_group, NULL);
2355                put_numa_group(grp);
2356        }
2357
2358        p->numa_faults = NULL;
2359        kfree(numa_faults);
2360}
2361
2362/*
2363 * Got a PROT_NONE fault for a page on @node.
2364 */
2365void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2366{
2367        struct task_struct *p = current;
2368        bool migrated = flags & TNF_MIGRATED;
2369        int cpu_node = task_node(current);
2370        int local = !!(flags & TNF_FAULT_LOCAL);
2371        struct numa_group *ng;
2372        int priv;
2373
2374        if (!static_branch_likely(&sched_numa_balancing))
2375                return;
2376
2377        /* for example, ksmd faulting in a user's mm */
2378        if (!p->mm)
2379                return;
2380
2381        /* Allocate buffer to track faults on a per-node basis */
2382        if (unlikely(!p->numa_faults)) {
2383                int size = sizeof(*p->numa_faults) *
2384                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2385
2386                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2387                if (!p->numa_faults)
2388                        return;
2389
2390                p->total_numa_faults = 0;
2391                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2392        }
2393
2394        /*
2395         * First accesses are treated as private, otherwise consider accesses
2396         * to be private if the accessing pid has not changed
2397         */
2398        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2399                priv = 1;
2400        } else {
2401                priv = cpupid_match_pid(p, last_cpupid);
2402                if (!priv && !(flags & TNF_NO_GROUP))
2403                        task_numa_group(p, last_cpupid, flags, &priv);
2404        }
2405
2406        /*
2407         * If a workload spans multiple NUMA nodes, a shared fault that
2408         * occurs wholly within the set of nodes that the workload is
2409         * actively using should be counted as local. This allows the
2410         * scan rate to slow down when a workload has settled down.
2411         */
2412        ng = p->numa_group;
2413        if (!priv && !local && ng && ng->active_nodes > 1 &&
2414                                numa_is_active_node(cpu_node, ng) &&
2415                                numa_is_active_node(mem_node, ng))
2416                local = 1;
2417
2418        /*
2419         * Retry to migrate task to preferred node periodically, in case it
2420         * previously failed, or the scheduler moved us.
2421         */
2422        if (time_after(jiffies, p->numa_migrate_retry)) {
2423                task_numa_placement(p);
2424                numa_migrate_preferred(p);
2425        }
2426
2427        if (migrated)
2428                p->numa_pages_migrated += pages;
2429        if (flags & TNF_MIGRATE_FAIL)
2430                p->numa_faults_locality[2] += pages;
2431
2432        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2433        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2434        p->numa_faults_locality[local] += pages;
2435}
2436
2437static void reset_ptenuma_scan(struct task_struct *p)
2438{
2439        /*
2440         * We only did a read acquisition of the mmap sem, so
2441         * p->mm->numa_scan_seq is written to without exclusive access
2442         * and the update is not guaranteed to be atomic. That's not
2443         * much of an issue though, since this is just used for
2444         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2445         * expensive, to avoid any form of compiler optimizations:
2446         */
2447        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2448        p->mm->numa_scan_offset = 0;
2449}
2450
2451/*
2452 * The expensive part of numa migration is done from task_work context.
2453 * Triggered from task_tick_numa().
2454 */
2455void task_numa_work(struct callback_head *work)
2456{
2457        unsigned long migrate, next_scan, now = jiffies;
2458        struct task_struct *p = current;
2459        struct mm_struct *mm = p->mm;
2460        u64 runtime = p->se.sum_exec_runtime;
2461        struct vm_area_struct *vma;
2462        unsigned long start, end;
2463        unsigned long nr_pte_updates = 0;
2464        long pages, virtpages;
2465
2466        SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2467
2468        work->next = work; /* protect against double add */
2469        /*
2470         * Who cares about NUMA placement when they're dying.
2471         *
2472         * NOTE: make sure not to dereference p->mm before this check,
2473         * exit_task_work() happens _after_ exit_mm() so we could be called
2474         * without p->mm even though we still had it when we enqueued this
2475         * work.
2476         */
2477        if (p->flags & PF_EXITING)
2478                return;
2479
2480        if (!mm->numa_next_scan) {
2481                mm->numa_next_scan = now +
2482                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2483        }
2484
2485        /*
2486         * Enforce maximal scan/migration frequency..
2487         */
2488        migrate = mm->numa_next_scan;
2489        if (time_before(now, migrate))
2490                return;
2491
2492        if (p->numa_scan_period == 0) {
2493                p->numa_scan_period_max = task_scan_max(p);
2494                p->numa_scan_period = task_scan_start(p);
2495        }
2496
2497        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2498        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2499                return;
2500
2501        /*
2502         * Delay this task enough that another task of this mm will likely win
2503         * the next time around.
2504         */
2505        p->node_stamp += 2 * TICK_NSEC;
2506
2507        start = mm->numa_scan_offset;
2508        pages = sysctl_numa_balancing_scan_size;
2509        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2510        virtpages = pages * 8;     /* Scan up to this much virtual space */
2511        if (!pages)
2512                return;
2513
2514
2515        if (!down_read_trylock(&mm->mmap_sem))
2516                return;
2517        vma = find_vma(mm, start);
2518        if (!vma) {
2519                reset_ptenuma_scan(p);
2520                start = 0;
2521                vma = mm->mmap;
2522        }
2523        for (; vma; vma = vma->vm_next) {
2524                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2525                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2526                        continue;
2527                }
2528
2529                /*
2530                 * Shared library pages mapped by multiple processes are not
2531                 * migrated as it is expected they are cache replicated. Avoid
2532                 * hinting faults in read-only file-backed mappings or the vdso
2533                 * as migrating the pages will be of marginal benefit.
2534                 */
2535                if (!vma->vm_mm ||
2536                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2537                        continue;
2538
2539                /*
2540                 * Skip inaccessible VMAs to avoid any confusion between
2541                 * PROT_NONE and NUMA hinting ptes
2542                 */
2543                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2544                        continue;
2545
2546                do {
2547                        start = max(start, vma->vm_start);
2548                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2549                        end = min(end, vma->vm_end);
2550                        nr_pte_updates = change_prot_numa(vma, start, end);
2551
2552                        /*
2553                         * Try to scan sysctl_numa_balancing_size worth of
2554                         * hpages that have at least one present PTE that
2555                         * is not already pte-numa. If the VMA contains
2556                         * areas that are unused or already full of prot_numa
2557                         * PTEs, scan up to virtpages, to skip through those
2558                         * areas faster.
2559                         */
2560                        if (nr_pte_updates)
2561                                pages -= (end - start) >> PAGE_SHIFT;
2562                        virtpages -= (end - start) >> PAGE_SHIFT;
2563
2564                        start = end;
2565                        if (pages <= 0 || virtpages <= 0)
2566                                goto out;
2567
2568                        cond_resched();
2569                } while (end != vma->vm_end);
2570        }
2571
2572out:
2573        /*
2574         * It is possible to reach the end of the VMA list but the last few
2575         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2576         * would find the !migratable VMA on the next scan but not reset the
2577         * scanner to the start so check it now.
2578         */
2579        if (vma)
2580                mm->numa_scan_offset = start;
2581        else
2582                reset_ptenuma_scan(p);
2583        up_read(&mm->mmap_sem);
2584
2585        /*
2586         * Make sure tasks use at least 32x as much time to run other code
2587         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2588         * Usually update_task_scan_period slows down scanning enough; on an
2589         * overloaded system we need to limit overhead on a per task basis.
2590         */
2591        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2592                u64 diff = p->se.sum_exec_runtime - runtime;
2593                p->node_stamp += 32 * diff;
2594        }
2595}
2596
2597/*
2598 * Drive the periodic memory faults..
2599 */
2600static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2601{
2602        struct callback_head *work = &curr->numa_work;
2603        u64 period, now;
2604
2605        /*
2606         * We don't care about NUMA placement if we don't have memory.
2607         */
2608        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2609                return;
2610
2611        /*
2612         * Using runtime rather than walltime has the dual advantage that
2613         * we (mostly) drive the selection from busy threads and that the
2614         * task needs to have done some actual work before we bother with
2615         * NUMA placement.
2616         */
2617        now = curr->se.sum_exec_runtime;
2618        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2619
2620        if (now > curr->node_stamp + period) {
2621                if (!curr->node_stamp)
2622                        curr->numa_scan_period = task_scan_start(curr);
2623                curr->node_stamp += period;
2624
2625                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2626                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2627                        task_work_add(curr, work, true);
2628                }
2629        }
2630}
2631
2632static void update_scan_period(struct task_struct *p, int new_cpu)
2633{
2634        int src_nid = cpu_to_node(task_cpu(p));
2635        int dst_nid = cpu_to_node(new_cpu);
2636
2637        if (!static_branch_likely(&sched_numa_balancing))
2638                return;
2639
2640        if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2641                return;
2642
2643        if (src_nid == dst_nid)
2644                return;
2645
2646        /*
2647         * Allow resets if faults have been trapped before one scan
2648         * has completed. This is most likely due to a new task that
2649         * is pulled cross-node due to wakeups or load balancing.
2650         */
2651        if (p->numa_scan_seq) {
2652                /*
2653                 * Avoid scan adjustments if moving to the preferred
2654                 * node or if the task was not previously running on
2655                 * the preferred node.
2656                 */
2657                if (dst_nid == p->numa_preferred_nid ||
2658                    (p->numa_preferred_nid != NUMA_NO_NODE &&
2659                        src_nid != p->numa_preferred_nid))
2660                        return;
2661        }
2662
2663        p->numa_scan_period = task_scan_start(p);
2664}
2665
2666#else
2667static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2668{
2669}
2670
2671static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2672{
2673}
2674
2675static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2676{
2677}
2678
2679static inline void update_scan_period(struct task_struct *p, int new_cpu)
2680{
2681}
2682
2683#endif /* CONFIG_NUMA_BALANCING */
2684
2685static void
2686account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687{
2688        update_load_add(&cfs_rq->load, se->load.weight);
2689        if (!parent_entity(se))
2690                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2691#ifdef CONFIG_SMP
2692        if (entity_is_task(se)) {
2693                struct rq *rq = rq_of(cfs_rq);
2694
2695                account_numa_enqueue(rq, task_of(se));
2696                list_add(&se->group_node, &rq->cfs_tasks);
2697        }
2698#endif
2699        cfs_rq->nr_running++;
2700}
2701
2702static void
2703account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704{
2705        update_load_sub(&cfs_rq->load, se->load.weight);
2706        if (!parent_entity(se))
2707                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2708#ifdef CONFIG_SMP
2709        if (entity_is_task(se)) {
2710                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2711                list_del_init(&se->group_node);
2712        }
2713#endif
2714        cfs_rq->nr_running--;
2715}
2716
2717/*
2718 * Signed add and clamp on underflow.
2719 *
2720 * Explicitly do a load-store to ensure the intermediate value never hits
2721 * memory. This allows lockless observations without ever seeing the negative
2722 * values.
2723 */
2724#define add_positive(_ptr, _val) do {                           \
2725        typeof(_ptr) ptr = (_ptr);                              \
2726        typeof(_val) val = (_val);                              \
2727        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2728                                                                \
2729        res = var + val;                                        \
2730                                                                \
2731        if (val < 0 && res > var)                               \
2732                res = 0;                                        \
2733                                                                \
2734        WRITE_ONCE(*ptr, res);                                  \
2735} while (0)
2736
2737/*
2738 * Unsigned subtract and clamp on underflow.
2739 *
2740 * Explicitly do a load-store to ensure the intermediate value never hits
2741 * memory. This allows lockless observations without ever seeing the negative
2742 * values.
2743 */
2744#define sub_positive(_ptr, _val) do {                           \
2745        typeof(_ptr) ptr = (_ptr);                              \
2746        typeof(*ptr) val = (_val);                              \
2747        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2748        res = var - val;                                        \
2749        if (res > var)                                          \
2750                res = 0;                                        \
2751        WRITE_ONCE(*ptr, res);                                  \
2752} while (0)
2753
2754/*
2755 * Remove and clamp on negative, from a local variable.
2756 *
2757 * A variant of sub_positive(), which does not use explicit load-store
2758 * and is thus optimized for local variable updates.
2759 */
2760#define lsub_positive(_ptr, _val) do {                          \
2761        typeof(_ptr) ptr = (_ptr);                              \
2762        *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
2763} while (0)
2764
2765#ifdef CONFIG_SMP
2766static inline void
2767enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768{
2769        cfs_rq->runnable_weight += se->runnable_weight;
2770
2771        cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2772        cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2773}
2774
2775static inline void
2776dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777{
2778        cfs_rq->runnable_weight -= se->runnable_weight;
2779
2780        sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2781        sub_positive(&cfs_rq->avg.runnable_load_sum,
2782                     se_runnable(se) * se->avg.runnable_load_sum);
2783}
2784
2785static inline void
2786enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2787{
2788        cfs_rq->avg.load_avg += se->avg.load_avg;
2789        cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2790}
2791
2792static inline void
2793dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2794{
2795        sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2796        sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2797}
2798#else
2799static inline void
2800enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801static inline void
2802dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2803static inline void
2804enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2805static inline void
2806dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2807#endif
2808
2809static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2810                            unsigned long weight, unsigned long runnable)
2811{
2812        if (se->on_rq) {
2813                /* commit outstanding execution time */
2814                if (cfs_rq->curr == se)
2815                        update_curr(cfs_rq);
2816                account_entity_dequeue(cfs_rq, se);
2817                dequeue_runnable_load_avg(cfs_rq, se);
2818        }
2819        dequeue_load_avg(cfs_rq, se);
2820
2821        se->runnable_weight = runnable;
2822        update_load_set(&se->load, weight);
2823
2824#ifdef CONFIG_SMP
2825        do {
2826                u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2827
2828                se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2829                se->avg.runnable_load_avg =
2830                        div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2831        } while (0);
2832#endif
2833
2834        enqueue_load_avg(cfs_rq, se);
2835        if (se->on_rq) {
2836                account_entity_enqueue(cfs_rq, se);
2837                enqueue_runnable_load_avg(cfs_rq, se);
2838        }
2839}
2840
2841void reweight_task(struct task_struct *p, int prio)
2842{
2843        struct sched_entity *se = &p->se;
2844        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2845        struct load_weight *load = &se->load;
2846        unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2847
2848        reweight_entity(cfs_rq, se, weight, weight);
2849        load->inv_weight = sched_prio_to_wmult[prio];
2850}
2851
2852#ifdef CONFIG_FAIR_GROUP_SCHED
2853#ifdef CONFIG_SMP
2854/*
2855 * All this does is approximate the hierarchical proportion which includes that
2856 * global sum we all love to hate.
2857 *
2858 * That is, the weight of a group entity, is the proportional share of the
2859 * group weight based on the group runqueue weights. That is:
2860 *
2861 *                     tg->weight * grq->load.weight
2862 *   ge->load.weight = -----------------------------               (1)
2863 *                        \Sum grq->load.weight
2864 *
2865 * Now, because computing that sum is prohibitively expensive to compute (been
2866 * there, done that) we approximate it with this average stuff. The average
2867 * moves slower and therefore the approximation is cheaper and more stable.
2868 *
2869 * So instead of the above, we substitute:
2870 *
2871 *   grq->load.weight -> grq->avg.load_avg                         (2)
2872 *
2873 * which yields the following:
2874 *
2875 *                     tg->weight * grq->avg.load_avg
2876 *   ge->load.weight = ------------------------------              (3)
2877 *                              tg->load_avg
2878 *
2879 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2880 *
2881 * That is shares_avg, and it is right (given the approximation (2)).
2882 *
2883 * The problem with it is that because the average is slow -- it was designed
2884 * to be exactly that of course -- this leads to transients in boundary
2885 * conditions. In specific, the case where the group was idle and we start the
2886 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2887 * yielding bad latency etc..
2888 *
2889 * Now, in that special case (1) reduces to:
2890 *
2891 *                     tg->weight * grq->load.weight
2892 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2893 *                          grp->load.weight
2894 *
2895 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2896 *
2897 * So what we do is modify our approximation (3) to approach (4) in the (near)
2898 * UP case, like:
2899 *
2900 *   ge->load.weight =
2901 *
2902 *              tg->weight * grq->load.weight
2903 *     ---------------------------------------------------         (5)
2904 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2905 *
2906 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2907 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2908 *
2909 *
2910 *                     tg->weight * grq->load.weight
2911 *   ge->load.weight = -----------------------------               (6)
2912 *                              tg_load_avg'
2913 *
2914 * Where:
2915 *
2916 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2917 *                  max(grq->load.weight, grq->avg.load_avg)
2918 *
2919 * And that is shares_weight and is icky. In the (near) UP case it approaches
2920 * (4) while in the normal case it approaches (3). It consistently
2921 * overestimates the ge->load.weight and therefore:
2922 *
2923 *   \Sum ge->load.weight >= tg->weight
2924 *
2925 * hence icky!
2926 */
2927static long calc_group_shares(struct cfs_rq *cfs_rq)
2928{
2929        long tg_weight, tg_shares, load, shares;
2930        struct task_group *tg = cfs_rq->tg;
2931
2932        tg_shares = READ_ONCE(tg->shares);
2933
2934        load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2935
2936        tg_weight = atomic_long_read(&tg->load_avg);
2937
2938        /* Ensure tg_weight >= load */
2939        tg_weight -= cfs_rq->tg_load_avg_contrib;
2940        tg_weight += load;
2941
2942        shares = (tg_shares * load);
2943        if (tg_weight)
2944                shares /= tg_weight;
2945
2946        /*
2947         * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2948         * of a group with small tg->shares value. It is a floor value which is
2949         * assigned as a minimum load.weight to the sched_entity representing
2950         * the group on a CPU.
2951         *
2952         * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2953         * on an 8-core system with 8 tasks each runnable on one CPU shares has
2954         * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2955         * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2956         * instead of 0.
2957         */
2958        return clamp_t(long, shares, MIN_SHARES, tg_shares);
2959}
2960
2961/*
2962 * This calculates the effective runnable weight for a group entity based on
2963 * the group entity weight calculated above.
2964 *
2965 * Because of the above approximation (2), our group entity weight is
2966 * an load_avg based ratio (3). This means that it includes blocked load and
2967 * does not represent the runnable weight.
2968 *
2969 * Approximate the group entity's runnable weight per ratio from the group
2970 * runqueue:
2971 *
2972 *                                           grq->avg.runnable_load_avg
2973 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2974 *                                               grq->avg.load_avg
2975 *
2976 * However, analogous to above, since the avg numbers are slow, this leads to
2977 * transients in the from-idle case. Instead we use:
2978 *
2979 *   ge->runnable_weight = ge->load.weight *
2980 *
2981 *              max(grq->avg.runnable_load_avg, grq->runnable_weight)
2982 *              -----------------------------------------------------   (8)
2983 *                    max(grq->avg.load_avg, grq->load.weight)
2984 *
2985 * Where these max() serve both to use the 'instant' values to fix the slow
2986 * from-idle and avoid the /0 on to-idle, similar to (6).
2987 */
2988static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2989{
2990        long runnable, load_avg;
2991
2992        load_avg = max(cfs_rq->avg.load_avg,
2993                       scale_load_down(cfs_rq->load.weight));
2994
2995        runnable = max(cfs_rq->avg.runnable_load_avg,
2996                       scale_load_down(cfs_rq->runnable_weight));
2997
2998        runnable *= shares;
2999        if (load_avg)
3000                runnable /= load_avg;
3001
3002        return clamp_t(long, runnable, MIN_SHARES, shares);
3003}
3004#endif /* CONFIG_SMP */
3005
3006static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3007
3008/*
3009 * Recomputes the group entity based on the current state of its group
3010 * runqueue.
3011 */
3012static void update_cfs_group(struct sched_entity *se)
3013{
3014        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3015        long shares, runnable;
3016
3017        if (!gcfs_rq)
3018                return;
3019
3020        if (throttled_hierarchy(gcfs_rq))
3021                return;
3022
3023#ifndef CONFIG_SMP
3024        runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3025
3026        if (likely(se->load.weight == shares))
3027                return;
3028#else
3029        shares   = calc_group_shares(gcfs_rq);
3030        runnable = calc_group_runnable(gcfs_rq, shares);
3031#endif
3032
3033        reweight_entity(cfs_rq_of(se), se, shares, runnable);
3034}
3035
3036#else /* CONFIG_FAIR_GROUP_SCHED */
3037static inline void update_cfs_group(struct sched_entity *se)
3038{
3039}
3040#endif /* CONFIG_FAIR_GROUP_SCHED */
3041
3042static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3043{
3044        struct rq *rq = rq_of(cfs_rq);
3045
3046        if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3047                /*
3048                 * There are a few boundary cases this might miss but it should
3049                 * get called often enough that that should (hopefully) not be
3050                 * a real problem.
3051                 *
3052                 * It will not get called when we go idle, because the idle
3053                 * thread is a different class (!fair), nor will the utilization
3054                 * number include things like RT tasks.
3055                 *
3056                 * As is, the util number is not freq-invariant (we'd have to
3057                 * implement arch_scale_freq_capacity() for that).
3058                 *
3059                 * See cpu_util().
3060                 */
3061                cpufreq_update_util(rq, flags);
3062        }
3063}
3064
3065#ifdef CONFIG_SMP
3066#ifdef CONFIG_FAIR_GROUP_SCHED
3067/**
3068 * update_tg_load_avg - update the tg's load avg
3069 * @cfs_rq: the cfs_rq whose avg changed
3070 * @force: update regardless of how small the difference
3071 *
3072 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3073 * However, because tg->load_avg is a global value there are performance
3074 * considerations.
3075 *
3076 * In order to avoid having to look at the other cfs_rq's, we use a
3077 * differential update where we store the last value we propagated. This in
3078 * turn allows skipping updates if the differential is 'small'.
3079 *
3080 * Updating tg's load_avg is necessary before update_cfs_share().
3081 */
3082static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3083{
3084        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3085
3086        /*
3087         * No need to update load_avg for root_task_group as it is not used.
3088         */
3089        if (cfs_rq->tg == &root_task_group)
3090                return;
3091
3092        if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3093                atomic_long_add(delta, &cfs_rq->tg->load_avg);
3094                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3095        }
3096}
3097
3098/*
3099 * Called within set_task_rq() right before setting a task's CPU. The
3100 * caller only guarantees p->pi_lock is held; no other assumptions,
3101 * including the state of rq->lock, should be made.
3102 */
3103void set_task_rq_fair(struct sched_entity *se,
3104                      struct cfs_rq *prev, struct cfs_rq *next)
3105{
3106        u64 p_last_update_time;
3107        u64 n_last_update_time;
3108
3109        if (!sched_feat(ATTACH_AGE_LOAD))
3110                return;
3111
3112        /*
3113         * We are supposed to update the task to "current" time, then its up to
3114         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3115         * getting what current time is, so simply throw away the out-of-date
3116         * time. This will result in the wakee task is less decayed, but giving
3117         * the wakee more load sounds not bad.
3118         */
3119        if (!(se->avg.last_update_time && prev))
3120                return;
3121
3122#ifndef CONFIG_64BIT
3123        {
3124                u64 p_last_update_time_copy;
3125                u64 n_last_update_time_copy;
3126
3127                do {
3128                        p_last_update_time_copy = prev->load_last_update_time_copy;
3129                        n_last_update_time_copy = next->load_last_update_time_copy;
3130
3131                        smp_rmb();
3132
3133                        p_last_update_time = prev->avg.last_update_time;
3134                        n_last_update_time = next->avg.last_update_time;
3135
3136                } while (p_last_update_time != p_last_update_time_copy ||
3137                         n_last_update_time != n_last_update_time_copy);
3138        }
3139#else
3140        p_last_update_time = prev->avg.last_update_time;
3141        n_last_update_time = next->avg.last_update_time;
3142#endif
3143        __update_load_avg_blocked_se(p_last_update_time, se);
3144        se->avg.last_update_time = n_last_update_time;
3145}
3146
3147
3148/*
3149 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3150 * propagate its contribution. The key to this propagation is the invariant
3151 * that for each group:
3152 *
3153 *   ge->avg == grq->avg                                                (1)
3154 *
3155 * _IFF_ we look at the pure running and runnable sums. Because they
3156 * represent the very same entity, just at different points in the hierarchy.
3157 *
3158 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3159 * sum over (but still wrong, because the group entity and group rq do not have
3160 * their PELT windows aligned).
3161 *
3162 * However, update_tg_cfs_runnable() is more complex. So we have:
3163 *
3164 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg          (2)
3165 *
3166 * And since, like util, the runnable part should be directly transferable,
3167 * the following would _appear_ to be the straight forward approach:
3168 *
3169 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg       (3)
3170 *
3171 * And per (1) we have:
3172 *
3173 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3174 *
3175 * Which gives:
3176 *
3177 *                      ge->load.weight * grq->avg.load_avg
3178 *   ge->avg.load_avg = -----------------------------------             (4)
3179 *                               grq->load.weight
3180 *
3181 * Except that is wrong!
3182 *
3183 * Because while for entities historical weight is not important and we
3184 * really only care about our future and therefore can consider a pure
3185 * runnable sum, runqueues can NOT do this.
3186 *
3187 * We specifically want runqueues to have a load_avg that includes
3188 * historical weights. Those represent the blocked load, the load we expect
3189 * to (shortly) return to us. This only works by keeping the weights as
3190 * integral part of the sum. We therefore cannot decompose as per (3).
3191 *
3192 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3193 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3194 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3195 * runnable section of these tasks overlap (or not). If they were to perfectly
3196 * align the rq as a whole would be runnable 2/3 of the time. If however we
3197 * always have at least 1 runnable task, the rq as a whole is always runnable.
3198 *
3199 * So we'll have to approximate.. :/
3200 *
3201 * Given the constraint:
3202 *
3203 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3204 *
3205 * We can construct a rule that adds runnable to a rq by assuming minimal
3206 * overlap.
3207 *
3208 * On removal, we'll assume each task is equally runnable; which yields:
3209 *
3210 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3211 *
3212 * XXX: only do this for the part of runnable > running ?
3213 *
3214 */
3215
3216static inline void
3217update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3218{
3219        long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3220
3221        /* Nothing to update */
3222        if (!delta)
3223                return;
3224
3225        /*
3226         * The relation between sum and avg is:
3227         *
3228         *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3229         *
3230         * however, the PELT windows are not aligned between grq and gse.
3231         */
3232
3233        /* Set new sched_entity's utilization */
3234        se->avg.util_avg = gcfs_rq->avg.util_avg;
3235        se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3236
3237        /* Update parent cfs_rq utilization */
3238        add_positive(&cfs_rq->avg.util_avg, delta);
3239        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3240}
3241
3242static inline void
3243update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3244{
3245        long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3246        unsigned long runnable_load_avg, load_avg;
3247        u64 runnable_load_sum, load_sum = 0;
3248        s64 delta_sum;
3249
3250        if (!runnable_sum)
3251                return;
3252
3253        gcfs_rq->prop_runnable_sum = 0;
3254
3255        if (runnable_sum >= 0) {
3256                /*
3257                 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3258                 * the CPU is saturated running == runnable.
3259                 */
3260                runnable_sum += se->avg.load_sum;
3261                runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3262        } else {
3263                /*
3264                 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3265                 * assuming all tasks are equally runnable.
3266                 */
3267                if (scale_load_down(gcfs_rq->load.weight)) {
3268                        load_sum = div_s64(gcfs_rq->avg.load_sum,
3269                                scale_load_down(gcfs_rq->load.weight));
3270                }
3271
3272                /* But make sure to not inflate se's runnable */
3273                runnable_sum = min(se->avg.load_sum, load_sum);
3274        }
3275
3276        /*
3277         * runnable_sum can't be lower than running_sum
3278         * Rescale running sum to be in the same range as runnable sum
3279         * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3280         * runnable_sum is in [0 : LOAD_AVG_MAX]
3281         */
3282        running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3283        runnable_sum = max(runnable_sum, running_sum);
3284
3285        load_sum = (s64)se_weight(se) * runnable_sum;
3286        load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3287
3288        delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3289        delta_avg = load_avg - se->avg.load_avg;
3290
3291        se->avg.load_sum = runnable_sum;
3292        se->avg.load_avg = load_avg;
3293        add_positive(&cfs_rq->avg.load_avg, delta_avg);
3294        add_positive(&cfs_rq->avg.load_sum, delta_sum);
3295
3296        runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3297        runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3298        delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3299        delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3300
3301        se->avg.runnable_load_sum = runnable_sum;
3302        se->avg.runnable_load_avg = runnable_load_avg;
3303
3304        if (se->on_rq) {
3305                add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3306                add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3307        }
3308}
3309
3310static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3311{
3312        cfs_rq->propagate = 1;
3313        cfs_rq->prop_runnable_sum += runnable_sum;
3314}
3315
3316/* Update task and its cfs_rq load average */
3317static inline int propagate_entity_load_avg(struct sched_entity *se)
3318{
3319        struct cfs_rq *cfs_rq, *gcfs_rq;
3320
3321        if (entity_is_task(se))
3322                return 0;
3323
3324        gcfs_rq = group_cfs_rq(se);
3325        if (!gcfs_rq->propagate)
3326                return 0;
3327
3328        gcfs_rq->propagate = 0;
3329
3330        cfs_rq = cfs_rq_of(se);
3331
3332        add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3333
3334        update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3335        update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3336
3337        return 1;
3338}
3339
3340/*
3341 * Check if we need to update the load and the utilization of a blocked
3342 * group_entity:
3343 */
3344static inline bool skip_blocked_update(struct sched_entity *se)
3345{
3346        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3347
3348        /*
3349         * If sched_entity still have not zero load or utilization, we have to
3350         * decay it:
3351         */
3352        if (se->avg.load_avg || se->avg.util_avg)
3353                return false;
3354
3355        /*
3356         * If there is a pending propagation, we have to update the load and
3357         * the utilization of the sched_entity:
3358         */
3359        if (gcfs_rq->propagate)
3360                return false;
3361
3362        /*
3363         * Otherwise, the load and the utilization of the sched_entity is
3364         * already zero and there is no pending propagation, so it will be a
3365         * waste of time to try to decay it:
3366         */
3367        return true;
3368}
3369
3370#else /* CONFIG_FAIR_GROUP_SCHED */
3371
3372static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3373
3374static inline int propagate_entity_load_avg(struct sched_entity *se)
3375{
3376        return 0;
3377}
3378
3379static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3380
3381#endif /* CONFIG_FAIR_GROUP_SCHED */
3382
3383/**
3384 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3385 * @now: current time, as per cfs_rq_clock_pelt()
3386 * @cfs_rq: cfs_rq to update
3387 *
3388 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3389 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3390 * post_init_entity_util_avg().
3391 *
3392 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3393 *
3394 * Returns true if the load decayed or we removed load.
3395 *
3396 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3397 * call update_tg_load_avg() when this function returns true.
