linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel timekeeping code and accessor functions. Based on code from
   4 *  timer.c, moved in commit 8524070b7982.
   5 */
   6#include <linux/timekeeper_internal.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/percpu.h>
  10#include <linux/init.h>
  11#include <linux/mm.h>
  12#include <linux/nmi.h>
  13#include <linux/sched.h>
  14#include <linux/sched/loadavg.h>
  15#include <linux/sched/clock.h>
  16#include <linux/syscore_ops.h>
  17#include <linux/clocksource.h>
  18#include <linux/jiffies.h>
  19#include <linux/time.h>
  20#include <linux/tick.h>
  21#include <linux/stop_machine.h>
  22#include <linux/pvclock_gtod.h>
  23#include <linux/compiler.h>
  24#include <linux/audit.h>
  25
  26#include "tick-internal.h"
  27#include "ntp_internal.h"
  28#include "timekeeping_internal.h"
  29
  30#define TK_CLEAR_NTP            (1 << 0)
  31#define TK_MIRROR               (1 << 1)
  32#define TK_CLOCK_WAS_SET        (1 << 2)
  33
  34enum timekeeping_adv_mode {
  35        /* Update timekeeper when a tick has passed */
  36        TK_ADV_TICK,
  37
  38        /* Update timekeeper on a direct frequency change */
  39        TK_ADV_FREQ
  40};
  41
  42/*
  43 * The most important data for readout fits into a single 64 byte
  44 * cache line.
  45 */
  46static struct {
  47        seqcount_t              seq;
  48        struct timekeeper       timekeeper;
  49} tk_core ____cacheline_aligned = {
  50        .seq = SEQCNT_ZERO(tk_core.seq),
  51};
  52
  53static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  54static struct timekeeper shadow_timekeeper;
  55
  56/**
  57 * struct tk_fast - NMI safe timekeeper
  58 * @seq:        Sequence counter for protecting updates. The lowest bit
  59 *              is the index for the tk_read_base array
  60 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  61 *              @seq.
  62 *
  63 * See @update_fast_timekeeper() below.
  64 */
  65struct tk_fast {
  66        seqcount_t              seq;
  67        struct tk_read_base     base[2];
  68};
  69
  70/* Suspend-time cycles value for halted fast timekeeper. */
  71static u64 cycles_at_suspend;
  72
  73static u64 dummy_clock_read(struct clocksource *cs)
  74{
  75        return cycles_at_suspend;
  76}
  77
  78static struct clocksource dummy_clock = {
  79        .read = dummy_clock_read,
  80};
  81
  82static struct tk_fast tk_fast_mono ____cacheline_aligned = {
  83        .base[0] = { .clock = &dummy_clock, },
  84        .base[1] = { .clock = &dummy_clock, },
  85};
  86
  87static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
  88        .base[0] = { .clock = &dummy_clock, },
  89        .base[1] = { .clock = &dummy_clock, },
  90};
  91
  92/* flag for if timekeeping is suspended */
  93int __read_mostly timekeeping_suspended;
  94
  95static inline void tk_normalize_xtime(struct timekeeper *tk)
  96{
  97        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  98                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  99                tk->xtime_sec++;
 100        }
 101        while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 102                tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 103                tk->raw_sec++;
 104        }
 105}
 106
 107static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 108{
 109        struct timespec64 ts;
 110
 111        ts.tv_sec = tk->xtime_sec;
 112        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 113        return ts;
 114}
 115
 116static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 117{
 118        tk->xtime_sec = ts->tv_sec;
 119        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 120}
 121
 122static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 123{
 124        tk->xtime_sec += ts->tv_sec;
 125        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 126        tk_normalize_xtime(tk);
 127}
 128
 129static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 130{
 131        struct timespec64 tmp;
 132
 133        /*
 134         * Verify consistency of: offset_real = -wall_to_monotonic
 135         * before modifying anything
 136         */
 137        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 138                                        -tk->wall_to_monotonic.tv_nsec);
 139        WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 140        tk->wall_to_monotonic = wtm;
 141        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 142        tk->offs_real = timespec64_to_ktime(tmp);
 143        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 144}
 145
 146static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 147{
 148        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 149}
 150
 151/*
 152 * tk_clock_read - atomic clocksource read() helper
 153 *
 154 * This helper is necessary to use in the read paths because, while the
 155 * seqlock ensures we don't return a bad value while structures are updated,
 156 * it doesn't protect from potential crashes. There is the possibility that
 157 * the tkr's clocksource may change between the read reference, and the
 158 * clock reference passed to the read function.  This can cause crashes if
 159 * the wrong clocksource is passed to the wrong read function.
 160 * This isn't necessary to use when holding the timekeeper_lock or doing
 161 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 162 * and update logic).
 163 */
 164static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 165{
 166        struct clocksource *clock = READ_ONCE(tkr->clock);
 167
 168        return clock->read(clock);
 169}
 170
 171#ifdef CONFIG_DEBUG_TIMEKEEPING
 172#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 173
 174static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 175{
 176
 177        u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 178        const char *name = tk->tkr_mono.clock->name;
 179
 180        if (offset > max_cycles) {
 181                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 182                                offset, name, max_cycles);
 183                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 184        } else {
 185                if (offset > (max_cycles >> 1)) {
 186                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 187                                        offset, name, max_cycles >> 1);
 188                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 189                }
 190        }
 191
 192        if (tk->underflow_seen) {
 193                if (jiffies - tk->last_warning > WARNING_FREQ) {
 194                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 195                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 196                        printk_deferred("         Your kernel is probably still fine.\n");
 197                        tk->last_warning = jiffies;
 198                }
 199                tk->underflow_seen = 0;
 200        }
 201
 202        if (tk->overflow_seen) {
 203                if (jiffies - tk->last_warning > WARNING_FREQ) {
 204                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 205                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 206                        printk_deferred("         Your kernel is probably still fine.\n");
 207                        tk->last_warning = jiffies;
 208                }
 209                tk->overflow_seen = 0;
 210        }
 211}
 212
 213static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 214{
 215        struct timekeeper *tk = &tk_core.timekeeper;
 216        u64 now, last, mask, max, delta;
 217        unsigned int seq;
 218
 219        /*
 220         * Since we're called holding a seqlock, the data may shift
 221         * under us while we're doing the calculation. This can cause
 222         * false positives, since we'd note a problem but throw the
 223         * results away. So nest another seqlock here to atomically
 224         * grab the points we are checking with.
 225         */
 226        do {
 227                seq = read_seqcount_begin(&tk_core.seq);
 228                now = tk_clock_read(tkr);
 229                last = tkr->cycle_last;
 230                mask = tkr->mask;
 231                max = tkr->clock->max_cycles;
 232        } while (read_seqcount_retry(&tk_core.seq, seq));
 233
 234        delta = clocksource_delta(now, last, mask);
 235
 236        /*
 237         * Try to catch underflows by checking if we are seeing small
 238         * mask-relative negative values.
 239         */
 240        if (unlikely((~delta & mask) < (mask >> 3))) {
 241                tk->underflow_seen = 1;
 242                delta = 0;
 243        }
 244
 245        /* Cap delta value to the max_cycles values to avoid mult overflows */
 246        if (unlikely(delta > max)) {
 247                tk->overflow_seen = 1;
 248                delta = tkr->clock->max_cycles;
 249        }
 250
 251        return delta;
 252}
 253#else
 254static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 255{
 256}
 257static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 258{
 259        u64 cycle_now, delta;
 260
 261        /* read clocksource */
 262        cycle_now = tk_clock_read(tkr);
 263
 264        /* calculate the delta since the last update_wall_time */
 265        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 266
 267        return delta;
 268}
 269#endif
 270
 271/**
 272 * tk_setup_internals - Set up internals to use clocksource clock.
 273 *
 274 * @tk:         The target timekeeper to setup.
 275 * @clock:              Pointer to clocksource.
 276 *
 277 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 278 * pair and interval request.
 279 *
 280 * Unless you're the timekeeping code, you should not be using this!
 281 */
 282static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 283{
 284        u64 interval;
 285        u64 tmp, ntpinterval;
 286        struct clocksource *old_clock;
 287
 288        ++tk->cs_was_changed_seq;
 289        old_clock = tk->tkr_mono.clock;
 290        tk->tkr_mono.clock = clock;
 291        tk->tkr_mono.mask = clock->mask;
 292        tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 293
 294        tk->tkr_raw.clock = clock;
 295        tk->tkr_raw.mask = clock->mask;
 296        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 297
 298        /* Do the ns -> cycle conversion first, using original mult */
 299        tmp = NTP_INTERVAL_LENGTH;
 300        tmp <<= clock->shift;
 301        ntpinterval = tmp;
 302        tmp += clock->mult/2;
 303        do_div(tmp, clock->mult);
 304        if (tmp == 0)
 305                tmp = 1;
 306
 307        interval = (u64) tmp;
 308        tk->cycle_interval = interval;
 309
 310        /* Go back from cycles -> shifted ns */
 311        tk->xtime_interval = interval * clock->mult;
 312        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 313        tk->raw_interval = interval * clock->mult;
 314
 315         /* if changing clocks, convert xtime_nsec shift units */
 316        if (old_clock) {
 317                int shift_change = clock->shift - old_clock->shift;
 318                if (shift_change < 0) {
 319                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 320                        tk->tkr_raw.xtime_nsec >>= -shift_change;
 321                } else {
 322                        tk->tkr_mono.xtime_nsec <<= shift_change;
 323                        tk->tkr_raw.xtime_nsec <<= shift_change;
 324                }
 325        }
 326
 327        tk->tkr_mono.shift = clock->shift;
 328        tk->tkr_raw.shift = clock->shift;
 329
 330        tk->ntp_error = 0;
 331        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 332        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 333
 334        /*
 335         * The timekeeper keeps its own mult values for the currently
 336         * active clocksource. These value will be adjusted via NTP
 337         * to counteract clock drifting.
