linux/kernel/time/tick-broadcast.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains functions which emulate a local clock-event
   4 * device via a broadcast event source.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
   9 */
  10#include <linux/cpu.h>
  11#include <linux/err.h>
  12#include <linux/hrtimer.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/profile.h>
  16#include <linux/sched.h>
  17#include <linux/smp.h>
  18#include <linux/module.h>
  19
  20#include "tick-internal.h"
  21
  22/*
  23 * Broadcast support for broken x86 hardware, where the local apic
  24 * timer stops in C3 state.
  25 */
  26
  27static struct tick_device tick_broadcast_device;
  28static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  29static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  30static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  31static int tick_broadcast_forced;
  32
  33static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  34
  35#ifdef CONFIG_TICK_ONESHOT
  36static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  37static void tick_broadcast_clear_oneshot(int cpu);
  38static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  39# ifdef CONFIG_HOTPLUG_CPU
  40static void tick_broadcast_oneshot_offline(unsigned int cpu);
  41# endif
  42#else
  43static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  44static inline void tick_broadcast_clear_oneshot(int cpu) { }
  45static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  46# ifdef CONFIG_HOTPLUG_CPU
  47static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
  48# endif
  49#endif
  50
  51/*
  52 * Debugging: see timer_list.c
  53 */
  54struct tick_device *tick_get_broadcast_device(void)
  55{
  56        return &tick_broadcast_device;
  57}
  58
  59struct cpumask *tick_get_broadcast_mask(void)
  60{
  61        return tick_broadcast_mask;
  62}
  63
  64/*
  65 * Start the device in periodic mode
  66 */
  67static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  68{
  69        if (bc)
  70                tick_setup_periodic(bc, 1);
  71}
  72
  73/*
  74 * Check, if the device can be utilized as broadcast device:
  75 */
  76static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  77                                        struct clock_event_device *newdev)
  78{
  79        if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  80            (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  81            (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  82                return false;
  83
  84        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  85            !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  86                return false;
  87
  88        return !curdev || newdev->rating > curdev->rating;
  89}
  90
  91/*
  92 * Conditionally install/replace broadcast device
  93 */
  94void tick_install_broadcast_device(struct clock_event_device *dev)
  95{
  96        struct clock_event_device *cur = tick_broadcast_device.evtdev;
  97
  98        if (!tick_check_broadcast_device(cur, dev))
  99                return;
 100
 101        if (!try_module_get(dev->owner))
 102                return;
 103
 104        clockevents_exchange_device(cur, dev);
 105        if (cur)
 106                cur->event_handler = clockevents_handle_noop;
 107        tick_broadcast_device.evtdev = dev;
 108        if (!cpumask_empty(tick_broadcast_mask))
 109                tick_broadcast_start_periodic(dev);
 110        /*
 111         * Inform all cpus about this. We might be in a situation
 112         * where we did not switch to oneshot mode because the per cpu
 113         * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 114         * of a oneshot capable broadcast device. Without that
 115         * notification the systems stays stuck in periodic mode
 116         * forever.
 117         */
 118        if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 119                tick_clock_notify();
 120}
 121
 122/*
 123 * Check, if the device is the broadcast device
 124 */
 125int tick_is_broadcast_device(struct clock_event_device *dev)
 126{
 127        return (dev && tick_broadcast_device.evtdev == dev);
 128}
 129
 130int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 131{
 132        int ret = -ENODEV;
 133
 134        if (tick_is_broadcast_device(dev)) {
 135                raw_spin_lock(&tick_broadcast_lock);
 136                ret = __clockevents_update_freq(dev, freq);
 137                raw_spin_unlock(&tick_broadcast_lock);
 138        }
 139        return ret;
 140}
 141
 142
 143static void err_broadcast(const struct cpumask *mask)
 144{
 145        pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 146}
 147
 148static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 149{
 150        if (!dev->broadcast)
 151                dev->broadcast = tick_broadcast;
 152        if (!dev->broadcast) {
 153                pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 154                             dev->name);
 155                dev->broadcast = err_broadcast;
 156        }
 157}
 158
 159/*
 160 * Check, if the device is disfunctional and a place holder, which
 161 * needs to be handled by the broadcast device.
