linux/kernel/time/alarmtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Alarmtimer interface
   4 *
   5 * This interface provides a timer which is similarto hrtimers,
   6 * but triggers a RTC alarm if the box is suspend.
   7 *
   8 * This interface is influenced by the Android RTC Alarm timer
   9 * interface.
  10 *
  11 * Copyright (C) 2010 IBM Corperation
  12 *
  13 * Author: John Stultz <john.stultz@linaro.org>
  14 */
  15#include <linux/time.h>
  16#include <linux/hrtimer.h>
  17#include <linux/timerqueue.h>
  18#include <linux/rtc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/debug.h>
  21#include <linux/alarmtimer.h>
  22#include <linux/mutex.h>
  23#include <linux/platform_device.h>
  24#include <linux/posix-timers.h>
  25#include <linux/workqueue.h>
  26#include <linux/freezer.h>
  27#include <linux/compat.h>
  28#include <linux/module.h>
  29
  30#include "posix-timers.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/alarmtimer.h>
  34
  35/**
  36 * struct alarm_base - Alarm timer bases
  37 * @lock:               Lock for syncrhonized access to the base
  38 * @timerqueue:         Timerqueue head managing the list of events
  39 * @gettime:            Function to read the time correlating to the base
  40 * @base_clockid:       clockid for the base
  41 */
  42static struct alarm_base {
  43        spinlock_t              lock;
  44        struct timerqueue_head  timerqueue;
  45        ktime_t                 (*gettime)(void);
  46        clockid_t               base_clockid;
  47} alarm_bases[ALARM_NUMTYPE];
  48
  49#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
  50/* freezer information to handle clock_nanosleep triggered wakeups */
  51static enum alarmtimer_type freezer_alarmtype;
  52static ktime_t freezer_expires;
  53static ktime_t freezer_delta;
  54static DEFINE_SPINLOCK(freezer_delta_lock);
  55#endif
  56
  57#ifdef CONFIG_RTC_CLASS
  58static struct wakeup_source *ws;
  59
  60/* rtc timer and device for setting alarm wakeups at suspend */
  61static struct rtc_timer         rtctimer;
  62static struct rtc_device        *rtcdev;
  63static DEFINE_SPINLOCK(rtcdev_lock);
  64
  65/**
  66 * alarmtimer_get_rtcdev - Return selected rtcdevice
  67 *
  68 * This function returns the rtc device to use for wakealarms.
  69 * If one has not already been chosen, it checks to see if a
  70 * functional rtc device is available.
  71 */
  72struct rtc_device *alarmtimer_get_rtcdev(void)
  73{
  74        unsigned long flags;
  75        struct rtc_device *ret;
  76
  77        spin_lock_irqsave(&rtcdev_lock, flags);
  78        ret = rtcdev;
  79        spin_unlock_irqrestore(&rtcdev_lock, flags);
  80
  81        return ret;
  82}
  83EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
  84
  85static int alarmtimer_rtc_add_device(struct device *dev,
  86                                struct class_interface *class_intf)
  87{
  88        unsigned long flags;
  89        struct rtc_device *rtc = to_rtc_device(dev);
  90        struct wakeup_source *__ws;
  91
  92        if (rtcdev)
  93                return -EBUSY;
  94
  95        if (!rtc->ops->set_alarm)
  96                return -1;
  97        if (!device_may_wakeup(rtc->dev.parent))
  98                return -1;
  99
 100        __ws = wakeup_source_register("alarmtimer");
 101
 102        spin_lock_irqsave(&rtcdev_lock, flags);
 103        if (!rtcdev) {
 104                if (!try_module_get(rtc->owner)) {
 105                        spin_unlock_irqrestore(&rtcdev_lock, flags);
 106                        return -1;
 107                }
 108
 109                rtcdev = rtc;
 110                /* hold a reference so it doesn't go away */
 111                get_device(dev);
 112                ws = __ws;
 113                __ws = NULL;
 114        }
 115        spin_unlock_irqrestore(&rtcdev_lock, flags);
 116
 117        wakeup_source_unregister(__ws);
 118
 119        return 0;
 120}
 121
 122static inline void alarmtimer_rtc_timer_init(void)
 123{
 124        rtc_timer_init(&rtctimer, NULL, NULL);
 125}
 126
 127static struct class_interface alarmtimer_rtc_interface = {
 128        .add_dev = &alarmtimer_rtc_add_device,
 129};
 130
 131static int alarmtimer_rtc_interface_setup(void)
 132{
 133        alarmtimer_rtc_interface.class = rtc_class;
 134        return class_interface_register(&alarmtimer_rtc_interface);
 135}
 136static void alarmtimer_rtc_interface_remove(void)
 137{
 138        class_interface_unregister(&alarmtimer_rtc_interface);
 139}
 140#else
 141struct rtc_device *alarmtimer_get_rtcdev(void)
 142{
 143        return NULL;
 144}
 145#define rtcdev (NULL)
 146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
 147static inline void alarmtimer_rtc_interface_remove(void) { }
 148static inline void alarmtimer_rtc_timer_init(void) { }
 149#endif
 150
 151/**
 152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
 153 * @base: pointer to the base where the timer is being run
 154 * @alarm: pointer to alarm being enqueued.