3398 */
3399static inline int
3400update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3401{
3402        unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3403        struct sched_avg *sa = &cfs_rq->avg;
3404        int decayed = 0;
3405
3406        if (cfs_rq->removed.nr) {
3407                unsigned long r;
3408                u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3409
3410                raw_spin_lock(&cfs_rq->removed.lock);
3411                swap(cfs_rq->removed.util_avg, removed_util);
3412                swap(cfs_rq->removed.load_avg, removed_load);
3413                swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3414                cfs_rq->removed.nr = 0;
3415                raw_spin_unlock(&cfs_rq->removed.lock);
3416
3417                r = removed_load;
3418                sub_positive(&sa->load_avg, r);
3419                sub_positive(&sa->load_sum, r * divider);
3420
3421                r = removed_util;
3422                sub_positive(&sa->util_avg, r);
3423                sub_positive(&sa->util_sum, r * divider);
3424
3425                add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3426
3427                decayed = 1;
3428        }
3429
3430        decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3431
3432#ifndef CONFIG_64BIT
3433        smp_wmb();
3434        cfs_rq->load_last_update_time_copy = sa->last_update_time;
3435#endif
3436
3437        if (decayed)
3438                cfs_rq_util_change(cfs_rq, 0);
3439
3440        return decayed;
3441}
3442
3443/**
3444 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3445 * @cfs_rq: cfs_rq to attach to
3446 * @se: sched_entity to attach
3447 * @flags: migration hints
3448 *
3449 * Must call update_cfs_rq_load_avg() before this, since we rely on
3450 * cfs_rq->avg.last_update_time being current.
3451 */
3452static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3453{
3454        u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3455
3456        /*
3457         * When we attach the @se to the @cfs_rq, we must align the decay
3458         * window because without that, really weird and wonderful things can
3459         * happen.
3460         *
3461         * XXX illustrate
3462         */
3463        se->avg.last_update_time = cfs_rq->avg.last_update_time;
3464        se->avg.period_contrib = cfs_rq->avg.period_contrib;
3465
3466        /*
3467         * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3468         * period_contrib. This isn't strictly correct, but since we're
3469         * entirely outside of the PELT hierarchy, nobody cares if we truncate
3470         * _sum a little.
3471         */
3472        se->avg.util_sum = se->avg.util_avg * divider;
3473
3474        se->avg.load_sum = divider;
3475        if (se_weight(se)) {
3476                se->avg.load_sum =
3477                        div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3478        }
3479
3480        se->avg.runnable_load_sum = se->avg.load_sum;
3481
3482        enqueue_load_avg(cfs_rq, se);
3483        cfs_rq->avg.util_avg += se->avg.util_avg;
3484        cfs_rq->avg.util_sum += se->avg.util_sum;
3485
3486        add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3487
3488        cfs_rq_util_change(cfs_rq, flags);
3489}
3490
3491/**
3492 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3493 * @cfs_rq: cfs_rq to detach from
3494 * @se: sched_entity to detach
3495 *
3496 * Must call update_cfs_rq_load_avg() before this, since we rely on
3497 * cfs_rq->avg.last_update_time being current.
3498 */
3499static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3500{
3501        dequeue_load_avg(cfs_rq, se);
3502        sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3503        sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3504
3505        add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3506
3507        cfs_rq_util_change(cfs_rq, 0);
3508}
3509
3510/*
3511 * Optional action to be done while updating the load average
3512 */
3513#define UPDATE_TG       0x1
3514#define SKIP_AGE_LOAD   0x2
3515#define DO_ATTACH       0x4
3516
3517/* Update task and its cfs_rq load average */
3518static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3519{
3520        u64 now = cfs_rq_clock_pelt(cfs_rq);
3521        int decayed;
3522
3523        /*
3524         * Track task load average for carrying it to new CPU after migrated, and
3525         * track group sched_entity load average for task_h_load calc in migration
3526         */
3527        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3528                __update_load_avg_se(now, cfs_rq, se);
3529
3530        decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3531        decayed |= propagate_entity_load_avg(se);
3532
3533        if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3534
3535                /*
3536                 * DO_ATTACH means we're here from enqueue_entity().
3537                 * !last_update_time means we've passed through
3538                 * migrate_task_rq_fair() indicating we migrated.
3539                 *
3540                 * IOW we're enqueueing a task on a new CPU.
3541                 */
3542                attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3543                update_tg_load_avg(cfs_rq, 0);
3544
3545        } else if (decayed && (flags & UPDATE_TG))
3546                update_tg_load_avg(cfs_rq, 0);
3547}
3548
3549#ifndef CONFIG_64BIT
3550static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3551{
3552        u64 last_update_time_copy;
3553        u64 last_update_time;
3554
3555        do {
3556                last_update_time_copy = cfs_rq->load_last_update_time_copy;
3557                smp_rmb();
3558                last_update_time = cfs_rq->avg.last_update_time;
3559        } while (last_update_time != last_update_time_copy);
3560
3561        return last_update_time;
3562}
3563#else
3564static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3565{
3566        return cfs_rq->avg.last_update_time;
3567}
3568#endif
3569
3570/*
3571 * Synchronize entity load avg of dequeued entity without locking
3572 * the previous rq.
3573 */
3574static void sync_entity_load_avg(struct sched_entity *se)
3575{
3576        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3577        u64 last_update_time;
3578
3579        last_update_time = cfs_rq_last_update_time(cfs_rq);
3580        __update_load_avg_blocked_se(last_update_time, se);
3581}
3582
3583/*
3584 * Task first catches up with cfs_rq, and then subtract
3585 * itself from the cfs_rq (task must be off the queue now).
3586 */
3587static void remove_entity_load_avg(struct sched_entity *se)
3588{
3589        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3590        unsigned long flags;
3591
3592        /*
3593         * tasks cannot exit without having gone through wake_up_new_task() ->
3594         * post_init_entity_util_avg() which will have added things to the
3595         * cfs_rq, so we can remove unconditionally.
3596         */
3597
3598        sync_entity_load_avg(se);
3599
3600        raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3601        ++cfs_rq->removed.nr;
3602        cfs_rq->removed.util_avg        += se->avg.util_avg;
3603        cfs_rq->removed.load_avg        += se->avg.load_avg;
3604        cfs_rq->removed.runnable_sum    += se->avg.load_sum; /* == runnable_sum */
3605        raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3606}
3607
3608static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609{
3610        return cfs_rq->avg.runnable_load_avg;
3611}
3612
3613static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614{
3615        return cfs_rq->avg.load_avg;
3616}
3617
3618static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619
3620static inline unsigned long task_util(struct task_struct *p)
3621{
3622        return READ_ONCE(p->se.avg.util_avg);
3623}
3624
3625static inline unsigned long _task_util_est(struct task_struct *p)
3626{
3627        struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628
3629        return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3630}
3631
3632static inline unsigned long task_util_est(struct task_struct *p)
3633{
3634        return max(task_util(p), _task_util_est(p));
3635}
3636
3637static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3638                                    struct task_struct *p)
3639{
3640        unsigned int enqueued;
3641
3642        if (!sched_feat(UTIL_EST))
3643                return;
3644
3645        /* Update root cfs_rq's estimated utilization */
3646        enqueued  = cfs_rq->avg.util_est.enqueued;
3647        enqueued += _task_util_est(p);
3648        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3649}
3650
3651/*
3652 * Check if a (signed) value is within a specified (unsigned) margin,
3653 * based on the observation that:
3654 *
3655 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656 *
3657 * NOTE: this only works when value + maring < INT_MAX.
3658 */
3659static inline bool within_margin(int value, int margin)
3660{
3661        return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3662}
3663
3664static void
3665util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666{
3667        long last_ewma_diff;
3668        struct util_est ue;
3669        int cpu;
3670
3671        if (!sched_feat(UTIL_EST))
3672                return;
3673
3674        /* Update root cfs_rq's estimated utilization */
3675        ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3676        ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3677        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3678
3679        /*
3680         * Skip update of task's estimated utilization when the task has not
3681         * yet completed an activation, e.g. being migrated.
3682         */
3683        if (!task_sleep)
3684                return;
3685
3686        /*
3687         * If the PELT values haven't changed since enqueue time,
3688         * skip the util_est update.
3689         */
3690        ue = p->se.avg.util_est;
3691        if (ue.enqueued & UTIL_AVG_UNCHANGED)
3692                return;
3693
3694        /*
3695         * Skip update of task's estimated utilization when its EWMA is
3696         * already ~1% close to its last activation value.
3697         */
3698        ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3699        last_ewma_diff = ue.enqueued - ue.ewma;
3700        if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3701                return;
3702
3703        /*
3704         * To avoid overestimation of actual task utilization, skip updates if
3705         * we cannot grant there is idle time in this CPU.
3706         */
3707        cpu = cpu_of(rq_of(cfs_rq));
3708        if (task_util(p) > capacity_orig_of(cpu))
3709                return;
3710
3711        /*
3712         * Update Task's estimated utilization
3713         *
3714         * When *p completes an activation we can consolidate another sample
3715         * of the task size. This is done by storing the current PELT value
3716         * as ue.enqueued and by using this value to update the Exponential
3717         * Weighted Moving Average (EWMA):
3718         *
3719         *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3720         *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3721         *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3722         *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3723         *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3724         *
3725         * Where 'w' is the weight of new samples, which is configured to be
3726         * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3727         */
3728        ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3729        ue.ewma  += last_ewma_diff;
3730        ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3731        WRITE_ONCE(p->se.avg.util_est, ue);
3732}
3733
3734static inline int task_fits_capacity(struct task_struct *p, long capacity)
3735{
3736        return capacity * 1024 > task_util_est(p) * capacity_margin;
3737}
3738
3739static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3740{
3741        if (!static_branch_unlikely(&sched_asym_cpucapacity))
3742                return;
3743
3744        if (!p) {
3745                rq->misfit_task_load = 0;
3746                return;
3747        }
3748
3749        if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3750                rq->misfit_task_load = 0;
3751                return;
3752        }
3753
3754        rq->misfit_task_load = task_h_load(p);
3755}
3756
3757#else /* CONFIG_SMP */
3758
3759#define UPDATE_TG       0x0
3760#define SKIP_AGE_LOAD   0x0
3761#define DO_ATTACH       0x0
3762
3763static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3764{
3765        cfs_rq_util_change(cfs_rq, 0);
3766}
3767
3768static inline void remove_entity_load_avg(struct sched_entity *se) {}
3769
3770static inline void
3771attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3772static inline void
3773detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3774
3775static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3776{
3777        return 0;
3778}
3779
3780static inline void
3781util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3782
3783static inline void
3784util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3785                 bool task_sleep) {}
3786static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3787
3788#endif /* CONFIG_SMP */
3789
3790static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3791{
3792#ifdef CONFIG_SCHED_DEBUG
3793        s64 d = se->vruntime - cfs_rq->min_vruntime;
3794
3795        if (d < 0)
3796                d = -d;
3797
3798        if (d > 3*sysctl_sched_latency)
3799                schedstat_inc(cfs_rq->nr_spread_over);
3800#endif
3801}
3802
3803static void
3804place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3805{
3806        u64 vruntime = cfs_rq->min_vruntime;
3807
3808        /*
3809         * The 'current' period is already promised to the current tasks,
3810         * however the extra weight of the new task will slow them down a
3811         * little, place the new task so that it fits in the slot that
3812         * stays open at the end.
3813         */
3814        if (initial && sched_feat(START_DEBIT))
3815                vruntime += sched_vslice(cfs_rq, se);
3816
3817        /* sleeps up to a single latency don't count. */
3818        if (!initial) {
3819                unsigned long thresh = sysctl_sched_latency;
3820
3821                /*
3822                 * Halve their sleep time's effect, to allow
3823                 * for a gentler effect of sleepers:
3824                 */
3825                if (sched_feat(GENTLE_FAIR_SLEEPERS))
3826                        thresh >>= 1;
3827
3828                vruntime -= thresh;
3829        }
3830
3831        /* ensure we never gain time by being placed backwards. */
3832        se->vruntime = max_vruntime(se->vruntime, vruntime);
3833}
3834
3835static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3836
3837static inline void check_schedstat_required(void)
3838{
3839#ifdef CONFIG_SCHEDSTATS
3840        if (schedstat_enabled())
3841                return;
3842
3843        /* Force schedstat enabled if a dependent tracepoint is active */
3844        if (trace_sched_stat_wait_enabled()    ||
3845                        trace_sched_stat_sleep_enabled()   ||
3846                        trace_sched_stat_iowait_enabled()  ||
3847                        trace_sched_stat_blocked_enabled() ||
3848                        trace_sched_stat_runtime_enabled())  {
3849                printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3850                             "stat_blocked and stat_runtime require the "
3851                             "kernel parameter schedstats=enable or "
3852                             "kernel.sched_schedstats=1\n");
3853        }
3854#endif
3855}
3856
3857
3858/*
3859 * MIGRATION
3860 *
3861 *      dequeue
3862 *        update_curr()
3863 *          update_min_vruntime()
3864 *        vruntime -= min_vruntime
3865 *
3866 *      enqueue
3867 *        update_curr()
3868 *          update_min_vruntime()
3869 *        vruntime += min_vruntime
3870 *
3871 * this way the vruntime transition between RQs is done when both
3872 * min_vruntime are up-to-date.
3873 *
3874 * WAKEUP (remote)
3875 *
3876 *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3877 *        vruntime -= min_vruntime
3878 *
3879 *      enqueue
3880 *        update_curr()
3881 *          update_min_vruntime()
3882 *        vruntime += min_vruntime
3883 *
3884 * this way we don't have the most up-to-date min_vruntime on the originating
3885 * CPU and an up-to-date min_vruntime on the destination CPU.
3886 */
3887
3888static void
3889enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3890{
3891        bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3892        bool curr = cfs_rq->curr == se;
3893
3894        /*
3895         * If we're the current task, we must renormalise before calling
3896         * update_curr().
3897         */
3898        if (renorm && curr)
3899                se->vruntime += cfs_rq->min_vruntime;
3900
3901        update_curr(cfs_rq);
3902
3903        /*
3904         * Otherwise, renormalise after, such that we're placed at the current
3905         * moment in time, instead of some random moment in the past. Being
3906         * placed in the past could significantly boost this task to the
3907         * fairness detriment of existing tasks.
3908         */
3909        if (renorm && !curr)
3910                se->vruntime += cfs_rq->min_vruntime;
3911
3912        /*
3913         * When enqueuing a sched_entity, we must:
3914         *   - Update loads to have both entity and cfs_rq synced with now.
3915         *   - Add its load to cfs_rq->runnable_avg
3916         *   - For group_entity, update its weight to reflect the new share of
3917         *     its group cfs_rq
3918         *   - Add its new weight to cfs_rq->load.weight
3919         */
3920        update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3921        update_cfs_group(se);
3922        enqueue_runnable_load_avg(cfs_rq, se);
3923        account_entity_enqueue(cfs_rq, se);
3924
3925        if (flags & ENQUEUE_WAKEUP)
3926                place_entity(cfs_rq, se, 0);
3927
3928        check_schedstat_required();
3929        update_stats_enqueue(cfs_rq, se, flags);
3930        check_spread(cfs_rq, se);
3931        if (!curr)
3932                __enqueue_entity(cfs_rq, se);
3933        se->on_rq = 1;
3934
3935        if (cfs_rq->nr_running == 1) {
3936                list_add_leaf_cfs_rq(cfs_rq);
3937                check_enqueue_throttle(cfs_rq);
3938        }
3939}
3940
3941static void __clear_buddies_last(struct sched_entity *se)
3942{
3943        for_each_sched_entity(se) {
3944                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3945                if (cfs_rq->last != se)
3946                        break;
3947
3948                cfs_rq->last = NULL;
3949        }
3950}
3951
3952static void __clear_buddies_next(struct sched_entity *se)
3953{
3954        for_each_sched_entity(se) {
3955                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3956                if (cfs_rq->next != se)
3957                        break;
3958
3959                cfs_rq->next = NULL;
3960        }
3961}
3962
3963static void __clear_buddies_skip(struct sched_entity *se)
3964{
3965        for_each_sched_entity(se) {
3966                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3967                if (cfs_rq->skip != se)
3968                        break;
3969
3970                cfs_rq->skip = NULL;
3971        }
3972}
3973
3974static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3975{
3976        if (cfs_rq->last == se)
3977                __clear_buddies_last(se);
3978
3979        if (cfs_rq->next == se)
3980                __clear_buddies_next(se);
3981
3982        if (cfs_rq->skip == se)
3983                __clear_buddies_skip(se);
3984}
3985
3986static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3987
3988static void
3989dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3990{
3991        /*
3992         * Update run-time statistics of the 'current'.
3993         */
3994        update_curr(cfs_rq);
3995
3996        /*
3997         * When dequeuing a sched_entity, we must:
3998         *   - Update loads to have both entity and cfs_rq synced with now.
3999         *   - Subtract its load from the cfs_rq->runnable_avg.
4000         *   - Subtract its previous weight from cfs_rq->load.weight.
4001         *   - For group entity, update its weight to reflect the new share
4002         *     of its group cfs_rq.
4003         */
4004        update_load_avg(cfs_rq, se, UPDATE_TG);
4005        dequeue_runnable_load_avg(cfs_rq, se);
4006
4007        update_stats_dequeue(cfs_rq, se, flags);
4008
4009        clear_buddies(cfs_rq, se);
4010
4011        if (se != cfs_rq->curr)
4012                __dequeue_entity(cfs_rq, se);
4013        se->on_rq = 0;
4014        account_entity_dequeue(cfs_rq, se);
4015
4016        /*
4017         * Normalize after update_curr(); which will also have moved
4018         * min_vruntime if @se is the one holding it back. But before doing
4019         * update_min_vruntime() again, which will discount @se's position and
4020         * can move min_vruntime forward still more.
4021         */
4022        if (!(flags & DEQUEUE_SLEEP))
4023                se->vruntime -= cfs_rq->min_vruntime;
4024
4025        /* return excess runtime on last dequeue */
4026        return_cfs_rq_runtime(cfs_rq);
4027
4028        update_cfs_group(se);
4029
4030        /*
4031         * Now advance min_vruntime if @se was the entity holding it back,
4032         * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4033         * put back on, and if we advance min_vruntime, we'll be placed back
4034         * further than we started -- ie. we'll be penalized.
4035         */
4036        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4037                update_min_vruntime(cfs_rq);
4038}
4039
4040/*
4041 * Preempt the current task with a newly woken task if needed:
4042 */
4043static void
4044check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4045{
4046        unsigned long ideal_runtime, delta_exec;
4047        struct sched_entity *se;
4048        s64 delta;
4049
4050        ideal_runtime = sched_slice(cfs_rq, curr);
4051        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4052        if (delta_exec > ideal_runtime) {
4053                resched_curr(rq_of(cfs_rq));
4054                /*
4055                 * The current task ran long enough, ensure it doesn't get
4056                 * re-elected due to buddy favours.
4057                 */
4058                clear_buddies(cfs_rq, curr);
4059                return;
4060        }
4061
4062        /*
4063         * Ensure that a task that missed wakeup preemption by a
4064         * narrow margin doesn't have to wait for a full slice.
4065         * This also mitigates buddy induced latencies under load.
4066         */
4067        if (delta_exec < sysctl_sched_min_granularity)
4068                return;
4069
4070        se = __pick_first_entity(cfs_rq);
4071        delta = curr->vruntime - se->vruntime;
4072
4073        if (delta < 0)
4074                return;
4075
4076        if (delta > ideal_runtime)
4077                resched_curr(rq_of(cfs_rq));
4078}
4079
4080static void
4081set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4082{
4083        /* 'current' is not kept within the tree. */
4084        if (se->on_rq) {
4085                /*
4086                 * Any task has to be enqueued before it get to execute on
4087                 * a CPU. So account for the time it spent waiting on the
4088                 * runqueue.
4089                 */
4090                update_stats_wait_end(cfs_rq, se);
4091                __dequeue_entity(cfs_rq, se);
4092                update_load_avg(cfs_rq, se, UPDATE_TG);
4093        }
4094
4095        update_stats_curr_start(cfs_rq, se);
4096        cfs_rq->curr = se;
4097
4098        /*
4099         * Track our maximum slice length, if the CPU's load is at
4100         * least twice that of our own weight (i.e. dont track it
4101         * when there are only lesser-weight tasks around):
4102         */
4103        if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4104                schedstat_set(se->statistics.slice_max,
4105                        max((u64)schedstat_val(se->statistics.slice_max),
4106                            se->sum_exec_runtime - se->prev_sum_exec_runtime));
4107        }
4108
4109        se->prev_sum_exec_runtime = se->sum_exec_runtime;
4110}
4111
4112static int
4113wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4114
4115/*
4116 * Pick the next process, keeping these things in mind, in this order:
4117 * 1) keep things fair between processes/task groups
4118 * 2) pick the "next" process, since someone really wants that to run
4119 * 3) pick the "last" process, for cache locality
4120 * 4) do not run the "skip" process, if something else is available
4121 */
4122static struct sched_entity *
4123pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4124{
4125        struct sched_entity *left = __pick_first_entity(cfs_rq);
4126        struct sched_entity *se;
4127
4128        /*
4129         * If curr is set we have to see if its left of the leftmost entity
4130         * still in the tree, provided there was anything in the tree at all.
4131         */
4132        if (!left || (curr && entity_before(curr, left)))
4133                left = curr;
4134
4135        se = left; /* ideally we run the leftmost entity */
4136
4137        /*
4138         * Avoid running the skip buddy, if running something else can
4139         * be done without getting too unfair.
4140         */
4141        if (cfs_rq->skip == se) {
4142                struct sched_entity *second;
4143
4144                if (se == curr) {
4145                        second = __pick_first_entity(cfs_rq);
4146                } else {
4147                        second = __pick_next_entity(se);
4148                        if (!second || (curr && entity_before(curr, second)))
4149                                second = curr;
4150                }
4151
4152                if (second && wakeup_preempt_entity(second, left) < 1)
4153                        se = second;
4154        }
4155
4156        /*
4157         * Prefer last buddy, try to return the CPU to a preempted task.
4158         */
4159        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4160                se = cfs_rq->last;
4161
4162        /*
4163         * Someone really wants this to run. If it's not unfair, run it.
4164         */
4165        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4166                se = cfs_rq->next;
4167
4168        clear_buddies(cfs_rq, se);
4169
4170        return se;
4171}
4172
4173static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4174
4175static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4176{
4177        /*
4178         * If still on the runqueue then deactivate_task()
4179         * was not called and update_curr() has to be done:
4180         */
4181        if (prev->on_rq)
4182                update_curr(cfs_rq);
4183
4184        /* throttle cfs_rqs exceeding runtime */
4185        check_cfs_rq_runtime(cfs_rq);
4186
4187        check_spread(cfs_rq, prev);
4188
4189        if (prev->on_rq) {
4190                update_stats_wait_start(cfs_rq, prev);
4191                /* Put 'current' back into the tree. */
4192                __enqueue_entity(cfs_rq, prev);
4193                /* in !on_rq case, update occurred at dequeue */
4194                update_load_avg(cfs_rq, prev, 0);
4195        }
4196        cfs_rq->curr = NULL;
4197}
4198
4199static void
4200entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4201{
4202        /*
4203         * Update run-time statistics of the 'current'.
4204         */
4205        update_curr(cfs_rq);
4206
4207        /*
4208         * Ensure that runnable average is periodically updated.
4209         */
4210        update_load_avg(cfs_rq, curr, UPDATE_TG);
4211        update_cfs_group(curr);
4212
4213#ifdef CONFIG_SCHED_HRTICK
4214        /*
4215         * queued ticks are scheduled to match the slice, so don't bother
4216         * validating it and just reschedule.
4217         */
4218        if (queued) {
4219                resched_curr(rq_of(cfs_rq));
4220                return;
4221        }
4222        /*
4223         * don't let the period tick interfere with the hrtick preemption
4224         */
4225        if (!sched_feat(DOUBLE_TICK) &&
4226                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4227                return;
4228#endif
4229
4230        if (cfs_rq->nr_running > 1)
4231                check_preempt_tick(cfs_rq, curr);
4232}
4233
4234
4235/**************************************************
4236 * CFS bandwidth control machinery
4237 */
4238
4239#ifdef CONFIG_CFS_BANDWIDTH
4240
4241#ifdef CONFIG_JUMP_LABEL
4242static struct static_key __cfs_bandwidth_used;
4243
4244static inline bool cfs_bandwidth_used(void)
4245{
4246        return static_key_false(&__cfs_bandwidth_used);
4247}
4248
4249void cfs_bandwidth_usage_inc(void)
4250{
4251        static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4252}
4253
4254void cfs_bandwidth_usage_dec(void)
4255{
4256        static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4257}
4258#else /* CONFIG_JUMP_LABEL */
4259static bool cfs_bandwidth_used(void)
4260{
4261        return true;
4262}
4263
4264void cfs_bandwidth_usage_inc(void) {}
4265void cfs_bandwidth_usage_dec(void) {}
4266#endif /* CONFIG_JUMP_LABEL */
4267
4268/*
4269 * default period for cfs group bandwidth.
4270 * default: 0.1s, units: nanoseconds
4271 */
4272static inline u64 default_cfs_period(void)
4273{
4274        return 100000000ULL;
4275}
4276
4277static inline u64 sched_cfs_bandwidth_slice(void)
4278{
4279        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4280}
4281
4282/*
4283 * Replenish runtime according to assigned quota and update expiration time.
4284 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4285 * additional synchronization around rq->lock.
4286 *
4287 * requires cfs_b->lock
4288 */
4289void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4290{
4291        u64 now;
4292
4293        if (cfs_b->quota == RUNTIME_INF)
4294                return;
4295
4296        now = sched_clock_cpu(smp_processor_id());
4297        cfs_b->runtime = cfs_b->quota;
4298        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4299        cfs_b->expires_seq++;
4300}
4301
4302static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4303{
4304        return &tg->cfs_bandwidth;
4305}
4306
4307/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4308static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4309{
4310        if (unlikely(cfs_rq->throttle_count))
4311                return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4312
4313        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4314}
4315
4316/* returns 0 on failure to allocate runtime */
4317static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4318{
4319        struct task_group *tg = cfs_rq->tg;
4320        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4321        u64 amount = 0, min_amount, expires;
4322        int expires_seq;
4323
4324        /* note: this is a positive sum as runtime_remaining <= 0 */
4325        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4326
4327        raw_spin_lock(&cfs_b->lock);
4328        if (cfs_b->quota == RUNTIME_INF)
4329                amount = min_amount;
4330        else {
4331                start_cfs_bandwidth(cfs_b);
4332
4333                if (cfs_b->runtime > 0) {
4334                        amount = min(cfs_b->runtime, min_amount);
4335                        cfs_b->runtime -= amount;
4336                        cfs_b->idle = 0;
4337                }
4338        }
4339        expires_seq = cfs_b->expires_seq;
4340        expires = cfs_b->runtime_expires;
4341        raw_spin_unlock(&cfs_b->lock);
4342
4343        cfs_rq->runtime_remaining += amount;
4344        /*
4345         * we may have advanced our local expiration to account for allowed
4346         * spread between our sched_clock and the one on which runtime was
4347         * issued.
4348         */
4349        if (cfs_rq->expires_seq != expires_seq) {
4350                cfs_rq->expires_seq = expires_seq;
4351                cfs_rq->runtime_expires = expires;
4352        }
4353
4354        return cfs_rq->runtime_remaining > 0;
4355}
4356
4357/*
4358 * Note: This depends on the synchronization provided by sched_clock and the
4359 * fact that rq->clock snapshots this value.
4360 */
4361static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4362{
4363        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4364
4365        /* if the deadline is ahead of our clock, nothing to do */
4366        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4367                return;
4368
4369        if (cfs_rq->runtime_remaining < 0)
4370                return;
4371
4372        /*
4373         * If the local deadline has passed we have to consider the
4374         * possibility that our sched_clock is 'fast' and the global deadline
4375         * has not truly expired.
4376         *
4377         * Fortunately we can check determine whether this the case by checking
4378         * whether the global deadline(cfs_b->expires_seq) has advanced.
4379         */
4380        if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4381                /* extend local deadline, drift is bounded above by 2 ticks */
4382                cfs_rq->runtime_expires += TICK_NSEC;
4383        } else {
4384                /* global deadline is ahead, expiration has passed */
4385                cfs_rq->runtime_remaining = 0;
4386        }
4387}
4388
4389static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4390{
4391        /* dock delta_exec before expiring quota (as it could span periods) */
4392        cfs_rq->runtime_remaining -= delta_exec;
4393        expire_cfs_rq_runtime(cfs_rq);
4394
4395        if (likely(cfs_rq->runtime_remaining > 0))
4396                return;
4397
4398        /*
4399         * if we're unable to extend our runtime we resched so that the active
4400         * hierarchy can be throttled
4401         */
4402        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4403                resched_curr(rq_of(cfs_rq));
4404}
4405
4406static __always_inline
4407void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4408{
4409        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4410                return;
4411
4412        __account_cfs_rq_runtime(cfs_rq, delta_exec);
4413}
4414
4415static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4416{
4417        return cfs_bandwidth_used() && cfs_rq->throttled;
4418}
4419
4420/* check whether cfs_rq, or any parent, is throttled */
4421static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4422{
4423        return cfs_bandwidth_used() && cfs_rq->throttle_count;
4424}
4425
4426/*
4427 * Ensure that neither of the group entities corresponding to src_cpu or
4428 * dest_cpu are members of a throttled hierarchy when performing group
4429 * load-balance operations.
4430 */
4431static inline int throttled_lb_pair(struct task_group *tg,
4432                                    int src_cpu, int dest_cpu)
4433{
4434        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4435
4436        src_cfs_rq = tg->cfs_rq[src_cpu];
4437        dest_cfs_rq = tg->cfs_rq[dest_cpu];
4438
4439        return throttled_hierarchy(src_cfs_rq) ||
4440               throttled_hierarchy(dest_cfs_rq);
4441}
4442
4443static int tg_unthrottle_up(struct task_group *tg, void *data)
4444{
4445        struct rq *rq = data;
4446        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4447
4448        cfs_rq->throttle_count--;
4449        if (!cfs_rq->throttle_count) {
4450                /* adjust cfs_rq_clock_task() */
4451                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4452                                             cfs_rq->throttled_clock_task;
4453
4454                /* Add cfs_rq with already running entity in the list */
4455                if (cfs_rq->nr_running >= 1)
4456                        list_add_leaf_cfs_rq(cfs_rq);
4457        }
4458
4459        return 0;
4460}
4461
4462static int tg_throttle_down(struct task_group *tg, void *data)
4463{
4464        struct rq *rq = data;
4465        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4466
4467        /* group is entering throttled state, stop time */
4468        if (!cfs_rq->throttle_count) {
4469                cfs_rq->throttled_clock_task = rq_clock_task(rq);
4470                list_del_leaf_cfs_rq(cfs_rq);
4471        }
4472        cfs_rq->throttle_count++;
4473
4474        return 0;
4475}
4476
4477static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4478{
4479        struct rq *rq = rq_of(cfs_rq);
4480        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4481        struct sched_entity *se;
4482        long task_delta, dequeue = 1;
4483        bool empty;
4484
4485        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4486
4487        /* freeze hierarchy runnable averages while throttled */
4488        rcu_read_lock();
4489        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4490        rcu_read_unlock();
4491
4492        task_delta = cfs_rq->h_nr_running;
4493        for_each_sched_entity(se) {
4494                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4495                /* throttled entity or throttle-on-deactivate */
4496                if (!se->on_rq)
4497                        break;
4498
4499                if (dequeue)
4500                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4501                qcfs_rq->h_nr_running -= task_delta;
4502
4503                if (qcfs_rq->load.weight)
4504                        dequeue = 0;
4505        }
4506
4507        if (!se)
4508                sub_nr_running(rq, task_delta);
4509
4510        cfs_rq->throttled = 1;
4511        cfs_rq->throttled_clock = rq_clock(rq);
4512        raw_spin_lock(&cfs_b->lock);
4513        empty = list_empty(&cfs_b->throttled_cfs_rq);
4514
4515        /*
4516         * Add to the _head_ of the list, so that an already-started
4517         * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4518         * not running add to the tail so that later runqueues don't get starved.