 338         */
 339        tk->tkr_mono.mult = clock->mult;
 340        tk->tkr_raw.mult = clock->mult;
 341        tk->ntp_err_mult = 0;
 342        tk->skip_second_overflow = 0;
 343}
 344
 345/* Timekeeper helper functions. */
 346
 347#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 348static u32 default_arch_gettimeoffset(void) { return 0; }
 349u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 350#else
 351static inline u32 arch_gettimeoffset(void) { return 0; }
 352#endif
 353
 354static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 355{
 356        u64 nsec;
 357
 358        nsec = delta * tkr->mult + tkr->xtime_nsec;
 359        nsec >>= tkr->shift;
 360
 361        /* If arch requires, add in get_arch_timeoffset() */
 362        return nsec + arch_gettimeoffset();
 363}
 364
 365static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 366{
 367        u64 delta;
 368
 369        delta = timekeeping_get_delta(tkr);
 370        return timekeeping_delta_to_ns(tkr, delta);
 371}
 372
 373static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 374{
 375        u64 delta;
 376
 377        /* calculate the delta since the last update_wall_time */
 378        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 379        return timekeeping_delta_to_ns(tkr, delta);
 380}
 381
 382/**
 383 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 384 * @tkr: Timekeeping readout base from which we take the update
 385 *
 386 * We want to use this from any context including NMI and tracing /
 387 * instrumenting the timekeeping code itself.
 388 *
 389 * Employ the latch technique; see @raw_write_seqcount_latch.
 390 *
 391 * So if a NMI hits the update of base[0] then it will use base[1]
 392 * which is still consistent. In the worst case this can result is a
 393 * slightly wrong timestamp (a few nanoseconds). See
 394 * @ktime_get_mono_fast_ns.
 395 */
 396static void update_fast_timekeeper(const struct tk_read_base *tkr,
 397                                   struct tk_fast *tkf)
 398{
 399        struct tk_read_base *base = tkf->base;
 400
 401        /* Force readers off to base[1] */
 402        raw_write_seqcount_latch(&tkf->seq);
 403
 404        /* Update base[0] */
 405        memcpy(base, tkr, sizeof(*base));
 406
 407        /* Force readers back to base[0] */
 408        raw_write_seqcount_latch(&tkf->seq);
 409
 410        /* Update base[1] */
 411        memcpy(base + 1, base, sizeof(*base));
 412}
 413
 414/**
 415 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 416 *
 417 * This timestamp is not guaranteed to be monotonic across an update.
 418 * The timestamp is calculated by:
 419 *
 420 *      now = base_mono + clock_delta * slope
 421 *
 422 * So if the update lowers the slope, readers who are forced to the
 423 * not yet updated second array are still using the old steeper slope.
 424 *
 425 * tmono
 426 * ^
 427 * |    o  n
 428 * |   o n
 429 * |  u
 430 * | o
 431 * |o
 432 * |12345678---> reader order
 433 *
 434 * o = old slope
 435 * u = update
 436 * n = new slope
 437 *
 438 * So reader 6 will observe time going backwards versus reader 5.
 439 *
 440 * While other CPUs are likely to be able observe that, the only way
 441 * for a CPU local observation is when an NMI hits in the middle of
 442 * the update. Timestamps taken from that NMI context might be ahead
 443 * of the following timestamps. Callers need to be aware of that and
 444 * deal with it.
 445 */
 446static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 447{
 448        struct tk_read_base *tkr;
 449        unsigned int seq;
 450        u64 now;
 451
 452        do {
 453                seq = raw_read_seqcount_latch(&tkf->seq);
 454                tkr = tkf->base + (seq & 0x01);
 455                now = ktime_to_ns(tkr->base);
 456
 457                now += timekeeping_delta_to_ns(tkr,
 458                                clocksource_delta(
 459                                        tk_clock_read(tkr),
 460                                        tkr->cycle_last,
 461                                        tkr->mask));
 462        } while (read_seqcount_retry(&tkf->seq, seq));
 463
 464        return now;
 465}
 466
 467u64 ktime_get_mono_fast_ns(void)
 468{
 469        return __ktime_get_fast_ns(&tk_fast_mono);
 470}
 471EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 472
 473u64 ktime_get_raw_fast_ns(void)
 474{
 475        return __ktime_get_fast_ns(&tk_fast_raw);
 476}
 477EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 478
 479/**
 480 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 481 *
 482 * To keep it NMI safe since we're accessing from tracing, we're not using a
 483 * separate timekeeper with updates to monotonic clock and boot offset
 484 * protected with seqlocks. This has the following minor side effects:
 485 *
 486 * (1) Its possible that a timestamp be taken after the boot offset is updated
 487 * but before the timekeeper is updated. If this happens, the new boot offset
 488 * is added to the old timekeeping making the clock appear to update slightly
 489 * earlier:
 490 *    CPU 0                                        CPU 1
 491 *    timekeeping_inject_sleeptime64()
 492 *    __timekeeping_inject_sleeptime(tk, delta);
 493 *                                                 timestamp();
 494 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 495 *
 496 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 497 * partially updated.  Since the tk->offs_boot update is a rare event, this
 498 * should be a rare occurrence which postprocessing should be able to handle.
 499 */
 500u64 notrace ktime_get_boot_fast_ns(void)
 501{
 502        struct timekeeper *tk = &tk_core.timekeeper;
 503
 504        return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 505}
 506EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 507
 508
 509/*
 510 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 511 */
 512static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 513{
 514        struct tk_read_base *tkr;
 515        unsigned int seq;
 516        u64 now;
 517
 518        do {
 519                seq = raw_read_seqcount_latch(&tkf->seq);
 520                tkr = tkf->base + (seq & 0x01);
 521                now = ktime_to_ns(tkr->base_real);
 522
 523                now += timekeeping_delta_to_ns(tkr,
 524                                clocksource_delta(
 525                                        tk_clock_read(tkr),
 526                                        tkr->cycle_last,
 527                                        tkr->mask));
 528        } while (read_seqcount_retry(&tkf->seq, seq));
 529
 530        return now;
 531}
 532
 533/**
 534 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 535 */
 536u64 ktime_get_real_fast_ns(void)
 537{
 538        return __ktime_get_real_fast_ns(&tk_fast_mono);
 539}
 540EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 541
 542/**
 543 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 544 * @tk: Timekeeper to snapshot.
 545 *
 546 * It generally is unsafe to access the clocksource after timekeeping has been
 547 * suspended, so take a snapshot of the readout base of @tk and use it as the
 548 * fast timekeeper's readout base while suspended.  It will return the same
 549 * number of cycles every time until timekeeping is resumed at which time the
 550 * proper readout base for the fast timekeeper will be restored automatically.
 551 */
 552static void halt_fast_timekeeper(const struct timekeeper *tk)
 553{
 554        static struct tk_read_base tkr_dummy;
 555        const struct tk_read_base *tkr = &tk->tkr_mono;
 556
 557        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 558        cycles_at_suspend = tk_clock_read(tkr);
 559        tkr_dummy.clock = &dummy_clock;
 560        tkr_dummy.base_real = tkr->base + tk->offs_real;
 561        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 562
 563        tkr = &tk->tkr_raw;
 564        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 565        tkr_dummy.clock = &dummy_clock;
 566        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 567}
 568
 569static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 570
 571static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 572{
 573        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 574}
 575
 576/**
 577 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 578 */
 579int pvclock_gtod_register_notifier(struct notifier_block *nb)
 580{
 581        struct timekeeper *tk = &tk_core.timekeeper;
 582        unsigned long flags;
 583        int ret;
 584
 585        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 586        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 587        update_pvclock_gtod(tk, true);
 588        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 589
 590        return ret;
 591}
 592EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 593
 594/**
 595 * pvclock_gtod_unregister_notifier - unregister a pvclock
 596 * timedata update listener
 597 */
 598int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 599{
 600        unsigned long flags;
 601        int ret;
 602
 603        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 604        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 605        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 606
 607        return ret;
 608}
 609EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 610
 611/*
 612 * tk_update_leap_state - helper to update the next_leap_ktime
 613 */
 614static inline void tk_update_leap_state(struct timekeeper *tk)
 615{
 616        tk->next_leap_ktime = ntp_get_next_leap();
 617        if (tk->next_leap_ktime != KTIME_MAX)
 618                /* Convert to monotonic time */
 619                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 620}
 621
 622/*
 623 * Update the ktime_t based scalar nsec members of the timekeeper
 624 */
 625static inline void tk_update_ktime_data(struct timekeeper *tk)
 626{
 627        u64 seconds;
 628        u32 nsec;
 629
 630        /*
 631         * The xtime based monotonic readout is:
 632         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 633         * The ktime based monotonic readout is:
 634         *      nsec = base_mono + now();
 635         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 636         */
 637        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 638        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 639        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 640
 641        /*
 642         * The sum of the nanoseconds portions of xtime and
 643         * wall_to_monotonic can be greater/equal one second. Take
 644         * this into account before updating tk->ktime_sec.