 155 *
 156 * Adds alarm to a alarm_base timerqueue
 157 *
 158 * Must hold base->lock when calling.
 159 */
 160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
 161{
 162        if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
 163                timerqueue_del(&base->timerqueue, &alarm->node);
 164
 165        timerqueue_add(&base->timerqueue, &alarm->node);
 166        alarm->state |= ALARMTIMER_STATE_ENQUEUED;
 167}
 168
 169/**
 170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
 171 * @base: pointer to the base where the timer is running
 172 * @alarm: pointer to alarm being removed
 173 *
 174 * Removes alarm to a alarm_base timerqueue
 175 *
 176 * Must hold base->lock when calling.
 177 */
 178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
 179{
 180        if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
 181                return;
 182
 183        timerqueue_del(&base->timerqueue, &alarm->node);
 184        alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
 185}
 186
 187
 188/**
 189 * alarmtimer_fired - Handles alarm hrtimer being fired.
 190 * @timer: pointer to hrtimer being run
 191 *
 192 * When a alarm timer fires, this runs through the timerqueue to
 193 * see which alarms expired, and runs those. If there are more alarm
 194 * timers queued for the future, we set the hrtimer to fire when
 195 * when the next future alarm timer expires.
 196 */
 197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
 198{
 199        struct alarm *alarm = container_of(timer, struct alarm, timer);
 200        struct alarm_base *base = &alarm_bases[alarm->type];
 201        unsigned long flags;
 202        int ret = HRTIMER_NORESTART;
 203        int restart = ALARMTIMER_NORESTART;
 204
 205        spin_lock_irqsave(&base->lock, flags);
 206        alarmtimer_dequeue(base, alarm);
 207        spin_unlock_irqrestore(&base->lock, flags);
 208
 209        if (alarm->function)
 210                restart = alarm->function(alarm, base->gettime());
 211
 212        spin_lock_irqsave(&base->lock, flags);
 213        if (restart != ALARMTIMER_NORESTART) {
 214                hrtimer_set_expires(&alarm->timer, alarm->node.expires);
 215                alarmtimer_enqueue(base, alarm);
 216                ret = HRTIMER_RESTART;
 217        }
 218        spin_unlock_irqrestore(&base->lock, flags);
 219
 220        trace_alarmtimer_fired(alarm, base->gettime());
 221        return ret;
 222
 223}
 224
 225ktime_t alarm_expires_remaining(const struct alarm *alarm)
 226{
 227        struct alarm_base *base = &alarm_bases[alarm->type];
 228        return ktime_sub(alarm->node.expires, base->gettime());
 229}
 230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
 231
 232#ifdef CONFIG_RTC_CLASS
 233/**
 234 * alarmtimer_suspend - Suspend time callback
 235 * @dev: unused
 236 * @state: unused
 237 *
 238 * When we are going into suspend, we look through the bases
 239 * to see which is the soonest timer to expire. We then
 240 * set an rtc timer to fire that far into the future, which
 241 * will wake us from suspend.