4519         */
4520        if (cfs_b->distribute_running)
4521                list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4522        else
4523                list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4524
4525        /*
4526         * If we're the first throttled task, make sure the bandwidth
4527         * timer is running.
4528         */
4529        if (empty)
4530                start_cfs_bandwidth(cfs_b);
4531
4532        raw_spin_unlock(&cfs_b->lock);
4533}
4534
4535void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4536{
4537        struct rq *rq = rq_of(cfs_rq);
4538        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4539        struct sched_entity *se;
4540        int enqueue = 1;
4541        long task_delta;
4542
4543        se = cfs_rq->tg->se[cpu_of(rq)];
4544
4545        cfs_rq->throttled = 0;
4546
4547        update_rq_clock(rq);
4548
4549        raw_spin_lock(&cfs_b->lock);
4550        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4551        list_del_rcu(&cfs_rq->throttled_list);
4552        raw_spin_unlock(&cfs_b->lock);
4553
4554        /* update hierarchical throttle state */
4555        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4556
4557        if (!cfs_rq->load.weight)
4558                return;
4559
4560        task_delta = cfs_rq->h_nr_running;
4561        for_each_sched_entity(se) {
4562                if (se->on_rq)
4563                        enqueue = 0;
4564
4565                cfs_rq = cfs_rq_of(se);
4566                if (enqueue)
4567                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4568                cfs_rq->h_nr_running += task_delta;
4569
4570                if (cfs_rq_throttled(cfs_rq))
4571                        break;
4572        }
4573
4574        assert_list_leaf_cfs_rq(rq);
4575
4576        if (!se)
4577                add_nr_running(rq, task_delta);
4578
4579        /* Determine whether we need to wake up potentially idle CPU: */
4580        if (rq->curr == rq->idle && rq->cfs.nr_running)
4581                resched_curr(rq);
4582}
4583
4584static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4585                u64 remaining, u64 expires)
4586{
4587        struct cfs_rq *cfs_rq;
4588        u64 runtime;
4589        u64 starting_runtime = remaining;
4590
4591        rcu_read_lock();
4592        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4593                                throttled_list) {
4594                struct rq *rq = rq_of(cfs_rq);
4595                struct rq_flags rf;
4596
4597                rq_lock_irqsave(rq, &rf);
4598                if (!cfs_rq_throttled(cfs_rq))
4599                        goto next;
4600
4601                runtime = -cfs_rq->runtime_remaining + 1;
4602                if (runtime > remaining)
4603                        runtime = remaining;
4604                remaining -= runtime;
4605
4606                cfs_rq->runtime_remaining += runtime;
4607                cfs_rq->runtime_expires = expires;
4608
4609                /* we check whether we're throttled above */
4610                if (cfs_rq->runtime_remaining > 0)
4611                        unthrottle_cfs_rq(cfs_rq);
4612
4613next:
4614                rq_unlock_irqrestore(rq, &rf);
4615
4616                if (!remaining)
4617                        break;
4618        }
4619        rcu_read_unlock();
4620
4621        return starting_runtime - remaining;
4622}
4623
4624/*
4625 * Responsible for refilling a task_group's bandwidth and unthrottling its
4626 * cfs_rqs as appropriate. If there has been no activity within the last
4627 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4628 * used to track this state.
4629 */
4630static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4631{
4632        u64 runtime, runtime_expires;
4633        int throttled;
4634
4635        /* no need to continue the timer with no bandwidth constraint */
4636        if (cfs_b->quota == RUNTIME_INF)
4637                goto out_deactivate;
4638
4639        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4640        cfs_b->nr_periods += overrun;
4641
4642        /*
4643         * idle depends on !throttled (for the case of a large deficit), and if
4644         * we're going inactive then everything else can be deferred
4645         */
4646        if (cfs_b->idle && !throttled)
4647                goto out_deactivate;
4648
4649        __refill_cfs_bandwidth_runtime(cfs_b);
4650
4651        if (!throttled) {
4652                /* mark as potentially idle for the upcoming period */
4653                cfs_b->idle = 1;
4654                return 0;
4655        }
4656
4657        /* account preceding periods in which throttling occurred */
4658        cfs_b->nr_throttled += overrun;
4659
4660        runtime_expires = cfs_b->runtime_expires;
4661
4662        /*
4663         * This check is repeated as we are holding onto the new bandwidth while
4664         * we unthrottle. This can potentially race with an unthrottled group
4665         * trying to acquire new bandwidth from the global pool. This can result
4666         * in us over-using our runtime if it is all used during this loop, but
4667         * only by limited amounts in that extreme case.
4668         */
4669        while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4670                runtime = cfs_b->runtime;
4671                cfs_b->distribute_running = 1;
4672                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4673                /* we can't nest cfs_b->lock while distributing bandwidth */
4674                runtime = distribute_cfs_runtime(cfs_b, runtime,
4675                                                 runtime_expires);
4676                raw_spin_lock_irqsave(&cfs_b->lock, flags);
4677
4678                cfs_b->distribute_running = 0;
4679                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4680
4681                lsub_positive(&cfs_b->runtime, runtime);
4682        }
4683
4684        /*
4685         * While we are ensured activity in the period following an
4686         * unthrottle, this also covers the case in which the new bandwidth is
4687         * insufficient to cover the existing bandwidth deficit.  (Forcing the
4688         * timer to remain active while there are any throttled entities.)
4689         */
4690        cfs_b->idle = 0;
4691
4692        return 0;
4693
4694out_deactivate:
4695        return 1;
4696}
4697
4698/* a cfs_rq won't donate quota below this amount */
4699static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4700/* minimum remaining period time to redistribute slack quota */
4701static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4702/* how long we wait to gather additional slack before distributing */
4703static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4704
4705/*
4706 * Are we near the end of the current quota period?
4707 *
4708 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4709 * hrtimer base being cleared by hrtimer_start. In the case of
4710 * migrate_hrtimers, base is never cleared, so we are fine.
4711 */
4712static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4713{
4714        struct hrtimer *refresh_timer = &cfs_b->period_timer;
4715        u64 remaining;
4716
4717        /* if the call-back is running a quota refresh is already occurring */
4718        if (hrtimer_callback_running(refresh_timer))
4719                return 1;
4720
4721        /* is a quota refresh about to occur? */
4722        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4723        if (remaining < min_expire)
4724                return 1;
4725
4726        return 0;
4727}
4728
4729static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4730{
4731        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4732
4733        /* if there's a quota refresh soon don't bother with slack */
4734        if (runtime_refresh_within(cfs_b, min_left))
4735                return;
4736
4737        hrtimer_start(&cfs_b->slack_timer,
4738                        ns_to_ktime(cfs_bandwidth_slack_period),
4739                        HRTIMER_MODE_REL);
4740}
4741
4742/* we know any runtime found here is valid as update_curr() precedes return */
4743static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4744{
4745        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4746        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4747
4748        if (slack_runtime <= 0)
4749                return;
4750
4751        raw_spin_lock(&cfs_b->lock);
4752        if (cfs_b->quota != RUNTIME_INF &&
4753            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4754                cfs_b->runtime += slack_runtime;
4755
4756                /* we are under rq->lock, defer unthrottling using a timer */
4757                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4758                    !list_empty(&cfs_b->throttled_cfs_rq))
4759                        start_cfs_slack_bandwidth(cfs_b);
4760        }
4761        raw_spin_unlock(&cfs_b->lock);
4762
4763        /* even if it's not valid for return we don't want to try again */
4764        cfs_rq->runtime_remaining -= slack_runtime;
4765}
4766
4767static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4768{
4769        if (!cfs_bandwidth_used())
4770                return;
4771
4772        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4773                return;
4774
4775        __return_cfs_rq_runtime(cfs_rq);
4776}
4777
4778/*
4779 * This is done with a timer (instead of inline with bandwidth return) since
4780 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4781 */
4782static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4783{
4784        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4785        unsigned long flags;
4786        u64 expires;
4787
4788        /* confirm we're still not at a refresh boundary */
4789        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4790        if (cfs_b->distribute_running) {
4791                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4792                return;
4793        }
4794
4795        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4796                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4797                return;
4798        }
4799
4800        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4801                runtime = cfs_b->runtime;
4802
4803        expires = cfs_b->runtime_expires;
4804        if (runtime)
4805                cfs_b->distribute_running = 1;
4806
4807        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4808
4809        if (!runtime)
4810                return;
4811
4812        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4813
4814        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4815        if (expires == cfs_b->runtime_expires)
4816                lsub_positive(&cfs_b->runtime, runtime);
4817        cfs_b->distribute_running = 0;
4818        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4819}
4820
4821/*
4822 * When a group wakes up we want to make sure that its quota is not already
4823 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4824 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4825 */
4826static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4827{
4828        if (!cfs_bandwidth_used())
4829                return;
4830
4831        /* an active group must be handled by the update_curr()->put() path */
4832        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4833                return;
4834
4835        /* ensure the group is not already throttled */
4836        if (cfs_rq_throttled(cfs_rq))
4837                return;
4838
4839        /* update runtime allocation */
4840        account_cfs_rq_runtime(cfs_rq, 0);
4841        if (cfs_rq->runtime_remaining <= 0)
4842                throttle_cfs_rq(cfs_rq);
4843}
4844
4845static void sync_throttle(struct task_group *tg, int cpu)
4846{
4847        struct cfs_rq *pcfs_rq, *cfs_rq;
4848
4849        if (!cfs_bandwidth_used())
4850                return;
4851
4852        if (!tg->parent)
4853                return;
4854
4855        cfs_rq = tg->cfs_rq[cpu];
4856        pcfs_rq = tg->parent->cfs_rq[cpu];
4857
4858        cfs_rq->throttle_count = pcfs_rq->throttle_count;
4859        cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4860}
4861
4862/* conditionally throttle active cfs_rq's from put_prev_entity() */
4863static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4864{
4865        if (!cfs_bandwidth_used())
4866                return false;
4867
4868        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4869                return false;
4870
4871        /*
4872         * it's possible for a throttled entity to be forced into a running
4873         * state (e.g. set_curr_task), in this case we're finished.
4874         */
4875        if (cfs_rq_throttled(cfs_rq))
4876                return true;
4877
4878        throttle_cfs_rq(cfs_rq);
4879        return true;
4880}
4881
4882static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4883{
4884        struct cfs_bandwidth *cfs_b =
4885                container_of(timer, struct cfs_bandwidth, slack_timer);
4886
4887        do_sched_cfs_slack_timer(cfs_b);
4888
4889        return HRTIMER_NORESTART;
4890}
4891
4892extern const u64 max_cfs_quota_period;
4893
4894static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4895{
4896        struct cfs_bandwidth *cfs_b =
4897                container_of(timer, struct cfs_bandwidth, period_timer);
4898        unsigned long flags;
4899        int overrun;
4900        int idle = 0;
4901        int count = 0;
4902
4903        raw_spin_lock_irqsave(&cfs_b->lock, flags);
4904        for (;;) {
4905                overrun = hrtimer_forward_now(timer, cfs_b->period);
4906                if (!overrun)
4907                        break;
4908
4909                if (++count > 3) {
4910                        u64 new, old = ktime_to_ns(cfs_b->period);
4911
4912                        new = (old * 147) / 128; /* ~115% */
4913                        new = min(new, max_cfs_quota_period);
4914
4915                        cfs_b->period = ns_to_ktime(new);
4916
4917                        /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4918                        cfs_b->quota *= new;
4919                        cfs_b->quota = div64_u64(cfs_b->quota, old);
4920
4921                        pr_warn_ratelimited(
4922        "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4923                                smp_processor_id(),
4924                                div_u64(new, NSEC_PER_USEC),
4925                                div_u64(cfs_b->quota, NSEC_PER_USEC));
4926
4927                        /* reset count so we don't come right back in here */
4928                        count = 0;
4929                }
4930
4931                idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4932        }
4933        if (idle)
4934                cfs_b->period_active = 0;
4935        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4936
4937        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4938}
4939
4940void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4941{
4942        raw_spin_lock_init(&cfs_b->lock);
4943        cfs_b->runtime = 0;
4944        cfs_b->quota = RUNTIME_INF;
4945        cfs_b->period = ns_to_ktime(default_cfs_period());
4946
4947        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4948        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4949        cfs_b->period_timer.function = sched_cfs_period_timer;
4950        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4951        cfs_b->slack_timer.function = sched_cfs_slack_timer;
4952        cfs_b->distribute_running = 0;
4953}
4954
4955static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4956{
4957        cfs_rq->runtime_enabled = 0;
4958        INIT_LIST_HEAD(&cfs_rq->throttled_list);
4959}
4960
4961void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4962{
4963        u64 overrun;
4964
4965        lockdep_assert_held(&cfs_b->lock);
4966
4967        if (cfs_b->period_active)
4968                return;
4969
4970        cfs_b->period_active = 1;
4971        overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4972        cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4973        cfs_b->expires_seq++;
4974        hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4975}
4976
4977static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4978{
4979        /* init_cfs_bandwidth() was not called */
4980        if (!cfs_b->throttled_cfs_rq.next)
4981                return;
4982
4983        hrtimer_cancel(&cfs_b->period_timer);
4984        hrtimer_cancel(&cfs_b->slack_timer);
4985}
4986
4987/*
4988 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4989 *
4990 * The race is harmless, since modifying bandwidth settings of unhooked group
4991 * bits doesn't do much.
4992 */
4993
4994/* cpu online calback */
4995static void __maybe_unused update_runtime_enabled(struct rq *rq)
4996{
4997        struct task_group *tg;
4998
4999        lockdep_assert_held(&rq->lock);
5000
5001        rcu_read_lock();
5002        list_for_each_entry_rcu(tg, &task_groups, list) {
5003                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5004                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5005
5006                raw_spin_lock(&cfs_b->lock);
5007                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5008                raw_spin_unlock(&cfs_b->lock);
5009        }
5010        rcu_read_unlock();
5011}
5012
5013/* cpu offline callback */
5014static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5015{
5016        struct task_group *tg;
5017
5018        lockdep_assert_held(&rq->lock);
5019
5020        rcu_read_lock();
5021        list_for_each_entry_rcu(tg, &task_groups, list) {
5022                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5023
5024                if (!cfs_rq->runtime_enabled)
5025                        continue;
5026
5027                /*
5028                 * clock_task is not advancing so we just need to make sure
5029                 * there's some valid quota amount
5030                 */
5031                cfs_rq->runtime_remaining = 1;
5032                /*
5033                 * Offline rq is schedulable till CPU is completely disabled
5034                 * in take_cpu_down(), so we prevent new cfs throttling here.
5035                 */
5036                cfs_rq->runtime_enabled = 0;
5037
5038                if (cfs_rq_throttled(cfs_rq))
5039                        unthrottle_cfs_rq(cfs_rq);
5040        }
5041        rcu_read_unlock();
5042}
5043
5044#else /* CONFIG_CFS_BANDWIDTH */
5045
5046static inline bool cfs_bandwidth_used(void)
5047{
5048        return false;
5049}
5050
5051static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5052{
5053        return rq_clock_task(rq_of(cfs_rq));
5054}
5055
5056static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5057static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5058static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5059static inline void sync_throttle(struct task_group *tg, int cpu) {}
5060static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5061
5062static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5063{
5064        return 0;
5065}
5066
5067static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5068{
5069        return 0;
5070}
5071
5072static inline int throttled_lb_pair(struct task_group *tg,
5073                                    int src_cpu, int dest_cpu)
5074{
5075        return 0;
5076}
5077
5078void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5079
5080#ifdef CONFIG_FAIR_GROUP_SCHED
5081static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5082#endif
5083
5084static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5085{
5086        return NULL;
5087}
5088static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5089static inline void update_runtime_enabled(struct rq *rq) {}
5090static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5091
5092#endif /* CONFIG_CFS_BANDWIDTH */
5093
5094/**************************************************
5095 * CFS operations on tasks:
5096 */
5097
5098#ifdef CONFIG_SCHED_HRTICK
5099static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5100{
5101        struct sched_entity *se = &p->se;
5102        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5103
5104        SCHED_WARN_ON(task_rq(p) != rq);
5105
5106        if (rq->cfs.h_nr_running > 1) {
5107                u64 slice = sched_slice(cfs_rq, se);
5108                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5109                s64 delta = slice - ran;
5110
5111                if (delta < 0) {
5112                        if (rq->curr == p)
5113                                resched_curr(rq);
5114                        return;
5115                }
5116                hrtick_start(rq, delta);
5117        }
5118}
5119
5120/*
5121 * called from enqueue/dequeue and updates the hrtick when the
5122 * current task is from our class and nr_running is low enough
5123 * to matter.
5124 */
5125static void hrtick_update(struct rq *rq)
5126{
5127        struct task_struct *curr = rq->curr;
5128
5129        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5130                return;
5131
5132        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5133                hrtick_start_fair(rq, curr);
5134}
5135#else /* !CONFIG_SCHED_HRTICK */
5136static inline void
5137hrtick_start_fair(struct rq *rq, struct task_struct *p)
5138{
5139}
5140
5141static inline void hrtick_update(struct rq *rq)
5142{
5143}
5144#endif
5145
5146#ifdef CONFIG_SMP
5147static inline unsigned long cpu_util(int cpu);
5148
5149static inline bool cpu_overutilized(int cpu)
5150{
5151        return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5152}
5153
5154static inline void update_overutilized_status(struct rq *rq)
5155{
5156        if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5157                WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5158}
5159#else
5160static inline void update_overutilized_status(struct rq *rq) { }
5161#endif
5162
5163/*
5164 * The enqueue_task method is called before nr_running is
5165 * increased. Here we update the fair scheduling stats and
5166 * then put the task into the rbtree:
5167 */
5168static void
5169enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5170{
5171        struct cfs_rq *cfs_rq;
5172        struct sched_entity *se = &p->se;
5173
5174        /*
5175         * The code below (indirectly) updates schedutil which looks at
5176         * the cfs_rq utilization to select a frequency.
5177         * Let's add the task's estimated utilization to the cfs_rq's
5178         * estimated utilization, before we update schedutil.
5179         */
5180        util_est_enqueue(&rq->cfs, p);
5181
5182        /*
5183         * If in_iowait is set, the code below may not trigger any cpufreq
5184         * utilization updates, so do it here explicitly with the IOWAIT flag
5185         * passed.
5186         */
5187        if (p->in_iowait)
5188                cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5189
5190        for_each_sched_entity(se) {
5191                if (se->on_rq)
5192                        break;
5193                cfs_rq = cfs_rq_of(se);
5194                enqueue_entity(cfs_rq, se, flags);
5195
5196                /*
5197                 * end evaluation on encountering a throttled cfs_rq
5198                 *
5199                 * note: in the case of encountering a throttled cfs_rq we will
5200                 * post the final h_nr_running increment below.
5201                 */
5202                if (cfs_rq_throttled(cfs_rq))
5203                        break;
5204                cfs_rq->h_nr_running++;
5205
5206                flags = ENQUEUE_WAKEUP;
5207        }
5208
5209        for_each_sched_entity(se) {
5210                cfs_rq = cfs_rq_of(se);
5211                cfs_rq->h_nr_running++;
5212
5213                if (cfs_rq_throttled(cfs_rq))
5214                        break;
5215
5216                update_load_avg(cfs_rq, se, UPDATE_TG);
5217                update_cfs_group(se);
5218        }
5219
5220        if (!se) {
5221                add_nr_running(rq, 1);
5222                /*
5223                 * Since new tasks are assigned an initial util_avg equal to
5224                 * half of the spare capacity of their CPU, tiny tasks have the
5225                 * ability to cross the overutilized threshold, which will
5226                 * result in the load balancer ruining all the task placement
5227                 * done by EAS. As a way to mitigate that effect, do not account
5228                 * for the first enqueue operation of new tasks during the
5229                 * overutilized flag detection.
5230                 *
5231                 * A better way of solving this problem would be to wait for
5232                 * the PELT signals of tasks to converge before taking them
5233                 * into account, but that is not straightforward to implement,
5234                 * and the following generally works well enough in practice.
5235                 */
5236                if (flags & ENQUEUE_WAKEUP)
5237                        update_overutilized_status(rq);
5238
5239        }
5240
5241        if (cfs_bandwidth_used()) {
5242                /*
5243                 * When bandwidth control is enabled; the cfs_rq_throttled()
5244                 * breaks in the above iteration can result in incomplete
5245                 * leaf list maintenance, resulting in triggering the assertion
5246                 * below.
5247                 */
5248                for_each_sched_entity(se) {
5249                        cfs_rq = cfs_rq_of(se);
5250
5251                        if (list_add_leaf_cfs_rq(cfs_rq))
5252                                break;
5253                }
5254        }
5255
5256        assert_list_leaf_cfs_rq(rq);
5257
5258        hrtick_update(rq);
5259}
5260
5261static void set_next_buddy(struct sched_entity *se);
5262
5263/*
5264 * The dequeue_task method is called before nr_running is
5265 * decreased. We remove the task from the rbtree and
5266 * update the fair scheduling stats:
5267 */
5268static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5269{
5270        struct cfs_rq *cfs_rq;
5271        struct sched_entity *se = &p->se;
5272        int task_sleep = flags & DEQUEUE_SLEEP;
5273
5274        for_each_sched_entity(se) {
5275                cfs_rq = cfs_rq_of(se);
5276                dequeue_entity(cfs_rq, se, flags);
5277
5278                /*
5279                 * end evaluation on encountering a throttled cfs_rq
5280                 *
5281                 * note: in the case of encountering a throttled cfs_rq we will
5282                 * post the final h_nr_running decrement below.
5283                */
5284                if (cfs_rq_throttled(cfs_rq))
5285                        break;
5286                cfs_rq->h_nr_running--;
5287
5288                /* Don't dequeue parent if it has other entities besides us */
5289                if (cfs_rq->load.weight) {
5290                        /* Avoid re-evaluating load for this entity: */
5291                        se = parent_entity(se);
5292                        /*
5293                         * Bias pick_next to pick a task from this cfs_rq, as
5294                         * p is sleeping when it is within its sched_slice.
5295                         */
5296                        if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5297                                set_next_buddy(se);
5298                        break;
5299                }
5300                flags |= DEQUEUE_SLEEP;
5301        }
5302
5303        for_each_sched_entity(se) {
5304                cfs_rq = cfs_rq_of(se);
5305                cfs_rq->h_nr_running--;
5306
5307                if (cfs_rq_throttled(cfs_rq))
5308                        break;
5309
5310                update_load_avg(cfs_rq, se, UPDATE_TG);
5311                update_cfs_group(se);
5312        }
5313
5314        if (!se)
5315                sub_nr_running(rq, 1);
5316
5317        util_est_dequeue(&rq->cfs, p, task_sleep);
5318        hrtick_update(rq);
5319}
5320
5321#ifdef CONFIG_SMP
5322
5323/* Working cpumask for: load_balance, load_balance_newidle. */
5324DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5325DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5326
5327#ifdef CONFIG_NO_HZ_COMMON
5328/*
5329 * per rq 'load' arrray crap; XXX kill this.
5330 */
5331
5332/*
5333 * The exact cpuload calculated at every tick would be:
5334 *
5335 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5336 *
5337 * If a CPU misses updates for n ticks (as it was idle) and update gets
5338 * called on the n+1-th tick when CPU may be busy, then we have:
5339 *
5340 *   load_n   = (1 - 1/2^i)^n * load_0
5341 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5342 *
5343 * decay_load_missed() below does efficient calculation of
5344 *
5345 *   load' = (1 - 1/2^i)^n * load
5346 *
5347 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5348 * This allows us to precompute the above in said factors, thereby allowing the
5349 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5350 * fixed_power_int())
5351 *
5352 * The calculation is approximated on a 128 point scale.
5353 */
5354#define DEGRADE_SHIFT           7
5355
5356static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5357static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5358        {   0,   0,  0,  0,  0,  0, 0, 0 },
5359        {  64,  32,  8,  0,  0,  0, 0, 0 },
5360        {  96,  72, 40, 12,  1,  0, 0, 0 },
5361        { 112,  98, 75, 43, 15,  1, 0, 0 },
5362        { 120, 112, 98, 76, 45, 16, 2, 0 }
5363};
5364
5365/*
5366 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5367 * would be when CPU is idle and so we just decay the old load without
5368 * adding any new load.
5369 */
5370static unsigned long
5371decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5372{
5373        int j = 0;
5374
5375        if (!missed_updates)
5376                return load;
5377
5378        if (missed_updates >= degrade_zero_ticks[idx])
5379                return 0;
5380
5381        if (idx == 1)
5382                return load >> missed_updates;
5383
5384        while (missed_updates) {
5385                if (missed_updates % 2)
5386                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5387
5388                missed_updates >>= 1;
5389                j++;
5390        }
5391        return load;
5392}
5393
5394static struct {
5395        cpumask_var_t idle_cpus_mask;
5396        atomic_t nr_cpus;
5397        int has_blocked;                /* Idle CPUS has blocked load */
5398        unsigned long next_balance;     /* in jiffy units */
5399        unsigned long next_blocked;     /* Next update of blocked load in jiffies */
5400} nohz ____cacheline_aligned;
5401
5402#endif /* CONFIG_NO_HZ_COMMON */
5403
5404/**
5405 * __cpu_load_update - update the rq->cpu_load[] statistics
5406 * @this_rq: The rq to update statistics for
5407 * @this_load: The current load
5408 * @pending_updates: The number of missed updates
5409 *
5410 * Update rq->cpu_load[] statistics. This function is usually called every
5411 * scheduler tick (TICK_NSEC).
5412 *
5413 * This function computes a decaying average:
5414 *
5415 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5416 *
5417 * Because of NOHZ it might not get called on every tick which gives need for
5418 * the @pending_updates argument.
5419 *
5420 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5421 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5422 *             = A * (A * load[i]_n-2 + B) + B
5423 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5424 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5425 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5426 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5427 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5428 *
5429 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5430 * any change in load would have resulted in the tick being turned back on.
5431 *
5432 * For regular NOHZ, this reduces to:
5433 *
5434 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5435 *
5436 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5437 * term.
5438 */
5439static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5440                            unsigned long pending_updates)
5441{
5442        unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5443        int i, scale;
5444
5445        this_rq->nr_load_updates++;
5446
5447        /* Update our load: */
5448        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5449        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5450                unsigned long old_load, new_load;
5451
5452                /* scale is effectively 1 << i now, and >> i divides by scale */
5453
5454                old_load = this_rq->cpu_load[i];
5455#ifdef CONFIG_NO_HZ_COMMON
5456                old_load = decay_load_missed(old_load, pending_updates - 1, i);
5457                if (tickless_load) {
5458                        old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5459                        /*
5460                         * old_load can never be a negative value because a
5461                         * decayed tickless_load cannot be greater than the
5462                         * original tickless_load.
5463                         */
5464                        old_load += tickless_load;
5465                }
5466#endif
5467                new_load = this_load;
5468                /*
5469                 * Round up the averaging division if load is increasing. This
5470                 * prevents us from getting stuck on 9 if the load is 10, for
5471                 * example.
5472                 */
5473                if (new_load > old_load)
5474                        new_load += scale - 1;
5475
5476                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5477        }
5478}
5479
5480/* Used instead of source_load when we know the type == 0 */
5481static unsigned long weighted_cpuload(struct rq *rq)
5482{
5483        return cfs_rq_runnable_load_avg(&rq->cfs);
5484}
5485
5486#ifdef CONFIG_NO_HZ_COMMON
5487/*
5488 * There is no sane way to deal with nohz on smp when using jiffies because the
5489 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5490 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5491 *
5492 * Therefore we need to avoid the delta approach from the regular tick when
5493 * possible since that would seriously skew the load calculation. This is why we
5494 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5495 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5496 * loop exit, nohz_idle_balance, nohz full exit...)
5497 *
5498 * This means we might still be one tick off for nohz periods.
5499 */
5500
5501static void cpu_load_update_nohz(struct rq *this_rq,
5502                                 unsigned long curr_jiffies,
5503                                 unsigned long load)
5504{
5505        unsigned long pending_updates;
5506
5507        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5508        if (pending_updates) {
5509                this_rq->last_load_update_tick = curr_jiffies;
5510                /*
5511                 * In the regular NOHZ case, we were idle, this means load 0.
5512                 * In the NOHZ_FULL case, we were non-idle, we should consider
5513                 * its weighted load.
5514                 */
5515                cpu_load_update(this_rq, load, pending_updates);
5516        }
5517}
5518
5519/*
5520 * Called from nohz_idle_balance() to update the load ratings before doing the
5521 * idle balance.
5522 */
5523static void cpu_load_update_idle(struct rq *this_rq)
5524{
5525        /*
5526         * bail if there's load or we're actually up-to-date.
5527         */
5528        if (weighted_cpuload(this_rq))
5529                return;
5530
5531        cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5532}
5533
5534/*
5535 * Record CPU load on nohz entry so we know the tickless load to account
5536 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5537 * than other cpu_load[idx] but it should be fine as cpu_load readers
5538 * shouldn't rely into synchronized cpu_load[*] updates.
5539 */
5540void cpu_load_update_nohz_start(void)
5541{
5542        struct rq *this_rq = this_rq();
5543
5544        /*
5545         * This is all lockless but should be fine. If weighted_cpuload changes
5546         * concurrently we'll exit nohz. And cpu_load write can race with
5547         * cpu_load_update_idle() but both updater would be writing the same.
5548         */
5549        this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5550}
5551
5552/*
5553 * Account the tickless load in the end of a nohz frame.
5554 */
5555void cpu_load_update_nohz_stop(void)
5556{
5557        unsigned long curr_jiffies = READ_ONCE(jiffies);
5558        struct rq *this_rq = this_rq();
5559        unsigned long load;
5560        struct rq_flags rf;
5561
5562        if (curr_jiffies == this_rq->last_load_update_tick)
5563                return;
5564
5565        load = weighted_cpuload(this_rq);
5566        rq_lock(this_rq, &rf);
5567        update_rq_clock(this_rq);
5568        cpu_load_update_nohz(this_rq, curr_jiffies, load);
5569        rq_unlock(this_rq, &rf);
5570}
5571#else /* !CONFIG_NO_HZ_COMMON */
5572static inline void cpu_load_update_nohz(struct rq *this_rq,
5573                                        unsigned long curr_jiffies,
5574                                        unsigned long load) { }
5575#endif /* CONFIG_NO_HZ_COMMON */
5576
5577static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5578{
5579#ifdef CONFIG_NO_HZ_COMMON
5580        /* See the mess around cpu_load_update_nohz(). */
5581        this_rq->last_load_update_tick = READ_ONCE(jiffies);
5582#endif
5583        cpu_load_update(this_rq, load, 1);
5584}
5585
5586/*
5587 * Called from scheduler_tick()
5588 */
5589void cpu_load_update_active(struct rq *this_rq)
5590{
5591        unsigned long load = weighted_cpuload(this_rq);
5592
5593        if (tick_nohz_tick_stopped())
5594                cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5595        else
5596                cpu_load_update_periodic(this_rq, load);
5597}
5598
5599/*
5600 * Return a low guess at the load of a migration-source CPU weighted
5601 * according to the scheduling class and "nice" value.
5602 *
5603 * We want to under-estimate the load of migration sources, to
5604 * balance conservatively.