 162 */
 163int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 164{
 165        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 166        unsigned long flags;
 167        int ret = 0;
 168
 169        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 170
 171        /*
 172         * Devices might be registered with both periodic and oneshot
 173         * mode disabled. This signals, that the device needs to be
 174         * operated from the broadcast device and is a placeholder for
 175         * the cpu local device.
 176         */
 177        if (!tick_device_is_functional(dev)) {
 178                dev->event_handler = tick_handle_periodic;
 179                tick_device_setup_broadcast_func(dev);
 180                cpumask_set_cpu(cpu, tick_broadcast_mask);
 181                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 182                        tick_broadcast_start_periodic(bc);
 183                else
 184                        tick_broadcast_setup_oneshot(bc);
 185                ret = 1;
 186        } else {
 187                /*
 188                 * Clear the broadcast bit for this cpu if the
 189                 * device is not power state affected.
 190                 */
 191                if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 192                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 193                else
 194                        tick_device_setup_broadcast_func(dev);
 195
 196                /*
 197                 * Clear the broadcast bit if the CPU is not in
 198                 * periodic broadcast on state.
 199                 */
 200                if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 201                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 202
 203                switch (tick_broadcast_device.mode) {
 204                case TICKDEV_MODE_ONESHOT:
 205                        /*
 206                         * If the system is in oneshot mode we can
 207                         * unconditionally clear the oneshot mask bit,
 208                         * because the CPU is running and therefore
 209                         * not in an idle state which causes the power
 210                         * state affected device to stop. Let the
 211                         * caller initialize the device.
 212                         */
 213                        tick_broadcast_clear_oneshot(cpu);
 214                        ret = 0;
 215                        break;
 216
 217                case TICKDEV_MODE_PERIODIC:
 218                        /*
 219                         * If the system is in periodic mode, check
 220                         * whether the broadcast device can be
 221                         * switched off now.
 222                         */
 223                        if (cpumask_empty(tick_broadcast_mask) && bc)
 224                                clockevents_shutdown(bc);
 225                        /*
 226                         * If we kept the cpu in the broadcast mask,
 227                         * tell the caller to leave the per cpu device
 228                         * in shutdown state. The periodic interrupt
 229                         * is delivered by the broadcast device, if
 230                         * the broadcast device exists and is not
 231                         * hrtimer based.
 232                         */
 233                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 234                                ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 235                        break;
 236                default:
 237                        break;
 238                }
 239        }
 240        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 241        return ret;
 242}
 243
 244#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 245int tick_receive_broadcast(void)
 246{
 247        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 248        struct clock_event_device *evt = td->evtdev;
 249
 250        if (!evt)
 251                return -ENODEV;
 252
 253        if (!evt->event_handler)
 254                return -EINVAL;
 255
 256        evt->event_handler(evt);
 257        return 0;
 258}
 259#endif
 260
 261/*
 262 * Broadcast the event to the cpus, which are set in the mask (mangled).
 263 */
 264static bool tick_do_broadcast(struct cpumask *mask)
 265{
 266        int cpu = smp_processor_id();
 267        struct tick_device *td;
 268        bool local = false;
 269
 270        /*
 271         * Check, if the current cpu is in the mask
 272         */
 273        if (cpumask_test_cpu(cpu, mask)) {
 274                struct clock_event_device *bc = tick_broadcast_device.evtdev;
 275
 276                cpumask_clear_cpu(cpu, mask);
 277                /*
 278                 * We only run the local handler, if the broadcast
 279                 * device is not hrtimer based. Otherwise we run into
 280                 * a hrtimer recursion.