 645         */
 646        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 647        if (nsec >= NSEC_PER_SEC)
 648                seconds++;
 649        tk->ktime_sec = seconds;
 650
 651        /* Update the monotonic raw base */
 652        tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 653}
 654
 655/* must hold timekeeper_lock */
 656static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 657{
 658        if (action & TK_CLEAR_NTP) {
 659                tk->ntp_error = 0;
 660                ntp_clear();
 661        }
 662
 663        tk_update_leap_state(tk);
 664        tk_update_ktime_data(tk);
 665
 666        update_vsyscall(tk);
 667        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 668
 669        tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 670        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 671        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 672
 673        if (action & TK_CLOCK_WAS_SET)
 674                tk->clock_was_set_seq++;
 675        /*
 676         * The mirroring of the data to the shadow-timekeeper needs
 677         * to happen last here to ensure we don't over-write the
 678         * timekeeper structure on the next update with stale data
 679         */
 680        if (action & TK_MIRROR)
 681                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 682                       sizeof(tk_core.timekeeper));
 683}
 684
 685/**
 686 * timekeeping_forward_now - update clock to the current time
 687 *
 688 * Forward the current clock to update its state since the last call to
 689 * update_wall_time(). This is useful before significant clock changes,
 690 * as it avoids having to deal with this time offset explicitly.
 691 */
 692static void timekeeping_forward_now(struct timekeeper *tk)
 693{
 694        u64 cycle_now, delta;
 695
 696        cycle_now = tk_clock_read(&tk->tkr_mono);
 697        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 698        tk->tkr_mono.cycle_last = cycle_now;
 699        tk->tkr_raw.cycle_last  = cycle_now;
 700
 701        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 702
 703        /* If arch requires, add in get_arch_timeoffset() */
 704        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 705
 706
 707        tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 708
 709        /* If arch requires, add in get_arch_timeoffset() */
 710        tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 711
 712        tk_normalize_xtime(tk);
 713}
 714
 715/**
 716 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 717 * @ts:         pointer to the timespec to be set
 718 *
 719 * Returns the time of day in a timespec64 (WARN if suspended).
 720 */
 721void ktime_get_real_ts64(struct timespec64 *ts)
 722{
 723        struct timekeeper *tk = &tk_core.timekeeper;
 724        unsigned int seq;
 725        u64 nsecs;
 726
 727        WARN_ON(timekeeping_suspended);
 728
 729        do {
 730                seq = read_seqcount_begin(&tk_core.seq);
 731
 732                ts->tv_sec = tk->xtime_sec;
 733                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 734
 735        } while (read_seqcount_retry(&tk_core.seq, seq));
 736
 737        ts->tv_nsec = 0;
 738        timespec64_add_ns(ts, nsecs);
 739}
 740EXPORT_SYMBOL(ktime_get_real_ts64);
 741
 742ktime_t ktime_get(void)
 743{
 744        struct timekeeper *tk = &tk_core.timekeeper;
 745        unsigned int seq;
 746        ktime_t base;
 747        u64 nsecs;
 748
 749        WARN_ON(timekeeping_suspended);
 750
 751        do {
 752                seq = read_seqcount_begin(&tk_core.seq);
 753                base = tk->tkr_mono.base;
 754                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 755
 756        } while (read_seqcount_retry(&tk_core.seq, seq));
 757
 758        return ktime_add_ns(base, nsecs);
 759}
 760EXPORT_SYMBOL_GPL(ktime_get);
 761
 762u32 ktime_get_resolution_ns(void)
 763{
 764        struct timekeeper *tk = &tk_core.timekeeper;
 765        unsigned int seq;
 766        u32 nsecs;
 767
 768        WARN_ON(timekeeping_suspended);
 769
 770        do {
 771                seq = read_seqcount_begin(&tk_core.seq);
 772                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 773        } while (read_seqcount_retry(&tk_core.seq, seq));
 774
 775        return nsecs;
 776}
 777EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 778
 779static ktime_t *offsets[TK_OFFS_MAX] = {
 780        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 781        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 782        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 783};
 784
 785ktime_t ktime_get_with_offset(enum tk_offsets offs)
 786{
 787        struct timekeeper *tk = &tk_core.timekeeper;
 788        unsigned int seq;
 789        ktime_t base, *offset = offsets[offs];
 790        u64 nsecs;
 791
 792        WARN_ON(timekeeping_suspended);
 793
 794        do {
 795                seq = read_seqcount_begin(&tk_core.seq);
 796                base = ktime_add(tk->tkr_mono.base, *offset);
 797                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 798
 799        } while (read_seqcount_retry(&tk_core.seq, seq));
 800
 801        return ktime_add_ns(base, nsecs);
 802
 803}
 804EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 805
 806ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 807{
 808        struct timekeeper *tk = &tk_core.timekeeper;
 809        unsigned int seq;
 810        ktime_t base, *offset = offsets[offs];
 811        u64 nsecs;
 812
 813        WARN_ON(timekeeping_suspended);
 814
 815        do {
 816                seq = read_seqcount_begin(&tk_core.seq);
 817                base = ktime_add(tk->tkr_mono.base, *offset);
 818                nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 819
 820        } while (read_seqcount_retry(&tk_core.seq, seq));
 821
 822        return base + nsecs;
 823}
 824EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 825
 826/**
 827 * ktime_mono_to_any() - convert mononotic time to any other time
 828 * @tmono:      time to convert.
 829 * @offs:       which offset to use
 830 */
 831ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 832{
 833        ktime_t *offset = offsets[offs];
 834        unsigned int seq;
 835        ktime_t tconv;
 836
 837        do {
 838                seq = read_seqcount_begin(&tk_core.seq);
 839                tconv = ktime_add(tmono, *offset);
 840        } while (read_seqcount_retry(&tk_core.seq, seq));
 841
 842        return tconv;
 843}
 844EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 845
 846/**
 847 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 848 */
 849ktime_t ktime_get_raw(void)
 850{
 851        struct timekeeper *tk = &tk_core.timekeeper;
 852        unsigned int seq;
 853        ktime_t base;
 854        u64 nsecs;
 855
 856        do {
 857                seq = read_seqcount_begin(&tk_core.seq);
 858                base = tk->tkr_raw.base;
 859                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 860
 861        } while (read_seqcount_retry(&tk_core.seq, seq));
 862
 863        return ktime_add_ns(base, nsecs);
 864}
 865EXPORT_SYMBOL_GPL(ktime_get_raw);
 866
 867/**
 868 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 869 * @ts:         pointer to timespec variable
 870 *
 871 * The function calculates the monotonic clock from the realtime
 872 * clock and the wall_to_monotonic offset and stores the result
 873 * in normalized timespec64 format in the variable pointed to by @ts.
 874 */
 875void ktime_get_ts64(struct timespec64 *ts)
 876{
 877        struct timekeeper *tk = &tk_core.timekeeper;
 878        struct timespec64 tomono;
 879        unsigned int seq;
 880        u64 nsec;
 881
 882        WARN_ON(timekeeping_suspended);
 883
 884        do {
 885                seq = read_seqcount_begin(&tk_core.seq);
 886                ts->tv_sec = tk->xtime_sec;
 887                nsec = timekeeping_get_ns(&tk->tkr_mono);
 888                tomono = tk->wall_to_monotonic;
 889
 890        } while (read_seqcount_retry(&tk_core.seq, seq));
 891
 892        ts->tv_sec += tomono.tv_sec;
 893        ts->tv_nsec = 0;
 894        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 895}
 896EXPORT_SYMBOL_GPL(ktime_get_ts64);
 897
 898/**
 899 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 900 *
 901 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 902 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 903 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 904 * covers ~136 years of uptime which should be enough to prevent
 905 * premature wrap arounds.
 906 */
 907time64_t ktime_get_seconds(void)
 908{
 909        struct timekeeper *tk = &tk_core.timekeeper;
 910
 911        WARN_ON(timekeeping_suspended);
 912        return tk->ktime_sec;
 913}
 914EXPORT_SYMBOL_GPL(ktime_get_seconds);
 915
 916/**
 917 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 918 *
 919 * Returns the wall clock seconds since 1970. This replaces the
 920 * get_seconds() interface which is not y2038 safe on 32bit systems.
 921 *
 922 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 923 * 32bit systems the access must be protected with the sequence
 924 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 925 * value.
 926 */
 927time64_t ktime_get_real_seconds(void)
 928{
 929        struct timekeeper *tk = &tk_core.timekeeper;
 930        time64_t seconds;
 931        unsigned int seq;
 932
 933        if (IS_ENABLED(CONFIG_64BIT))
 934                return tk->xtime_sec;
 935
 936        do {
 937                seq = read_seqcount_begin(&tk_core.seq);
 938                seconds = tk->xtime_sec;
 939
 940        } while (read_seqcount_retry(&tk_core.seq, seq));
 941
 942        return seconds;
 943}
 944EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 945
 946/**
 947 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 948 * but without the sequence counter protect. This internal function
 949 * is called just when timekeeping lock is already held.