5605 */
5606static unsigned long source_load(int cpu, int type)
5607{
5608        struct rq *rq = cpu_rq(cpu);
5609        unsigned long total = weighted_cpuload(rq);
5610
5611        if (type == 0 || !sched_feat(LB_BIAS))
5612                return total;
5613
5614        return min(rq->cpu_load[type-1], total);
5615}
5616
5617/*
5618 * Return a high guess at the load of a migration-target CPU weighted
5619 * according to the scheduling class and "nice" value.
5620 */
5621static unsigned long target_load(int cpu, int type)
5622{
5623        struct rq *rq = cpu_rq(cpu);
5624        unsigned long total = weighted_cpuload(rq);
5625
5626        if (type == 0 || !sched_feat(LB_BIAS))
5627                return total;
5628
5629        return max(rq->cpu_load[type-1], total);
5630}
5631
5632static unsigned long capacity_of(int cpu)
5633{
5634        return cpu_rq(cpu)->cpu_capacity;
5635}
5636
5637static unsigned long cpu_avg_load_per_task(int cpu)
5638{
5639        struct rq *rq = cpu_rq(cpu);
5640        unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5641        unsigned long load_avg = weighted_cpuload(rq);
5642
5643        if (nr_running)
5644                return load_avg / nr_running;
5645
5646        return 0;
5647}
5648
5649static void record_wakee(struct task_struct *p)
5650{
5651        /*
5652         * Only decay a single time; tasks that have less then 1 wakeup per
5653         * jiffy will not have built up many flips.
5654         */
5655        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5656                current->wakee_flips >>= 1;
5657                current->wakee_flip_decay_ts = jiffies;
5658        }
5659
5660        if (current->last_wakee != p) {
5661                current->last_wakee = p;
5662                current->wakee_flips++;
5663        }
5664}
5665
5666/*
5667 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5668 *
5669 * A waker of many should wake a different task than the one last awakened
5670 * at a frequency roughly N times higher than one of its wakees.
5671 *
5672 * In order to determine whether we should let the load spread vs consolidating
5673 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5674 * partner, and a factor of lls_size higher frequency in the other.
5675 *
5676 * With both conditions met, we can be relatively sure that the relationship is
5677 * non-monogamous, with partner count exceeding socket size.
5678 *
5679 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5680 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5681 * socket size.
5682 */
5683static int wake_wide(struct task_struct *p)
5684{
5685        unsigned int master = current->wakee_flips;
5686        unsigned int slave = p->wakee_flips;
5687        int factor = this_cpu_read(sd_llc_size);
5688
5689        if (master < slave)
5690                swap(master, slave);
5691        if (slave < factor || master < slave * factor)
5692                return 0;
5693        return 1;
5694}
5695
5696/*
5697 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5698 * soonest. For the purpose of speed we only consider the waking and previous
5699 * CPU.
5700 *
5701 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5702 *                      cache-affine and is (or will be) idle.
5703 *
5704 * wake_affine_weight() - considers the weight to reflect the average
5705 *                        scheduling latency of the CPUs. This seems to work
5706 *                        for the overloaded case.
5707 */
5708static int
5709wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5710{
5711        /*
5712         * If this_cpu is idle, it implies the wakeup is from interrupt
5713         * context. Only allow the move if cache is shared. Otherwise an
5714         * interrupt intensive workload could force all tasks onto one
5715         * node depending on the IO topology or IRQ affinity settings.
5716         *
5717         * If the prev_cpu is idle and cache affine then avoid a migration.
5718         * There is no guarantee that the cache hot data from an interrupt
5719         * is more important than cache hot data on the prev_cpu and from
5720         * a cpufreq perspective, it's better to have higher utilisation
5721         * on one CPU.
5722         */
5723        if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5724                return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5725
5726        if (sync && cpu_rq(this_cpu)->nr_running == 1)
5727                return this_cpu;
5728
5729        return nr_cpumask_bits;
5730}
5731
5732static int
5733wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5734                   int this_cpu, int prev_cpu, int sync)
5735{
5736        s64 this_eff_load, prev_eff_load;
5737        unsigned long task_load;
5738
5739        this_eff_load = target_load(this_cpu, sd->wake_idx);
5740
5741        if (sync) {
5742                unsigned long current_load = task_h_load(current);
5743
5744                if (current_load > this_eff_load)
5745                        return this_cpu;
5746
5747                this_eff_load -= current_load;
5748        }
5749
5750        task_load = task_h_load(p);
5751
5752        this_eff_load += task_load;
5753        if (sched_feat(WA_BIAS))
5754                this_eff_load *= 100;
5755        this_eff_load *= capacity_of(prev_cpu);
5756
5757        prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5758        prev_eff_load -= task_load;
5759        if (sched_feat(WA_BIAS))
5760                prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5761        prev_eff_load *= capacity_of(this_cpu);
5762
5763        /*
5764         * If sync, adjust the weight of prev_eff_load such that if
5765         * prev_eff == this_eff that select_idle_sibling() will consider
5766         * stacking the wakee on top of the waker if no other CPU is
5767         * idle.
5768         */
5769        if (sync)
5770                prev_eff_load += 1;
5771
5772        return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5773}
5774
5775static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5776                       int this_cpu, int prev_cpu, int sync)
5777{
5778        int target = nr_cpumask_bits;
5779
5780        if (sched_feat(WA_IDLE))
5781                target = wake_affine_idle(this_cpu, prev_cpu, sync);
5782
5783        if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5784                target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5785
5786        schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5787        if (target == nr_cpumask_bits)
5788                return prev_cpu;
5789
5790        schedstat_inc(sd->ttwu_move_affine);
5791        schedstat_inc(p->se.statistics.nr_wakeups_affine);
5792        return target;
5793}
5794
5795static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5796
5797static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5798{
5799        return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5800}
5801
5802/*
5803 * find_idlest_group finds and returns the least busy CPU group within the
5804 * domain.
5805 *
5806 * Assumes p is allowed on at least one CPU in sd.
5807 */
5808static struct sched_group *
5809find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5810                  int this_cpu, int sd_flag)
5811{
5812        struct sched_group *idlest = NULL, *group = sd->groups;
5813        struct sched_group *most_spare_sg = NULL;
5814        unsigned long min_runnable_load = ULONG_MAX;
5815        unsigned long this_runnable_load = ULONG_MAX;
5816        unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5817        unsigned long most_spare = 0, this_spare = 0;
5818        int load_idx = sd->forkexec_idx;
5819        int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5820        unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5821                                (sd->imbalance_pct-100) / 100;
5822
5823        if (sd_flag & SD_BALANCE_WAKE)
5824                load_idx = sd->wake_idx;
5825
5826        do {
5827                unsigned long load, avg_load, runnable_load;
5828                unsigned long spare_cap, max_spare_cap;
5829                int local_group;
5830                int i;
5831
5832                /* Skip over this group if it has no CPUs allowed */
5833                if (!cpumask_intersects(sched_group_span(group),
5834                                        &p->cpus_allowed))
5835                        continue;
5836
5837                local_group = cpumask_test_cpu(this_cpu,
5838                                               sched_group_span(group));
5839
5840                /*
5841                 * Tally up the load of all CPUs in the group and find
5842                 * the group containing the CPU with most spare capacity.
5843                 */
5844                avg_load = 0;
5845                runnable_load = 0;
5846                max_spare_cap = 0;
5847
5848                for_each_cpu(i, sched_group_span(group)) {
5849                        /* Bias balancing toward CPUs of our domain */
5850                        if (local_group)
5851                                load = source_load(i, load_idx);
5852                        else
5853                                load = target_load(i, load_idx);
5854
5855                        runnable_load += load;
5856
5857                        avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5858
5859                        spare_cap = capacity_spare_without(i, p);
5860
5861                        if (spare_cap > max_spare_cap)
5862                                max_spare_cap = spare_cap;
5863                }
5864
5865                /* Adjust by relative CPU capacity of the group */
5866                avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5867                                        group->sgc->capacity;
5868                runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5869                                        group->sgc->capacity;
5870
5871                if (local_group) {
5872                        this_runnable_load = runnable_load;
5873                        this_avg_load = avg_load;
5874                        this_spare = max_spare_cap;
5875                } else {
5876                        if (min_runnable_load > (runnable_load + imbalance)) {
5877                                /*
5878                                 * The runnable load is significantly smaller
5879                                 * so we can pick this new CPU:
5880                                 */
5881                                min_runnable_load = runnable_load;
5882                                min_avg_load = avg_load;
5883                                idlest = group;
5884                        } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5885                                   (100*min_avg_load > imbalance_scale*avg_load)) {
5886                                /*
5887                                 * The runnable loads are close so take the
5888                                 * blocked load into account through avg_load:
5889                                 */
5890                                min_avg_load = avg_load;
5891                                idlest = group;
5892                        }
5893
5894                        if (most_spare < max_spare_cap) {
5895                                most_spare = max_spare_cap;
5896                                most_spare_sg = group;
5897                        }
5898                }
5899        } while (group = group->next, group != sd->groups);
5900
5901        /*
5902         * The cross-over point between using spare capacity or least load
5903         * is too conservative for high utilization tasks on partially
5904         * utilized systems if we require spare_capacity > task_util(p),
5905         * so we allow for some task stuffing by using
5906         * spare_capacity > task_util(p)/2.
5907         *
5908         * Spare capacity can't be used for fork because the utilization has
5909         * not been set yet, we must first select a rq to compute the initial
5910         * utilization.
5911         */
5912        if (sd_flag & SD_BALANCE_FORK)
5913                goto skip_spare;
5914
5915        if (this_spare > task_util(p) / 2 &&
5916            imbalance_scale*this_spare > 100*most_spare)
5917                return NULL;
5918
5919        if (most_spare > task_util(p) / 2)
5920                return most_spare_sg;
5921
5922skip_spare:
5923        if (!idlest)
5924                return NULL;
5925
5926        /*
5927         * When comparing groups across NUMA domains, it's possible for the
5928         * local domain to be very lightly loaded relative to the remote
5929         * domains but "imbalance" skews the comparison making remote CPUs
5930         * look much more favourable. When considering cross-domain, add
5931         * imbalance to the runnable load on the remote node and consider
5932         * staying local.
5933         */
5934        if ((sd->flags & SD_NUMA) &&
5935            min_runnable_load + imbalance >= this_runnable_load)
5936                return NULL;
5937
5938        if (min_runnable_load > (this_runnable_load + imbalance))
5939                return NULL;
5940
5941        if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5942             (100*this_avg_load < imbalance_scale*min_avg_load))
5943                return NULL;
5944
5945        return idlest;
5946}
5947
5948/*
5949 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5950 */
5951static int
5952find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5953{
5954        unsigned long load, min_load = ULONG_MAX;
5955        unsigned int min_exit_latency = UINT_MAX;
5956        u64 latest_idle_timestamp = 0;
5957        int least_loaded_cpu = this_cpu;
5958        int shallowest_idle_cpu = -1;
5959        int i;
5960
5961        /* Check if we have any choice: */
5962        if (group->group_weight == 1)
5963                return cpumask_first(sched_group_span(group));
5964
5965        /* Traverse only the allowed CPUs */
5966        for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5967                if (available_idle_cpu(i)) {
5968                        struct rq *rq = cpu_rq(i);
5969                        struct cpuidle_state *idle = idle_get_state(rq);
5970                        if (idle && idle->exit_latency < min_exit_latency) {
5971                                /*
5972                                 * We give priority to a CPU whose idle state
5973                                 * has the smallest exit latency irrespective
5974                                 * of any idle timestamp.
5975                                 */
5976                                min_exit_latency = idle->exit_latency;
5977                                latest_idle_timestamp = rq->idle_stamp;
5978                                shallowest_idle_cpu = i;
5979                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5980                                   rq->idle_stamp > latest_idle_timestamp) {
5981                                /*
5982                                 * If equal or no active idle state, then
5983                                 * the most recently idled CPU might have
5984                                 * a warmer cache.
5985                                 */
5986                                latest_idle_timestamp = rq->idle_stamp;
5987                                shallowest_idle_cpu = i;
5988                        }
5989                } else if (shallowest_idle_cpu == -1) {
5990                        load = weighted_cpuload(cpu_rq(i));
5991                        if (load < min_load) {
5992                                min_load = load;
5993                                least_loaded_cpu = i;
5994                        }
5995                }
5996        }
5997
5998        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5999}
6000
6001static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6002                                  int cpu, int prev_cpu, int sd_flag)
6003{
6004        int new_cpu = cpu;
6005
6006        if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6007                return prev_cpu;
6008
6009        /*
6010         * We need task's util for capacity_spare_without, sync it up to
6011         * prev_cpu's last_update_time.
6012         */
6013        if (!(sd_flag & SD_BALANCE_FORK))
6014                sync_entity_load_avg(&p->se);
6015
6016        while (sd) {
6017                struct sched_group *group;
6018                struct sched_domain *tmp;
6019                int weight;
6020
6021                if (!(sd->flags & sd_flag)) {
6022                        sd = sd->child;
6023                        continue;
6024                }
6025
6026                group = find_idlest_group(sd, p, cpu, sd_flag);
6027                if (!group) {
6028                        sd = sd->child;
6029                        continue;
6030                }
6031
6032                new_cpu = find_idlest_group_cpu(group, p, cpu);
6033                if (new_cpu == cpu) {
6034                        /* Now try balancing at a lower domain level of 'cpu': */
6035                        sd = sd->child;
6036                        continue;
6037                }
6038
6039                /* Now try balancing at a lower domain level of 'new_cpu': */
6040                cpu = new_cpu;
6041                weight = sd->span_weight;
6042                sd = NULL;
6043                for_each_domain(cpu, tmp) {
6044                        if (weight <= tmp->span_weight)
6045                                break;
6046                        if (tmp->flags & sd_flag)
6047                                sd = tmp;
6048                }
6049        }
6050
6051        return new_cpu;
6052}
6053
6054#ifdef CONFIG_SCHED_SMT
6055DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6056EXPORT_SYMBOL_GPL(sched_smt_present);
6057
6058static inline void set_idle_cores(int cpu, int val)
6059{
6060        struct sched_domain_shared *sds;
6061
6062        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6063        if (sds)
6064                WRITE_ONCE(sds->has_idle_cores, val);
6065}
6066
6067static inline bool test_idle_cores(int cpu, bool def)
6068{
6069        struct sched_domain_shared *sds;
6070
6071        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6072        if (sds)
6073                return READ_ONCE(sds->has_idle_cores);
6074
6075        return def;
6076}
6077
6078/*
6079 * Scans the local SMT mask to see if the entire core is idle, and records this
6080 * information in sd_llc_shared->has_idle_cores.
6081 *
6082 * Since SMT siblings share all cache levels, inspecting this limited remote
6083 * state should be fairly cheap.
6084 */
6085void __update_idle_core(struct rq *rq)
6086{
6087        int core = cpu_of(rq);
6088        int cpu;
6089
6090        rcu_read_lock();
6091        if (test_idle_cores(core, true))
6092                goto unlock;
6093
6094        for_each_cpu(cpu, cpu_smt_mask(core)) {
6095                if (cpu == core)
6096                        continue;
6097
6098                if (!available_idle_cpu(cpu))
6099                        goto unlock;
6100        }
6101
6102        set_idle_cores(core, 1);
6103unlock:
6104        rcu_read_unlock();
6105}
6106
6107/*
6108 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6109 * there are no idle cores left in the system; tracked through
6110 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6111 */
6112static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6113{
6114        struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6115        int core, cpu;
6116
6117        if (!static_branch_likely(&sched_smt_present))
6118                return -1;
6119
6120        if (!test_idle_cores(target, false))
6121                return -1;
6122
6123        cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6124
6125        for_each_cpu_wrap(core, cpus, target) {
6126                bool idle = true;
6127
6128                for_each_cpu(cpu, cpu_smt_mask(core)) {
6129                        __cpumask_clear_cpu(cpu, cpus);
6130                        if (!available_idle_cpu(cpu))
6131                                idle = false;
6132                }
6133
6134                if (idle)
6135                        return core;
6136        }
6137
6138        /*
6139         * Failed to find an idle core; stop looking for one.
6140         */
6141        set_idle_cores(target, 0);
6142
6143        return -1;
6144}
6145
6146/*
6147 * Scan the local SMT mask for idle CPUs.
6148 */
6149static int select_idle_smt(struct task_struct *p, int target)
6150{
6151        int cpu;
6152
6153        if (!static_branch_likely(&sched_smt_present))
6154                return -1;
6155
6156        for_each_cpu(cpu, cpu_smt_mask(target)) {
6157                if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6158                        continue;
6159                if (available_idle_cpu(cpu))
6160                        return cpu;
6161        }
6162
6163        return -1;
6164}
6165
6166#else /* CONFIG_SCHED_SMT */
6167
6168static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6169{
6170        return -1;
6171}
6172
6173static inline int select_idle_smt(struct task_struct *p, int target)
6174{
6175        return -1;
6176}
6177
6178#endif /* CONFIG_SCHED_SMT */
6179
6180/*
6181 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6182 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6183 * average idle time for this rq (as found in rq->avg_idle).
6184 */
6185static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6186{
6187        struct sched_domain *this_sd;
6188        u64 avg_cost, avg_idle;
6189        u64 time, cost;
6190        s64 delta;
6191        int cpu, nr = INT_MAX;
6192
6193        this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6194        if (!this_sd)
6195                return -1;
6196
6197        /*
6198         * Due to large variance we need a large fuzz factor; hackbench in
6199         * particularly is sensitive here.
6200         */
6201        avg_idle = this_rq()->avg_idle / 512;
6202        avg_cost = this_sd->avg_scan_cost + 1;
6203
6204        if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6205                return -1;
6206
6207        if (sched_feat(SIS_PROP)) {
6208                u64 span_avg = sd->span_weight * avg_idle;
6209                if (span_avg > 4*avg_cost)
6210                        nr = div_u64(span_avg, avg_cost);
6211                else
6212                        nr = 4;
6213        }
6214
6215        time = local_clock();
6216
6217        for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6218                if (!--nr)
6219                        return -1;
6220                if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6221                        continue;
6222                if (available_idle_cpu(cpu))
6223                        break;
6224        }
6225
6226        time = local_clock() - time;
6227        cost = this_sd->avg_scan_cost;
6228        delta = (s64)(time - cost) / 8;
6229        this_sd->avg_scan_cost += delta;
6230
6231        return cpu;
6232}
6233
6234/*
6235 * Try and locate an idle core/thread in the LLC cache domain.
6236 */
6237static int select_idle_sibling(struct task_struct *p, int prev, int target)
6238{
6239        struct sched_domain *sd;
6240        int i, recent_used_cpu;
6241
6242        if (available_idle_cpu(target))
6243                return target;
6244
6245        /*
6246         * If the previous CPU is cache affine and idle, don't be stupid:
6247         */
6248        if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6249                return prev;
6250
6251        /* Check a recently used CPU as a potential idle candidate: */
6252        recent_used_cpu = p->recent_used_cpu;
6253        if (recent_used_cpu != prev &&
6254            recent_used_cpu != target &&
6255            cpus_share_cache(recent_used_cpu, target) &&
6256            available_idle_cpu(recent_used_cpu) &&
6257            cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6258                /*
6259                 * Replace recent_used_cpu with prev as it is a potential
6260                 * candidate for the next wake:
6261                 */
6262                p->recent_used_cpu = prev;
6263                return recent_used_cpu;
6264        }
6265
6266        sd = rcu_dereference(per_cpu(sd_llc, target));
6267        if (!sd)
6268                return target;
6269
6270        i = select_idle_core(p, sd, target);
6271        if ((unsigned)i < nr_cpumask_bits)
6272                return i;
6273
6274        i = select_idle_cpu(p, sd, target);
6275        if ((unsigned)i < nr_cpumask_bits)
6276                return i;
6277
6278        i = select_idle_smt(p, target);
6279        if ((unsigned)i < nr_cpumask_bits)
6280                return i;
6281
6282        return target;
6283}
6284
6285/**
6286 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6287 * @cpu: the CPU to get the utilization of
6288 *
6289 * The unit of the return value must be the one of capacity so we can compare
6290 * the utilization with the capacity of the CPU that is available for CFS task
6291 * (ie cpu_capacity).
6292 *
6293 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6294 * recent utilization of currently non-runnable tasks on a CPU. It represents
6295 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6296 * capacity_orig is the cpu_capacity available at the highest frequency
6297 * (arch_scale_freq_capacity()).
6298 * The utilization of a CPU converges towards a sum equal to or less than the
6299 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6300 * the running time on this CPU scaled by capacity_curr.
6301 *
6302 * The estimated utilization of a CPU is defined to be the maximum between its
6303 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6304 * currently RUNNABLE on that CPU.
6305 * This allows to properly represent the expected utilization of a CPU which
6306 * has just got a big task running since a long sleep period. At the same time
6307 * however it preserves the benefits of the "blocked utilization" in
6308 * describing the potential for other tasks waking up on the same CPU.
6309 *
6310 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6311 * higher than capacity_orig because of unfortunate rounding in
6312 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6313 * the average stabilizes with the new running time. We need to check that the
6314 * utilization stays within the range of [0..capacity_orig] and cap it if
6315 * necessary. Without utilization capping, a group could be seen as overloaded
6316 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6317 * available capacity. We allow utilization to overshoot capacity_curr (but not
6318 * capacity_orig) as it useful for predicting the capacity required after task
6319 * migrations (scheduler-driven DVFS).
6320 *
6321 * Return: the (estimated) utilization for the specified CPU
6322 */
6323static inline unsigned long cpu_util(int cpu)
6324{
6325        struct cfs_rq *cfs_rq;
6326        unsigned int util;
6327
6328        cfs_rq = &cpu_rq(cpu)->cfs;
6329        util = READ_ONCE(cfs_rq->avg.util_avg);
6330
6331        if (sched_feat(UTIL_EST))
6332                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6333
6334        return min_t(unsigned long, util, capacity_orig_of(cpu));
6335}
6336
6337/*
6338 * cpu_util_without: compute cpu utilization without any contributions from *p
6339 * @cpu: the CPU which utilization is requested
6340 * @p: the task which utilization should be discounted
6341 *
6342 * The utilization of a CPU is defined by the utilization of tasks currently
6343 * enqueued on that CPU as well as tasks which are currently sleeping after an
6344 * execution on that CPU.
6345 *
6346 * This method returns the utilization of the specified CPU by discounting the
6347 * utilization of the specified task, whenever the task is currently
6348 * contributing to the CPU utilization.
6349 */
6350static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6351{
6352        struct cfs_rq *cfs_rq;
6353        unsigned int util;
6354
6355        /* Task has no contribution or is new */
6356        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6357                return cpu_util(cpu);
6358
6359        cfs_rq = &cpu_rq(cpu)->cfs;
6360        util = READ_ONCE(cfs_rq->avg.util_avg);
6361
6362        /* Discount task's util from CPU's util */
6363        lsub_positive(&util, task_util(p));
6364
6365        /*
6366         * Covered cases:
6367         *
6368         * a) if *p is the only task sleeping on this CPU, then:
6369         *      cpu_util (== task_util) > util_est (== 0)
6370         *    and thus we return:
6371         *      cpu_util_without = (cpu_util - task_util) = 0
6372         *
6373         * b) if other tasks are SLEEPING on this CPU, which is now exiting
6374         *    IDLE, then:
6375         *      cpu_util >= task_util
6376         *      cpu_util > util_est (== 0)
6377         *    and thus we discount *p's blocked utilization to return:
6378         *      cpu_util_without = (cpu_util - task_util) >= 0
6379         *
6380         * c) if other tasks are RUNNABLE on that CPU and
6381         *      util_est > cpu_util
6382         *    then we use util_est since it returns a more restrictive
6383         *    estimation of the spare capacity on that CPU, by just
6384         *    considering the expected utilization of tasks already
6385         *    runnable on that CPU.
6386         *
6387         * Cases a) and b) are covered by the above code, while case c) is
6388         * covered by the following code when estimated utilization is
6389         * enabled.
6390         */
6391        if (sched_feat(UTIL_EST)) {
6392                unsigned int estimated =
6393                        READ_ONCE(cfs_rq->avg.util_est.enqueued);
6394
6395                /*
6396                 * Despite the following checks we still have a small window
6397                 * for a possible race, when an execl's select_task_rq_fair()
6398                 * races with LB's detach_task():
6399                 *
6400                 *   detach_task()
6401                 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6402                 *     ---------------------------------- A
6403                 *     deactivate_task()                   \
6404                 *       dequeue_task()                     + RaceTime
6405                 *         util_est_dequeue()              /
6406                 *     ---------------------------------- B
6407                 *
6408                 * The additional check on "current == p" it's required to
6409                 * properly fix the execl regression and it helps in further
6410                 * reducing the chances for the above race.
6411                 */
6412                if (unlikely(task_on_rq_queued(p) || current == p))
6413                        lsub_positive(&estimated, _task_util_est(p));
6414
6415                util = max(util, estimated);
6416        }
6417
6418        /*
6419         * Utilization (estimated) can exceed the CPU capacity, thus let's
6420         * clamp to the maximum CPU capacity to ensure consistency with
6421         * the cpu_util call.
6422         */
6423        return min_t(unsigned long, util, capacity_orig_of(cpu));
6424}
6425
6426/*
6427 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6428 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6429 *
6430 * In that case WAKE_AFFINE doesn't make sense and we'll let
6431 * BALANCE_WAKE sort things out.
6432 */
6433static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6434{
6435        long min_cap, max_cap;
6436
6437        if (!static_branch_unlikely(&sched_asym_cpucapacity))
6438                return 0;
6439
6440        min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6441        max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6442
6443        /* Minimum capacity is close to max, no need to abort wake_affine */
6444        if (max_cap - min_cap < max_cap >> 3)
6445                return 0;
6446
6447        /* Bring task utilization in sync with prev_cpu */
6448        sync_entity_load_avg(&p->se);
6449
6450        return !task_fits_capacity(p, min_cap);
6451}
6452
6453/*
6454 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6455 * to @dst_cpu.
6456 */
6457static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6458{
6459        struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6460        unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6461
6462        /*
6463         * If @p migrates from @cpu to another, remove its contribution. Or,
6464         * if @p migrates from another CPU to @cpu, add its contribution. In
6465         * the other cases, @cpu is not impacted by the migration, so the
6466         * util_avg should already be correct.
6467         */
6468        if (task_cpu(p) == cpu && dst_cpu != cpu)
6469                sub_positive(&util, task_util(p));
6470        else if (task_cpu(p) != cpu && dst_cpu == cpu)
6471                util += task_util(p);
6472
6473        if (sched_feat(UTIL_EST)) {
6474                util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6475
6476                /*
6477                 * During wake-up, the task isn't enqueued yet and doesn't
6478                 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6479                 * so just add it (if needed) to "simulate" what will be
6480                 * cpu_util() after the task has been enqueued.
6481                 */
6482                if (dst_cpu == cpu)
6483                        util_est += _task_util_est(p);
6484
6485                util = max(util, util_est);
6486        }
6487
6488        return min(util, capacity_orig_of(cpu));
6489}
6490
6491/*
6492 * compute_energy(): Estimates the energy that would be consumed if @p was
6493 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6494 * landscape of the * CPUs after the task migration, and uses the Energy Model
6495 * to compute what would be the energy if we decided to actually migrate that
6496 * task.
6497 */
6498static long
6499compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6500{
6501        long util, max_util, sum_util, energy = 0;
6502        int cpu;
6503
6504        for (; pd; pd = pd->next) {
6505                max_util = sum_util = 0;
6506                /*
6507                 * The capacity state of CPUs of the current rd can be driven by
6508                 * CPUs of another rd if they belong to the same performance
6509                 * domain. So, account for the utilization of these CPUs too
6510                 * by masking pd with cpu_online_mask instead of the rd span.
6511                 *
6512                 * If an entire performance domain is outside of the current rd,
6513                 * it will not appear in its pd list and will not be accounted
6514                 * by compute_energy().
6515                 */
6516                for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6517                        util = cpu_util_next(cpu, p, dst_cpu);
6518                        util = schedutil_energy_util(cpu, util);
6519                        max_util = max(util, max_util);
6520                        sum_util += util;
6521                }
6522
6523                energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6524        }
6525
6526        return energy;
6527}
6528
6529/*
6530 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6531 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6532 * spare capacity in each performance domain and uses it as a potential
6533 * candidate to execute the task. Then, it uses the Energy Model to figure
6534 * out which of the CPU candidates is the most energy-efficient.
6535 *
6536 * The rationale for this heuristic is as follows. In a performance domain,
6537 * all the most energy efficient CPU candidates (according to the Energy
6538 * Model) are those for which we'll request a low frequency. When there are
6539 * several CPUs for which the frequency request will be the same, we don't
6540 * have enough data to break the tie between them, because the Energy Model
6541 * only includes active power costs. With this model, if we assume that
6542 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6543 * the maximum spare capacity in a performance domain is guaranteed to be among
6544 * the best candidates of the performance domain.
6545 *
6546 * In practice, it could be preferable from an energy standpoint to pack
6547 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6548 * but that could also hurt our chances to go cluster idle, and we have no
6549 * ways to tell with the current Energy Model if this is actually a good
6550 * idea or not. So, find_energy_efficient_cpu() basically favors
6551 * cluster-packing, and spreading inside a cluster. That should at least be
6552 * a good thing for latency, and this is consistent with the idea that most
6553 * of the energy savings of EAS come from the asymmetry of the system, and
6554 * not so much from breaking the tie between identical CPUs. That's also the
6555 * reason why EAS is enabled in the topology code only for systems where
6556 * SD_ASYM_CPUCAPACITY is set.
6557 *
6558 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6559 * they don't have any useful utilization data yet and it's not possible to
6560 * forecast their impact on energy consumption. Consequently, they will be
6561 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6562 * to be energy-inefficient in some use-cases. The alternative would be to
6563 * bias new tasks towards specific types of CPUs first, or to try to infer
6564 * their util_avg from the parent task, but those heuristics could hurt
6565 * other use-cases too. So, until someone finds a better way to solve this,
6566 * let's keep things simple by re-using the existing slow path.
6567 */
6568
6569static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6570{
6571        unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6572        struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6573        int cpu, best_energy_cpu = prev_cpu;
6574        struct perf_domain *head, *pd;
6575        unsigned long cpu_cap, util;
6576        struct sched_domain *sd;
6577
6578        rcu_read_lock();
6579        pd = rcu_dereference(rd->pd);
6580        if (!pd || READ_ONCE(rd->overutilized))
6581                goto fail;
6582        head = pd;
6583
6584        /*
6585         * Energy-aware wake-up happens on the lowest sched_domain starting
6586         * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6587         */
6588        sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6589        while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6590                sd = sd->parent;
6591        if (!sd)
6592                goto fail;
6593
6594        sync_entity_load_avg(&p->se);
6595        if (!task_util_est(p))
6596                goto unlock;
6597
6598        for (; pd; pd = pd->next) {
6599                unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6600                int max_spare_cap_cpu = -1;
6601
6602                for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6603                        if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6604                                continue;
6605
6606                        /* Skip CPUs that will be overutilized. */
6607                        util = cpu_util_next(cpu, p, cpu);
6608                        cpu_cap = capacity_of(cpu);
6609                        if (cpu_cap * 1024 < util * capacity_margin)
6610                                continue;
6611
6612                        /* Always use prev_cpu as a candidate. */
6613                        if (cpu == prev_cpu) {
6614                                prev_energy = compute_energy(p, prev_cpu, head);
6615                                best_energy = min(best_energy, prev_energy);
6616                                continue;
6617                        }
6618
6619                        /*
6620                         * Find the CPU with the maximum spare capacity in
6621                         * the performance domain
6622                         */
6623                        spare_cap = cpu_cap - util;
6624                        if (spare_cap > max_spare_cap) {
6625                                max_spare_cap = spare_cap;
6626                                max_spare_cap_cpu = cpu;
6627                        }
6628                }
6629
6630                /* Evaluate the energy impact of using this CPU. */
6631                if (max_spare_cap_cpu >= 0) {
6632                        cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6633                        if (cur_energy < best_energy) {
6634                                best_energy = cur_energy;
6635                                best_energy_cpu = max_spare_cap_cpu;
6636                        }
6637                }
6638        }
6639unlock:
6640        rcu_read_unlock();
6641
6642        /*
6643         * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6644         * least 6% of the energy used by prev_cpu.