 242 */
 243static int alarmtimer_suspend(struct device *dev)
 244{
 245        ktime_t min, now, expires;
 246        int i, ret, type;
 247        struct rtc_device *rtc;
 248        unsigned long flags;
 249        struct rtc_time tm;
 250
 251        spin_lock_irqsave(&freezer_delta_lock, flags);
 252        min = freezer_delta;
 253        expires = freezer_expires;
 254        type = freezer_alarmtype;
 255        freezer_delta = 0;
 256        spin_unlock_irqrestore(&freezer_delta_lock, flags);
 257
 258        rtc = alarmtimer_get_rtcdev();
 259        /* If we have no rtcdev, just return */
 260        if (!rtc)
 261                return 0;
 262
 263        /* Find the soonest timer to expire*/
 264        for (i = 0; i < ALARM_NUMTYPE; i++) {
 265                struct alarm_base *base = &alarm_bases[i];
 266                struct timerqueue_node *next;
 267                ktime_t delta;
 268
 269                spin_lock_irqsave(&base->lock, flags);
 270                next = timerqueue_getnext(&base->timerqueue);
 271                spin_unlock_irqrestore(&base->lock, flags);
 272                if (!next)
 273                        continue;
 274                delta = ktime_sub(next->expires, base->gettime());
 275                if (!min || (delta < min)) {
 276                        expires = next->expires;
 277                        min = delta;
 278                        type = i;
 279                }
 280        }
 281        if (min == 0)
 282                return 0;
 283
 284        if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
 285                __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
 286                return -EBUSY;
 287        }
 288
 289        trace_alarmtimer_suspend(expires, type);
 290
 291        /* Setup an rtc timer to fire that far in the future */
 292        rtc_timer_cancel(rtc, &rtctimer);
 293        rtc_read_time(rtc, &tm);
 294        now = rtc_tm_to_ktime(tm);
 295        now = ktime_add(now, min);
 296
 297        /* Set alarm, if in the past reject suspend briefly to handle */
 298        ret = rtc_timer_start(rtc, &rtctimer, now, 0);
 299        if (ret < 0)
 300                __pm_wakeup_event(ws, MSEC_PER_SEC);
 301        return ret;
 302}
 303
 304static int alarmtimer_resume(struct device *dev)
 305{
 306        struct rtc_device *rtc;
 307
 308        rtc = alarmtimer_get_rtcdev();
 309        if (rtc)
 310                rtc_timer_cancel(rtc, &rtctimer);
 311        return 0;
 312}
 313
 314#else
 315static int alarmtimer_suspend(struct device *dev)
 316{
 317        return 0;
 318}
 319
 320static int alarmtimer_resume(struct device *dev)
 321{
 322        return 0;
 323}
 324#endif
 325
 326static void
 327__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
 328             enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
 329{
 330        timerqueue_init(&alarm->node);
 331        alarm->timer.function = alarmtimer_fired;
 332        alarm->function = function;
 333        alarm->type = type;
 334        alarm->state = ALARMTIMER_STATE_INACTIVE;
 335}
 336
 337/**
 338 * alarm_init - Initialize an alarm structure
 339 * @alarm: ptr to alarm to be initialized
 340 * @type: the type of the alarm
 341 * @function: callback that is run when the alarm fires
 342 */
 343void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
 344                enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
 345{
 346        hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
 347                     HRTIMER_MODE_ABS);
 348        __alarm_init(alarm, type, function);
 349}
 350EXPORT_SYMBOL_GPL(alarm_init);
 351
 352/**
 353 * alarm_start - Sets an absolute alarm to fire
 354 * @alarm: ptr to alarm to set
 355 * @start: time to run the alarm
 356 */
 357void alarm_start(struct alarm *alarm, ktime_t start)
 358{
 359        struct alarm_base *base = &alarm_bases[alarm->type];
 360        unsigned long flags;
 361
 362        spin_lock_irqsave(&base->lock, flags);
 363        alarm->node.expires = start;
 364        alarmtimer_enqueue(base, alarm);
 365        hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
 366        spin_unlock_irqrestore(&base->lock, flags);
 367
 368        trace_alarmtimer_start(alarm, base->gettime());
 369}
 370EXPORT_SYMBOL_GPL(alarm_start);
 371
 372/**
 373 * alarm_start_relative - Sets a relative alarm to fire
 374 * @alarm: ptr to alarm to set
 375 * @start: time relative to now to run the alarm
 376 */
 377void alarm_start_relative(struct alarm *alarm, ktime_t start)