 950 */
 951time64_t __ktime_get_real_seconds(void)
 952{
 953        struct timekeeper *tk = &tk_core.timekeeper;
 954
 955        return tk->xtime_sec;
 956}
 957
 958/**
 959 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 960 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 961 */
 962void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 963{
 964        struct timekeeper *tk = &tk_core.timekeeper;
 965        unsigned int seq;
 966        ktime_t base_raw;
 967        ktime_t base_real;
 968        u64 nsec_raw;
 969        u64 nsec_real;
 970        u64 now;
 971
 972        WARN_ON_ONCE(timekeeping_suspended);
 973
 974        do {
 975                seq = read_seqcount_begin(&tk_core.seq);
 976                now = tk_clock_read(&tk->tkr_mono);
 977                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 978                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 979                base_real = ktime_add(tk->tkr_mono.base,
 980                                      tk_core.timekeeper.offs_real);
 981                base_raw = tk->tkr_raw.base;
 982                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 983                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 984        } while (read_seqcount_retry(&tk_core.seq, seq));
 985
 986        systime_snapshot->cycles = now;
 987        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 988        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 989}
 990EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 991
 992/* Scale base by mult/div checking for overflow */
 993static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 994{
 995        u64 tmp, rem;
 996
 997        tmp = div64_u64_rem(*base, div, &rem);
 998
 999        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1000            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1001                return -EOVERFLOW;
1002        tmp *= mult;
1003        rem *= mult;
1004
1005        do_div(rem, div);
1006        *base = tmp + rem;
1007        return 0;
1008}
1009
1010/**
1011 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1012 * @history:                    Snapshot representing start of history
1013 * @partial_history_cycles:     Cycle offset into history (fractional part)
1014 * @total_history_cycles:       Total history length in cycles
1015 * @discontinuity:              True indicates clock was set on history period
1016 * @ts:                         Cross timestamp that should be adjusted using
1017 *      partial/total ratio
1018 *
1019 * Helper function used by get_device_system_crosststamp() to correct the
1020 * crosstimestamp corresponding to the start of the current interval to the
1021 * system counter value (timestamp point) provided by the driver. The
1022 * total_history_* quantities are the total history starting at the provided
1023 * reference point and ending at the start of the current interval. The cycle
1024 * count between the driver timestamp point and the start of the current
1025 * interval is partial_history_cycles.
1026 */
1027static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1028                                         u64 partial_history_cycles,
1029                                         u64 total_history_cycles,
1030                                         bool discontinuity,
1031                                         struct system_device_crosststamp *ts)
1032{
1033        struct timekeeper *tk = &tk_core.timekeeper;
1034        u64 corr_raw, corr_real;
1035        bool interp_forward;
1036        int ret;
1037
1038        if (total_history_cycles == 0 || partial_history_cycles == 0)
1039                return 0;
1040
1041        /* Interpolate shortest distance from beginning or end of history */
1042        interp_forward = partial_history_cycles > total_history_cycles / 2;
1043        partial_history_cycles = interp_forward ?
1044                total_history_cycles - partial_history_cycles :
1045                partial_history_cycles;
1046
1047        /*
1048         * Scale the monotonic raw time delta by:
1049         *      partial_history_cycles / total_history_cycles
1050         */
1051        corr_raw = (u64)ktime_to_ns(
1052                ktime_sub(ts->sys_monoraw, history->raw));
1053        ret = scale64_check_overflow(partial_history_cycles,
1054                                     total_history_cycles, &corr_raw);
1055        if (ret)
1056                return ret;
1057
1058        /*
1059         * If there is a discontinuity in the history, scale monotonic raw
1060         *      correction by:
1061         *      mult(real)/mult(raw) yielding the realtime correction
1062         * Otherwise, calculate the realtime correction similar to monotonic
1063         *      raw calculation
1064         */
1065        if (discontinuity) {
1066                corr_real = mul_u64_u32_div
1067                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1068        } else {
1069                corr_real = (u64)ktime_to_ns(
1070                        ktime_sub(ts->sys_realtime, history->real));
1071                ret = scale64_check_overflow(partial_history_cycles,
1072                                             total_history_cycles, &corr_real);
1073                if (ret)
1074                        return ret;
1075        }
1076
1077        /* Fixup monotonic raw and real time time values */
1078        if (interp_forward) {
1079                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1080                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1081        } else {
1082                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1083                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1084        }
1085
1086        return 0;
1087}
1088
1089/*
1090 * cycle_between - true if test occurs chronologically between before and after
1091 */
1092static bool cycle_between(u64 before, u64 test, u64 after)
1093{
1094        if (test > before && test < after)
1095                return true;
1096        if (test < before && before > after)
1097                return true;
1098        return false;
1099}
1100
1101/**
1102 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1103 * @get_time_fn:        Callback to get simultaneous device time and
1104 *      system counter from the device driver
1105 * @ctx:                Context passed to get_time_fn()
1106 * @history_begin:      Historical reference point used to interpolate system
1107 *      time when counter provided by the driver is before the current interval
1108 * @xtstamp:            Receives simultaneously captured system and device time
1109 *
1110 * Reads a timestamp from a device and correlates it to system time
1111 */
1112int get_device_system_crosststamp(int (*get_time_fn)
1113                                  (ktime_t *device_time,
1114                                   struct system_counterval_t *sys_counterval,
1115                                   void *ctx),
1116                                  void *ctx,
1117                                  struct system_time_snapshot *history_begin,
1118                                  struct system_device_crosststamp *xtstamp)
1119{
1120        struct system_counterval_t system_counterval;
1121        struct timekeeper *tk = &tk_core.timekeeper;
1122        u64 cycles, now, interval_start;
1123        unsigned int clock_was_set_seq = 0;
1124        ktime_t base_real, base_raw;
1125        u64 nsec_real, nsec_raw;
1126        u8 cs_was_changed_seq;
1127        unsigned int seq;
1128        bool do_interp;
1129        int ret;
1130
1131        do {
1132                seq = read_seqcount_begin(&tk_core.seq);
1133                /*
1134                 * Try to synchronously capture device time and a system
1135                 * counter value calling back into the device driver
1136                 */
1137                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1138                if (ret)
1139                        return ret;
1140
1141                /*
1142                 * Verify that the clocksource associated with the captured
1143                 * system counter value is the same as the currently installed
1144                 * timekeeper clocksource
1145                 */
1146                if (tk->tkr_mono.clock != system_counterval.cs)
1147                        return -ENODEV;
1148                cycles = system_counterval.cycles;
1149
1150                /*
1151                 * Check whether the system counter value provided by the
1152                 * device driver is on the current timekeeping interval.
1153                 */
1154                now = tk_clock_read(&tk->tkr_mono);
1155                interval_start = tk->tkr_mono.cycle_last;
1156                if (!cycle_between(interval_start, cycles, now)) {
1157                        clock_was_set_seq = tk->clock_was_set_seq;
1158                        cs_was_changed_seq = tk->cs_was_changed_seq;
1159                        cycles = interval_start;
1160                        do_interp = true;
1161                } else {
1162                        do_interp = false;
1163                }
1164
1165                base_real = ktime_add(tk->tkr_mono.base,
1166                                      tk_core.timekeeper.offs_real);
1167                base_raw = tk->tkr_raw.base;
1168
1169                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1170                                                     system_counterval.cycles);
1171                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1172                                                    system_counterval.cycles);
1173        } while (read_seqcount_retry(&tk_core.seq, seq));
1174
1175        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1176        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1177
1178        /*
1179         * Interpolate if necessary, adjusting back from the start of the
1180         * current interval
1181         */
1182        if (do_interp) {
1183                u64 partial_history_cycles, total_history_cycles;
1184                bool discontinuity;
1185
1186                /*
1187                 * Check that the counter value occurs after the provided
1188                 * history reference and that the history doesn't cross a
1189                 * clocksource change
1190                 */
1191                if (!history_begin ||
1192                    !cycle_between(history_begin->cycles,
1193                                   system_counterval.cycles, cycles) ||
1194                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1195                        return -EINVAL;
1196                partial_history_cycles = cycles - system_counterval.cycles;
1197                total_history_cycles = cycles - history_begin->cycles;
1198                discontinuity =
1199                        history_begin->clock_was_set_seq != clock_was_set_seq;
1200
1201                ret = adjust_historical_crosststamp(history_begin,
1202                                                    partial_history_cycles,
1203                                                    total_history_cycles,
1204                                                    discontinuity, xtstamp);
1205                if (ret)
1206                        return ret;
1207        }
1208
1209        return 0;
1210}
1211EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1212
1213/**
1214 * do_settimeofday64 - Sets the time of day.