6645         */
6646        if (prev_energy == ULONG_MAX)
6647                return best_energy_cpu;
6648
6649        if ((prev_energy - best_energy) > (prev_energy >> 4))
6650                return best_energy_cpu;
6651
6652        return prev_cpu;
6653
6654fail:
6655        rcu_read_unlock();
6656
6657        return -1;
6658}
6659
6660/*
6661 * select_task_rq_fair: Select target runqueue for the waking task in domains
6662 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6663 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6664 *
6665 * Balances load by selecting the idlest CPU in the idlest group, or under
6666 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6667 *
6668 * Returns the target CPU number.
6669 *
6670 * preempt must be disabled.
6671 */
6672static int
6673select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6674{
6675        struct sched_domain *tmp, *sd = NULL;
6676        int cpu = smp_processor_id();
6677        int new_cpu = prev_cpu;
6678        int want_affine = 0;
6679        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6680
6681        if (sd_flag & SD_BALANCE_WAKE) {
6682                record_wakee(p);
6683
6684                if (sched_energy_enabled()) {
6685                        new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6686                        if (new_cpu >= 0)
6687                                return new_cpu;
6688                        new_cpu = prev_cpu;
6689                }
6690
6691                want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6692                              cpumask_test_cpu(cpu, &p->cpus_allowed);
6693        }
6694
6695        rcu_read_lock();
6696        for_each_domain(cpu, tmp) {
6697                if (!(tmp->flags & SD_LOAD_BALANCE))
6698                        break;
6699
6700                /*
6701                 * If both 'cpu' and 'prev_cpu' are part of this domain,
6702                 * cpu is a valid SD_WAKE_AFFINE target.
6703                 */
6704                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6705                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6706                        if (cpu != prev_cpu)
6707                                new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6708
6709                        sd = NULL; /* Prefer wake_affine over balance flags */
6710                        break;
6711                }
6712
6713                if (tmp->flags & sd_flag)
6714                        sd = tmp;
6715                else if (!want_affine)
6716                        break;
6717        }
6718
6719        if (unlikely(sd)) {
6720                /* Slow path */
6721                new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6722        } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6723                /* Fast path */
6724
6725                new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6726
6727                if (want_affine)
6728                        current->recent_used_cpu = cpu;
6729        }
6730        rcu_read_unlock();
6731
6732        return new_cpu;
6733}
6734
6735static void detach_entity_cfs_rq(struct sched_entity *se);
6736
6737/*
6738 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6739 * cfs_rq_of(p) references at time of call are still valid and identify the
6740 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6741 */
6742static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6743{
6744        /*
6745         * As blocked tasks retain absolute vruntime the migration needs to
6746         * deal with this by subtracting the old and adding the new
6747         * min_vruntime -- the latter is done by enqueue_entity() when placing
6748         * the task on the new runqueue.
6749         */
6750        if (p->state == TASK_WAKING) {
6751                struct sched_entity *se = &p->se;
6752                struct cfs_rq *cfs_rq = cfs_rq_of(se);
6753                u64 min_vruntime;
6754
6755#ifndef CONFIG_64BIT
6756                u64 min_vruntime_copy;
6757
6758                do {
6759                        min_vruntime_copy = cfs_rq->min_vruntime_copy;
6760                        smp_rmb();
6761                        min_vruntime = cfs_rq->min_vruntime;
6762                } while (min_vruntime != min_vruntime_copy);
6763#else
6764                min_vruntime = cfs_rq->min_vruntime;
6765#endif
6766
6767                se->vruntime -= min_vruntime;
6768        }
6769
6770        if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6771                /*
6772                 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6773                 * rq->lock and can modify state directly.
6774                 */
6775                lockdep_assert_held(&task_rq(p)->lock);
6776                detach_entity_cfs_rq(&p->se);
6777
6778        } else {
6779                /*
6780                 * We are supposed to update the task to "current" time, then
6781                 * its up to date and ready to go to new CPU/cfs_rq. But we
6782                 * have difficulty in getting what current time is, so simply
6783                 * throw away the out-of-date time. This will result in the
6784                 * wakee task is less decayed, but giving the wakee more load
6785                 * sounds not bad.
6786                 */
6787                remove_entity_load_avg(&p->se);
6788        }
6789
6790        /* Tell new CPU we are migrated */
6791        p->se.avg.last_update_time = 0;
6792
6793        /* We have migrated, no longer consider this task hot */
6794        p->se.exec_start = 0;
6795
6796        update_scan_period(p, new_cpu);
6797}
6798
6799static void task_dead_fair(struct task_struct *p)
6800{
6801        remove_entity_load_avg(&p->se);
6802}
6803#endif /* CONFIG_SMP */
6804
6805static unsigned long wakeup_gran(struct sched_entity *se)
6806{
6807        unsigned long gran = sysctl_sched_wakeup_granularity;
6808
6809        /*
6810         * Since its curr running now, convert the gran from real-time
6811         * to virtual-time in his units.
6812         *
6813         * By using 'se' instead of 'curr' we penalize light tasks, so
6814         * they get preempted easier. That is, if 'se' < 'curr' then
6815         * the resulting gran will be larger, therefore penalizing the
6816         * lighter, if otoh 'se' > 'curr' then the resulting gran will
6817         * be smaller, again penalizing the lighter task.
6818         *
6819         * This is especially important for buddies when the leftmost
6820         * task is higher priority than the buddy.
6821         */
6822        return calc_delta_fair(gran, se);
6823}
6824
6825/*
6826 * Should 'se' preempt 'curr'.
6827 *
6828 *             |s1
6829 *        |s2
6830 *   |s3
6831 *         g
6832 *      |<--->|c
6833 *
6834 *  w(c, s1) = -1
6835 *  w(c, s2) =  0
6836 *  w(c, s3) =  1
6837 *
6838 */
6839static int
6840wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6841{
6842        s64 gran, vdiff = curr->vruntime - se->vruntime;
6843
6844        if (vdiff <= 0)
6845                return -1;
6846
6847        gran = wakeup_gran(se);
6848        if (vdiff > gran)
6849                return 1;
6850
6851        return 0;
6852}
6853
6854static void set_last_buddy(struct sched_entity *se)
6855{
6856        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6857                return;
6858
6859        for_each_sched_entity(se) {
6860                if (SCHED_WARN_ON(!se->on_rq))
6861                        return;
6862                cfs_rq_of(se)->last = se;
6863        }
6864}
6865
6866static void set_next_buddy(struct sched_entity *se)
6867{
6868        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6869                return;
6870
6871        for_each_sched_entity(se) {
6872                if (SCHED_WARN_ON(!se->on_rq))
6873                        return;
6874                cfs_rq_of(se)->next = se;
6875        }
6876}
6877
6878static void set_skip_buddy(struct sched_entity *se)
6879{
6880        for_each_sched_entity(se)
6881                cfs_rq_of(se)->skip = se;
6882}
6883
6884/*
6885 * Preempt the current task with a newly woken task if needed:
6886 */
6887static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6888{
6889        struct task_struct *curr = rq->curr;
6890        struct sched_entity *se = &curr->se, *pse = &p->se;
6891        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6892        int scale = cfs_rq->nr_running >= sched_nr_latency;
6893        int next_buddy_marked = 0;
6894
6895        if (unlikely(se == pse))
6896                return;
6897
6898        /*
6899         * This is possible from callers such as attach_tasks(), in which we
6900         * unconditionally check_prempt_curr() after an enqueue (which may have
6901         * lead to a throttle).  This both saves work and prevents false
6902         * next-buddy nomination below.
6903         */
6904        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6905                return;
6906
6907        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6908                set_next_buddy(pse);
6909                next_buddy_marked = 1;
6910        }
6911
6912        /*
6913         * We can come here with TIF_NEED_RESCHED already set from new task
6914         * wake up path.
6915         *
6916         * Note: this also catches the edge-case of curr being in a throttled
6917         * group (e.g. via set_curr_task), since update_curr() (in the
6918         * enqueue of curr) will have resulted in resched being set.  This
6919         * prevents us from potentially nominating it as a false LAST_BUDDY
6920         * below.
6921         */
6922        if (test_tsk_need_resched(curr))
6923                return;
6924
6925        /* Idle tasks are by definition preempted by non-idle tasks. */
6926        if (unlikely(task_has_idle_policy(curr)) &&
6927            likely(!task_has_idle_policy(p)))
6928                goto preempt;
6929
6930        /*
6931         * Batch and idle tasks do not preempt non-idle tasks (their preemption
6932         * is driven by the tick):
6933         */
6934        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6935                return;
6936
6937        find_matching_se(&se, &pse);
6938        update_curr(cfs_rq_of(se));
6939        BUG_ON(!pse);
6940        if (wakeup_preempt_entity(se, pse) == 1) {
6941                /*
6942                 * Bias pick_next to pick the sched entity that is
6943                 * triggering this preemption.
6944                 */
6945                if (!next_buddy_marked)
6946                        set_next_buddy(pse);
6947                goto preempt;
6948        }
6949
6950        return;
6951
6952preempt:
6953        resched_curr(rq);
6954        /*
6955         * Only set the backward buddy when the current task is still
6956         * on the rq. This can happen when a wakeup gets interleaved
6957         * with schedule on the ->pre_schedule() or idle_balance()
6958         * point, either of which can * drop the rq lock.
6959         *
6960         * Also, during early boot the idle thread is in the fair class,
6961         * for obvious reasons its a bad idea to schedule back to it.
6962         */
6963        if (unlikely(!se->on_rq || curr == rq->idle))
6964                return;
6965
6966        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6967                set_last_buddy(se);
6968}
6969
6970static struct task_struct *
6971pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6972{
6973        struct cfs_rq *cfs_rq = &rq->cfs;
6974        struct sched_entity *se;
6975        struct task_struct *p;
6976        int new_tasks;
6977
6978again:
6979        if (!cfs_rq->nr_running)
6980                goto idle;
6981
6982#ifdef CONFIG_FAIR_GROUP_SCHED
6983        if (prev->sched_class != &fair_sched_class)
6984                goto simple;
6985
6986        /*
6987         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6988         * likely that a next task is from the same cgroup as the current.
6989         *
6990         * Therefore attempt to avoid putting and setting the entire cgroup
6991         * hierarchy, only change the part that actually changes.
6992         */
6993
6994        do {
6995                struct sched_entity *curr = cfs_rq->curr;
6996
6997                /*
6998                 * Since we got here without doing put_prev_entity() we also
6999                 * have to consider cfs_rq->curr. If it is still a runnable
7000                 * entity, update_curr() will update its vruntime, otherwise
7001                 * forget we've ever seen it.
7002                 */
7003                if (curr) {
7004                        if (curr->on_rq)
7005                                update_curr(cfs_rq);
7006                        else
7007                                curr = NULL;
7008
7009                        /*
7010                         * This call to check_cfs_rq_runtime() will do the
7011                         * throttle and dequeue its entity in the parent(s).
7012                         * Therefore the nr_running test will indeed
7013                         * be correct.
7014                         */
7015                        if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7016                                cfs_rq = &rq->cfs;
7017
7018                                if (!cfs_rq->nr_running)
7019                                        goto idle;
7020
7021                                goto simple;
7022                        }
7023                }
7024
7025                se = pick_next_entity(cfs_rq, curr);
7026                cfs_rq = group_cfs_rq(se);
7027        } while (cfs_rq);
7028
7029        p = task_of(se);
7030
7031        /*
7032         * Since we haven't yet done put_prev_entity and if the selected task
7033         * is a different task than we started out with, try and touch the
7034         * least amount of cfs_rqs.
7035         */
7036        if (prev != p) {
7037                struct sched_entity *pse = &prev->se;
7038
7039                while (!(cfs_rq = is_same_group(se, pse))) {
7040                        int se_depth = se->depth;
7041                        int pse_depth = pse->depth;
7042
7043                        if (se_depth <= pse_depth) {
7044                                put_prev_entity(cfs_rq_of(pse), pse);
7045                                pse = parent_entity(pse);
7046                        }
7047                        if (se_depth >= pse_depth) {
7048                                set_next_entity(cfs_rq_of(se), se);
7049                                se = parent_entity(se);
7050                        }
7051                }
7052
7053                put_prev_entity(cfs_rq, pse);
7054                set_next_entity(cfs_rq, se);
7055        }
7056
7057        goto done;
7058simple:
7059#endif
7060
7061        put_prev_task(rq, prev);
7062
7063        do {
7064                se = pick_next_entity(cfs_rq, NULL);
7065                set_next_entity(cfs_rq, se);
7066                cfs_rq = group_cfs_rq(se);
7067        } while (cfs_rq);
7068
7069        p = task_of(se);
7070
7071done: __maybe_unused;
7072#ifdef CONFIG_SMP
7073        /*
7074         * Move the next running task to the front of
7075         * the list, so our cfs_tasks list becomes MRU
7076         * one.
7077         */
7078        list_move(&p->se.group_node, &rq->cfs_tasks);
7079#endif
7080
7081        if (hrtick_enabled(rq))
7082                hrtick_start_fair(rq, p);
7083
7084        update_misfit_status(p, rq);
7085
7086        return p;
7087
7088idle:
7089        update_misfit_status(NULL, rq);
7090        new_tasks = idle_balance(rq, rf);
7091
7092        /*
7093         * Because idle_balance() releases (and re-acquires) rq->lock, it is
7094         * possible for any higher priority task to appear. In that case we
7095         * must re-start the pick_next_entity() loop.
7096         */
7097        if (new_tasks < 0)
7098                return RETRY_TASK;
7099
7100        if (new_tasks > 0)
7101                goto again;
7102
7103        /*
7104         * rq is about to be idle, check if we need to update the
7105         * lost_idle_time of clock_pelt
7106         */
7107        update_idle_rq_clock_pelt(rq);
7108
7109        return NULL;
7110}
7111
7112/*
7113 * Account for a descheduled task:
7114 */
7115static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7116{
7117        struct sched_entity *se = &prev->se;
7118        struct cfs_rq *cfs_rq;
7119
7120        for_each_sched_entity(se) {
7121                cfs_rq = cfs_rq_of(se);
7122                put_prev_entity(cfs_rq, se);
7123        }
7124}
7125
7126/*
7127 * sched_yield() is very simple
7128 *
7129 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7130 */
7131static void yield_task_fair(struct rq *rq)
7132{
7133        struct task_struct *curr = rq->curr;
7134        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7135        struct sched_entity *se = &curr->se;
7136
7137        /*
7138         * Are we the only task in the tree?
7139         */
7140        if (unlikely(rq->nr_running == 1))
7141                return;
7142
7143        clear_buddies(cfs_rq, se);
7144
7145        if (curr->policy != SCHED_BATCH) {
7146                update_rq_clock(rq);
7147                /*
7148                 * Update run-time statistics of the 'current'.
7149                 */
7150                update_curr(cfs_rq);
7151                /*
7152                 * Tell update_rq_clock() that we've just updated,
7153                 * so we don't do microscopic update in schedule()
7154                 * and double the fastpath cost.
7155                 */
7156                rq_clock_skip_update(rq);
7157        }
7158
7159        set_skip_buddy(se);
7160}
7161
7162static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7163{
7164        struct sched_entity *se = &p->se;
7165
7166        /* throttled hierarchies are not runnable */
7167        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7168                return false;
7169
7170        /* Tell the scheduler that we'd really like pse to run next. */
7171        set_next_buddy(se);
7172
7173        yield_task_fair(rq);
7174
7175        return true;
7176}
7177
7178#ifdef CONFIG_SMP
7179/**************************************************
7180 * Fair scheduling class load-balancing methods.
7181 *
7182 * BASICS
7183 *
7184 * The purpose of load-balancing is to achieve the same basic fairness the
7185 * per-CPU scheduler provides, namely provide a proportional amount of compute
7186 * time to each task. This is expressed in the following equation:
7187 *
7188 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7189 *
7190 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7191 * W_i,0 is defined as:
7192 *
7193 *   W_i,0 = \Sum_j w_i,j                                             (2)
7194 *
7195 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7196 * is derived from the nice value as per sched_prio_to_weight[].
7197 *
7198 * The weight average is an exponential decay average of the instantaneous
7199 * weight:
7200 *
7201 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7202 *
7203 * C_i is the compute capacity of CPU i, typically it is the
7204 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7205 * can also include other factors [XXX].
7206 *
7207 * To achieve this balance we define a measure of imbalance which follows
7208 * directly from (1):
7209 *
7210 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7211 *
7212 * We them move tasks around to minimize the imbalance. In the continuous
7213 * function space it is obvious this converges, in the discrete case we get
7214 * a few fun cases generally called infeasible weight scenarios.
7215 *
7216 * [XXX expand on:
7217 *     - infeasible weights;
7218 *     - local vs global optima in the discrete case. ]
7219 *
7220 *
7221 * SCHED DOMAINS
7222 *
7223 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7224 * for all i,j solution, we create a tree of CPUs that follows the hardware
7225 * topology where each level pairs two lower groups (or better). This results
7226 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7227 * tree to only the first of the previous level and we decrease the frequency
7228 * of load-balance at each level inv. proportional to the number of CPUs in
7229 * the groups.
7230 *
7231 * This yields:
7232 *
7233 *     log_2 n     1     n
7234 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7235 *     i = 0      2^i   2^i
7236 *                               `- size of each group
7237 *         |         |     `- number of CPUs doing load-balance
7238 *         |         `- freq
7239 *         `- sum over all levels
7240 *
7241 * Coupled with a limit on how many tasks we can migrate every balance pass,
7242 * this makes (5) the runtime complexity of the balancer.
7243 *
7244 * An important property here is that each CPU is still (indirectly) connected
7245 * to every other CPU in at most O(log n) steps:
7246 *
7247 * The adjacency matrix of the resulting graph is given by:
7248 *
7249 *             log_2 n
7250 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7251 *             k = 0
7252 *
7253 * And you'll find that:
7254 *
7255 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7256 *
7257 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7258 * The task movement gives a factor of O(m), giving a convergence complexity
7259 * of:
7260 *
7261 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7262 *
7263 *
7264 * WORK CONSERVING
7265 *
7266 * In order to avoid CPUs going idle while there's still work to do, new idle
7267 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7268 * tree itself instead of relying on other CPUs to bring it work.
7269 *
7270 * This adds some complexity to both (5) and (8) but it reduces the total idle
7271 * time.
7272 *
7273 * [XXX more?]
7274 *
7275 *
7276 * CGROUPS
7277 *
7278 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7279 *
7280 *                                s_k,i
7281 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7282 *                                 S_k
7283 *
7284 * Where
7285 *
7286 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7287 *
7288 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7289 *
7290 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7291 * property.
7292 *
7293 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7294 *      rewrite all of this once again.]
7295 */
7296
7297static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7298
7299enum fbq_type { regular, remote, all };
7300
7301enum group_type {
7302        group_other = 0,
7303        group_misfit_task,
7304        group_imbalanced,
7305        group_overloaded,
7306};
7307
7308#define LBF_ALL_PINNED  0x01
7309#define LBF_NEED_BREAK  0x02
7310#define LBF_DST_PINNED  0x04
7311#define LBF_SOME_PINNED 0x08
7312#define LBF_NOHZ_STATS  0x10
7313#define LBF_NOHZ_AGAIN  0x20
7314
7315struct lb_env {
7316        struct sched_domain     *sd;
7317
7318        struct rq               *src_rq;
7319        int                     src_cpu;
7320
7321        int                     dst_cpu;
7322        struct rq               *dst_rq;
7323
7324        struct cpumask          *dst_grpmask;
7325        int                     new_dst_cpu;
7326        enum cpu_idle_type      idle;
7327        long                    imbalance;
7328        /* The set of CPUs under consideration for load-balancing */
7329        struct cpumask          *cpus;
7330
7331        unsigned int            flags;
7332
7333        unsigned int            loop;
7334        unsigned int            loop_break;
7335        unsigned int            loop_max;
7336
7337        enum fbq_type           fbq_type;
7338        enum group_type         src_grp_type;
7339        struct list_head        tasks;
7340};
7341
7342/*
7343 * Is this task likely cache-hot:
7344 */
7345static int task_hot(struct task_struct *p, struct lb_env *env)
7346{
7347        s64 delta;
7348
7349        lockdep_assert_held(&env->src_rq->lock);
7350
7351        if (p->sched_class != &fair_sched_class)
7352                return 0;
7353
7354        if (unlikely(task_has_idle_policy(p)))
7355                return 0;
7356
7357        /*
7358         * Buddy candidates are cache hot:
7359         */
7360        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7361                        (&p->se == cfs_rq_of(&p->se)->next ||
7362                         &p->se == cfs_rq_of(&p->se)->last))
7363                return 1;
7364
7365        if (sysctl_sched_migration_cost == -1)
7366                return 1;
7367        if (sysctl_sched_migration_cost == 0)
7368                return 0;
7369
7370        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7371
7372        return delta < (s64)sysctl_sched_migration_cost;
7373}
7374
7375#ifdef CONFIG_NUMA_BALANCING
7376/*
7377 * Returns 1, if task migration degrades locality
7378 * Returns 0, if task migration improves locality i.e migration preferred.
7379 * Returns -1, if task migration is not affected by locality.
7380 */
7381static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7382{
7383        struct numa_group *numa_group = rcu_dereference(p->numa_group);
7384        unsigned long src_weight, dst_weight;
7385        int src_nid, dst_nid, dist;
7386
7387        if (!static_branch_likely(&sched_numa_balancing))
7388                return -1;
7389
7390        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7391                return -1;
7392
7393        src_nid = cpu_to_node(env->src_cpu);
7394        dst_nid = cpu_to_node(env->dst_cpu);
7395
7396        if (src_nid == dst_nid)
7397                return -1;
7398
7399        /* Migrating away from the preferred node is always bad. */
7400        if (src_nid == p->numa_preferred_nid) {
7401                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7402                        return 1;
7403                else
7404                        return -1;
7405        }
7406
7407        /* Encourage migration to the preferred node. */
7408        if (dst_nid == p->numa_preferred_nid)
7409                return 0;
7410
7411        /* Leaving a core idle is often worse than degrading locality. */
7412        if (env->idle == CPU_IDLE)
7413                return -1;
7414
7415        dist = node_distance(src_nid, dst_nid);
7416        if (numa_group) {
7417                src_weight = group_weight(p, src_nid, dist);
7418                dst_weight = group_weight(p, dst_nid, dist);
7419        } else {
7420                src_weight = task_weight(p, src_nid, dist);
7421                dst_weight = task_weight(p, dst_nid, dist);
7422        }
7423
7424        return dst_weight < src_weight;
7425}
7426
7427#else
7428static inline int migrate_degrades_locality(struct task_struct *p,
7429                                             struct lb_env *env)
7430{
7431        return -1;
7432}
7433#endif
7434
7435/*
7436 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7437 */
7438static
7439int can_migrate_task(struct task_struct *p, struct lb_env *env)
7440{
7441        int tsk_cache_hot;
7442
7443        lockdep_assert_held(&env->src_rq->lock);
7444
7445        /*
7446         * We do not migrate tasks that are:
7447         * 1) throttled_lb_pair, or
7448         * 2) cannot be migrated to this CPU due to cpus_allowed, or
7449         * 3) running (obviously), or
7450         * 4) are cache-hot on their current CPU.
7451         */
7452        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7453                return 0;
7454
7455        if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7456                int cpu;
7457
7458                schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7459
7460                env->flags |= LBF_SOME_PINNED;
7461
7462                /*
7463                 * Remember if this task can be migrated to any other CPU in
7464                 * our sched_group. We may want to revisit it if we couldn't
7465                 * meet load balance goals by pulling other tasks on src_cpu.
7466                 *
7467                 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7468                 * already computed one in current iteration.
7469                 */
7470                if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7471                        return 0;
7472
7473                /* Prevent to re-select dst_cpu via env's CPUs: */
7474                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7475                        if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7476                                env->flags |= LBF_DST_PINNED;
7477                                env->new_dst_cpu = cpu;
7478                                break;
7479                        }
7480                }
7481
7482                return 0;
7483        }
7484
7485        /* Record that we found atleast one task that could run on dst_cpu */
7486        env->flags &= ~LBF_ALL_PINNED;
7487
7488        if (task_running(env->src_rq, p)) {
7489                schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7490                return 0;
7491        }
7492
7493        /*
7494         * Aggressive migration if:
7495         * 1) destination numa is preferred
7496         * 2) task is cache cold, or
7497         * 3) too many balance attempts have failed.
7498         */
7499        tsk_cache_hot = migrate_degrades_locality(p, env);
7500        if (tsk_cache_hot == -1)
7501                tsk_cache_hot = task_hot(p, env);
7502
7503        if (tsk_cache_hot <= 0 ||
7504            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7505                if (tsk_cache_hot == 1) {
7506                        schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7507                        schedstat_inc(p->se.statistics.nr_forced_migrations);
7508                }
7509                return 1;
7510        }
7511
7512        schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7513        return 0;
7514}
7515
7516/*
7517 * detach_task() -- detach the task for the migration specified in env
7518 */
7519static void detach_task(struct task_struct *p, struct lb_env *env)
7520{
7521        lockdep_assert_held(&env->src_rq->lock);
7522
7523        deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7524        set_task_cpu(p, env->dst_cpu);
7525}
7526
7527/*
7528 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7529 * part of active balancing operations within "domain".
7530 *
7531 * Returns a task if successful and NULL otherwise.
7532 */
7533static struct task_struct *detach_one_task(struct lb_env *env)
7534{
7535        struct task_struct *p;
7536
7537        lockdep_assert_held(&env->src_rq->lock);
7538
7539        list_for_each_entry_reverse(p,
7540                        &env->src_rq->cfs_tasks, se.group_node) {
7541                if (!can_migrate_task(p, env))
7542                        continue;
7543
7544                detach_task(p, env);
7545
7546                /*
7547                 * Right now, this is only the second place where
7548                 * lb_gained[env->idle] is updated (other is detach_tasks)
7549                 * so we can safely collect stats here rather than
7550                 * inside detach_tasks().
7551                 */
7552                schedstat_inc(env->sd->lb_gained[env->idle]);
7553                return p;
7554        }
7555        return NULL;
7556}
7557
7558static const unsigned int sched_nr_migrate_break = 32;
7559
7560/*
7561 * detach_tasks() -- tries to detach up to imbalance weighted load from
7562 * busiest_rq, as part of a balancing operation within domain "sd".
7563 *
7564 * Returns number of detached tasks if successful and 0 otherwise.
7565 */
7566static int detach_tasks(struct lb_env *env)
7567{
7568        struct list_head *tasks = &env->src_rq->cfs_tasks;
7569        struct task_struct *p;
7570        unsigned long load;
7571        int detached = 0;
7572
7573        lockdep_assert_held(&env->src_rq->lock);
7574
7575        if (env->imbalance <= 0)
7576                return 0;
7577
7578        while (!list_empty(tasks)) {
7579                /*
7580                 * We don't want to steal all, otherwise we may be treated likewise,
7581                 * which could at worst lead to a livelock crash.
7582                 */
7583                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7584                        break;
7585
7586                p = list_last_entry(tasks, struct task_struct, se.group_node);
7587
7588                env->loop++;
7589                /* We've more or less seen every task there is, call it quits */
7590                if (env->loop > env->loop_max)
7591                        break;
7592
7593                /* take a breather every nr_migrate tasks */
7594                if (env->loop > env->loop_break) {
7595                        env->loop_break += sched_nr_migrate_break;
7596                        env->flags |= LBF_NEED_BREAK;
7597                        break;
7598                }
7599
7600                if (!can_migrate_task(p, env))
7601                        goto next;
7602
7603                load = task_h_load(p);
7604
7605                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7606                        goto next;
7607
7608                if ((load / 2) > env->imbalance)
7609                        goto next;
7610
7611                detach_task(p, env);
7612                list_add(&p->se.group_node, &env->tasks);
7613
7614                detached++;
7615                env->imbalance -= load;
7616
7617#ifdef CONFIG_PREEMPT
7618                /*
7619                 * NEWIDLE balancing is a source of latency, so preemptible
7620                 * kernels will stop after the first task is detached to minimize
7621                 * the critical section.
7622                 */
7623                if (env->idle == CPU_NEWLY_IDLE)
7624                        break;
7625#endif
7626
7627                /*
7628                 * We only want to steal up to the prescribed amount of
7629                 * weighted load.
7630                 */
7631                if (env->imbalance <= 0)
7632                        break;
7633
7634                continue;
7635next:
7636                list_move(&p->se.group_node, tasks);
7637        }
7638
7639        /*
7640         * Right now, this is one of only two places we collect this stat
7641         * so we can safely collect detach_one_task() stats here rather
7642         * than inside detach_one_task().
7643         */
7644        schedstat_add(env->sd->lb_gained[env->idle], detached);
7645
7646        return detached;
7647}
7648
7649/*
7650 * attach_task() -- attach the task detached by detach_task() to its new rq.
7651 */
7652static void attach_task(struct rq *rq, struct task_struct *p)
7653{
7654        lockdep_assert_held(&rq->lock);
7655
7656        BUG_ON(task_rq(p) != rq);
7657        activate_task(rq, p, ENQUEUE_NOCLOCK);
7658        check_preempt_curr(rq, p, 0);
7659}
7660
7661/*
7662 * attach_one_task() -- attaches the task returned from detach_one_task() to
7663 * its new rq.
7664 */
7665static void attach_one_task(struct rq *rq, struct task_struct *p)
7666{
7667        struct rq_flags rf;
7668
7669        rq_lock(rq, &rf);
7670        update_rq_clock(rq);
7671        attach_task(rq, p);
7672        rq_unlock(rq, &rf);
7673}
7674
7675/*
7676 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7677 * new rq.
7678 */
7679static void attach_tasks(struct lb_env *env)
7680{
7681        struct list_head *tasks = &env->tasks;
7682        struct task_struct *p;
7683        struct rq_flags rf;
7684
7685        rq_lock(env->dst_rq, &rf);
7686        update_rq_clock(env->dst_rq);
7687
7688        while (!list_empty(tasks)) {
7689                p = list_first_entry(tasks, struct task_struct, se.group_node);
7690                list_del_init(&p->se.group_node);
7691
7692                attach_task(env->dst_rq, p);
7693        }
7694
7695        rq_unlock(env->dst_rq, &rf);
7696}
7697
7698static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7699{
7700        if (cfs_rq->avg.load_avg)
7701                return true;
7702
7703        if (cfs_rq->avg.util_avg)
7704                return true;
7705
7706        return false;
7707}
7708
7709static inline bool others_have_blocked(struct rq *rq)
7710{
7711        if (READ_ONCE(rq->avg_rt.util_avg))
7712                return true;
7713
7714        if (READ_ONCE(rq->avg_dl.util_avg))
7715                return true;
7716
7717#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7718        if (READ_ONCE(rq->avg_irq.util_avg))
7719                return true;
7720#endif
7721
7722        return false;
7723}
7724
7725#ifdef CONFIG_FAIR_GROUP_SCHED
7726
7727static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7728{
7729        if (cfs_rq->load.weight)
7730                return false;
7731
7732        if (cfs_rq->avg.load_sum)
7733                return false;
7734
7735        if (cfs_rq->avg.util_sum)
7736                return false;
7737
7738        if (cfs_rq->avg.runnable_load_sum)
7739                return false;
7740
7741        return true;
7742}
7743
7744static void update_blocked_averages(int cpu)
7745{
7746        struct rq *rq = cpu_rq(cpu);
7747        struct cfs_rq *cfs_rq, *pos;
7748        const struct sched_class *curr_class;
7749        struct rq_flags rf;
7750        bool done = true;
7751
7752        rq_lock_irqsave(rq, &rf);
7753        update_rq_clock(rq);
7754
7755        /*
7756         * Iterates the task_group tree in a bottom up fashion, see
7757         * list_add_leaf_cfs_rq() for details.