 281                 *
 282                 * local timer_interrupt()
 283                 *   local_handler()
 284                 *     expire_hrtimers()
 285                 *       bc_handler()
 286                 *         local_handler()
 287                 *           expire_hrtimers()
 288                 */
 289                local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 290        }
 291
 292        if (!cpumask_empty(mask)) {
 293                /*
 294                 * It might be necessary to actually check whether the devices
 295                 * have different broadcast functions. For now, just use the
 296                 * one of the first device. This works as long as we have this
 297                 * misfeature only on x86 (lapic)
 298                 */
 299                td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 300                td->evtdev->broadcast(mask);
 301        }
 302        return local;
 303}
 304
 305/*
 306 * Periodic broadcast:
 307 * - invoke the broadcast handlers
 308 */
 309static bool tick_do_periodic_broadcast(void)
 310{
 311        cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 312        return tick_do_broadcast(tmpmask);
 313}
 314
 315/*
 316 * Event handler for periodic broadcast ticks
 317 */
 318static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 319{
 320        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 321        bool bc_local;
 322
 323        raw_spin_lock(&tick_broadcast_lock);
 324
 325        /* Handle spurious interrupts gracefully */
 326        if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 327                raw_spin_unlock(&tick_broadcast_lock);
 328                return;
 329        }
 330
 331        bc_local = tick_do_periodic_broadcast();
 332
 333        if (clockevent_state_oneshot(dev)) {
 334                ktime_t next = ktime_add(dev->next_event, tick_period);
 335
 336                clockevents_program_event(dev, next, true);
 337        }
 338        raw_spin_unlock(&tick_broadcast_lock);
 339
 340        /*
 341         * We run the handler of the local cpu after dropping
 342         * tick_broadcast_lock because the handler might deadlock when
 343         * trying to switch to oneshot mode.
 344         */
 345        if (bc_local)
 346                td->evtdev->event_handler(td->evtdev);
 347}
 348
 349/**
 350 * tick_broadcast_control - Enable/disable or force broadcast mode
 351 * @mode:       The selected broadcast mode
 352 *
 353 * Called when the system enters a state where affected tick devices
 354 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 355 */
 356void tick_broadcast_control(enum tick_broadcast_mode mode)
 357{
 358        struct clock_event_device *bc, *dev;
 359        struct tick_device *td;
 360        int cpu, bc_stopped;
 361        unsigned long flags;
 362
 363        /* Protects also the local clockevent device. */
 364        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 365        td = this_cpu_ptr(&tick_cpu_device);
 366        dev = td->evtdev;
 367
 368        /*
 369         * Is the device not affected by the powerstate ?
 370         */
 371        if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 372                goto out;
 373
 374        if (!tick_device_is_functional(dev))
 375                goto out;
 376
 377        cpu = smp_processor_id();
 378        bc = tick_broadcast_device.evtdev;
 379        bc_stopped = cpumask_empty(tick_broadcast_mask);
 380
 381        switch (mode) {
 382        case TICK_BROADCAST_FORCE:
 383                tick_broadcast_forced = 1;
 384                /* fall through */
 385        case TICK_BROADCAST_ON:
 386                cpumask_set_cpu(cpu, tick_broadcast_on);
 387                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 388                        /*
 389                         * Only shutdown the cpu local device, if:
 390                         *
 391                         * - the broadcast device exists
 392                         * - the broadcast device is not a hrtimer based one
 393                         * - the broadcast device is in periodic mode to
 394                         *   avoid a hickup during switch to oneshot mode
 395                         */
 396                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 397                            tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 398                                clockevents_shutdown(dev);
 399                }
 400                break;
 401
 402        case TICK_BROADCAST_OFF:
 403                if (tick_broadcast_forced)
 404                        break;
 405                cpumask_clear_cpu(cpu, tick_broadcast_on);
 406                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 407                        if (tick_broadcast_device.mode ==
 408                            TICKDEV_MODE_PERIODIC)
 409                                tick_setup_periodic(dev, 0);
 410                }
 411                break;
 412        }
 413
 414        if (bc) {
 415                if (cpumask_empty(tick_broadcast_mask)) {
 416                        if (!bc_stopped)
 417                                clockevents_shutdown(bc);
 418                } else if (bc_stopped) {
 419                        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 420                                tick_broadcast_start_periodic(bc);
 421                        else
 422                                tick_broadcast_setup_oneshot(bc);
 423                }
 424        }
 425out:
 426        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 427}
 428EXPORT_SYMBOL_GPL(tick_broadcast_control);
 429
 430/*
 431 * Set the periodic handler depending on broadcast on/off
 432 */
 433void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 434{
 435        if (!broadcast)
 436                dev->event_handler = tick_handle_periodic;
 437        else
 438                dev->event_handler = tick_handle_periodic_broadcast;
 439}
 440
 441#ifdef CONFIG_HOTPLUG_CPU
 442static void tick_shutdown_broadcast(void)
 443{
 444        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 445
 446        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 447                if (bc && cpumask_empty(tick_broadcast_mask))
 448                        clockevents_shutdown(bc);
 449        }
 450}
 451
 452/*
 453 * Remove a CPU from broadcasting
 454 */
 455void tick_broadcast_offline(unsigned int cpu)
 456{
 457        raw_spin_lock(&tick_broadcast_lock);
 458        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 459        cpumask_clear_cpu(cpu, tick_broadcast_on);
 460        tick_broadcast_oneshot_offline(cpu);
 461        tick_shutdown_broadcast();
 462        raw_spin_unlock(&tick_broadcast_lock);
 463}
 464
 465#endif
 466
 467void tick_suspend_broadcast(void)
 468{
 469        struct clock_event_device *bc;
 470        unsigned long flags;
 471
 472        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 473
 474        bc = tick_broadcast_device.evtdev;
 475        if (bc)
 476                clockevents_shutdown(bc);
 477
 478        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 479}
 480
 481/*
 482 * This is called from tick_resume_local() on a resuming CPU. That's
 483 * called from the core resume function, tick_unfreeze() and the magic XEN
 484 * resume hackery.