1215 * @ts:     pointer to the timespec64 variable containing the new time
1216 *
1217 * Sets the time of day to the new time and update NTP and notify hrtimers
1218 */
1219int do_settimeofday64(const struct timespec64 *ts)
1220{
1221        struct timekeeper *tk = &tk_core.timekeeper;
1222        struct timespec64 ts_delta, xt;
1223        unsigned long flags;
1224        int ret = 0;
1225
1226        if (!timespec64_valid_settod(ts))
1227                return -EINVAL;
1228
1229        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1230        write_seqcount_begin(&tk_core.seq);
1231
1232        timekeeping_forward_now(tk);
1233
1234        xt = tk_xtime(tk);
1235        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1236        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1237
1238        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1239                ret = -EINVAL;
1240                goto out;
1241        }
1242
1243        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1244
1245        tk_set_xtime(tk, ts);
1246out:
1247        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1248
1249        write_seqcount_end(&tk_core.seq);
1250        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1251
1252        /* signal hrtimers about time change */
1253        clock_was_set();
1254
1255        if (!ret)
1256                audit_tk_injoffset(ts_delta);
1257
1258        return ret;
1259}
1260EXPORT_SYMBOL(do_settimeofday64);
1261
1262/**
1263 * timekeeping_inject_offset - Adds or subtracts from the current time.
1264 * @tv:         pointer to the timespec variable containing the offset
1265 *
1266 * Adds or subtracts an offset value from the current time.
1267 */
1268static int timekeeping_inject_offset(const struct timespec64 *ts)
1269{
1270        struct timekeeper *tk = &tk_core.timekeeper;
1271        unsigned long flags;
1272        struct timespec64 tmp;
1273        int ret = 0;
1274
1275        if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1276                return -EINVAL;
1277
1278        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1279        write_seqcount_begin(&tk_core.seq);
1280
1281        timekeeping_forward_now(tk);
1282
1283        /* Make sure the proposed value is valid */
1284        tmp = timespec64_add(tk_xtime(tk), *ts);
1285        if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1286            !timespec64_valid_settod(&tmp)) {
1287                ret = -EINVAL;
1288                goto error;
1289        }
1290
1291        tk_xtime_add(tk, ts);
1292        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1293
1294error: /* even if we error out, we forwarded the time, so call update */
1295        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1296
1297        write_seqcount_end(&tk_core.seq);
1298        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1299
1300        /* signal hrtimers about time change */
1301        clock_was_set();
1302
1303        return ret;
1304}
1305
1306/*
1307 * Indicates if there is an offset between the system clock and the hardware
1308 * clock/persistent clock/rtc.
1309 */
1310int persistent_clock_is_local;
1311
1312/*
1313 * Adjust the time obtained from the CMOS to be UTC time instead of
1314 * local time.
1315 *
1316 * This is ugly, but preferable to the alternatives.  Otherwise we
1317 * would either need to write a program to do it in /etc/rc (and risk
1318 * confusion if the program gets run more than once; it would also be
1319 * hard to make the program warp the clock precisely n hours)  or
1320 * compile in the timezone information into the kernel.  Bad, bad....
1321 *
1322 *                                              - TYT, 1992-01-01
1323 *
1324 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1325 * as real UNIX machines always do it. This avoids all headaches about
1326 * daylight saving times and warping kernel clocks.
1327 */
1328void timekeeping_warp_clock(void)
1329{
1330        if (sys_tz.tz_minuteswest != 0) {
1331                struct timespec64 adjust;
1332
1333                persistent_clock_is_local = 1;
1334                adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1335                adjust.tv_nsec = 0;
1336                timekeeping_inject_offset(&adjust);
1337        }
1338}
1339
1340/**
1341 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1342 *
1343 */
1344static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1345{
1346        tk->tai_offset = tai_offset;
1347        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1348}
1349
1350/**
1351 * change_clocksource - Swaps clocksources if a new one is available
1352 *
1353 * Accumulates current time interval and initializes new clocksource
1354 */
1355static int change_clocksource(void *data)
1356{
1357        struct timekeeper *tk = &tk_core.timekeeper;
1358        struct clocksource *new, *old;
1359        unsigned long flags;
1360
1361        new = (struct clocksource *) data;
1362
1363        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1364        write_seqcount_begin(&tk_core.seq);
1365
1366        timekeeping_forward_now(tk);
1367        /*
1368         * If the cs is in module, get a module reference. Succeeds
1369         * for built-in code (owner == NULL) as well.
1370         */
1371        if (try_module_get(new->owner)) {
1372                if (!new->enable || new->enable(new) == 0) {
1373                        old = tk->tkr_mono.clock;
1374                        tk_setup_internals(tk, new);
1375                        if (old->disable)
1376                                old->disable(old);
1377                        module_put(old->owner);
1378                } else {
1379                        module_put(new->owner);
1380                }
1381        }
1382        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1383
1384        write_seqcount_end(&tk_core.seq);
1385        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1386
1387        return 0;
1388}
1389
1390/**
1391 * timekeeping_notify - Install a new clock source
1392 * @clock:              pointer to the clock source
1393 *
1394 * This function is called from clocksource.c after a new, better clock
1395 * source has been registered. The caller holds the clocksource_mutex.
1396 */
1397int timekeeping_notify(struct clocksource *clock)
1398{
1399        struct timekeeper *tk = &tk_core.timekeeper;
1400
1401        if (tk->tkr_mono.clock == clock)
1402                return 0;
1403        stop_machine(change_clocksource, clock, NULL);
1404        tick_clock_notify();
1405        return tk->tkr_mono.clock == clock ? 0 : -1;
1406}
1407
1408/**
1409 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1410 * @ts:         pointer to the timespec64 to be set
1411 *
1412 * Returns the raw monotonic time (completely un-modified by ntp)
1413 */
1414void ktime_get_raw_ts64(struct timespec64 *ts)
1415{
1416        struct timekeeper *tk = &tk_core.timekeeper;
1417        unsigned int seq;
1418        u64 nsecs;
1419
1420        do {
1421                seq = read_seqcount_begin(&tk_core.seq);
1422                ts->tv_sec = tk->raw_sec;
1423                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1424
1425        } while (read_seqcount_retry(&tk_core.seq, seq));
1426
1427        ts->tv_nsec = 0;
1428        timespec64_add_ns(ts, nsecs);
1429}
1430EXPORT_SYMBOL(ktime_get_raw_ts64);
1431
1432
1433/**
1434 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1435 */
1436int timekeeping_valid_for_hres(void)
1437{
1438        struct timekeeper *tk = &tk_core.timekeeper;
1439        unsigned int seq;
1440        int ret;
1441
1442        do {
1443                seq = read_seqcount_begin(&tk_core.seq);
1444
1445                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1446
1447        } while (read_seqcount_retry(&tk_core.seq, seq));
1448
1449        return ret;
1450}
1451
1452/**
1453 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1454 */
1455u64 timekeeping_max_deferment(void)
1456{
1457        struct timekeeper *tk = &tk_core.timekeeper;
1458        unsigned int seq;
1459        u64 ret;
1460
1461        do {
1462                seq = read_seqcount_begin(&tk_core.seq);
1463
1464                ret = tk->tkr_mono.clock->max_idle_ns;
1465
1466        } while (read_seqcount_retry(&tk_core.seq, seq));
1467
1468        return ret;
1469}
1470
1471/**
1472 * read_persistent_clock64 -  Return time from the persistent clock.
1473 *
1474 * Weak dummy function for arches that do not yet support it.
1475 * Reads the time from the battery backed persistent clock.
1476 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1477 *
1478 *  XXX - Do be sure to remove it once all arches implement it.
1479 */
1480void __weak read_persistent_clock64(struct timespec64 *ts)
1481{
1482        ts->tv_sec = 0;
1483        ts->tv_nsec = 0;
1484}
1485
1486/**
1487 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1488 *                                        from the boot.
1489 *
1490 * Weak dummy function for arches that do not yet support it.
1491 * wall_time    - current time as returned by persistent clock
1492 * boot_offset  - offset that is defined as wall_time - boot_time
1493 * The default function calculates offset based on the current value of
1494 * local_clock(). This way architectures that support sched_clock() but don't
1495 * support dedicated boot time clock will provide the best estimate of the
1496 * boot time.
1497 */
1498void __weak __init
1499read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1500                                     struct timespec64 *boot_offset)
1501{
1502        read_persistent_clock64(wall_time);
1503        *boot_offset = ns_to_timespec64(local_clock());
1504}
1505
1506/*
1507 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1508 *
1509 * The flag starts of false and is only set when a suspend reaches
1510 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1511 * timekeeper clocksource is not stopping across suspend and has been
1512 * used to update sleep time. If the timekeeper clocksource has stopped
1513 * then the flag stays true and is used by the RTC resume code to decide
1514 * whether sleeptime must be injected and if so the flag gets false then.
1515 *
1516 * If a suspend fails before reaching timekeeping_resume() then the flag
1517 * stays false and prevents erroneous sleeptime injection.