7758         */
7759        for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7760                struct sched_entity *se;
7761
7762                if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7763                        update_tg_load_avg(cfs_rq, 0);
7764
7765                /* Propagate pending load changes to the parent, if any: */
7766                se = cfs_rq->tg->se[cpu];
7767                if (se && !skip_blocked_update(se))
7768                        update_load_avg(cfs_rq_of(se), se, 0);
7769
7770                /*
7771                 * There can be a lot of idle CPU cgroups.  Don't let fully
7772                 * decayed cfs_rqs linger on the list.
7773                 */
7774                if (cfs_rq_is_decayed(cfs_rq))
7775                        list_del_leaf_cfs_rq(cfs_rq);
7776
7777                /* Don't need periodic decay once load/util_avg are null */
7778                if (cfs_rq_has_blocked(cfs_rq))
7779                        done = false;
7780        }
7781
7782        curr_class = rq->curr->sched_class;
7783        update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7784        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7785        update_irq_load_avg(rq, 0);
7786        /* Don't need periodic decay once load/util_avg are null */
7787        if (others_have_blocked(rq))
7788                done = false;
7789
7790#ifdef CONFIG_NO_HZ_COMMON
7791        rq->last_blocked_load_update_tick = jiffies;
7792        if (done)
7793                rq->has_blocked_load = 0;
7794#endif
7795        rq_unlock_irqrestore(rq, &rf);
7796}
7797
7798/*
7799 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7800 * This needs to be done in a top-down fashion because the load of a child
7801 * group is a fraction of its parents load.
7802 */
7803static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7804{
7805        struct rq *rq = rq_of(cfs_rq);
7806        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7807        unsigned long now = jiffies;
7808        unsigned long load;
7809
7810        if (cfs_rq->last_h_load_update == now)
7811                return;
7812
7813        WRITE_ONCE(cfs_rq->h_load_next, NULL);
7814        for_each_sched_entity(se) {
7815                cfs_rq = cfs_rq_of(se);
7816                WRITE_ONCE(cfs_rq->h_load_next, se);
7817                if (cfs_rq->last_h_load_update == now)
7818                        break;
7819        }
7820
7821        if (!se) {
7822                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7823                cfs_rq->last_h_load_update = now;
7824        }
7825
7826        while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7827                load = cfs_rq->h_load;
7828                load = div64_ul(load * se->avg.load_avg,
7829                        cfs_rq_load_avg(cfs_rq) + 1);
7830                cfs_rq = group_cfs_rq(se);
7831                cfs_rq->h_load = load;
7832                cfs_rq->last_h_load_update = now;
7833        }
7834}
7835
7836static unsigned long task_h_load(struct task_struct *p)
7837{
7838        struct cfs_rq *cfs_rq = task_cfs_rq(p);
7839
7840        update_cfs_rq_h_load(cfs_rq);
7841        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7842                        cfs_rq_load_avg(cfs_rq) + 1);
7843}
7844#else
7845static inline void update_blocked_averages(int cpu)
7846{
7847        struct rq *rq = cpu_rq(cpu);
7848        struct cfs_rq *cfs_rq = &rq->cfs;
7849        const struct sched_class *curr_class;
7850        struct rq_flags rf;
7851
7852        rq_lock_irqsave(rq, &rf);
7853        update_rq_clock(rq);
7854        update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7855
7856        curr_class = rq->curr->sched_class;
7857        update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7858        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7859        update_irq_load_avg(rq, 0);
7860#ifdef CONFIG_NO_HZ_COMMON
7861        rq->last_blocked_load_update_tick = jiffies;
7862        if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7863                rq->has_blocked_load = 0;
7864#endif
7865        rq_unlock_irqrestore(rq, &rf);
7866}
7867
7868static unsigned long task_h_load(struct task_struct *p)
7869{
7870        return p->se.avg.load_avg;
7871}
7872#endif
7873
7874/********** Helpers for find_busiest_group ************************/
7875
7876/*
7877 * sg_lb_stats - stats of a sched_group required for load_balancing
7878 */
7879struct sg_lb_stats {
7880        unsigned long avg_load; /*Avg load across the CPUs of the group */
7881        unsigned long group_load; /* Total load over the CPUs of the group */
7882        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7883        unsigned long load_per_task;
7884        unsigned long group_capacity;
7885        unsigned long group_util; /* Total utilization of the group */
7886        unsigned int sum_nr_running; /* Nr tasks running in the group */
7887        unsigned int idle_cpus;
7888        unsigned int group_weight;
7889        enum group_type group_type;
7890        int group_no_capacity;
7891        unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7892#ifdef CONFIG_NUMA_BALANCING
7893        unsigned int nr_numa_running;
7894        unsigned int nr_preferred_running;
7895#endif
7896};
7897
7898/*
7899 * sd_lb_stats - Structure to store the statistics of a sched_domain
7900 *               during load balancing.
7901 */
7902struct sd_lb_stats {
7903        struct sched_group *busiest;    /* Busiest group in this sd */
7904        struct sched_group *local;      /* Local group in this sd */
7905        unsigned long total_running;
7906        unsigned long total_load;       /* Total load of all groups in sd */
7907        unsigned long total_capacity;   /* Total capacity of all groups in sd */
7908        unsigned long avg_load; /* Average load across all groups in sd */
7909
7910        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7911        struct sg_lb_stats local_stat;  /* Statistics of the local group */
7912};
7913
7914static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7915{
7916        /*
7917         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7918         * local_stat because update_sg_lb_stats() does a full clear/assignment.
7919         * We must however clear busiest_stat::avg_load because
7920         * update_sd_pick_busiest() reads this before assignment.
7921         */
7922        *sds = (struct sd_lb_stats){
7923                .busiest = NULL,
7924                .local = NULL,
7925                .total_running = 0UL,
7926                .total_load = 0UL,
7927                .total_capacity = 0UL,
7928                .busiest_stat = {
7929                        .avg_load = 0UL,
7930                        .sum_nr_running = 0,
7931                        .group_type = group_other,
7932                },
7933        };
7934}
7935
7936/**
7937 * get_sd_load_idx - Obtain the load index for a given sched domain.
7938 * @sd: The sched_domain whose load_idx is to be obtained.
7939 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7940 *
7941 * Return: The load index.
7942 */
7943static inline int get_sd_load_idx(struct sched_domain *sd,
7944                                        enum cpu_idle_type idle)
7945{
7946        int load_idx;
7947
7948        switch (idle) {
7949        case CPU_NOT_IDLE:
7950                load_idx = sd->busy_idx;
7951                break;
7952
7953        case CPU_NEWLY_IDLE:
7954                load_idx = sd->newidle_idx;
7955                break;
7956        default:
7957                load_idx = sd->idle_idx;
7958                break;
7959        }
7960
7961        return load_idx;
7962}
7963
7964static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7965{
7966        struct rq *rq = cpu_rq(cpu);
7967        unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7968        unsigned long used, free;
7969        unsigned long irq;
7970
7971        irq = cpu_util_irq(rq);
7972
7973        if (unlikely(irq >= max))
7974                return 1;
7975
7976        used = READ_ONCE(rq->avg_rt.util_avg);
7977        used += READ_ONCE(rq->avg_dl.util_avg);
7978
7979        if (unlikely(used >= max))
7980                return 1;
7981
7982        free = max - used;
7983
7984        return scale_irq_capacity(free, irq, max);
7985}
7986
7987static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7988{
7989        unsigned long capacity = scale_rt_capacity(sd, cpu);
7990        struct sched_group *sdg = sd->groups;
7991
7992        cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7993
7994        if (!capacity)
7995                capacity = 1;
7996
7997        cpu_rq(cpu)->cpu_capacity = capacity;
7998        sdg->sgc->capacity = capacity;
7999        sdg->sgc->min_capacity = capacity;
8000        sdg->sgc->max_capacity = capacity;
8001}
8002
8003void update_group_capacity(struct sched_domain *sd, int cpu)
8004{
8005        struct sched_domain *child = sd->child;
8006        struct sched_group *group, *sdg = sd->groups;
8007        unsigned long capacity, min_capacity, max_capacity;
8008        unsigned long interval;
8009
8010        interval = msecs_to_jiffies(sd->balance_interval);
8011        interval = clamp(interval, 1UL, max_load_balance_interval);
8012        sdg->sgc->next_update = jiffies + interval;
8013
8014        if (!child) {
8015                update_cpu_capacity(sd, cpu);
8016                return;
8017        }
8018
8019        capacity = 0;
8020        min_capacity = ULONG_MAX;
8021        max_capacity = 0;
8022
8023        if (child->flags & SD_OVERLAP) {
8024                /*
8025                 * SD_OVERLAP domains cannot assume that child groups
8026                 * span the current group.
8027                 */
8028
8029                for_each_cpu(cpu, sched_group_span(sdg)) {
8030                        struct sched_group_capacity *sgc;
8031                        struct rq *rq = cpu_rq(cpu);
8032
8033                        /*
8034                         * build_sched_domains() -> init_sched_groups_capacity()
8035                         * gets here before we've attached the domains to the
8036                         * runqueues.
8037                         *
8038                         * Use capacity_of(), which is set irrespective of domains
8039                         * in update_cpu_capacity().
8040                         *
8041                         * This avoids capacity from being 0 and
8042                         * causing divide-by-zero issues on boot.
8043                         */
8044                        if (unlikely(!rq->sd)) {
8045                                capacity += capacity_of(cpu);
8046                        } else {
8047                                sgc = rq->sd->groups->sgc;
8048                                capacity += sgc->capacity;
8049                        }
8050
8051                        min_capacity = min(capacity, min_capacity);
8052                        max_capacity = max(capacity, max_capacity);
8053                }
8054        } else  {
8055                /*
8056                 * !SD_OVERLAP domains can assume that child groups
8057                 * span the current group.
8058                 */
8059
8060                group = child->groups;
8061                do {
8062                        struct sched_group_capacity *sgc = group->sgc;
8063
8064                        capacity += sgc->capacity;
8065                        min_capacity = min(sgc->min_capacity, min_capacity);
8066                        max_capacity = max(sgc->max_capacity, max_capacity);
8067                        group = group->next;
8068                } while (group != child->groups);
8069        }
8070
8071        sdg->sgc->capacity = capacity;
8072        sdg->sgc->min_capacity = min_capacity;
8073        sdg->sgc->max_capacity = max_capacity;
8074}
8075
8076/*
8077 * Check whether the capacity of the rq has been noticeably reduced by side
8078 * activity. The imbalance_pct is used for the threshold.
8079 * Return true is the capacity is reduced
8080 */
8081static inline int
8082check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8083{
8084        return ((rq->cpu_capacity * sd->imbalance_pct) <
8085                                (rq->cpu_capacity_orig * 100));
8086}
8087
8088/*
8089 * Check whether a rq has a misfit task and if it looks like we can actually
8090 * help that task: we can migrate the task to a CPU of higher capacity, or
8091 * the task's current CPU is heavily pressured.
8092 */
8093static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8094{
8095        return rq->misfit_task_load &&
8096                (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8097                 check_cpu_capacity(rq, sd));
8098}
8099
8100/*
8101 * Group imbalance indicates (and tries to solve) the problem where balancing
8102 * groups is inadequate due to ->cpus_allowed constraints.
8103 *
8104 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8105 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8106 * Something like:
8107 *
8108 *      { 0 1 2 3 } { 4 5 6 7 }
8109 *              *     * * *
8110 *
8111 * If we were to balance group-wise we'd place two tasks in the first group and
8112 * two tasks in the second group. Clearly this is undesired as it will overload
8113 * cpu 3 and leave one of the CPUs in the second group unused.
8114 *
8115 * The current solution to this issue is detecting the skew in the first group
8116 * by noticing the lower domain failed to reach balance and had difficulty
8117 * moving tasks due to affinity constraints.
8118 *
8119 * When this is so detected; this group becomes a candidate for busiest; see
8120 * update_sd_pick_busiest(). And calculate_imbalance() and
8121 * find_busiest_group() avoid some of the usual balance conditions to allow it
8122 * to create an effective group imbalance.
8123 *
8124 * This is a somewhat tricky proposition since the next run might not find the
8125 * group imbalance and decide the groups need to be balanced again. A most
8126 * subtle and fragile situation.
8127 */
8128
8129static inline int sg_imbalanced(struct sched_group *group)
8130{
8131        return group->sgc->imbalance;
8132}
8133
8134/*
8135 * group_has_capacity returns true if the group has spare capacity that could
8136 * be used by some tasks.
8137 * We consider that a group has spare capacity if the  * number of task is
8138 * smaller than the number of CPUs or if the utilization is lower than the
8139 * available capacity for CFS tasks.
8140 * For the latter, we use a threshold to stabilize the state, to take into
8141 * account the variance of the tasks' load and to return true if the available
8142 * capacity in meaningful for the load balancer.
8143 * As an example, an available capacity of 1% can appear but it doesn't make
8144 * any benefit for the load balance.
8145 */
8146static inline bool
8147group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8148{
8149        if (sgs->sum_nr_running < sgs->group_weight)
8150                return true;
8151
8152        if ((sgs->group_capacity * 100) >
8153                        (sgs->group_util * env->sd->imbalance_pct))
8154                return true;
8155
8156        return false;
8157}
8158
8159/*
8160 *  group_is_overloaded returns true if the group has more tasks than it can
8161 *  handle.
8162 *  group_is_overloaded is not equals to !group_has_capacity because a group
8163 *  with the exact right number of tasks, has no more spare capacity but is not
8164 *  overloaded so both group_has_capacity and group_is_overloaded return
8165 *  false.
8166 */
8167static inline bool
8168group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8169{
8170        if (sgs->sum_nr_running <= sgs->group_weight)
8171                return false;
8172
8173        if ((sgs->group_capacity * 100) <
8174                        (sgs->group_util * env->sd->imbalance_pct))
8175                return true;
8176
8177        return false;
8178}
8179
8180/*
8181 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8182 * per-CPU capacity than sched_group ref.
8183 */
8184static inline bool
8185group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8186{
8187        return sg->sgc->min_capacity * capacity_margin <
8188                                                ref->sgc->min_capacity * 1024;
8189}
8190
8191/*
8192 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8193 * per-CPU capacity_orig than sched_group ref.
8194 */
8195static inline bool
8196group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8197{
8198        return sg->sgc->max_capacity * capacity_margin <
8199                                                ref->sgc->max_capacity * 1024;
8200}
8201
8202static inline enum
8203group_type group_classify(struct sched_group *group,
8204                          struct sg_lb_stats *sgs)
8205{
8206        if (sgs->group_no_capacity)
8207                return group_overloaded;
8208
8209        if (sg_imbalanced(group))
8210                return group_imbalanced;
8211
8212        if (sgs->group_misfit_task_load)
8213                return group_misfit_task;
8214
8215        return group_other;
8216}
8217
8218static bool update_nohz_stats(struct rq *rq, bool force)
8219{
8220#ifdef CONFIG_NO_HZ_COMMON
8221        unsigned int cpu = rq->cpu;
8222
8223        if (!rq->has_blocked_load)
8224                return false;
8225
8226        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8227                return false;
8228
8229        if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8230                return true;
8231
8232        update_blocked_averages(cpu);
8233
8234        return rq->has_blocked_load;
8235#else
8236        return false;
8237#endif
8238}
8239
8240/**
8241 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8242 * @env: The load balancing environment.
8243 * @group: sched_group whose statistics are to be updated.
8244 * @sgs: variable to hold the statistics for this group.
8245 * @sg_status: Holds flag indicating the status of the sched_group
8246 */
8247static inline void update_sg_lb_stats(struct lb_env *env,
8248                                      struct sched_group *group,
8249                                      struct sg_lb_stats *sgs,
8250                                      int *sg_status)
8251{
8252        int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8253        int load_idx = get_sd_load_idx(env->sd, env->idle);
8254        unsigned long load;
8255        int i, nr_running;
8256
8257        memset(sgs, 0, sizeof(*sgs));
8258
8259        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8260                struct rq *rq = cpu_rq(i);
8261
8262                if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8263                        env->flags |= LBF_NOHZ_AGAIN;
8264
8265                /* Bias balancing toward CPUs of our domain: */
8266                if (local_group)
8267                        load = target_load(i, load_idx);
8268                else
8269                        load = source_load(i, load_idx);
8270
8271                sgs->group_load += load;
8272                sgs->group_util += cpu_util(i);
8273                sgs->sum_nr_running += rq->cfs.h_nr_running;
8274
8275                nr_running = rq->nr_running;
8276                if (nr_running > 1)
8277                        *sg_status |= SG_OVERLOAD;
8278
8279                if (cpu_overutilized(i))
8280                        *sg_status |= SG_OVERUTILIZED;
8281
8282#ifdef CONFIG_NUMA_BALANCING
8283                sgs->nr_numa_running += rq->nr_numa_running;
8284                sgs->nr_preferred_running += rq->nr_preferred_running;
8285#endif
8286                sgs->sum_weighted_load += weighted_cpuload(rq);
8287                /*
8288                 * No need to call idle_cpu() if nr_running is not 0
8289                 */
8290                if (!nr_running && idle_cpu(i))
8291                        sgs->idle_cpus++;
8292
8293                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8294                    sgs->group_misfit_task_load < rq->misfit_task_load) {
8295                        sgs->group_misfit_task_load = rq->misfit_task_load;
8296                        *sg_status |= SG_OVERLOAD;
8297                }
8298        }
8299
8300        /* Adjust by relative CPU capacity of the group */
8301        sgs->group_capacity = group->sgc->capacity;
8302        sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8303
8304        if (sgs->sum_nr_running)
8305                sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8306
8307        sgs->group_weight = group->group_weight;
8308
8309        sgs->group_no_capacity = group_is_overloaded(env, sgs);
8310        sgs->group_type = group_classify(group, sgs);
8311}
8312
8313/**
8314 * update_sd_pick_busiest - return 1 on busiest group
8315 * @env: The load balancing environment.
8316 * @sds: sched_domain statistics
8317 * @sg: sched_group candidate to be checked for being the busiest
8318 * @sgs: sched_group statistics
8319 *
8320 * Determine if @sg is a busier group than the previously selected
8321 * busiest group.
8322 *
8323 * Return: %true if @sg is a busier group than the previously selected
8324 * busiest group. %false otherwise.
8325 */
8326static bool update_sd_pick_busiest(struct lb_env *env,
8327                                   struct sd_lb_stats *sds,
8328                                   struct sched_group *sg,
8329                                   struct sg_lb_stats *sgs)
8330{
8331        struct sg_lb_stats *busiest = &sds->busiest_stat;
8332
8333        /*
8334         * Don't try to pull misfit tasks we can't help.
8335         * We can use max_capacity here as reduction in capacity on some
8336         * CPUs in the group should either be possible to resolve
8337         * internally or be covered by avg_load imbalance (eventually).
8338         */
8339        if (sgs->group_type == group_misfit_task &&
8340            (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8341             !group_has_capacity(env, &sds->local_stat)))
8342                return false;
8343
8344        if (sgs->group_type > busiest->group_type)
8345                return true;
8346
8347        if (sgs->group_type < busiest->group_type)
8348                return false;
8349
8350        if (sgs->avg_load <= busiest->avg_load)
8351                return false;
8352
8353        if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8354                goto asym_packing;
8355
8356        /*
8357         * Candidate sg has no more than one task per CPU and
8358         * has higher per-CPU capacity. Migrating tasks to less
8359         * capable CPUs may harm throughput. Maximize throughput,
8360         * power/energy consequences are not considered.
8361         */
8362        if (sgs->sum_nr_running <= sgs->group_weight &&
8363            group_smaller_min_cpu_capacity(sds->local, sg))
8364                return false;
8365
8366        /*
8367         * If we have more than one misfit sg go with the biggest misfit.
8368         */
8369        if (sgs->group_type == group_misfit_task &&
8370            sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8371                return false;
8372
8373asym_packing:
8374        /* This is the busiest node in its class. */
8375        if (!(env->sd->flags & SD_ASYM_PACKING))
8376                return true;
8377
8378        /* No ASYM_PACKING if target CPU is already busy */
8379        if (env->idle == CPU_NOT_IDLE)
8380                return true;
8381        /*
8382         * ASYM_PACKING needs to move all the work to the highest
8383         * prority CPUs in the group, therefore mark all groups
8384         * of lower priority than ourself as busy.
8385         */
8386        if (sgs->sum_nr_running &&
8387            sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8388                if (!sds->busiest)
8389                        return true;
8390
8391                /* Prefer to move from lowest priority CPU's work */
8392                if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8393                                      sg->asym_prefer_cpu))
8394                        return true;
8395        }
8396
8397        return false;
8398}
8399
8400#ifdef CONFIG_NUMA_BALANCING
8401static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8402{
8403        if (sgs->sum_nr_running > sgs->nr_numa_running)
8404                return regular;
8405        if (sgs->sum_nr_running > sgs->nr_preferred_running)
8406                return remote;
8407        return all;
8408}
8409
8410static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8411{
8412        if (rq->nr_running > rq->nr_numa_running)
8413                return regular;
8414        if (rq->nr_running > rq->nr_preferred_running)
8415                return remote;
8416        return all;
8417}
8418#else
8419static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8420{
8421        return all;
8422}
8423
8424static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8425{
8426        return regular;
8427}
8428#endif /* CONFIG_NUMA_BALANCING */
8429
8430/**
8431 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8432 * @env: The load balancing environment.
8433 * @sds: variable to hold the statistics for this sched_domain.
8434 */
8435static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8436{
8437        struct sched_domain *child = env->sd->child;
8438        struct sched_group *sg = env->sd->groups;
8439        struct sg_lb_stats *local = &sds->local_stat;
8440        struct sg_lb_stats tmp_sgs;
8441        bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8442        int sg_status = 0;
8443
8444#ifdef CONFIG_NO_HZ_COMMON
8445        if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8446                env->flags |= LBF_NOHZ_STATS;
8447#endif
8448
8449        do {
8450                struct sg_lb_stats *sgs = &tmp_sgs;
8451                int local_group;
8452
8453                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8454                if (local_group) {
8455                        sds->local = sg;
8456                        sgs = local;
8457
8458                        if (env->idle != CPU_NEWLY_IDLE ||
8459                            time_after_eq(jiffies, sg->sgc->next_update))
8460                                update_group_capacity(env->sd, env->dst_cpu);
8461                }
8462
8463                update_sg_lb_stats(env, sg, sgs, &sg_status);
8464
8465                if (local_group)
8466                        goto next_group;
8467
8468                /*
8469                 * In case the child domain prefers tasks go to siblings
8470                 * first, lower the sg capacity so that we'll try
8471                 * and move all the excess tasks away. We lower the capacity
8472                 * of a group only if the local group has the capacity to fit
8473                 * these excess tasks. The extra check prevents the case where
8474                 * you always pull from the heaviest group when it is already
8475                 * under-utilized (possible with a large weight task outweighs
8476                 * the tasks on the system).
8477                 */
8478                if (prefer_sibling && sds->local &&
8479                    group_has_capacity(env, local) &&
8480                    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8481                        sgs->group_no_capacity = 1;
8482                        sgs->group_type = group_classify(sg, sgs);
8483                }
8484
8485                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8486                        sds->busiest = sg;
8487                        sds->busiest_stat = *sgs;
8488                }
8489
8490next_group:
8491                /* Now, start updating sd_lb_stats */
8492                sds->total_running += sgs->sum_nr_running;
8493                sds->total_load += sgs->group_load;
8494                sds->total_capacity += sgs->group_capacity;
8495
8496                sg = sg->next;
8497        } while (sg != env->sd->groups);
8498
8499#ifdef CONFIG_NO_HZ_COMMON
8500        if ((env->flags & LBF_NOHZ_AGAIN) &&
8501            cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8502
8503                WRITE_ONCE(nohz.next_blocked,
8504                           jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8505        }
8506#endif
8507
8508        if (env->sd->flags & SD_NUMA)
8509                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8510
8511        if (!env->sd->parent) {
8512                struct root_domain *rd = env->dst_rq->rd;
8513
8514                /* update overload indicator if we are at root domain */
8515                WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8516
8517                /* Update over-utilization (tipping point, U >= 0) indicator */
8518                WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8519        } else if (sg_status & SG_OVERUTILIZED) {
8520                WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8521        }
8522}
8523
8524/**
8525 * check_asym_packing - Check to see if the group is packed into the
8526 *                      sched domain.
8527 *
8528 * This is primarily intended to used at the sibling level.  Some
8529 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8530 * case of POWER7, it can move to lower SMT modes only when higher
8531 * threads are idle.  When in lower SMT modes, the threads will
8532 * perform better since they share less core resources.  Hence when we
8533 * have idle threads, we want them to be the higher ones.
8534 *
8535 * This packing function is run on idle threads.  It checks to see if
8536 * the busiest CPU in this domain (core in the P7 case) has a higher
8537 * CPU number than the packing function is being run on.  Here we are
8538 * assuming lower CPU number will be equivalent to lower a SMT thread
8539 * number.
8540 *
8541 * Return: 1 when packing is required and a task should be moved to
8542 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8543 *
8544 * @env: The load balancing environment.
8545 * @sds: Statistics of the sched_domain which is to be packed
8546 */
8547static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8548{
8549        int busiest_cpu;
8550
8551        if (!(env->sd->flags & SD_ASYM_PACKING))
8552                return 0;
8553
8554        if (env->idle == CPU_NOT_IDLE)
8555                return 0;
8556
8557        if (!sds->busiest)
8558                return 0;
8559
8560        busiest_cpu = sds->busiest->asym_prefer_cpu;
8561        if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8562                return 0;
8563
8564        env->imbalance = sds->busiest_stat.group_load;
8565
8566        return 1;
8567}
8568
8569/**
8570 * fix_small_imbalance - Calculate the minor imbalance that exists
8571 *                      amongst the groups of a sched_domain, during
8572 *                      load balancing.
8573 * @env: The load balancing environment.
8574 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8575 */
8576static inline
8577void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8578{
8579        unsigned long tmp, capa_now = 0, capa_move = 0;
8580        unsigned int imbn = 2;
8581        unsigned long scaled_busy_load_per_task;
8582        struct sg_lb_stats *local, *busiest;
8583
8584        local = &sds->local_stat;
8585        busiest = &sds->busiest_stat;
8586
8587        if (!local->sum_nr_running)
8588                local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8589        else if (busiest->load_per_task > local->load_per_task)
8590                imbn = 1;
8591
8592        scaled_busy_load_per_task =
8593                (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8594                busiest->group_capacity;
8595
8596        if (busiest->avg_load + scaled_busy_load_per_task >=
8597            local->avg_load + (scaled_busy_load_per_task * imbn)) {
8598                env->imbalance = busiest->load_per_task;
8599                return;
8600        }
8601
8602        /*
8603         * OK, we don't have enough imbalance to justify moving tasks,
8604         * however we may be able to increase total CPU capacity used by
8605         * moving them.
8606         */
8607
8608        capa_now += busiest->group_capacity *
8609                        min(busiest->load_per_task, busiest->avg_load);
8610        capa_now += local->group_capacity *
8611                        min(local->load_per_task, local->avg_load);
8612        capa_now /= SCHED_CAPACITY_SCALE;
8613
8614        /* Amount of load we'd subtract */
8615        if (busiest->avg_load > scaled_busy_load_per_task) {
8616                capa_move += busiest->group_capacity *
8617                            min(busiest->load_per_task,
8618                                busiest->avg_load - scaled_busy_load_per_task);
8619        }
8620
8621        /* Amount of load we'd add */
8622        if (busiest->avg_load * busiest->group_capacity <
8623            busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8624                tmp = (busiest->avg_load * busiest->group_capacity) /
8625                      local->group_capacity;
8626        } else {
8627                tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8628                      local->group_capacity;
8629        }
8630        capa_move += local->group_capacity *
8631                    min(local->load_per_task, local->avg_load + tmp);
8632        capa_move /= SCHED_CAPACITY_SCALE;
8633
8634        /* Move if we gain throughput */
8635        if (capa_move > capa_now)
8636                env->imbalance = busiest->load_per_task;
8637}
8638
8639/**
8640 * calculate_imbalance - Calculate the amount of imbalance present within the
8641 *                       groups of a given sched_domain during load balance.
8642 * @env: load balance environment
8643 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8644 */
8645static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8646{
8647        unsigned long max_pull, load_above_capacity = ~0UL;
8648        struct sg_lb_stats *local, *busiest;
8649
8650        local = &sds->local_stat;
8651        busiest = &sds->busiest_stat;
8652
8653        if (busiest->group_type == group_imbalanced) {
8654                /*
8655                 * In the group_imb case we cannot rely on group-wide averages
8656                 * to ensure CPU-load equilibrium, look at wider averages. XXX
8657                 */
8658                busiest->load_per_task =
8659                        min(busiest->load_per_task, sds->avg_load);
8660        }
8661
8662        /*
8663         * Avg load of busiest sg can be less and avg load of local sg can
8664         * be greater than avg load across all sgs of sd because avg load
8665         * factors in sg capacity and sgs with smaller group_type are
8666         * skipped when updating the busiest sg:
8667         */
8668        if (busiest->group_type != group_misfit_task &&
8669            (busiest->avg_load <= sds->avg_load ||
8670             local->avg_load >= sds->avg_load)) {
8671                env->imbalance = 0;
8672                return fix_small_imbalance(env, sds);
8673        }
8674
8675        /*
8676         * If there aren't any idle CPUs, avoid creating some.
8677         */
8678        if (busiest->group_type == group_overloaded &&
8679            local->group_type   == group_overloaded) {
8680                load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8681                if (load_above_capacity > busiest->group_capacity) {
8682                        load_above_capacity -= busiest->group_capacity;
8683                        load_above_capacity *= scale_load_down(NICE_0_LOAD);
8684                        load_above_capacity /= busiest->group_capacity;
8685                } else
8686                        load_above_capacity = ~0UL;
8687        }
8688
8689        /*
8690         * We're trying to get all the CPUs to the average_load, so we don't
8691         * want to push ourselves above the average load, nor do we wish to
8692         * reduce the max loaded CPU below the average load. At the same time,
8693         * we also don't want to reduce the group load below the group
8694         * capacity. Thus we look for the minimum possible imbalance.