 378{
 379        struct alarm_base *base = &alarm_bases[alarm->type];
 380
 381        start = ktime_add_safe(start, base->gettime());
 382        alarm_start(alarm, start);
 383}
 384EXPORT_SYMBOL_GPL(alarm_start_relative);
 385
 386void alarm_restart(struct alarm *alarm)
 387{
 388        struct alarm_base *base = &alarm_bases[alarm->type];
 389        unsigned long flags;
 390
 391        spin_lock_irqsave(&base->lock, flags);
 392        hrtimer_set_expires(&alarm->timer, alarm->node.expires);
 393        hrtimer_restart(&alarm->timer);
 394        alarmtimer_enqueue(base, alarm);
 395        spin_unlock_irqrestore(&base->lock, flags);
 396}
 397EXPORT_SYMBOL_GPL(alarm_restart);
 398
 399/**
 400 * alarm_try_to_cancel - Tries to cancel an alarm timer
 401 * @alarm: ptr to alarm to be canceled
 402 *
 403 * Returns 1 if the timer was canceled, 0 if it was not running,
 404 * and -1 if the callback was running
 405 */
 406int alarm_try_to_cancel(struct alarm *alarm)
 407{
 408        struct alarm_base *base = &alarm_bases[alarm->type];
 409        unsigned long flags;
 410        int ret;
 411
 412        spin_lock_irqsave(&base->lock, flags);
 413        ret = hrtimer_try_to_cancel(&alarm->timer);
 414        if (ret >= 0)
 415                alarmtimer_dequeue(base, alarm);
 416        spin_unlock_irqrestore(&base->lock, flags);
 417
 418        trace_alarmtimer_cancel(alarm, base->gettime());
 419        return ret;
 420}
 421EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
 422
 423
 424/**
 425 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
 426 * @alarm: ptr to alarm to be canceled
 427 *
 428 * Returns 1 if the timer was canceled, 0 if it was not active.
 429 */
 430int alarm_cancel(struct alarm *alarm)
 431{
 432        for (;;) {
 433                int ret = alarm_try_to_cancel(alarm);
 434                if (ret >= 0)
 435                        return ret;
 436                cpu_relax();
 437        }
 438}
 439EXPORT_SYMBOL_GPL(alarm_cancel);
 440
 441
 442u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
 443{
 444        u64 overrun = 1;
 445        ktime_t delta;
 446
 447        delta = ktime_sub(now, alarm->node.expires);
 448
 449        if (delta < 0)
 450                return 0;
 451
 452        if (unlikely(delta >= interval)) {
 453                s64 incr = ktime_to_ns(interval);
 454
 455                overrun = ktime_divns(delta, incr);
 456
 457                alarm->node.expires = ktime_add_ns(alarm->node.expires,
 458                                                        incr*overrun);
 459
 460                if (alarm->node.expires > now)
 461                        return overrun;
 462                /*
 463                 * This (and the ktime_add() below) is the
 464                 * correction for exact:
 465                 */
 466                overrun++;
 467        }
 468
 469        alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
 470        return overrun;
 471}
 472EXPORT_SYMBOL_GPL(alarm_forward);
 473
 474u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
 475{
 476        struct alarm_base *base = &alarm_bases[alarm->type];
 477
 478        return alarm_forward(alarm, base->gettime(), interval);
 479}
 480EXPORT_SYMBOL_GPL(alarm_forward_now);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483
 484static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
 485{
 486        struct alarm_base *base;
 487        unsigned long flags;
 488        ktime_t delta;
 489
 490        switch(type) {
 491        case ALARM_REALTIME:
 492                base = &alarm_bases[ALARM_REALTIME];
 493                type = ALARM_REALTIME_FREEZER;
 494                break;
 495        case ALARM_BOOTTIME:
 496                base = &alarm_bases[ALARM_BOOTTIME];
 497                type = ALARM_BOOTTIME_FREEZER;
 498                break;
 499        default:
 500                WARN_ONCE(1, "Invalid alarm type: %d\n", type);
 501                return;
 502        }
 503
 504        delta = ktime_sub(absexp, base->gettime());
 505
 506        spin_lock_irqsave(&freezer_delta_lock, flags);
 507        if (!freezer_delta || (delta < freezer_delta)) {
 508                freezer_delta = delta;
 509                freezer_expires = absexp;
 510                freezer_alarmtype = type;
 511        }
 512        spin_unlock_irqrestore(&freezer_delta_lock, flags);
 513}
 514
 515/**
 516 * clock2alarm - helper that converts from clockid to alarmtypes
 517 * @clockid: clockid.