1518 */
1519static bool suspend_timing_needed;
1520
1521/* Flag for if there is a persistent clock on this platform */
1522static bool persistent_clock_exists;
1523
1524/*
1525 * timekeeping_init - Initializes the clocksource and common timekeeping values
1526 */
1527void __init timekeeping_init(void)
1528{
1529        struct timespec64 wall_time, boot_offset, wall_to_mono;
1530        struct timekeeper *tk = &tk_core.timekeeper;
1531        struct clocksource *clock;
1532        unsigned long flags;
1533
1534        read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1535        if (timespec64_valid_settod(&wall_time) &&
1536            timespec64_to_ns(&wall_time) > 0) {
1537                persistent_clock_exists = true;
1538        } else if (timespec64_to_ns(&wall_time) != 0) {
1539                pr_warn("Persistent clock returned invalid value");
1540                wall_time = (struct timespec64){0};
1541        }
1542
1543        if (timespec64_compare(&wall_time, &boot_offset) < 0)
1544                boot_offset = (struct timespec64){0};
1545
1546        /*
1547         * We want set wall_to_mono, so the following is true:
1548         * wall time + wall_to_mono = boot time
1549         */
1550        wall_to_mono = timespec64_sub(boot_offset, wall_time);
1551
1552        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1553        write_seqcount_begin(&tk_core.seq);
1554        ntp_init();
1555
1556        clock = clocksource_default_clock();
1557        if (clock->enable)
1558                clock->enable(clock);
1559        tk_setup_internals(tk, clock);
1560
1561        tk_set_xtime(tk, &wall_time);
1562        tk->raw_sec = 0;
1563
1564        tk_set_wall_to_mono(tk, wall_to_mono);
1565
1566        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1567
1568        write_seqcount_end(&tk_core.seq);
1569        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1570}
1571
1572/* time in seconds when suspend began for persistent clock */
1573static struct timespec64 timekeeping_suspend_time;
1574
1575/**
1576 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1577 * @delta: pointer to a timespec delta value
1578 *
1579 * Takes a timespec offset measuring a suspend interval and properly
1580 * adds the sleep offset to the timekeeping variables.
1581 */
1582static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1583                                           const struct timespec64 *delta)
1584{
1585        if (!timespec64_valid_strict(delta)) {
1586                printk_deferred(KERN_WARNING
1587                                "__timekeeping_inject_sleeptime: Invalid "
1588                                "sleep delta value!\n");
1589                return;
1590        }
1591        tk_xtime_add(tk, delta);
1592        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1593        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1594        tk_debug_account_sleep_time(delta);
1595}
1596
1597#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1598/**
1599 * We have three kinds of time sources to use for sleep time
1600 * injection, the preference order is:
1601 * 1) non-stop clocksource
1602 * 2) persistent clock (ie: RTC accessible when irqs are off)
1603 * 3) RTC
1604 *
1605 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1606 * If system has neither 1) nor 2), 3) will be used finally.
1607 *
1608 *
1609 * If timekeeping has injected sleeptime via either 1) or 2),
1610 * 3) becomes needless, so in this case we don't need to call
1611 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1612 * means.
1613 */
1614bool timekeeping_rtc_skipresume(void)
1615{
1616        return !suspend_timing_needed;
1617}
1618
1619/**
1620 * 1) can be determined whether to use or not only when doing
1621 * timekeeping_resume() which is invoked after rtc_suspend(),
1622 * so we can't skip rtc_suspend() surely if system has 1).
1623 *
1624 * But if system has 2), 2) will definitely be used, so in this
1625 * case we don't need to call rtc_suspend(), and this is what
1626 * timekeeping_rtc_skipsuspend() means.
1627 */
1628bool timekeeping_rtc_skipsuspend(void)
1629{
1630        return persistent_clock_exists;
1631}
1632
1633/**
1634 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1635 * @delta: pointer to a timespec64 delta value
1636 *
1637 * This hook is for architectures that cannot support read_persistent_clock64
1638 * because their RTC/persistent clock is only accessible when irqs are enabled.
1639 * and also don't have an effective nonstop clocksource.
1640 *
1641 * This function should only be called by rtc_resume(), and allows
1642 * a suspend offset to be injected into the timekeeping values.
1643 */
1644void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1645{
1646        struct timekeeper *tk = &tk_core.timekeeper;
1647        unsigned long flags;
1648
1649        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1650        write_seqcount_begin(&tk_core.seq);
1651
1652        suspend_timing_needed = false;
1653
1654        timekeeping_forward_now(tk);
1655
1656        __timekeeping_inject_sleeptime(tk, delta);
1657
1658        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1659
1660        write_seqcount_end(&tk_core.seq);
1661        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1662
1663        /* signal hrtimers about time change */
1664        clock_was_set();
1665}
1666#endif
1667
1668/**
1669 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1670 */
1671void timekeeping_resume(void)
1672{
1673        struct timekeeper *tk = &tk_core.timekeeper;
1674        struct clocksource *clock = tk->tkr_mono.clock;
1675        unsigned long flags;
1676        struct timespec64 ts_new, ts_delta;
1677        u64 cycle_now, nsec;
1678        bool inject_sleeptime = false;
1679
1680        read_persistent_clock64(&ts_new);
1681
1682        clockevents_resume();
1683        clocksource_resume();
1684
1685        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1686        write_seqcount_begin(&tk_core.seq);
1687
1688        /*
1689         * After system resumes, we need to calculate the suspended time and
1690         * compensate it for the OS time. There are 3 sources that could be
1691         * used: Nonstop clocksource during suspend, persistent clock and rtc
1692         * device.
1693         *
1694         * One specific platform may have 1 or 2 or all of them, and the
1695         * preference will be:
1696         *      suspend-nonstop clocksource -> persistent clock -> rtc
1697         * The less preferred source will only be tried if there is no better
1698         * usable source. The rtc part is handled separately in rtc core code.
1699         */
1700        cycle_now = tk_clock_read(&tk->tkr_mono);
1701        nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1702        if (nsec > 0) {
1703                ts_delta = ns_to_timespec64(nsec);
1704                inject_sleeptime = true;
1705        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1706                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1707                inject_sleeptime = true;
1708        }
1709
1710        if (inject_sleeptime) {
1711                suspend_timing_needed = false;
1712                __timekeeping_inject_sleeptime(tk, &ts_delta);
1713        }
1714
1715        /* Re-base the last cycle value */
1716        tk->tkr_mono.cycle_last = cycle_now;
1717        tk->tkr_raw.cycle_last  = cycle_now;
1718
1719        tk->ntp_error = 0;
1720        timekeeping_suspended = 0;
1721        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1722        write_seqcount_end(&tk_core.seq);
1723        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1724
1725        touch_softlockup_watchdog();
1726
1727        tick_resume();
1728        hrtimers_resume();
1729}
1730
1731int timekeeping_suspend(void)
1732{
1733        struct timekeeper *tk = &tk_core.timekeeper;
1734        unsigned long flags;
1735        struct timespec64               delta, delta_delta;
1736        static struct timespec64        old_delta;
1737        struct clocksource *curr_clock;
1738        u64 cycle_now;
1739
1740        read_persistent_clock64(&timekeeping_suspend_time);
1741
1742        /*
1743         * On some systems the persistent_clock can not be detected at
1744         * timekeeping_init by its return value, so if we see a valid
1745         * value returned, update the persistent_clock_exists flag.
1746         */
1747        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1748                persistent_clock_exists = true;
1749
1750        suspend_timing_needed = true;
1751
1752        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753        write_seqcount_begin(&tk_core.seq);
1754        timekeeping_forward_now(tk);
1755        timekeeping_suspended = 1;
1756
1757        /*
1758         * Since we've called forward_now, cycle_last stores the value
1759         * just read from the current clocksource. Save this to potentially
1760         * use in suspend timing.
1761         */
1762        curr_clock = tk->tkr_mono.clock;
1763        cycle_now = tk->tkr_mono.cycle_last;
1764        clocksource_start_suspend_timing(curr_clock, cycle_now);
1765
1766        if (persistent_clock_exists) {
1767                /*
1768                 * To avoid drift caused by repeated suspend/resumes,
1769                 * which each can add ~1 second drift error,
1770                 * try to compensate so the difference in system time
1771                 * and persistent_clock time stays close to constant.
1772                 */
1773                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1774                delta_delta = timespec64_sub(delta, old_delta);
1775                if (abs(delta_delta.tv_sec) >= 2) {
1776                        /*
1777                         * if delta_delta is too large, assume time correction
1778                         * has occurred and set old_delta to the current delta.
1779                         */
1780                        old_delta = delta;
1781                } else {
1782                        /* Otherwise try to adjust old_system to compensate */
1783                        timekeeping_suspend_time =
1784                                timespec64_add(timekeeping_suspend_time, delta_delta);
1785                }
1786        }
1787
1788        timekeeping_update(tk, TK_MIRROR);
1789        halt_fast_timekeeper(tk);
1790        write_seqcount_end(&tk_core.seq);
1791        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1792
1793        tick_suspend();
1794        clocksource_suspend();
1795        clockevents_suspend();
1796
1797        return 0;
1798}
1799
1800/* sysfs resume/suspend bits for timekeeping */
1801static struct syscore_ops timekeeping_syscore_ops = {
1802        .resume         = timekeeping_resume,
1803        .suspend        = timekeeping_suspend,
1804};
1805
1806static int __init timekeeping_init_ops(void)
1807{
1808        register_syscore_ops(&timekeeping_syscore_ops);
1809        return 0;
1810}
1811device_initcall(timekeeping_init_ops);
1812
1813/*
1814 * Apply a multiplier adjustment to the timekeeper
1815 */
1816static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1817                                                         s64 offset,
1818                                                         s32 mult_adj)
1819{
1820        s64 interval = tk->cycle_interval;
1821
1822        if (mult_adj == 0) {
1823                return;
1824        } else if (mult_adj == -1) {
1825                interval = -interval;
1826                offset = -offset;
1827        } else if (mult_adj != 1) {
1828                interval *= mult_adj;
1829                offset *= mult_adj;
1830        }
1831
1832        /*
1833         * So the following can be confusing.