8695         */
8696        max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8697
8698        /* How much load to actually move to equalise the imbalance */
8699        env->imbalance = min(
8700                max_pull * busiest->group_capacity,
8701                (sds->avg_load - local->avg_load) * local->group_capacity
8702        ) / SCHED_CAPACITY_SCALE;
8703
8704        /* Boost imbalance to allow misfit task to be balanced. */
8705        if (busiest->group_type == group_misfit_task) {
8706                env->imbalance = max_t(long, env->imbalance,
8707                                       busiest->group_misfit_task_load);
8708        }
8709
8710        /*
8711         * if *imbalance is less than the average load per runnable task
8712         * there is no guarantee that any tasks will be moved so we'll have
8713         * a think about bumping its value to force at least one task to be
8714         * moved
8715         */
8716        if (env->imbalance < busiest->load_per_task)
8717                return fix_small_imbalance(env, sds);
8718}
8719
8720/******* find_busiest_group() helpers end here *********************/
8721
8722/**
8723 * find_busiest_group - Returns the busiest group within the sched_domain
8724 * if there is an imbalance.
8725 *
8726 * Also calculates the amount of weighted load which should be moved
8727 * to restore balance.
8728 *
8729 * @env: The load balancing environment.
8730 *
8731 * Return:      - The busiest group if imbalance exists.
8732 */
8733static struct sched_group *find_busiest_group(struct lb_env *env)
8734{
8735        struct sg_lb_stats *local, *busiest;
8736        struct sd_lb_stats sds;
8737
8738        init_sd_lb_stats(&sds);
8739
8740        /*
8741         * Compute the various statistics relavent for load balancing at
8742         * this level.
8743         */
8744        update_sd_lb_stats(env, &sds);
8745
8746        if (sched_energy_enabled()) {
8747                struct root_domain *rd = env->dst_rq->rd;
8748
8749                if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8750                        goto out_balanced;
8751        }
8752
8753        local = &sds.local_stat;
8754        busiest = &sds.busiest_stat;
8755
8756        /* ASYM feature bypasses nice load balance check */
8757        if (check_asym_packing(env, &sds))
8758                return sds.busiest;
8759
8760        /* There is no busy sibling group to pull tasks from */
8761        if (!sds.busiest || busiest->sum_nr_running == 0)
8762                goto out_balanced;
8763
8764        /* XXX broken for overlapping NUMA groups */
8765        sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8766                                                / sds.total_capacity;
8767
8768        /*
8769         * If the busiest group is imbalanced the below checks don't
8770         * work because they assume all things are equal, which typically
8771         * isn't true due to cpus_allowed constraints and the like.
8772         */
8773        if (busiest->group_type == group_imbalanced)
8774                goto force_balance;
8775
8776        /*
8777         * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8778         * capacities from resulting in underutilization due to avg_load.
8779         */
8780        if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8781            busiest->group_no_capacity)
8782                goto force_balance;
8783
8784        /* Misfit tasks should be dealt with regardless of the avg load */
8785        if (busiest->group_type == group_misfit_task)
8786                goto force_balance;
8787
8788        /*
8789         * If the local group is busier than the selected busiest group
8790         * don't try and pull any tasks.
8791         */
8792        if (local->avg_load >= busiest->avg_load)
8793                goto out_balanced;
8794
8795        /*
8796         * Don't pull any tasks if this group is already above the domain
8797         * average load.
8798         */
8799        if (local->avg_load >= sds.avg_load)
8800                goto out_balanced;
8801
8802        if (env->idle == CPU_IDLE) {
8803                /*
8804                 * This CPU is idle. If the busiest group is not overloaded
8805                 * and there is no imbalance between this and busiest group
8806                 * wrt idle CPUs, it is balanced. The imbalance becomes
8807                 * significant if the diff is greater than 1 otherwise we
8808                 * might end up to just move the imbalance on another group
8809                 */
8810                if ((busiest->group_type != group_overloaded) &&
8811                                (local->idle_cpus <= (busiest->idle_cpus + 1)))
8812                        goto out_balanced;
8813        } else {
8814                /*
8815                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8816                 * imbalance_pct to be conservative.
8817                 */
8818                if (100 * busiest->avg_load <=
8819                                env->sd->imbalance_pct * local->avg_load)
8820                        goto out_balanced;
8821        }
8822
8823force_balance:
8824        /* Looks like there is an imbalance. Compute it */
8825        env->src_grp_type = busiest->group_type;
8826        calculate_imbalance(env, &sds);
8827        return env->imbalance ? sds.busiest : NULL;
8828
8829out_balanced:
8830        env->imbalance = 0;
8831        return NULL;
8832}
8833
8834/*
8835 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8836 */
8837static struct rq *find_busiest_queue(struct lb_env *env,
8838                                     struct sched_group *group)
8839{
8840        struct rq *busiest = NULL, *rq;
8841        unsigned long busiest_load = 0, busiest_capacity = 1;
8842        int i;
8843
8844        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8845                unsigned long capacity, wl;
8846                enum fbq_type rt;
8847
8848                rq = cpu_rq(i);
8849                rt = fbq_classify_rq(rq);
8850
8851                /*
8852                 * We classify groups/runqueues into three groups:
8853                 *  - regular: there are !numa tasks
8854                 *  - remote:  there are numa tasks that run on the 'wrong' node
8855                 *  - all:     there is no distinction
8856                 *
8857                 * In order to avoid migrating ideally placed numa tasks,
8858                 * ignore those when there's better options.
8859                 *
8860                 * If we ignore the actual busiest queue to migrate another
8861                 * task, the next balance pass can still reduce the busiest
8862                 * queue by moving tasks around inside the node.
8863                 *
8864                 * If we cannot move enough load due to this classification
8865                 * the next pass will adjust the group classification and
8866                 * allow migration of more tasks.
8867                 *
8868                 * Both cases only affect the total convergence complexity.
8869                 */
8870                if (rt > env->fbq_type)
8871                        continue;
8872
8873                /*
8874                 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8875                 * seek the "biggest" misfit task.
8876                 */
8877                if (env->src_grp_type == group_misfit_task) {
8878                        if (rq->misfit_task_load > busiest_load) {
8879                                busiest_load = rq->misfit_task_load;
8880                                busiest = rq;
8881                        }
8882
8883                        continue;
8884                }
8885
8886                capacity = capacity_of(i);
8887
8888                /*
8889                 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8890                 * eventually lead to active_balancing high->low capacity.
8891                 * Higher per-CPU capacity is considered better than balancing
8892                 * average load.
8893                 */
8894                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8895                    capacity_of(env->dst_cpu) < capacity &&
8896                    rq->nr_running == 1)
8897                        continue;
8898
8899                wl = weighted_cpuload(rq);
8900
8901                /*
8902                 * When comparing with imbalance, use weighted_cpuload()
8903                 * which is not scaled with the CPU capacity.
8904                 */
8905
8906                if (rq->nr_running == 1 && wl > env->imbalance &&
8907                    !check_cpu_capacity(rq, env->sd))
8908                        continue;
8909
8910                /*
8911                 * For the load comparisons with the other CPU's, consider
8912                 * the weighted_cpuload() scaled with the CPU capacity, so
8913                 * that the load can be moved away from the CPU that is
8914                 * potentially running at a lower capacity.
8915                 *
8916                 * Thus we're looking for max(wl_i / capacity_i), crosswise
8917                 * multiplication to rid ourselves of the division works out
8918                 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8919                 * our previous maximum.
8920                 */
8921                if (wl * busiest_capacity > busiest_load * capacity) {
8922                        busiest_load = wl;
8923                        busiest_capacity = capacity;
8924                        busiest = rq;
8925                }
8926        }
8927
8928        return busiest;
8929}
8930
8931/*
8932 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8933 * so long as it is large enough.
8934 */
8935#define MAX_PINNED_INTERVAL     512
8936
8937static inline bool
8938asym_active_balance(struct lb_env *env)
8939{
8940        /*
8941         * ASYM_PACKING needs to force migrate tasks from busy but
8942         * lower priority CPUs in order to pack all tasks in the
8943         * highest priority CPUs.
8944         */
8945        return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8946               sched_asym_prefer(env->dst_cpu, env->src_cpu);
8947}
8948
8949static inline bool
8950voluntary_active_balance(struct lb_env *env)
8951{
8952        struct sched_domain *sd = env->sd;
8953
8954        if (asym_active_balance(env))
8955                return 1;
8956
8957        /*
8958         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8959         * It's worth migrating the task if the src_cpu's capacity is reduced
8960         * because of other sched_class or IRQs if more capacity stays
8961         * available on dst_cpu.
8962         */
8963        if ((env->idle != CPU_NOT_IDLE) &&
8964            (env->src_rq->cfs.h_nr_running == 1)) {
8965                if ((check_cpu_capacity(env->src_rq, sd)) &&
8966                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8967                        return 1;
8968        }
8969
8970        if (env->src_grp_type == group_misfit_task)
8971                return 1;
8972
8973        return 0;
8974}
8975
8976static int need_active_balance(struct lb_env *env)
8977{
8978        struct sched_domain *sd = env->sd;
8979
8980        if (voluntary_active_balance(env))
8981                return 1;
8982
8983        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8984}
8985
8986static int active_load_balance_cpu_stop(void *data);
8987
8988static int should_we_balance(struct lb_env *env)
8989{
8990        struct sched_group *sg = env->sd->groups;
8991        int cpu, balance_cpu = -1;
8992
8993        /*
8994         * Ensure the balancing environment is consistent; can happen
8995         * when the softirq triggers 'during' hotplug.
8996         */
8997        if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8998                return 0;
8999
9000        /*
9001         * In the newly idle case, we will allow all the CPUs
9002         * to do the newly idle load balance.
9003         */
9004        if (env->idle == CPU_NEWLY_IDLE)
9005                return 1;
9006
9007        /* Try to find first idle CPU */
9008        for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9009                if (!idle_cpu(cpu))
9010                        continue;
9011
9012                balance_cpu = cpu;
9013                break;
9014        }
9015
9016        if (balance_cpu == -1)
9017                balance_cpu = group_balance_cpu(sg);
9018
9019        /*
9020         * First idle CPU or the first CPU(busiest) in this sched group
9021         * is eligible for doing load balancing at this and above domains.
9022         */
9023        return balance_cpu == env->dst_cpu;
9024}
9025
9026/*
9027 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9028 * tasks if there is an imbalance.
9029 */
9030static int load_balance(int this_cpu, struct rq *this_rq,
9031                        struct sched_domain *sd, enum cpu_idle_type idle,
9032                        int *continue_balancing)
9033{
9034        int ld_moved, cur_ld_moved, active_balance = 0;
9035        struct sched_domain *sd_parent = sd->parent;
9036        struct sched_group *group;
9037        struct rq *busiest;
9038        struct rq_flags rf;
9039        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9040
9041        struct lb_env env = {
9042                .sd             = sd,
9043                .dst_cpu        = this_cpu,
9044                .dst_rq         = this_rq,
9045                .dst_grpmask    = sched_group_span(sd->groups),
9046                .idle           = idle,
9047                .loop_break     = sched_nr_migrate_break,
9048                .cpus           = cpus,
9049                .fbq_type       = all,
9050                .tasks          = LIST_HEAD_INIT(env.tasks),
9051        };
9052
9053        cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9054
9055        schedstat_inc(sd->lb_count[idle]);
9056
9057redo:
9058        if (!should_we_balance(&env)) {
9059                *continue_balancing = 0;
9060                goto out_balanced;
9061        }
9062
9063        group = find_busiest_group(&env);
9064        if (!group) {
9065                schedstat_inc(sd->lb_nobusyg[idle]);
9066                goto out_balanced;
9067        }
9068
9069        busiest = find_busiest_queue(&env, group);
9070        if (!busiest) {
9071                schedstat_inc(sd->lb_nobusyq[idle]);
9072                goto out_balanced;
9073        }
9074
9075        BUG_ON(busiest == env.dst_rq);
9076
9077        schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9078
9079        env.src_cpu = busiest->cpu;
9080        env.src_rq = busiest;
9081
9082        ld_moved = 0;
9083        if (busiest->nr_running > 1) {
9084                /*
9085                 * Attempt to move tasks. If find_busiest_group has found
9086                 * an imbalance but busiest->nr_running <= 1, the group is
9087                 * still unbalanced. ld_moved simply stays zero, so it is
9088                 * correctly treated as an imbalance.
9089                 */
9090                env.flags |= LBF_ALL_PINNED;
9091                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9092
9093more_balance:
9094                rq_lock_irqsave(busiest, &rf);
9095                update_rq_clock(busiest);
9096
9097                /*
9098                 * cur_ld_moved - load moved in current iteration
9099                 * ld_moved     - cumulative load moved across iterations
9100                 */
9101                cur_ld_moved = detach_tasks(&env);
9102
9103                /*
9104                 * We've detached some tasks from busiest_rq. Every
9105                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9106                 * unlock busiest->lock, and we are able to be sure
9107                 * that nobody can manipulate the tasks in parallel.
9108                 * See task_rq_lock() family for the details.
9109                 */
9110
9111                rq_unlock(busiest, &rf);
9112
9113                if (cur_ld_moved) {
9114                        attach_tasks(&env);
9115                        ld_moved += cur_ld_moved;
9116                }
9117
9118                local_irq_restore(rf.flags);
9119
9120                if (env.flags & LBF_NEED_BREAK) {
9121                        env.flags &= ~LBF_NEED_BREAK;
9122                        goto more_balance;
9123                }
9124
9125                /*
9126                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9127                 * us and move them to an alternate dst_cpu in our sched_group
9128                 * where they can run. The upper limit on how many times we
9129                 * iterate on same src_cpu is dependent on number of CPUs in our
9130                 * sched_group.
9131                 *
9132                 * This changes load balance semantics a bit on who can move
9133                 * load to a given_cpu. In addition to the given_cpu itself
9134                 * (or a ilb_cpu acting on its behalf where given_cpu is
9135                 * nohz-idle), we now have balance_cpu in a position to move
9136                 * load to given_cpu. In rare situations, this may cause
9137                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9138                 * _independently_ and at _same_ time to move some load to
9139                 * given_cpu) causing exceess load to be moved to given_cpu.
9140                 * This however should not happen so much in practice and
9141                 * moreover subsequent load balance cycles should correct the
9142                 * excess load moved.
9143                 */
9144                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9145
9146                        /* Prevent to re-select dst_cpu via env's CPUs */
9147                        __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9148
9149                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
9150                        env.dst_cpu      = env.new_dst_cpu;
9151                        env.flags       &= ~LBF_DST_PINNED;
9152                        env.loop         = 0;
9153                        env.loop_break   = sched_nr_migrate_break;
9154
9155                        /*
9156                         * Go back to "more_balance" rather than "redo" since we
9157                         * need to continue with same src_cpu.
9158                         */
9159                        goto more_balance;
9160                }
9161
9162                /*
9163                 * We failed to reach balance because of affinity.
9164                 */
9165                if (sd_parent) {
9166                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9167
9168                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9169                                *group_imbalance = 1;
9170                }
9171
9172                /* All tasks on this runqueue were pinned by CPU affinity */
9173                if (unlikely(env.flags & LBF_ALL_PINNED)) {
9174                        __cpumask_clear_cpu(cpu_of(busiest), cpus);
9175                        /*
9176                         * Attempting to continue load balancing at the current
9177                         * sched_domain level only makes sense if there are
9178                         * active CPUs remaining as possible busiest CPUs to
9179                         * pull load from which are not contained within the
9180                         * destination group that is receiving any migrated
9181                         * load.
9182                         */
9183                        if (!cpumask_subset(cpus, env.dst_grpmask)) {
9184                                env.loop = 0;
9185                                env.loop_break = sched_nr_migrate_break;
9186                                goto redo;
9187                        }
9188                        goto out_all_pinned;
9189                }
9190        }
9191
9192        if (!ld_moved) {
9193                schedstat_inc(sd->lb_failed[idle]);
9194                /*
9195                 * Increment the failure counter only on periodic balance.
9196                 * We do not want newidle balance, which can be very
9197                 * frequent, pollute the failure counter causing
9198                 * excessive cache_hot migrations and active balances.
9199                 */
9200                if (idle != CPU_NEWLY_IDLE)
9201                        sd->nr_balance_failed++;
9202
9203                if (need_active_balance(&env)) {
9204                        unsigned long flags;
9205
9206                        raw_spin_lock_irqsave(&busiest->lock, flags);
9207
9208                        /*
9209                         * Don't kick the active_load_balance_cpu_stop,
9210                         * if the curr task on busiest CPU can't be
9211                         * moved to this_cpu:
9212                         */
9213                        if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9214                                raw_spin_unlock_irqrestore(&busiest->lock,
9215                                                            flags);
9216                                env.flags |= LBF_ALL_PINNED;
9217                                goto out_one_pinned;
9218                        }
9219
9220                        /*
9221                         * ->active_balance synchronizes accesses to
9222                         * ->active_balance_work.  Once set, it's cleared
9223                         * only after active load balance is finished.
9224                         */
9225                        if (!busiest->active_balance) {
9226                                busiest->active_balance = 1;
9227                                busiest->push_cpu = this_cpu;
9228                                active_balance = 1;
9229                        }
9230                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
9231
9232                        if (active_balance) {
9233                                stop_one_cpu_nowait(cpu_of(busiest),
9234                                        active_load_balance_cpu_stop, busiest,
9235                                        &busiest->active_balance_work);
9236                        }
9237
9238                        /* We've kicked active balancing, force task migration. */
9239                        sd->nr_balance_failed = sd->cache_nice_tries+1;
9240                }
9241        } else
9242                sd->nr_balance_failed = 0;
9243
9244        if (likely(!active_balance) || voluntary_active_balance(&env)) {
9245                /* We were unbalanced, so reset the balancing interval */
9246                sd->balance_interval = sd->min_interval;
9247        } else {
9248                /*
9249                 * If we've begun active balancing, start to back off. This
9250                 * case may not be covered by the all_pinned logic if there
9251                 * is only 1 task on the busy runqueue (because we don't call
9252                 * detach_tasks).
9253                 */
9254                if (sd->balance_interval < sd->max_interval)
9255                        sd->balance_interval *= 2;
9256        }
9257
9258        goto out;
9259
9260out_balanced:
9261        /*
9262         * We reach balance although we may have faced some affinity
9263         * constraints. Clear the imbalance flag if it was set.
9264         */
9265        if (sd_parent) {
9266                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9267
9268                if (*group_imbalance)
9269                        *group_imbalance = 0;
9270        }
9271
9272out_all_pinned:
9273        /*
9274         * We reach balance because all tasks are pinned at this level so
9275         * we can't migrate them. Let the imbalance flag set so parent level
9276         * can try to migrate them.
9277         */
9278        schedstat_inc(sd->lb_balanced[idle]);
9279
9280        sd->nr_balance_failed = 0;
9281
9282out_one_pinned:
9283        ld_moved = 0;
9284
9285        /*
9286         * idle_balance() disregards balance intervals, so we could repeatedly
9287         * reach this code, which would lead to balance_interval skyrocketting
9288         * in a short amount of time. Skip the balance_interval increase logic
9289         * to avoid that.
9290         */
9291        if (env.idle == CPU_NEWLY_IDLE)
9292                goto out;
9293
9294        /* tune up the balancing interval */
9295        if ((env.flags & LBF_ALL_PINNED &&
9296             sd->balance_interval < MAX_PINNED_INTERVAL) ||
9297            sd->balance_interval < sd->max_interval)
9298                sd->balance_interval *= 2;
9299out:
9300        return ld_moved;
9301}
9302
9303static inline unsigned long
9304get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9305{
9306        unsigned long interval = sd->balance_interval;
9307
9308        if (cpu_busy)
9309                interval *= sd->busy_factor;
9310
9311        /* scale ms to jiffies */
9312        interval = msecs_to_jiffies(interval);
9313        interval = clamp(interval, 1UL, max_load_balance_interval);
9314
9315        return interval;
9316}
9317
9318static inline void
9319update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9320{
9321        unsigned long interval, next;
9322
9323        /* used by idle balance, so cpu_busy = 0 */
9324        interval = get_sd_balance_interval(sd, 0);
9325        next = sd->last_balance + interval;
9326
9327        if (time_after(*next_balance, next))
9328                *next_balance = next;
9329}
9330
9331/*
9332 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9333 * running tasks off the busiest CPU onto idle CPUs. It requires at
9334 * least 1 task to be running on each physical CPU where possible, and
9335 * avoids physical / logical imbalances.
9336 */
9337static int active_load_balance_cpu_stop(void *data)
9338{
9339        struct rq *busiest_rq = data;
9340        int busiest_cpu = cpu_of(busiest_rq);
9341        int target_cpu = busiest_rq->push_cpu;
9342        struct rq *target_rq = cpu_rq(target_cpu);
9343        struct sched_domain *sd;
9344        struct task_struct *p = NULL;
9345        struct rq_flags rf;
9346
9347        rq_lock_irq(busiest_rq, &rf);
9348        /*
9349         * Between queueing the stop-work and running it is a hole in which
9350         * CPUs can become inactive. We should not move tasks from or to
9351         * inactive CPUs.
9352         */
9353        if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9354                goto out_unlock;
9355
9356        /* Make sure the requested CPU hasn't gone down in the meantime: */
9357        if (unlikely(busiest_cpu != smp_processor_id() ||
9358                     !busiest_rq->active_balance))
9359                goto out_unlock;
9360
9361        /* Is there any task to move? */
9362        if (busiest_rq->nr_running <= 1)
9363                goto out_unlock;
9364
9365        /*
9366         * This condition is "impossible", if it occurs
9367         * we need to fix it. Originally reported by
9368         * Bjorn Helgaas on a 128-CPU setup.
9369         */
9370        BUG_ON(busiest_rq == target_rq);
9371
9372        /* Search for an sd spanning us and the target CPU. */
9373        rcu_read_lock();
9374        for_each_domain(target_cpu, sd) {
9375                if ((sd->flags & SD_LOAD_BALANCE) &&
9376                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9377                                break;
9378        }
9379
9380        if (likely(sd)) {
9381                struct lb_env env = {
9382                        .sd             = sd,
9383                        .dst_cpu        = target_cpu,
9384                        .dst_rq         = target_rq,
9385                        .src_cpu        = busiest_rq->cpu,
9386                        .src_rq         = busiest_rq,
9387                        .idle           = CPU_IDLE,
9388                        /*
9389                         * can_migrate_task() doesn't need to compute new_dst_cpu
9390                         * for active balancing. Since we have CPU_IDLE, but no
9391                         * @dst_grpmask we need to make that test go away with lying
9392                         * about DST_PINNED.
9393                         */
9394                        .flags          = LBF_DST_PINNED,
9395                };
9396
9397                schedstat_inc(sd->alb_count);
9398                update_rq_clock(busiest_rq);
9399
9400                p = detach_one_task(&env);
9401                if (p) {
9402                        schedstat_inc(sd->alb_pushed);
9403                        /* Active balancing done, reset the failure counter. */
9404                        sd->nr_balance_failed = 0;
9405                } else {
9406                        schedstat_inc(sd->alb_failed);
9407                }
9408        }
9409        rcu_read_unlock();
9410out_unlock:
9411        busiest_rq->active_balance = 0;
9412        rq_unlock(busiest_rq, &rf);
9413
9414        if (p)
9415                attach_one_task(target_rq, p);
9416
9417        local_irq_enable();
9418
9419        return 0;
9420}
9421
9422static DEFINE_SPINLOCK(balancing);
9423
9424/*
9425 * Scale the max load_balance interval with the number of CPUs in the system.
9426 * This trades load-balance latency on larger machines for less cross talk.
9427 */
9428void update_max_interval(void)
9429{
9430        max_load_balance_interval = HZ*num_online_cpus()/10;
9431}
9432
9433/*
9434 * It checks each scheduling domain to see if it is due to be balanced,
9435 * and initiates a balancing operation if so.
9436 *
9437 * Balancing parameters are set up in init_sched_domains.
9438 */
9439static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9440{
9441        int continue_balancing = 1;
9442        int cpu = rq->cpu;
9443        unsigned long interval;
9444        struct sched_domain *sd;
9445        /* Earliest time when we have to do rebalance again */
9446        unsigned long next_balance = jiffies + 60*HZ;
9447        int update_next_balance = 0;
9448        int need_serialize, need_decay = 0;
9449        u64 max_cost = 0;
9450
9451        rcu_read_lock();
9452        for_each_domain(cpu, sd) {
9453                /*
9454                 * Decay the newidle max times here because this is a regular
9455                 * visit to all the domains. Decay ~1% per second.
9456                 */
9457                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9458                        sd->max_newidle_lb_cost =
9459                                (sd->max_newidle_lb_cost * 253) / 256;
9460                        sd->next_decay_max_lb_cost = jiffies + HZ;
9461                        need_decay = 1;
9462                }
9463                max_cost += sd->max_newidle_lb_cost;
9464
9465                if (!(sd->flags & SD_LOAD_BALANCE))
9466                        continue;
9467
9468                /*
9469                 * Stop the load balance at this level. There is another
9470                 * CPU in our sched group which is doing load balancing more
9471                 * actively.
9472                 */
9473                if (!continue_balancing) {
9474                        if (need_decay)
9475                                continue;
9476                        break;
9477                }
9478
9479                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9480
9481                need_serialize = sd->flags & SD_SERIALIZE;
9482                if (need_serialize) {
9483                        if (!spin_trylock(&balancing))
9484                                goto out;
9485                }
9486
9487                if (time_after_eq(jiffies, sd->last_balance + interval)) {
9488                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9489                                /*
9490                                 * The LBF_DST_PINNED logic could have changed
9491                                 * env->dst_cpu, so we can't know our idle
9492                                 * state even if we migrated tasks. Update it.
9493                                 */
9494                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9495                        }
9496                        sd->last_balance = jiffies;
9497                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9498                }
9499                if (need_serialize)
9500                        spin_unlock(&balancing);
9501out:
9502                if (time_after(next_balance, sd->last_balance + interval)) {
9503                        next_balance = sd->last_balance + interval;
9504                        update_next_balance = 1;
9505                }
9506        }
9507        if (need_decay) {
9508                /*
9509                 * Ensure the rq-wide value also decays but keep it at a
9510                 * reasonable floor to avoid funnies with rq->avg_idle.
9511                 */
9512                rq->max_idle_balance_cost =
9513                        max((u64)sysctl_sched_migration_cost, max_cost);
9514        }
9515        rcu_read_unlock();
9516
9517        /*
9518         * next_balance will be updated only when there is a need.
9519         * When the cpu is attached to null domain for ex, it will not be
9520         * updated.
9521         */
9522        if (likely(update_next_balance)) {
9523                rq->next_balance = next_balance;
9524
9525#ifdef CONFIG_NO_HZ_COMMON
9526                /*
9527                 * If this CPU has been elected to perform the nohz idle
9528                 * balance. Other idle CPUs have already rebalanced with
9529                 * nohz_idle_balance() and nohz.next_balance has been
9530                 * updated accordingly. This CPU is now running the idle load
9531                 * balance for itself and we need to update the
9532                 * nohz.next_balance accordingly.
9533                 */
9534                if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9535                        nohz.next_balance = rq->next_balance;
9536#endif
9537        }
9538}
9539
9540static inline int on_null_domain(struct rq *rq)
9541{
9542        return unlikely(!rcu_dereference_sched(rq->sd));
9543}
9544
9545#ifdef CONFIG_NO_HZ_COMMON
9546/*
9547 * idle load balancing details
9548 * - When one of the busy CPUs notice that there may be an idle rebalancing
9549 *   needed, they will kick the idle load balancer, which then does idle
9550 *   load balancing for all the idle CPUs.
9551 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9552 *   anywhere yet.
9553 */
9554
9555static inline int find_new_ilb(void)
9556{
9557        int ilb;
9558
9559        for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9560                              housekeeping_cpumask(HK_FLAG_MISC)) {
9561                if (idle_cpu(ilb))
9562                        return ilb;
9563        }
9564
9565        return nr_cpu_ids;
9566}
9567
9568/*
9569 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9570 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9571 */
9572static void kick_ilb(unsigned int flags)
9573{
9574        int ilb_cpu;
9575
9576        nohz.next_balance++;
9577
9578        ilb_cpu = find_new_ilb();
9579
9580        if (ilb_cpu >= nr_cpu_ids)
9581                return;
9582
9583        flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9584        if (flags & NOHZ_KICK_MASK)
9585                return;
9586
9587        /*
9588         * Use smp_send_reschedule() instead of resched_cpu().
9589         * This way we generate a sched IPI on the target CPU which
9590         * is idle. And the softirq performing nohz idle load balance
9591         * will be run before returning from the IPI.
9592         */
9593        smp_send_reschedule(ilb_cpu);
9594}
9595
9596/*
9597 * Current decision point for kicking the idle load balancer in the presence
9598 * of idle CPUs in the system.
9599 */
9600static void nohz_balancer_kick(struct rq *rq)
9601{
9602        unsigned long now = jiffies;
9603        struct sched_domain_shared *sds;
9604        struct sched_domain *sd;
9605        int nr_busy, i, cpu = rq->cpu;
9606        unsigned int flags = 0;
9607
9608        if (unlikely(rq->idle_balance))
9609                return;
9610
9611        /*
9612         * We may be recently in ticked or tickless idle mode. At the first
9613         * busy tick after returning from idle, we will update the busy stats.
9614         */
9615        nohz_balance_exit_idle(rq);
9616
9617        /*
9618         * None are in tickless mode and hence no need for NOHZ idle load
9619         * balancing.
9620         */
9621        if (likely(!atomic_read(&nohz.nr_cpus)))
9622                return;
9623
9624        if (READ_ONCE(nohz.has_blocked) &&
9625            time_after(now, READ_ONCE(nohz.next_blocked)))
9626                flags = NOHZ_STATS_KICK;
9627
9628        if (time_before(now, nohz.next_balance))
9629                goto out;
9630
9631        if (rq->nr_running >= 2) {
9632                flags = NOHZ_KICK_MASK;
9633                goto out;
9634        }
9635
9636        rcu_read_lock();
9637
9638        sd = rcu_dereference(rq->sd);
9639        if (sd) {
9640                /*
9641                 * If there's a CFS task and the current CPU has reduced
9642                 * capacity; kick the ILB to see if there's a better CPU to run
9643                 * on.
9644                 */
9645                if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9646                        flags = NOHZ_KICK_MASK;
9647                        goto unlock;
9648                }
9649        }
9650
9651        sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9652        if (sd) {
9653                /*
9654                 * When ASYM_PACKING; see if there's a more preferred CPU
9655                 * currently idle; in which case, kick the ILB to move tasks
9656                 * around.
9657                 */
9658                for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9659                        if (sched_asym_prefer(i, cpu)) {
9660                                flags = NOHZ_KICK_MASK;
9661                                goto unlock;
9662                        }
9663                }
9664        }
9665
9666        sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9667        if (sd) {
9668                /*
9669                 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9670                 * to run the misfit task on.
9671                 */
9672                if (check_misfit_status(rq, sd)) {
9673                        flags = NOHZ_KICK_MASK;
9674                        goto unlock;
9675                }
9676
9677                /*
9678                 * For asymmetric systems, we do not want to nicely balance
9679                 * cache use, instead we want to embrace asymmetry and only
9680                 * ensure tasks have enough CPU capacity.
9681                 *
9682                 * Skip the LLC logic because it's not relevant in that case.
9683                 */
9684                goto unlock;
9685        }
9686
9687        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9688        if (sds) {
9689                /*
9690                 * If there is an imbalance between LLC domains (IOW we could
9691                 * increase the overall cache use), we need some less-loaded LLC
9692                 * domain to pull some load. Likewise, we may need to spread
9693                 * load within the current LLC domain (e.g. packed SMT cores but
9694                 * other CPUs are idle). We can't really know from here how busy
9695                 * the others are - so just get a nohz balance going if it looks
9696                 * like this LLC domain has tasks we could move.