 518 */
 519static enum alarmtimer_type clock2alarm(clockid_t clockid)
 520{
 521        if (clockid == CLOCK_REALTIME_ALARM)
 522                return ALARM_REALTIME;
 523        if (clockid == CLOCK_BOOTTIME_ALARM)
 524                return ALARM_BOOTTIME;
 525        return -1;
 526}
 527
 528/**
 529 * alarm_handle_timer - Callback for posix timers
 530 * @alarm: alarm that fired
 531 *
 532 * Posix timer callback for expired alarm timers.
 533 */
 534static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
 535                                                        ktime_t now)
 536{
 537        struct k_itimer *ptr = container_of(alarm, struct k_itimer,
 538                                            it.alarm.alarmtimer);
 539        enum alarmtimer_restart result = ALARMTIMER_NORESTART;
 540        unsigned long flags;
 541        int si_private = 0;
 542
 543        spin_lock_irqsave(&ptr->it_lock, flags);
 544
 545        ptr->it_active = 0;
 546        if (ptr->it_interval)
 547                si_private = ++ptr->it_requeue_pending;
 548
 549        if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
 550                /*
 551                 * Handle ignored signals and rearm the timer. This will go
 552                 * away once we handle ignored signals proper.
 553                 */
 554                ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
 555                ++ptr->it_requeue_pending;
 556                ptr->it_active = 1;
 557                result = ALARMTIMER_RESTART;
 558        }
 559        spin_unlock_irqrestore(&ptr->it_lock, flags);
 560
 561        return result;
 562}
 563
 564/**
 565 * alarm_timer_rearm - Posix timer callback for rearming timer
 566 * @timr:       Pointer to the posixtimer data struct
 567 */
 568static void alarm_timer_rearm(struct k_itimer *timr)
 569{
 570        struct alarm *alarm = &timr->it.alarm.alarmtimer;
 571
 572        timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
 573        alarm_start(alarm, alarm->node.expires);
 574}
 575
 576/**
 577 * alarm_timer_forward - Posix timer callback for forwarding timer
 578 * @timr:       Pointer to the posixtimer data struct
 579 * @now:        Current time to forward the timer against
 580 */
 581static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
 582{
 583        struct alarm *alarm = &timr->it.alarm.alarmtimer;
 584
 585        return alarm_forward(alarm, timr->it_interval, now);
 586}
 587
 588/**
 589 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
 590 * @timr:       Pointer to the posixtimer data struct
 591 * @now:        Current time to calculate against
 592 */
 593static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
 594{
 595        struct alarm *alarm = &timr->it.alarm.alarmtimer;
 596
 597        return ktime_sub(alarm->node.expires, now);
 598}
 599
 600/**
 601 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
 602 * @timr:       Pointer to the posixtimer data struct
 603 */
 604static int alarm_timer_try_to_cancel(struct k_itimer *timr)
 605{
 606        return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
 607}
 608
 609/**
 610 * alarm_timer_arm - Posix timer callback to arm a timer
 611 * @timr:       Pointer to the posixtimer data struct
 612 * @expires:    The new expiry time
 613 * @absolute:   Expiry value is absolute time
 614 * @sigev_none: Posix timer does not deliver signals
 615 */
 616static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
 617                            bool absolute, bool sigev_none)
 618{
 619        struct alarm *alarm = &timr->it.alarm.alarmtimer;
 620        struct alarm_base *base = &alarm_bases[alarm->type];
 621
 622        if (!absolute)
 623                expires = ktime_add_safe(expires, base->gettime());
 624        if (sigev_none)
 625                alarm->node.expires = expires;
 626        else
 627                alarm_start(&timr->it.alarm.alarmtimer, expires);
 628}
 629
 630/**
 631 * alarm_clock_getres - posix getres interface
 632 * @which_clock: clockid
 633 * @tp: timespec to fill
 634 *
 635 * Returns the granularity of underlying alarm base clock
 636 */
 637static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 638{
 639        if (!alarmtimer_get_rtcdev())
 640                return -EINVAL;
 641
 642        tp->tv_sec = 0;
 643        tp->tv_nsec = hrtimer_resolution;
 644        return 0;
 645}
 646
 647/**
 648 * alarm_clock_get - posix clock_get interface
 649 * @which_clock: clockid
 650 * @tp: timespec to fill.