1834         *
1835         * To keep things simple, lets assume mult_adj == 1 for now.
1836         *
1837         * When mult_adj != 1, remember that the interval and offset values
1838         * have been appropriately scaled so the math is the same.
1839         *
1840         * The basic idea here is that we're increasing the multiplier
1841         * by one, this causes the xtime_interval to be incremented by
1842         * one cycle_interval. This is because:
1843         *      xtime_interval = cycle_interval * mult
1844         * So if mult is being incremented by one:
1845         *      xtime_interval = cycle_interval * (mult + 1)
1846         * Its the same as:
1847         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1848         * Which can be shortened to:
1849         *      xtime_interval += cycle_interval
1850         *
1851         * So offset stores the non-accumulated cycles. Thus the current
1852         * time (in shifted nanoseconds) is:
1853         *      now = (offset * adj) + xtime_nsec
1854         * Now, even though we're adjusting the clock frequency, we have
1855         * to keep time consistent. In other words, we can't jump back
1856         * in time, and we also want to avoid jumping forward in time.
1857         *
1858         * So given the same offset value, we need the time to be the same
1859         * both before and after the freq adjustment.
1860         *      now = (offset * adj_1) + xtime_nsec_1
1861         *      now = (offset * adj_2) + xtime_nsec_2
1862         * So:
1863         *      (offset * adj_1) + xtime_nsec_1 =
1864         *              (offset * adj_2) + xtime_nsec_2
1865         * And we know:
1866         *      adj_2 = adj_1 + 1
1867         * So:
1868         *      (offset * adj_1) + xtime_nsec_1 =
1869         *              (offset * (adj_1+1)) + xtime_nsec_2
1870         *      (offset * adj_1) + xtime_nsec_1 =
1871         *              (offset * adj_1) + offset + xtime_nsec_2
1872         * Canceling the sides:
1873         *      xtime_nsec_1 = offset + xtime_nsec_2
1874         * Which gives us:
1875         *      xtime_nsec_2 = xtime_nsec_1 - offset
1876         * Which simplfies to:
1877         *      xtime_nsec -= offset
1878         */
1879        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1880                /* NTP adjustment caused clocksource mult overflow */
1881                WARN_ON_ONCE(1);
1882                return;
1883        }
1884
1885        tk->tkr_mono.mult += mult_adj;
1886        tk->xtime_interval += interval;
1887        tk->tkr_mono.xtime_nsec -= offset;
1888}
1889
1890/*
1891 * Adjust the timekeeper's multiplier to the correct frequency
1892 * and also to reduce the accumulated error value.
1893 */
1894static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1895{
1896        u32 mult;
1897
1898        /*
1899         * Determine the multiplier from the current NTP tick length.
1900         * Avoid expensive division when the tick length doesn't change.
1901         */
1902        if (likely(tk->ntp_tick == ntp_tick_length())) {
1903                mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1904        } else {
1905                tk->ntp_tick = ntp_tick_length();
1906                mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1907                                 tk->xtime_remainder, tk->cycle_interval);
1908        }
1909
1910        /*
1911         * If the clock is behind the NTP time, increase the multiplier by 1
1912         * to catch up with it. If it's ahead and there was a remainder in the
1913         * tick division, the clock will slow down. Otherwise it will stay
1914         * ahead until the tick length changes to a non-divisible value.
1915         */
1916        tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1917        mult += tk->ntp_err_mult;
1918
1919        timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1920
1921        if (unlikely(tk->tkr_mono.clock->maxadj &&
1922                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1923                        > tk->tkr_mono.clock->maxadj))) {
1924                printk_once(KERN_WARNING
1925                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1926                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1927                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1928        }
1929
1930        /*
1931         * It may be possible that when we entered this function, xtime_nsec
1932         * was very small.  Further, if we're slightly speeding the clocksource
1933         * in the code above, its possible the required corrective factor to
1934         * xtime_nsec could cause it to underflow.
1935         *
1936         * Now, since we have already accumulated the second and the NTP
1937         * subsystem has been notified via second_overflow(), we need to skip
1938         * the next update.
1939         */
1940        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941                tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1942                                                        tk->tkr_mono.shift;
1943                tk->xtime_sec--;
1944                tk->skip_second_overflow = 1;
1945        }
1946}
1947
1948/**
1949 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1950 *
1951 * Helper function that accumulates the nsecs greater than a second
1952 * from the xtime_nsec field to the xtime_secs field.
1953 * It also calls into the NTP code to handle leapsecond processing.
1954 *
1955 */
1956static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1957{
1958        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1959        unsigned int clock_set = 0;
1960
1961        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1962                int leap;
1963
1964                tk->tkr_mono.xtime_nsec -= nsecps;
1965                tk->xtime_sec++;
1966
1967                /*
1968                 * Skip NTP update if this second was accumulated before,
1969                 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1970                 */
1971                if (unlikely(tk->skip_second_overflow)) {
1972                        tk->skip_second_overflow = 0;
1973                        continue;
1974                }
1975
1976                /* Figure out if its a leap sec and apply if needed */
1977                leap = second_overflow(tk->xtime_sec);
1978                if (unlikely(leap)) {
1979                        struct timespec64 ts;
1980
1981                        tk->xtime_sec += leap;
1982
1983                        ts.tv_sec = leap;
1984                        ts.tv_nsec = 0;
1985                        tk_set_wall_to_mono(tk,
1986                                timespec64_sub(tk->wall_to_monotonic, ts));
1987
1988                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1989
1990                        clock_set = TK_CLOCK_WAS_SET;
1991                }
1992        }
1993        return clock_set;
1994}
1995
1996/**
1997 * logarithmic_accumulation - shifted accumulation of cycles
1998 *
1999 * This functions accumulates a shifted interval of cycles into
2000 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2001 * loop.
2002 *
2003 * Returns the unconsumed cycles.
2004 */
2005static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2006                                    u32 shift, unsigned int *clock_set)
2007{
2008        u64 interval = tk->cycle_interval << shift;
2009        u64 snsec_per_sec;
2010
2011        /* If the offset is smaller than a shifted interval, do nothing */
2012        if (offset < interval)
2013                return offset;
2014
2015        /* Accumulate one shifted interval */
2016        offset -= interval;
2017        tk->tkr_mono.cycle_last += interval;
2018        tk->tkr_raw.cycle_last  += interval;
2019
2020        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2021        *clock_set |= accumulate_nsecs_to_secs(tk);
2022
2023        /* Accumulate raw time */
2024        tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2025        snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2026        while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2027                tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2028                tk->raw_sec++;
2029        }
2030
2031        /* Accumulate error between NTP and clock interval */
2032        tk->ntp_error += tk->ntp_tick << shift;
2033        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2034                                                (tk->ntp_error_shift + shift);
2035
2036        return offset;
2037}
2038
2039/*
2040 * timekeeping_advance - Updates the timekeeper to the current time and
2041 * current NTP tick length
2042 */
2043static void timekeeping_advance(enum timekeeping_adv_mode mode)
2044{
2045        struct timekeeper *real_tk = &tk_core.timekeeper;
2046        struct timekeeper *tk = &shadow_timekeeper;
2047        u64 offset;
2048        int shift = 0, maxshift;
2049        unsigned int clock_set = 0;
2050        unsigned long flags;
2051
2052        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2053
2054        /* Make sure we're fully resumed: */
2055        if (unlikely(timekeeping_suspended))
2056                goto out;
2057
2058#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2059        offset = real_tk->cycle_interval;
2060
2061        if (mode != TK_ADV_TICK)
2062                goto out;
2063#else
2064        offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2065                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2066
2067        /* Check if there's really nothing to do */
2068        if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2069                goto out;
2070#endif
2071
2072        /* Do some additional sanity checking */
2073        timekeeping_check_update(tk, offset);
2074
2075        /*
2076         * With NO_HZ we may have to accumulate many cycle_intervals
2077         * (think "ticks") worth of time at once. To do this efficiently,
2078         * we calculate the largest doubling multiple of cycle_intervals
2079         * that is smaller than the offset.  We then accumulate that
2080         * chunk in one go, and then try to consume the next smaller
2081         * doubled multiple.
2082         */
2083        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2084        shift = max(0, shift);
2085        /* Bound shift to one less than what overflows tick_length */
2086        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2087        shift = min(shift, maxshift);
2088        while (offset >= tk->cycle_interval) {
2089                offset = logarithmic_accumulation(tk, offset, shift,
2090                                                        &clock_set);
2091                if (offset < tk->cycle_interval<<shift)
2092                        shift--;
2093        }
2094
2095        /* Adjust the multiplier to correct NTP error */
2096        timekeeping_adjust(tk, offset);
2097
2098        /*
2099         * Finally, make sure that after the rounding
2100         * xtime_nsec isn't larger than NSEC_PER_SEC
2101         */
2102        clock_set |= accumulate_nsecs_to_secs(tk);
2103
2104        write_seqcount_begin(&tk_core.seq);
2105        /*
2106         * Update the real timekeeper.
2107         *
2108         * We could avoid this memcpy by switching pointers, but that
2109         * requires changes to all other timekeeper usage sites as
2110         * well, i.e. move the timekeeper pointer getter into the
2111         * spinlocked/seqcount protected sections. And we trade this
2112         * memcpy under the tk_core.seq against one before we start
2113         * updating.