9697                 */
9698                nr_busy = atomic_read(&sds->nr_busy_cpus);
9699                if (nr_busy > 1) {
9700                        flags = NOHZ_KICK_MASK;
9701                        goto unlock;
9702                }
9703        }
9704unlock:
9705        rcu_read_unlock();
9706out:
9707        if (flags)
9708                kick_ilb(flags);
9709}
9710
9711static void set_cpu_sd_state_busy(int cpu)
9712{
9713        struct sched_domain *sd;
9714
9715        rcu_read_lock();
9716        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9717
9718        if (!sd || !sd->nohz_idle)
9719                goto unlock;
9720        sd->nohz_idle = 0;
9721
9722        atomic_inc(&sd->shared->nr_busy_cpus);
9723unlock:
9724        rcu_read_unlock();
9725}
9726
9727void nohz_balance_exit_idle(struct rq *rq)
9728{
9729        SCHED_WARN_ON(rq != this_rq());
9730
9731        if (likely(!rq->nohz_tick_stopped))
9732                return;
9733
9734        rq->nohz_tick_stopped = 0;
9735        cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9736        atomic_dec(&nohz.nr_cpus);
9737
9738        set_cpu_sd_state_busy(rq->cpu);
9739}
9740
9741static void set_cpu_sd_state_idle(int cpu)
9742{
9743        struct sched_domain *sd;
9744
9745        rcu_read_lock();
9746        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9747
9748        if (!sd || sd->nohz_idle)
9749                goto unlock;
9750        sd->nohz_idle = 1;
9751
9752        atomic_dec(&sd->shared->nr_busy_cpus);
9753unlock:
9754        rcu_read_unlock();
9755}
9756
9757/*
9758 * This routine will record that the CPU is going idle with tick stopped.
9759 * This info will be used in performing idle load balancing in the future.
9760 */
9761void nohz_balance_enter_idle(int cpu)
9762{
9763        struct rq *rq = cpu_rq(cpu);
9764
9765        SCHED_WARN_ON(cpu != smp_processor_id());
9766
9767        /* If this CPU is going down, then nothing needs to be done: */
9768        if (!cpu_active(cpu))
9769                return;
9770
9771        /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9772        if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9773                return;
9774
9775        /*
9776         * Can be set safely without rq->lock held
9777         * If a clear happens, it will have evaluated last additions because
9778         * rq->lock is held during the check and the clear
9779         */
9780        rq->has_blocked_load = 1;
9781
9782        /*
9783         * The tick is still stopped but load could have been added in the
9784         * meantime. We set the nohz.has_blocked flag to trig a check of the
9785         * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9786         * of nohz.has_blocked can only happen after checking the new load
9787         */
9788        if (rq->nohz_tick_stopped)
9789                goto out;
9790
9791        /* If we're a completely isolated CPU, we don't play: */
9792        if (on_null_domain(rq))
9793                return;
9794
9795        rq->nohz_tick_stopped = 1;
9796
9797        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9798        atomic_inc(&nohz.nr_cpus);
9799
9800        /*
9801         * Ensures that if nohz_idle_balance() fails to observe our
9802         * @idle_cpus_mask store, it must observe the @has_blocked
9803         * store.
9804         */
9805        smp_mb__after_atomic();
9806
9807        set_cpu_sd_state_idle(cpu);
9808
9809out:
9810        /*
9811         * Each time a cpu enter idle, we assume that it has blocked load and
9812         * enable the periodic update of the load of idle cpus
9813         */
9814        WRITE_ONCE(nohz.has_blocked, 1);
9815}
9816
9817/*
9818 * Internal function that runs load balance for all idle cpus. The load balance
9819 * can be a simple update of blocked load or a complete load balance with
9820 * tasks movement depending of flags.
9821 * The function returns false if the loop has stopped before running
9822 * through all idle CPUs.
9823 */
9824static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9825                               enum cpu_idle_type idle)
9826{
9827        /* Earliest time when we have to do rebalance again */
9828        unsigned long now = jiffies;
9829        unsigned long next_balance = now + 60*HZ;
9830        bool has_blocked_load = false;
9831        int update_next_balance = 0;
9832        int this_cpu = this_rq->cpu;
9833        int balance_cpu;
9834        int ret = false;
9835        struct rq *rq;
9836
9837        SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9838
9839        /*
9840         * We assume there will be no idle load after this update and clear
9841         * the has_blocked flag. If a cpu enters idle in the mean time, it will
9842         * set the has_blocked flag and trig another update of idle load.
9843         * Because a cpu that becomes idle, is added to idle_cpus_mask before
9844         * setting the flag, we are sure to not clear the state and not
9845         * check the load of an idle cpu.
9846         */
9847        WRITE_ONCE(nohz.has_blocked, 0);
9848
9849        /*
9850         * Ensures that if we miss the CPU, we must see the has_blocked
9851         * store from nohz_balance_enter_idle().
9852         */
9853        smp_mb();
9854
9855        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9856                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9857                        continue;
9858
9859                /*
9860                 * If this CPU gets work to do, stop the load balancing
9861                 * work being done for other CPUs. Next load
9862                 * balancing owner will pick it up.
9863                 */
9864                if (need_resched()) {
9865                        has_blocked_load = true;
9866                        goto abort;
9867                }
9868
9869                rq = cpu_rq(balance_cpu);
9870
9871                has_blocked_load |= update_nohz_stats(rq, true);
9872
9873                /*
9874                 * If time for next balance is due,
9875                 * do the balance.
9876                 */
9877                if (time_after_eq(jiffies, rq->next_balance)) {
9878                        struct rq_flags rf;
9879
9880                        rq_lock_irqsave(rq, &rf);
9881                        update_rq_clock(rq);
9882                        cpu_load_update_idle(rq);
9883                        rq_unlock_irqrestore(rq, &rf);
9884
9885                        if (flags & NOHZ_BALANCE_KICK)
9886                                rebalance_domains(rq, CPU_IDLE);
9887                }
9888
9889                if (time_after(next_balance, rq->next_balance)) {
9890                        next_balance = rq->next_balance;
9891                        update_next_balance = 1;
9892                }
9893        }
9894
9895        /* Newly idle CPU doesn't need an update */
9896        if (idle != CPU_NEWLY_IDLE) {
9897                update_blocked_averages(this_cpu);
9898                has_blocked_load |= this_rq->has_blocked_load;
9899        }
9900
9901        if (flags & NOHZ_BALANCE_KICK)
9902                rebalance_domains(this_rq, CPU_IDLE);
9903
9904        WRITE_ONCE(nohz.next_blocked,
9905                now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9906
9907        /* The full idle balance loop has been done */
9908        ret = true;
9909
9910abort:
9911        /* There is still blocked load, enable periodic update */
9912        if (has_blocked_load)
9913                WRITE_ONCE(nohz.has_blocked, 1);
9914
9915        /*
9916         * next_balance will be updated only when there is a need.
9917         * When the CPU is attached to null domain for ex, it will not be
9918         * updated.
9919         */
9920        if (likely(update_next_balance))
9921                nohz.next_balance = next_balance;
9922
9923        return ret;
9924}
9925
9926/*
9927 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9928 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9929 */
9930static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9931{
9932        int this_cpu = this_rq->cpu;
9933        unsigned int flags;
9934
9935        if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9936                return false;
9937
9938        if (idle != CPU_IDLE) {
9939                atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9940                return false;
9941        }
9942
9943        /* could be _relaxed() */
9944        flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9945        if (!(flags & NOHZ_KICK_MASK))
9946                return false;
9947
9948        _nohz_idle_balance(this_rq, flags, idle);
9949
9950        return true;
9951}
9952
9953static void nohz_newidle_balance(struct rq *this_rq)
9954{
9955        int this_cpu = this_rq->cpu;
9956
9957        /*
9958         * This CPU doesn't want to be disturbed by scheduler
9959         * housekeeping
9960         */
9961        if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9962                return;
9963
9964        /* Will wake up very soon. No time for doing anything else*/
9965        if (this_rq->avg_idle < sysctl_sched_migration_cost)
9966                return;
9967
9968        /* Don't need to update blocked load of idle CPUs*/
9969        if (!READ_ONCE(nohz.has_blocked) ||
9970            time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9971                return;
9972
9973        raw_spin_unlock(&this_rq->lock);
9974        /*
9975         * This CPU is going to be idle and blocked load of idle CPUs
9976         * need to be updated. Run the ilb locally as it is a good
9977         * candidate for ilb instead of waking up another idle CPU.
9978         * Kick an normal ilb if we failed to do the update.
9979         */
9980        if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9981                kick_ilb(NOHZ_STATS_KICK);
9982        raw_spin_lock(&this_rq->lock);
9983}
9984
9985#else /* !CONFIG_NO_HZ_COMMON */
9986static inline void nohz_balancer_kick(struct rq *rq) { }
9987
9988static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9989{
9990        return false;
9991}
9992
9993static inline void nohz_newidle_balance(struct rq *this_rq) { }
9994#endif /* CONFIG_NO_HZ_COMMON */
9995
9996/*
9997 * idle_balance is called by schedule() if this_cpu is about to become
9998 * idle. Attempts to pull tasks from other CPUs.
9999 */
10000static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
10001{
10002        unsigned long next_balance = jiffies + HZ;
10003        int this_cpu = this_rq->cpu;
10004        struct sched_domain *sd;
10005        int pulled_task = 0;
10006        u64 curr_cost = 0;
10007
10008        /*
10009         * We must set idle_stamp _before_ calling idle_balance(), such that we
10010         * measure the duration of idle_balance() as idle time.
10011         */
10012        this_rq->idle_stamp = rq_clock(this_rq);
10013
10014        /*
10015         * Do not pull tasks towards !active CPUs...
10016         */
10017        if (!cpu_active(this_cpu))
10018                return 0;
10019
10020        /*
10021         * This is OK, because current is on_cpu, which avoids it being picked
10022         * for load-balance and preemption/IRQs are still disabled avoiding
10023         * further scheduler activity on it and we're being very careful to
10024         * re-start the picking loop.
10025         */
10026        rq_unpin_lock(this_rq, rf);
10027
10028        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10029            !READ_ONCE(this_rq->rd->overload)) {
10030
10031                rcu_read_lock();
10032                sd = rcu_dereference_check_sched_domain(this_rq->sd);
10033                if (sd)
10034                        update_next_balance(sd, &next_balance);
10035                rcu_read_unlock();
10036
10037                nohz_newidle_balance(this_rq);
10038
10039                goto out;
10040        }
10041
10042        raw_spin_unlock(&this_rq->lock);
10043
10044        update_blocked_averages(this_cpu);
10045        rcu_read_lock();
10046        for_each_domain(this_cpu, sd) {
10047                int continue_balancing = 1;
10048                u64 t0, domain_cost;
10049
10050                if (!(sd->flags & SD_LOAD_BALANCE))
10051                        continue;
10052
10053                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10054                        update_next_balance(sd, &next_balance);
10055                        break;
10056                }
10057
10058                if (sd->flags & SD_BALANCE_NEWIDLE) {
10059                        t0 = sched_clock_cpu(this_cpu);
10060
10061                        pulled_task = load_balance(this_cpu, this_rq,
10062                                                   sd, CPU_NEWLY_IDLE,
10063                                                   &continue_balancing);
10064
10065                        domain_cost = sched_clock_cpu(this_cpu) - t0;
10066                        if (domain_cost > sd->max_newidle_lb_cost)
10067                                sd->max_newidle_lb_cost = domain_cost;
10068
10069                        curr_cost += domain_cost;
10070                }
10071
10072                update_next_balance(sd, &next_balance);
10073
10074                /*
10075                 * Stop searching for tasks to pull if there are
10076                 * now runnable tasks on this rq.
10077                 */
10078                if (pulled_task || this_rq->nr_running > 0)
10079                        break;
10080        }
10081        rcu_read_unlock();
10082
10083        raw_spin_lock(&this_rq->lock);
10084
10085        if (curr_cost > this_rq->max_idle_balance_cost)
10086                this_rq->max_idle_balance_cost = curr_cost;
10087
10088out:
10089        /*
10090         * While browsing the domains, we released the rq lock, a task could
10091         * have been enqueued in the meantime. Since we're not going idle,
10092         * pretend we pulled a task.
10093         */
10094        if (this_rq->cfs.h_nr_running && !pulled_task)
10095                pulled_task = 1;
10096
10097        /* Move the next balance forward */
10098        if (time_after(this_rq->next_balance, next_balance))
10099                this_rq->next_balance = next_balance;
10100
10101        /* Is there a task of a high priority class? */
10102        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10103                pulled_task = -1;
10104
10105        if (pulled_task)
10106                this_rq->idle_stamp = 0;
10107
10108        rq_repin_lock(this_rq, rf);
10109
10110        return pulled_task;
10111}
10112
10113/*
10114 * run_rebalance_domains is triggered when needed from the scheduler tick.
10115 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10116 */
10117static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10118{
10119        struct rq *this_rq = this_rq();
10120        enum cpu_idle_type idle = this_rq->idle_balance ?
10121                                                CPU_IDLE : CPU_NOT_IDLE;
10122
10123        /*
10124         * If this CPU has a pending nohz_balance_kick, then do the
10125         * balancing on behalf of the other idle CPUs whose ticks are
10126         * stopped. Do nohz_idle_balance *before* rebalance_domains to
10127         * give the idle CPUs a chance to load balance. Else we may
10128         * load balance only within the local sched_domain hierarchy
10129         * and abort nohz_idle_balance altogether if we pull some load.
10130         */
10131        if (nohz_idle_balance(this_rq, idle))
10132                return;
10133
10134        /* normal load balance */
10135        update_blocked_averages(this_rq->cpu);
10136        rebalance_domains(this_rq, idle);
10137}
10138
10139/*
10140 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10141 */
10142void trigger_load_balance(struct rq *rq)
10143{
10144        /* Don't need to rebalance while attached to NULL domain */
10145        if (unlikely(on_null_domain(rq)))
10146                return;
10147
10148        if (time_after_eq(jiffies, rq->next_balance))
10149                raise_softirq(SCHED_SOFTIRQ);
10150
10151        nohz_balancer_kick(rq);
10152}
10153
10154static void rq_online_fair(struct rq *rq)
10155{
10156        update_sysctl();
10157
10158        update_runtime_enabled(rq);
10159}
10160
10161static void rq_offline_fair(struct rq *rq)
10162{
10163        update_sysctl();
10164
10165        /* Ensure any throttled groups are reachable by pick_next_task */
10166        unthrottle_offline_cfs_rqs(rq);
10167}
10168
10169#endif /* CONFIG_SMP */
10170
10171/*
10172 * scheduler tick hitting a task of our scheduling class.
10173 *
10174 * NOTE: This function can be called remotely by the tick offload that
10175 * goes along full dynticks. Therefore no local assumption can be made
10176 * and everything must be accessed through the @rq and @curr passed in
10177 * parameters.
10178 */
10179static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10180{
10181        struct cfs_rq *cfs_rq;
10182        struct sched_entity *se = &curr->se;
10183
10184        for_each_sched_entity(se) {
10185                cfs_rq = cfs_rq_of(se);
10186                entity_tick(cfs_rq, se, queued);
10187        }
10188
10189        if (static_branch_unlikely(&sched_numa_balancing))
10190                task_tick_numa(rq, curr);
10191
10192        update_misfit_status(curr, rq);
10193        update_overutilized_status(task_rq(curr));
10194}
10195
10196/*
10197 * called on fork with the child task as argument from the parent's context
10198 *  - child not yet on the tasklist
10199 *  - preemption disabled
10200 */
10201static void task_fork_fair(struct task_struct *p)
10202{
10203        struct cfs_rq *cfs_rq;
10204        struct sched_entity *se = &p->se, *curr;
10205        struct rq *rq = this_rq();
10206        struct rq_flags rf;
10207
10208        rq_lock(rq, &rf);
10209        update_rq_clock(rq);
10210
10211        cfs_rq = task_cfs_rq(current);
10212        curr = cfs_rq->curr;
10213        if (curr) {
10214                update_curr(cfs_rq);
10215                se->vruntime = curr->vruntime;
10216        }
10217        place_entity(cfs_rq, se, 1);
10218
10219        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10220                /*
10221                 * Upon rescheduling, sched_class::put_prev_task() will place
10222                 * 'current' within the tree based on its new key value.
10223                 */
10224                swap(curr->vruntime, se->vruntime);
10225                resched_curr(rq);
10226        }
10227
10228        se->vruntime -= cfs_rq->min_vruntime;
10229        rq_unlock(rq, &rf);
10230}
10231
10232/*
10233 * Priority of the task has changed. Check to see if we preempt
10234 * the current task.
10235 */
10236static void
10237prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10238{
10239        if (!task_on_rq_queued(p))
10240                return;
10241
10242        /*
10243         * Reschedule if we are currently running on this runqueue and
10244         * our priority decreased, or if we are not currently running on
10245         * this runqueue and our priority is higher than the current's
10246         */
10247        if (rq->curr == p) {
10248                if (p->prio > oldprio)
10249                        resched_curr(rq);
10250        } else
10251                check_preempt_curr(rq, p, 0);
10252}
10253
10254static inline bool vruntime_normalized(struct task_struct *p)
10255{
10256        struct sched_entity *se = &p->se;
10257
10258        /*
10259         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10260         * the dequeue_entity(.flags=0) will already have normalized the
10261         * vruntime.
10262         */
10263        if (p->on_rq)
10264                return true;
10265
10266        /*
10267         * When !on_rq, vruntime of the task has usually NOT been normalized.
10268         * But there are some cases where it has already been normalized:
10269         *
10270         * - A forked child which is waiting for being woken up by
10271         *   wake_up_new_task().
10272         * - A task which has been woken up by try_to_wake_up() and
10273         *   waiting for actually being woken up by sched_ttwu_pending().
10274         */
10275        if (!se->sum_exec_runtime ||
10276            (p->state == TASK_WAKING && p->sched_remote_wakeup))
10277                return true;
10278
10279        return false;
10280}
10281
10282#ifdef CONFIG_FAIR_GROUP_SCHED
10283/*
10284 * Propagate the changes of the sched_entity across the tg tree to make it
10285 * visible to the root
10286 */
10287static void propagate_entity_cfs_rq(struct sched_entity *se)
10288{
10289        struct cfs_rq *cfs_rq;
10290
10291        /* Start to propagate at parent */
10292        se = se->parent;
10293
10294        for_each_sched_entity(se) {
10295                cfs_rq = cfs_rq_of(se);
10296
10297                if (cfs_rq_throttled(cfs_rq))
10298                        break;
10299
10300                update_load_avg(cfs_rq, se, UPDATE_TG);
10301        }
10302}
10303#else
10304static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10305#endif
10306
10307static void detach_entity_cfs_rq(struct sched_entity *se)
10308{
10309        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10310
10311        /* Catch up with the cfs_rq and remove our load when we leave */
10312        update_load_avg(cfs_rq, se, 0);
10313        detach_entity_load_avg(cfs_rq, se);
10314        update_tg_load_avg(cfs_rq, false);
10315        propagate_entity_cfs_rq(se);
10316}
10317
10318static void attach_entity_cfs_rq(struct sched_entity *se)
10319{
10320        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10321
10322#ifdef CONFIG_FAIR_GROUP_SCHED
10323        /*
10324         * Since the real-depth could have been changed (only FAIR
10325         * class maintain depth value), reset depth properly.
10326         */
10327        se->depth = se->parent ? se->parent->depth + 1 : 0;
10328#endif
10329
10330        /* Synchronize entity with its cfs_rq */
10331        update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10332        attach_entity_load_avg(cfs_rq, se, 0);
10333        update_tg_load_avg(cfs_rq, false);
10334        propagate_entity_cfs_rq(se);
10335}
10336
10337static void detach_task_cfs_rq(struct task_struct *p)
10338{
10339        struct sched_entity *se = &p->se;
10340        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10341
10342        if (!vruntime_normalized(p)) {
10343                /*
10344                 * Fix up our vruntime so that the current sleep doesn't
10345                 * cause 'unlimited' sleep bonus.
10346                 */
10347                place_entity(cfs_rq, se, 0);
10348                se->vruntime -= cfs_rq->min_vruntime;
10349        }
10350
10351        detach_entity_cfs_rq(se);
10352}
10353
10354static void attach_task_cfs_rq(struct task_struct *p)
10355{
10356        struct sched_entity *se = &p->se;
10357        struct cfs_rq *cfs_rq = cfs_rq_of(se);
10358
10359        attach_entity_cfs_rq(se);
10360
10361        if (!vruntime_normalized(p))
10362                se->vruntime += cfs_rq->min_vruntime;
10363}
10364
10365static void switched_from_fair(struct rq *rq, struct task_struct *p)
10366{
10367        detach_task_cfs_rq(p);
10368}
10369
10370static void switched_to_fair(struct rq *rq, struct task_struct *p)
10371{
10372        attach_task_cfs_rq(p);
10373
10374        if (task_on_rq_queued(p)) {
10375                /*
10376                 * We were most likely switched from sched_rt, so
10377                 * kick off the schedule if running, otherwise just see
10378                 * if we can still preempt the current task.
10379                 */
10380                if (rq->curr == p)
10381                        resched_curr(rq);
10382                else
10383                        check_preempt_curr(rq, p, 0);
10384        }
10385}
10386
10387/* Account for a task changing its policy or group.
10388 *
10389 * This routine is mostly called to set cfs_rq->curr field when a task
10390 * migrates between groups/classes.
10391 */
10392static void set_curr_task_fair(struct rq *rq)
10393{
10394        struct sched_entity *se = &rq->curr->se;
10395
10396        for_each_sched_entity(se) {
10397                struct cfs_rq *cfs_rq = cfs_rq_of(se);
10398
10399                set_next_entity(cfs_rq, se);
10400                /* ensure bandwidth has been allocated on our new cfs_rq */
10401                account_cfs_rq_runtime(cfs_rq, 0);
10402        }
10403}
10404
10405void init_cfs_rq(struct cfs_rq *cfs_rq)
10406{
10407        cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10408        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10409#ifndef CONFIG_64BIT
10410        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10411#endif
10412#ifdef CONFIG_SMP
10413        raw_spin_lock_init(&cfs_rq->removed.lock);
10414#endif
10415}
10416
10417#ifdef CONFIG_FAIR_GROUP_SCHED
10418static void task_set_group_fair(struct task_struct *p)
10419{
10420        struct sched_entity *se = &p->se;
10421
10422        set_task_rq(p, task_cpu(p));
10423        se->depth = se->parent ? se->parent->depth + 1 : 0;
10424}
10425
10426static void task_move_group_fair(struct task_struct *p)
10427{
10428        detach_task_cfs_rq(p);
10429        set_task_rq(p, task_cpu(p));
10430
10431#ifdef CONFIG_SMP
10432        /* Tell se's cfs_rq has been changed -- migrated */
10433        p->se.avg.last_update_time = 0;
10434#endif
10435        attach_task_cfs_rq(p);
10436}
10437
10438static void task_change_group_fair(struct task_struct *p, int type)
10439{
10440        switch (type) {
10441        case TASK_SET_GROUP:
10442                task_set_group_fair(p);
10443                break;
10444
10445        case TASK_MOVE_GROUP:
10446                task_move_group_fair(p);
10447                break;
10448        }
10449}
10450
10451void free_fair_sched_group(struct task_group *tg)
10452{
10453        int i;
10454
10455        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10456
10457        for_each_possible_cpu(i) {
10458                if (tg->cfs_rq)
10459                        kfree(tg->cfs_rq[i]);
10460                if (tg->se)
10461                        kfree(tg->se[i]);
10462        }
10463
10464        kfree(tg->cfs_rq);
10465        kfree(tg->se);
10466}
10467
10468int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10469{
10470        struct sched_entity *se;
10471        struct cfs_rq *cfs_rq;
10472        int i;
10473
10474        tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10475        if (!tg->cfs_rq)
10476                goto err;
10477        tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10478        if (!tg->se)
10479                goto err;
10480
10481        tg->shares = NICE_0_LOAD;
10482
10483        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10484
10485        for_each_possible_cpu(i) {
10486                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10487                                      GFP_KERNEL, cpu_to_node(i));
10488                if (!cfs_rq)
10489                        goto err;
10490
10491                se = kzalloc_node(sizeof(struct sched_entity),
10492                                  GFP_KERNEL, cpu_to_node(i));
10493                if (!se)
10494                        goto err_free_rq;
10495
10496                init_cfs_rq(cfs_rq);
10497                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10498                init_entity_runnable_average(se);
10499        }
10500
10501        return 1;
10502
10503err_free_rq:
10504        kfree(cfs_rq);
10505err:
10506        return 0;
10507}
10508
10509void online_fair_sched_group(struct task_group *tg)
10510{
10511        struct sched_entity *se;
10512        struct rq *rq;
10513        int i;
10514
10515        for_each_possible_cpu(i) {
10516                rq = cpu_rq(i);
10517                se = tg->se[i];
10518
10519                raw_spin_lock_irq(&rq->lock);
10520                update_rq_clock(rq);
10521                attach_entity_cfs_rq(se);
10522                sync_throttle(tg, i);
10523                raw_spin_unlock_irq(&rq->lock);
10524        }
10525}
10526
10527void unregister_fair_sched_group(struct task_group *tg)
10528{
10529        unsigned long flags;
10530        struct rq *rq;
10531        int cpu;
10532
10533        for_each_possible_cpu(cpu) {
10534                if (tg->se[cpu])
10535                        remove_entity_load_avg(tg->se[cpu]);
10536
10537                /*
10538                 * Only empty task groups can be destroyed; so we can speculatively
10539                 * check on_list without danger of it being re-added.
10540                 */
10541                if (!tg->cfs_rq[cpu]->on_list)
10542                        continue;
10543
10544                rq = cpu_rq(cpu);
10545
10546                raw_spin_lock_irqsave(&rq->lock, flags);
10547                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10548                raw_spin_unlock_irqrestore(&rq->lock, flags);
10549        }
10550}
10551
10552void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10553                        struct sched_entity *se, int cpu,
10554                        struct sched_entity *parent)
10555{
10556        struct rq *rq = cpu_rq(cpu);
10557
10558        cfs_rq->tg = tg;
10559        cfs_rq->rq = rq;
10560        init_cfs_rq_runtime(cfs_rq);
10561
10562        tg->cfs_rq[cpu] = cfs_rq;
10563        tg->se[cpu] = se;
10564
10565        /* se could be NULL for root_task_group */
10566        if (!se)
10567                return;
10568
10569        if (!parent) {
10570                se->cfs_rq = &rq->cfs;
10571                se->depth = 0;
10572        } else {
10573                se->cfs_rq = parent->my_q;
10574                se->depth = parent->depth + 1;
10575        }
10576
10577        se->my_q = cfs_rq;
10578        /* guarantee group entities always have weight */
10579        update_load_set(&se->load, NICE_0_LOAD);
10580        se->parent = parent;
10581}
10582
10583static DEFINE_MUTEX(shares_mutex);
10584
10585int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10586{
10587        int i;
10588
10589        /*
10590         * We can't change the weight of the root cgroup.
10591         */
10592        if (!tg->se[0])
10593                return -EINVAL;
10594
10595        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10596
10597        mutex_lock(&shares_mutex);
10598        if (tg->shares == shares)
10599                goto done;
10600
10601        tg->shares = shares;
10602        for_each_possible_cpu(i) {
10603                struct rq *rq = cpu_rq(i);
10604                struct sched_entity *se = tg->se[i];
10605                struct rq_flags rf;
10606
10607                /* Propagate contribution to hierarchy */
10608                rq_lock_irqsave(rq, &rf);
10609                update_rq_clock(rq);
10610                for_each_sched_entity(se) {
10611                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10612                        update_cfs_group(se);
10613                }
10614                rq_unlock_irqrestore(rq, &rf);
10615        }
10616
10617done:
10618        mutex_unlock(&shares_mutex);
10619        return 0;
10620}
10621#else /* CONFIG_FAIR_GROUP_SCHED */
10622
10623void free_fair_sched_group(struct task_group *tg) { }
10624
10625int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10626{
10627        return 1;
10628}
10629
10630void online_fair_sched_group(struct task_group *tg) { }
10631
10632void unregister_fair_sched_group(struct task_group *tg) { }
10633
10634#endif /* CONFIG_FAIR_GROUP_SCHED */
10635
10636
10637static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10638{
10639        struct sched_entity *se = &task->se;
10640        unsigned int rr_interval = 0;
10641
10642        /*
10643         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10644         * idle runqueue:
10645         */
10646        if (rq->cfs.load.weight)
10647                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10648
10649        return rr_interval;
10650}
10651
10652/*
10653 * All the scheduling class methods:
10654 */
10655const struct sched_class fair_sched_class = {
10656        .next                   = &idle_sched_class,
10657        .enqueue_task           = enqueue_task_fair,
10658        .dequeue_task           = dequeue_task_fair,
10659        .yield_task             = yield_task_fair,
10660        .yield_to_task          = yield_to_task_fair,
10661
10662        .check_preempt_curr     = check_preempt_wakeup,
10663
10664        .pick_next_task         = pick_next_task_fair,
10665        .put_prev_task          = put_prev_task_fair,
10666
10667#ifdef CONFIG_SMP
10668        .select_task_rq         = select_task_rq_fair,
10669        .migrate_task_rq        = migrate_task_rq_fair,
10670
10671        .rq_online              = rq_online_fair,
10672        .rq_offline             = rq_offline_fair,
10673
10674        .task_dead              = task_dead_fair,
10675        .set_cpus_allowed       = set_cpus_allowed_common,
10676#endif
10677
10678        .set_curr_task          = set_curr_task_fair,
10679        .task_tick              = task_tick_fair,
10680        .task_fork              = task_fork_fair,
10681
10682        .prio_changed           = prio_changed_fair,
10683        .switched_from          = switched_from_fair,
10684        .switched_to            = switched_to_fair,
10685
10686        .get_rr_interval        = get_rr_interval_fair,
10687
10688        .update_curr            = update_curr_fair,
10689
10690#ifdef CONFIG_FAIR_GROUP_SCHED
10691        .task_change_group      = task_change_group_fair,
10692#endif
10693};
10694
10695#ifdef CONFIG_SCHED_DEBUG
10696void print_cfs_stats(struct seq_file *m, int cpu)
10697{
10698        struct cfs_rq *cfs_rq, *pos;
10699
10700        rcu_read_lock();
10701        for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10702                print_cfs_rq(m, cpu, cfs_rq);
10703        rcu_read_unlock();
10704}
10705
10706#ifdef CONFIG_NUMA_BALANCING
10707void show_numa_stats(struct task_struct *p, struct seq_file *m)
10708{
10709        int node;
10710        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10711
10712        for_each_online_node(node) {
10713                if (p->numa_faults) {
10714                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10715                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10716                }
10717                if (p->numa_group) {
10718                        gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10719                        gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10720                }
10721                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10722        }
10723}
10724#endif /* CONFIG_NUMA_BALANCING */
10725#endif /* CONFIG_SCHED_DEBUG */
10726
10727__init void init_sched_fair_class(void)
10728{
10729#ifdef CONFIG_SMP
10730        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10731
10732#ifdef CONFIG_NO_HZ_COMMON
10733        nohz.next_balance = jiffies;
10734        nohz.next_blocked = jiffies;
10735        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10736#endif
10737#endif /* SMP */
10738
10739}
10740