 651 *
 652 * Provides the underlying alarm base time.
 653 */
 654static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
 655{
 656        struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
 657
 658        if (!alarmtimer_get_rtcdev())
 659                return -EINVAL;
 660
 661        *tp = ktime_to_timespec64(base->gettime());
 662        return 0;
 663}
 664
 665/**
 666 * alarm_timer_create - posix timer_create interface
 667 * @new_timer: k_itimer pointer to manage
 668 *
 669 * Initializes the k_itimer structure.
 670 */
 671static int alarm_timer_create(struct k_itimer *new_timer)
 672{
 673        enum  alarmtimer_type type;
 674
 675        if (!alarmtimer_get_rtcdev())
 676                return -ENOTSUPP;
 677
 678        if (!capable(CAP_WAKE_ALARM))
 679                return -EPERM;
 680
 681        type = clock2alarm(new_timer->it_clock);
 682        alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
 683        return 0;
 684}
 685
 686/**
 687 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
 688 * @alarm: ptr to alarm that fired
 689 *
 690 * Wakes up the task that set the alarmtimer
 691 */
 692static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
 693                                                                ktime_t now)
 694{
 695        struct task_struct *task = (struct task_struct *)alarm->data;
 696
 697        alarm->data = NULL;
 698        if (task)
 699                wake_up_process(task);
 700        return ALARMTIMER_NORESTART;
 701}
 702
 703/**
 704 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
 705 * @alarm: ptr to alarmtimer
 706 * @absexp: absolute expiration time
 707 *
 708 * Sets the alarm timer and sleeps until it is fired or interrupted.
 709 */
 710static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
 711                                enum alarmtimer_type type)
 712{
 713        struct restart_block *restart;
 714        alarm->data = (void *)current;
 715        do {
 716                set_current_state(TASK_INTERRUPTIBLE);
 717                alarm_start(alarm, absexp);
 718                if (likely(alarm->data))
 719                        schedule();
 720
 721                alarm_cancel(alarm);
 722        } while (alarm->data && !signal_pending(current));
 723
 724        __set_current_state(TASK_RUNNING);
 725
 726        destroy_hrtimer_on_stack(&alarm->timer);
 727
 728        if (!alarm->data)
 729                return 0;
 730
 731        if (freezing(current))
 732                alarmtimer_freezerset(absexp, type);
 733        restart = &current->restart_block;
 734        if (restart->nanosleep.type != TT_NONE) {
 735                struct timespec64 rmt;
 736                ktime_t rem;
 737
 738                rem = ktime_sub(absexp, alarm_bases[type].gettime());
 739
 740                if (rem <= 0)
 741                        return 0;
 742                rmt = ktime_to_timespec64(rem);
 743
 744                return nanosleep_copyout(restart, &rmt);
 745        }
 746        return -ERESTART_RESTARTBLOCK;
 747}
 748
 749static void
 750alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
 751                    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
 752{
 753        hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
 754                              HRTIMER_MODE_ABS);
 755        __alarm_init(alarm, type, function);
 756}
 757
 758/**
 759 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
 760 * @restart: ptr to restart block
 761 *
 762 * Handles restarted clock_nanosleep calls
 763 */
 764static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
 765{
 766        enum  alarmtimer_type type = restart->nanosleep.clockid;
 767        ktime_t exp = restart->nanosleep.expires;
 768        struct alarm alarm;
 769
 770        alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
 771
 772        return alarmtimer_do_nsleep(&alarm, exp, type);
 773}
 774
 775/**
 776 * alarm_timer_nsleep - alarmtimer nanosleep
 777 * @which_clock: clockid
 778 * @flags: determins abstime or relative
 779 * @tsreq: requested sleep time (abs or rel)
 780 * @rmtp: remaining sleep time saved
 781 *