 485 *
 486 * In none of these cases the broadcast device mode can change and the
 487 * bit of the resuming CPU in the broadcast mask is safe as well.
 488 */
 489bool tick_resume_check_broadcast(void)
 490{
 491        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 492                return false;
 493        else
 494                return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 495}
 496
 497void tick_resume_broadcast(void)
 498{
 499        struct clock_event_device *bc;
 500        unsigned long flags;
 501
 502        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 503
 504        bc = tick_broadcast_device.evtdev;
 505
 506        if (bc) {
 507                clockevents_tick_resume(bc);
 508
 509                switch (tick_broadcast_device.mode) {
 510                case TICKDEV_MODE_PERIODIC:
 511                        if (!cpumask_empty(tick_broadcast_mask))
 512                                tick_broadcast_start_periodic(bc);
 513                        break;
 514                case TICKDEV_MODE_ONESHOT:
 515                        if (!cpumask_empty(tick_broadcast_mask))
 516                                tick_resume_broadcast_oneshot(bc);
 517                        break;
 518                }
 519        }
 520        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 521}
 522
 523#ifdef CONFIG_TICK_ONESHOT
 524
 525static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 526static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 527static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 528
 529/*
 530 * Exposed for debugging: see timer_list.c
 531 */
 532struct cpumask *tick_get_broadcast_oneshot_mask(void)
 533{
 534        return tick_broadcast_oneshot_mask;
 535}
 536
 537/*
 538 * Called before going idle with interrupts disabled. Checks whether a
 539 * broadcast event from the other core is about to happen. We detected
 540 * that in tick_broadcast_oneshot_control(). The callsite can use this
 541 * to avoid a deep idle transition as we are about to get the
 542 * broadcast IPI right away.
 543 */
 544int tick_check_broadcast_expired(void)
 545{
 546        return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 547}
 548
 549/*
 550 * Set broadcast interrupt affinity
 551 */
 552static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 553                                        const struct cpumask *cpumask)
 554{
 555        if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 556                return;
 557
 558        if (cpumask_equal(bc->cpumask, cpumask))
 559                return;
 560
 561        bc->cpumask = cpumask;
 562        irq_set_affinity(bc->irq, bc->cpumask);
 563}
 564
 565static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 566                                     ktime_t expires)
 567{
 568        if (!clockevent_state_oneshot(bc))
 569                clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 570
 571        clockevents_program_event(bc, expires, 1);
 572        tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 573}
 574
 575static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 576{
 577        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 578}
 579
 580/*
 581 * Called from irq_enter() when idle was interrupted to reenable the
 582 * per cpu device.
 583 */
 584void tick_check_oneshot_broadcast_this_cpu(void)
 585{
 586        if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 587                struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 588
 589                /*
 590                 * We might be in the middle of switching over from
 591                 * periodic to oneshot. If the CPU has not yet
 592                 * switched over, leave the device alone.