2114         */
2115        timekeeping_update(tk, clock_set);
2116        memcpy(real_tk, tk, sizeof(*tk));
2117        /* The memcpy must come last. Do not put anything here! */
2118        write_seqcount_end(&tk_core.seq);
2119out:
2120        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2121        if (clock_set)
2122                /* Have to call _delayed version, since in irq context*/
2123                clock_was_set_delayed();
2124}
2125
2126/**
2127 * update_wall_time - Uses the current clocksource to increment the wall time
2128 *
2129 */
2130void update_wall_time(void)
2131{
2132        timekeeping_advance(TK_ADV_TICK);
2133}
2134
2135/**
2136 * getboottime64 - Return the real time of system boot.
2137 * @ts:         pointer to the timespec64 to be set
2138 *
2139 * Returns the wall-time of boot in a timespec64.
2140 *
2141 * This is based on the wall_to_monotonic offset and the total suspend
2142 * time. Calls to settimeofday will affect the value returned (which
2143 * basically means that however wrong your real time clock is at boot time,
2144 * you get the right time here).
2145 */
2146void getboottime64(struct timespec64 *ts)
2147{
2148        struct timekeeper *tk = &tk_core.timekeeper;
2149        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2150
2151        *ts = ktime_to_timespec64(t);
2152}
2153EXPORT_SYMBOL_GPL(getboottime64);
2154
2155void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2156{
2157        struct timekeeper *tk = &tk_core.timekeeper;
2158        unsigned int seq;
2159
2160        do {
2161                seq = read_seqcount_begin(&tk_core.seq);
2162
2163                *ts = tk_xtime(tk);
2164        } while (read_seqcount_retry(&tk_core.seq, seq));
2165}
2166EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2167
2168void ktime_get_coarse_ts64(struct timespec64 *ts)
2169{
2170        struct timekeeper *tk = &tk_core.timekeeper;
2171        struct timespec64 now, mono;
2172        unsigned int seq;
2173
2174        do {
2175                seq = read_seqcount_begin(&tk_core.seq);
2176
2177                now = tk_xtime(tk);
2178                mono = tk->wall_to_monotonic;
2179        } while (read_seqcount_retry(&tk_core.seq, seq));
2180
2181        set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2182                                now.tv_nsec + mono.tv_nsec);
2183}
2184EXPORT_SYMBOL(ktime_get_coarse_ts64);
2185
2186/*
2187 * Must hold jiffies_lock
2188 */
2189void do_timer(unsigned long ticks)
2190{
2191        jiffies_64 += ticks;
2192        calc_global_load(ticks);
2193}
2194
2195/**
2196 * ktime_get_update_offsets_now - hrtimer helper
2197 * @cwsseq:     pointer to check and store the clock was set sequence number
2198 * @offs_real:  pointer to storage for monotonic -> realtime offset
2199 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2200 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2201 *
2202 * Returns current monotonic time and updates the offsets if the
2203 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2204 * different.
2205 *
2206 * Called from hrtimer_interrupt() or retrigger_next_event()
2207 */
2208ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2209                                     ktime_t *offs_boot, ktime_t *offs_tai)
2210{
2211        struct timekeeper *tk = &tk_core.timekeeper;
2212        unsigned int seq;
2213        ktime_t base;
2214        u64 nsecs;
2215
2216        do {
2217                seq = read_seqcount_begin(&tk_core.seq);
2218
2219                base = tk->tkr_mono.base;
2220                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2221                base = ktime_add_ns(base, nsecs);
2222
2223                if (*cwsseq != tk->clock_was_set_seq) {
2224                        *cwsseq = tk->clock_was_set_seq;
2225                        *offs_real = tk->offs_real;
2226                        *offs_boot = tk->offs_boot;
2227                        *offs_tai = tk->offs_tai;
2228                }
2229
2230                /* Handle leapsecond insertion adjustments */
2231                if (unlikely(base >= tk->next_leap_ktime))
2232                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2233
2234        } while (read_seqcount_retry(&tk_core.seq, seq));
2235
2236        return base;
2237}
2238
2239/**
2240 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2241 */
2242static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2243{
2244        if (txc->modes & ADJ_ADJTIME) {
2245                /* singleshot must not be used with any other mode bits */
2246                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2247                        return -EINVAL;
2248                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2249                    !capable(CAP_SYS_TIME))
2250                        return -EPERM;
2251        } else {
2252                /* In order to modify anything, you gotta be super-user! */
2253                if (txc->modes && !capable(CAP_SYS_TIME))
2254                        return -EPERM;
2255                /*
2256                 * if the quartz is off by more than 10% then
2257                 * something is VERY wrong!
2258                 */
2259                if (txc->modes & ADJ_TICK &&
2260                    (txc->tick <  900000/USER_HZ ||
2261                     txc->tick > 1100000/USER_HZ))
2262                        return -EINVAL;
2263        }
2264
2265        if (txc->modes & ADJ_SETOFFSET) {
2266                /* In order to inject time, you gotta be super-user! */
2267                if (!capable(CAP_SYS_TIME))
2268                        return -EPERM;
2269
2270                /*
2271                 * Validate if a timespec/timeval used to inject a time
2272                 * offset is valid.  Offsets can be postive or negative, so
2273                 * we don't check tv_sec. The value of the timeval/timespec
2274                 * is the sum of its fields,but *NOTE*:
2275                 * The field tv_usec/tv_nsec must always be non-negative and
2276                 * we can't have more nanoseconds/microseconds than a second.
2277                 */
2278                if (txc->time.tv_usec < 0)
2279                        return -EINVAL;
2280
2281                if (txc->modes & ADJ_NANO) {
2282                        if (txc->time.tv_usec >= NSEC_PER_SEC)
2283                                return -EINVAL;
2284                } else {
2285                        if (txc->time.tv_usec >= USEC_PER_SEC)
2286                                return -EINVAL;
2287                }
2288        }
2289
2290        /*
2291         * Check for potential multiplication overflows that can
2292         * only happen on 64-bit systems:
2293         */
2294        if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2295                if (LLONG_MIN / PPM_SCALE > txc->freq)
2296                        return -EINVAL;
2297                if (LLONG_MAX / PPM_SCALE < txc->freq)
2298                        return -EINVAL;
2299        }
2300
2301        return 0;
2302}
2303
2304
2305/**
2306 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2307 */
2308int do_adjtimex(struct __kernel_timex *txc)
2309{
2310        struct timekeeper *tk = &tk_core.timekeeper;
2311        struct audit_ntp_data ad;
2312        unsigned long flags;
2313        struct timespec64 ts;
2314        s32 orig_tai, tai;
2315        int ret;
2316
2317        /* Validate the data before disabling interrupts */
2318        ret = timekeeping_validate_timex(txc);
2319        if (ret)
2320                return ret;
2321
2322        if (txc->modes & ADJ_SETOFFSET) {
2323                struct timespec64 delta;
2324                delta.tv_sec  = txc->time.tv_sec;
2325                delta.tv_nsec = txc->time.tv_usec;
2326                if (!(txc->modes & ADJ_NANO))
2327                        delta.tv_nsec *= 1000;
2328                ret = timekeeping_inject_offset(&delta);
2329                if (ret)
2330                        return ret;
2331
2332                audit_tk_injoffset(delta);
2333        }
2334
2335        audit_ntp_init(&ad);
2336
2337        ktime_get_real_ts64(&ts);
2338
2339        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2340        write_seqcount_begin(&tk_core.seq);
2341
2342        orig_tai = tai = tk->tai_offset;
2343        ret = __do_adjtimex(txc, &ts, &tai, &ad);
2344
2345        if (tai != orig_tai) {
2346                __timekeeping_set_tai_offset(tk, tai);
2347                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2348        }
2349        tk_update_leap_state(tk);
2350
2351        write_seqcount_end(&tk_core.seq);
2352        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2353
2354        audit_ntp_log(&ad);
2355
2356        /* Update the multiplier immediately if frequency was set directly */
2357        if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2358                timekeeping_advance(TK_ADV_FREQ);
2359
2360        if (tai != orig_tai)
2361                clock_was_set();
2362
2363        ntp_notify_cmos_timer();
2364
2365        return ret;
2366}
2367
2368#ifdef CONFIG_NTP_PPS
2369/**
2370 * hardpps() - Accessor function to NTP __hardpps function
2371 */
2372void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2373{
2374        unsigned long flags;
2375
2376        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2377        write_seqcount_begin(&tk_core.seq);
2378
2379        __hardpps(phase_ts, raw_ts);
2380
2381        write_seqcount_end(&tk_core.seq);
2382        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2383}
2384EXPORT_SYMBOL(hardpps);
2385#endif /* CONFIG_NTP_PPS */
2386
2387/**
2388 * xtime_update() - advances the timekeeping infrastructure
2389 * @ticks:      number of ticks, that have elapsed since the last call.
2390 *
2391 * Must be called with interrupts disabled.
2392 */
2393void xtime_update(unsigned long ticks)
2394{
2395        write_seqlock(&jiffies_lock);
2396        do_timer(ticks);
2397        write_sequnlock(&jiffies_lock);
2398        update_wall_time();
2399}
2400