 782 * Handles clock_nanosleep calls against _ALARM clockids
 783 */
 784static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
 785                              const struct timespec64 *tsreq)
 786{
 787        enum  alarmtimer_type type = clock2alarm(which_clock);
 788        struct restart_block *restart = &current->restart_block;
 789        struct alarm alarm;
 790        ktime_t exp;
 791        int ret = 0;
 792
 793        if (!alarmtimer_get_rtcdev())
 794                return -ENOTSUPP;
 795
 796        if (flags & ~TIMER_ABSTIME)
 797                return -EINVAL;
 798
 799        if (!capable(CAP_WAKE_ALARM))
 800                return -EPERM;
 801
 802        alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
 803
 804        exp = timespec64_to_ktime(*tsreq);
 805        /* Convert (if necessary) to absolute time */
 806        if (flags != TIMER_ABSTIME) {
 807                ktime_t now = alarm_bases[type].gettime();
 808
 809                exp = ktime_add_safe(now, exp);
 810        }
 811
 812        ret = alarmtimer_do_nsleep(&alarm, exp, type);
 813        if (ret != -ERESTART_RESTARTBLOCK)
 814                return ret;
 815
 816        /* abs timers don't set remaining time or restart */
 817        if (flags == TIMER_ABSTIME)
 818                return -ERESTARTNOHAND;
 819
 820        restart->fn = alarm_timer_nsleep_restart;
 821        restart->nanosleep.clockid = type;
 822        restart->nanosleep.expires = exp;
 823        return ret;
 824}
 825
 826const struct k_clock alarm_clock = {
 827        .clock_getres           = alarm_clock_getres,
 828        .clock_get              = alarm_clock_get,
 829        .timer_create           = alarm_timer_create,
 830        .timer_set              = common_timer_set,
 831        .timer_del              = common_timer_del,
 832        .timer_get              = common_timer_get,
 833        .timer_arm              = alarm_timer_arm,
 834        .timer_rearm            = alarm_timer_rearm,
 835        .timer_forward          = alarm_timer_forward,
 836        .timer_remaining        = alarm_timer_remaining,
 837        .timer_try_to_cancel    = alarm_timer_try_to_cancel,
 838        .nsleep                 = alarm_timer_nsleep,
 839};
 840#endif /* CONFIG_POSIX_TIMERS */
 841
 842
 843/* Suspend hook structures */
 844static const struct dev_pm_ops alarmtimer_pm_ops = {
 845        .suspend = alarmtimer_suspend,
 846        .resume = alarmtimer_resume,
 847};
 848
 849static struct platform_driver alarmtimer_driver = {
 850        .driver = {
 851                .name = "alarmtimer",
 852                .pm = &alarmtimer_pm_ops,
 853        }
 854};
 855
 856/**
 857 * alarmtimer_init - Initialize alarm timer code
 858 *
 859 * This function initializes the alarm bases and registers
 860 * the posix clock ids.
 861 */
 862static int __init alarmtimer_init(void)
 863{
 864        struct platform_device *pdev;
 865        int error = 0;
 866        int i;
 867
 868        alarmtimer_rtc_timer_init();
 869
 870        /* Initialize alarm bases */
 871        alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
 872        alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
 873        alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
 874        alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
 875        for (i = 0; i < ALARM_NUMTYPE; i++) {
 876                timerqueue_init_head(&alarm_bases[i].timerqueue);
 877                spin_lock_init(&alarm_bases[i].lock);
 878        }
 879
 880        error = alarmtimer_rtc_interface_setup();
 881        if (error)
 882                return error;
 883
 884        error = platform_driver_register(&alarmtimer_driver);
 885        if (error)
 886                goto out_if;
 887
 888        pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
 889        if (IS_ERR(pdev)) {
 890                error = PTR_ERR(pdev);
 891                goto out_drv;
 892        }
 893        return 0;
 894
 895out_drv:
 896        platform_driver_unregister(&alarmtimer_driver);
 897out_if:
 898        alarmtimer_rtc_interface_remove();
 899        return error;
 900}
 901device_initcall(alarmtimer_init);
 902