 593                 */
 594                if (td->mode == TICKDEV_MODE_ONESHOT) {
 595                        clockevents_switch_state(td->evtdev,
 596                                              CLOCK_EVT_STATE_ONESHOT);
 597                }
 598        }
 599}
 600
 601/*
 602 * Handle oneshot mode broadcasting
 603 */
 604static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 605{
 606        struct tick_device *td;
 607        ktime_t now, next_event;
 608        int cpu, next_cpu = 0;
 609        bool bc_local;
 610
 611        raw_spin_lock(&tick_broadcast_lock);
 612        dev->next_event = KTIME_MAX;
 613        next_event = KTIME_MAX;
 614        cpumask_clear(tmpmask);
 615        now = ktime_get();
 616        /* Find all expired events */
 617        for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 618                /*
 619                 * Required for !SMP because for_each_cpu() reports
 620                 * unconditionally CPU0 as set on UP kernels.
 621                 */
 622                if (!IS_ENABLED(CONFIG_SMP) &&
 623                    cpumask_empty(tick_broadcast_oneshot_mask))
 624                        break;
 625
 626                td = &per_cpu(tick_cpu_device, cpu);
 627                if (td->evtdev->next_event <= now) {
 628                        cpumask_set_cpu(cpu, tmpmask);
 629                        /*
 630                         * Mark the remote cpu in the pending mask, so
 631                         * it can avoid reprogramming the cpu local
 632                         * timer in tick_broadcast_oneshot_control().
 633                         */
 634                        cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 635                } else if (td->evtdev->next_event < next_event) {
 636                        next_event = td->evtdev->next_event;
 637                        next_cpu = cpu;
 638                }
 639        }
 640
 641        /*
 642         * Remove the current cpu from the pending mask. The event is
 643         * delivered immediately in tick_do_broadcast() !
 644         */
 645        cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 646
 647        /* Take care of enforced broadcast requests */
 648        cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 649        cpumask_clear(tick_broadcast_force_mask);
 650
 651        /*
 652         * Sanity check. Catch the case where we try to broadcast to
 653         * offline cpus.
 654         */
 655        if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 656                cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 657
 658        /*
 659         * Wakeup the cpus which have an expired event.
 660         */
 661        bc_local = tick_do_broadcast(tmpmask);
 662
 663        /*
 664         * Two reasons for reprogram:
 665         *
 666         * - The global event did not expire any CPU local
 667         * events. This happens in dyntick mode, as the maximum PIT
 668         * delta is quite small.
 669         *
 670         * - There are pending events on sleeping CPUs which were not
 671         * in the event mask
 672         */
 673        if (next_event != KTIME_MAX)
 674                tick_broadcast_set_event(dev, next_cpu, next_event);
 675
 676        raw_spin_unlock(&tick_broadcast_lock);
 677
 678        if (bc_local) {
 679                td = this_cpu_ptr(&tick_cpu_device);
 680                td->evtdev->event_handler(td->evtdev);
 681        }
 682}
 683
 684static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 685{
 686        if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 687                return 0;
 688        if (bc->next_event == KTIME_MAX)
 689                return 0;
 690        return bc->bound_on == cpu ? -EBUSY : 0;
 691}
 692
 693static void broadcast_shutdown_local(struct clock_event_device *bc,
 694                                     struct clock_event_device *dev)
 695{
 696        /*
 697         * For hrtimer based broadcasting we cannot shutdown the cpu
 698         * local device if our own event is the first one to expire or
 699         * if we own the broadcast timer.
 700         */
 701        if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 702                if (broadcast_needs_cpu(bc, smp_processor_id()))
 703                        return;
 704                if (dev->next_event < bc->next_event)
 705                        return;
 706        }
 707        clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 708}
 709
 710int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 711{
 712        struct clock_event_device *bc, *dev;
 713        int cpu, ret = 0;
 714        ktime_t now;
 715
 716        /*
 717         * If there is no broadcast device, tell the caller not to go
 718         * into deep idle.
 719         */
 720        if (!tick_broadcast_device.evtdev)
 721                return -EBUSY;
 722
 723        dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 724
 725        raw_spin_lock(&tick_broadcast_lock);
 726        bc = tick_broadcast_device.evtdev;
 727        cpu = smp_processor_id();
 728
 729        if (state == TICK_BROADCAST_ENTER) {
 730                /*
 731                 * If the current CPU owns the hrtimer broadcast
 732                 * mechanism, it cannot go deep idle and we do not add
 733                 * the CPU to the broadcast mask. We don't have to go
 734                 * through the EXIT path as the local timer is not
 735                 * shutdown.
 736                 */
 737                ret = broadcast_needs_cpu(bc, cpu);
 738                if (ret)
 739                        goto out;
 740
 741                /*
 742                 * If the broadcast device is in periodic mode, we
 743                 * return.
 744                 */
 745                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 746                        /* If it is a hrtimer based broadcast, return busy */
 747                        if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 748                                ret = -EBUSY;
 749                        goto out;
 750                }
 751
 752                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 753                        WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 754
 755                        /* Conditionally shut down the local timer. */
 756                        broadcast_shutdown_local(bc, dev);
 757
 758                        /*
 759                         * We only reprogram the broadcast timer if we
 760                         * did not mark ourself in the force mask and
 761                         * if the cpu local event is earlier than the
 762                         * broadcast event. If the current CPU is in
 763                         * the force mask, then we are going to be
 764                         * woken by the IPI right away; we return
 765                         * busy, so the CPU does not try to go deep
 766                         * idle.
 767                         */
 768                        if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 769                                ret = -EBUSY;
 770                        } else if (dev->next_event < bc->next_event) {
 771                                tick_broadcast_set_event(bc, cpu, dev->next_event);
 772                                /*
 773                                 * In case of hrtimer broadcasts the
 774                                 * programming might have moved the
 775                                 * timer to this cpu. If yes, remove
 776                                 * us from the broadcast mask and
 777                                 * return busy.
 778                                 */
 779                                ret = broadcast_needs_cpu(bc, cpu);
 780                                if (ret) {
 781                                        cpumask_clear_cpu(cpu,
 782                                                tick_broadcast_oneshot_mask);
 783                                }
 784                        }
 785                }
 786        } else {
 787                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 788                        clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 789                        /*
 790                         * The cpu which was handling the broadcast
 791                         * timer marked this cpu in the broadcast
 792                         * pending mask and fired the broadcast
 793                         * IPI. So we are going to handle the expired
 794                         * event anyway via the broadcast IPI
 795                         * handler. No need to reprogram the timer
 796                         * with an already expired event.
 797                         */
 798                        if (cpumask_test_and_clear_cpu(cpu,
 799                                       tick_broadcast_pending_mask))
 800                                goto out;
 801
 802                        /*
 803                         * Bail out if there is no next event.
 804                         */
 805                        if (dev->next_event == KTIME_MAX)
 806                                goto out;
 807                        /*
 808                         * If the pending bit is not set, then we are
 809                         * either the CPU handling the broadcast
 810                         * interrupt or we got woken by something else.
 811                         *
 812                         * We are no longer in the broadcast mask, so
 813                         * if the cpu local expiry time is already
 814                         * reached, we would reprogram the cpu local
 815                         * timer with an already expired event.
 816                         *
 817                         * This can lead to a ping-pong when we return
 818                         * to idle and therefore rearm the broadcast
 819                         * timer before the cpu local timer was able
 820                         * to fire. This happens because the forced
 821                         * reprogramming makes sure that the event
 822                         * will happen in the future and depending on
 823                         * the min_delta setting this might be far
 824                         * enough out that the ping-pong starts.
 825                         *
 826                         * If the cpu local next_event has expired
 827                         * then we know that the broadcast timer
 828                         * next_event has expired as well and
 829                         * broadcast is about to be handled. So we
 830                         * avoid reprogramming and enforce that the
 831                         * broadcast handler, which did not run yet,
 832                         * will invoke the cpu local handler.
 833                         *
 834                         * We cannot call the handler directly from
 835                         * here, because we might be in a NOHZ phase
 836                         * and we did not go through the irq_enter()
 837                         * nohz fixups.
 838                         */
 839                        now = ktime_get();
 840                        if (dev->next_event <= now) {
 841                                cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 842                                goto out;
 843                        }
 844                        /*
 845                         * We got woken by something else. Reprogram
 846                         * the cpu local timer device.
 847                         */
 848                        tick_program_event(dev->next_event, 1);
 849                }
 850        }
 851out:
 852        raw_spin_unlock(&tick_broadcast_lock);
 853        return ret;
 854}
 855
 856/*
 857 * Reset the one shot broadcast for a cpu
 858 *
 859 * Called with tick_broadcast_lock held
 860 */
 861static void tick_broadcast_clear_oneshot(int cpu)
 862{
 863        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 864        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 865}
 866
 867static void tick_broadcast_init_next_event(struct cpumask *mask,
 868                                           ktime_t expires)
 869{
 870        struct tick_device *td;
 871        int cpu;
 872
 873        for_each_cpu(cpu, mask) {
 874                td = &per_cpu(tick_cpu_device, cpu);
 875                if (td->evtdev)
 876                        td->evtdev->next_event = expires;
 877        }
 878}
 879
 880/**
 881 * tick_broadcast_setup_oneshot - setup the broadcast device
 882 */
 883static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 884{
 885        int cpu = smp_processor_id();
 886
 887        if (!bc)
 888                return;
 889
 890        /* Set it up only once ! */
 891        if (bc->event_handler != tick_handle_oneshot_broadcast) {
 892                int was_periodic = clockevent_state_periodic(bc);
 893
 894                bc->event_handler = tick_handle_oneshot_broadcast;
 895
 896                /*
 897                 * We must be careful here. There might be other CPUs
 898                 * waiting for periodic broadcast. We need to set the
 899                 * oneshot_mask bits for those and program the
 900                 * broadcast device to fire.
 901                 */
 902                cpumask_copy(tmpmask, tick_broadcast_mask);
 903                cpumask_clear_cpu(cpu, tmpmask);
 904                cpumask_or(tick_broadcast_oneshot_mask,
 905                           tick_broadcast_oneshot_mask, tmpmask);
 906
 907                if (was_periodic && !cpumask_empty(tmpmask)) {
 908                        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 909                        tick_broadcast_init_next_event(tmpmask,
 910                                                       tick_next_period);
 911                        tick_broadcast_set_event(bc, cpu, tick_next_period);
 912                } else
 913                        bc->next_event = KTIME_MAX;
 914        } else {
 915                /*
 916                 * The first cpu which switches to oneshot mode sets
 917                 * the bit for all other cpus which are in the general
 918                 * (periodic) broadcast mask. So the bit is set and
 919                 * would prevent the first broadcast enter after this
 920                 * to program the bc device.
 921                 */
 922                tick_broadcast_clear_oneshot(cpu);
 923        }
 924}
 925
 926/*
 927 * Select oneshot operating mode for the broadcast device
 928 */
 929void tick_broadcast_switch_to_oneshot(void)
 930{
 931        struct clock_event_device *bc;
 932        unsigned long flags;
 933
 934        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 935
 936        tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 937        bc = tick_broadcast_device.evtdev;
 938        if (bc)
 939                tick_broadcast_setup_oneshot(bc);
 940
 941        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 942}
 943
 944#ifdef CONFIG_HOTPLUG_CPU
 945void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 946{
 947        struct clock_event_device *bc;
 948        unsigned long flags;
 949
 950        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 951        bc = tick_broadcast_device.evtdev;
 952
 953        if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 954                /* This moves the broadcast assignment to this CPU: */
 955                clockevents_program_event(bc, bc->next_event, 1);
 956        }
 957        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 958}
 959
 960/*
 961 * Remove a dying CPU from broadcasting
 962 */
 963static void tick_broadcast_oneshot_offline(unsigned int cpu)
 964{
 965        /*
 966         * Clear the broadcast masks for the dead cpu, but do not stop
 967         * the broadcast device!
 968         */
 969        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 970        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 971        cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 972}
 973#endif
 974
 975/*
 976 * Check, whether the broadcast device is in one shot mode
 977 */
 978int tick_broadcast_oneshot_active(void)
 979{
 980        return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 981}
 982
 983/*
 984 * Check whether the broadcast device supports oneshot.
 985 */
 986bool tick_broadcast_oneshot_available(void)
 987{
 988        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 989
 990        return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 991}
 992
 993#else
 994int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 995{
 996        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 997
 998        if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
 999                return -EBUSY;
1000
1001        return 0;
1002}
1003#endif
1004
1005void __init tick_broadcast_init(void)
1006{
1007        zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1008        zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1009        zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1010#ifdef CONFIG_TICK_ONESHOT
1011        zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1012        zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1013        zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1014#endif
1015}
1016