linux/lib/bitmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * lib/bitmap.c
   4 * Helper functions for bitmap.h.
   5 */
   6#include <linux/export.h>
   7#include <linux/thread_info.h>
   8#include <linux/ctype.h>
   9#include <linux/errno.h>
  10#include <linux/bitmap.h>
  11#include <linux/bitops.h>
  12#include <linux/bug.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/page.h>
  20
  21#include "kstrtox.h"
  22
  23/**
  24 * DOC: bitmap introduction
  25 *
  26 * bitmaps provide an array of bits, implemented using an an
  27 * array of unsigned longs.  The number of valid bits in a
  28 * given bitmap does _not_ need to be an exact multiple of
  29 * BITS_PER_LONG.
  30 *
  31 * The possible unused bits in the last, partially used word
  32 * of a bitmap are 'don't care'.  The implementation makes
  33 * no particular effort to keep them zero.  It ensures that
  34 * their value will not affect the results of any operation.
  35 * The bitmap operations that return Boolean (bitmap_empty,
  36 * for example) or scalar (bitmap_weight, for example) results
  37 * carefully filter out these unused bits from impacting their
  38 * results.
  39 *
  40 * The byte ordering of bitmaps is more natural on little
  41 * endian architectures.  See the big-endian headers
  42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  43 * for the best explanations of this ordering.
  44 */
  45
  46int __bitmap_equal(const unsigned long *bitmap1,
  47                const unsigned long *bitmap2, unsigned int bits)
  48{
  49        unsigned int k, lim = bits/BITS_PER_LONG;
  50        for (k = 0; k < lim; ++k)
  51                if (bitmap1[k] != bitmap2[k])
  52                        return 0;
  53
  54        if (bits % BITS_PER_LONG)
  55                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  56                        return 0;
  57
  58        return 1;
  59}
  60EXPORT_SYMBOL(__bitmap_equal);
  61
  62void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  63{
  64        unsigned int k, lim = BITS_TO_LONGS(bits);
  65        for (k = 0; k < lim; ++k)
  66                dst[k] = ~src[k];
  67}
  68EXPORT_SYMBOL(__bitmap_complement);
  69
  70/**
  71 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  72 *   @dst : destination bitmap
  73 *   @src : source bitmap
  74 *   @shift : shift by this many bits
  75 *   @nbits : bitmap size, in bits
  76 *
  77 * Shifting right (dividing) means moving bits in the MS -> LS bit
  78 * direction.  Zeros are fed into the vacated MS positions and the
  79 * LS bits shifted off the bottom are lost.
  80 */
  81void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  82                        unsigned shift, unsigned nbits)
  83{
  84        unsigned k, lim = BITS_TO_LONGS(nbits);
  85        unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  86        unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  87        for (k = 0; off + k < lim; ++k) {
  88                unsigned long upper, lower;
  89
  90                /*
  91                 * If shift is not word aligned, take lower rem bits of
  92                 * word above and make them the top rem bits of result.
  93                 */
  94                if (!rem || off + k + 1 >= lim)
  95                        upper = 0;
  96                else {
  97                        upper = src[off + k + 1];
  98                        if (off + k + 1 == lim - 1)
  99                                upper &= mask;
 100                        upper <<= (BITS_PER_LONG - rem);
 101                }
 102                lower = src[off + k];
 103                if (off + k == lim - 1)
 104                        lower &= mask;
 105                lower >>= rem;
 106                dst[k] = lower | upper;
 107        }
 108        if (off)
 109                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 110}
 111EXPORT_SYMBOL(__bitmap_shift_right);
 112
 113
 114/**
 115 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 116 *   @dst : destination bitmap
 117 *   @src : source bitmap
 118 *   @shift : shift by this many bits
 119 *   @nbits : bitmap size, in bits
 120 *
 121 * Shifting left (multiplying) means moving bits in the LS -> MS
 122 * direction.  Zeros are fed into the vacated LS bit positions
 123 * and those MS bits shifted off the top are lost.
 124 */
 125
 126void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 127                        unsigned int shift, unsigned int nbits)
 128{
 129        int k;
 130        unsigned int lim = BITS_TO_LONGS(nbits);
 131        unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 132        for (k = lim - off - 1; k >= 0; --k) {
 133                unsigned long upper, lower;
 134
 135                /*
 136                 * If shift is not word aligned, take upper rem bits of
 137                 * word below and make them the bottom rem bits of result.
 138                 */
 139                if (rem && k > 0)
 140                        lower = src[k - 1] >> (BITS_PER_LONG - rem);
 141                else
 142                        lower = 0;
 143                upper = src[k] << rem;
 144                dst[k + off] = lower | upper;
 145        }
 146        if (off)
 147                memset(dst, 0, off*sizeof(unsigned long));
 148}
 149EXPORT_SYMBOL(__bitmap_shift_left);
 150
 151int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 152                                const unsigned long *bitmap2, unsigned int bits)
 153{
 154        unsigned int k;
 155        unsigned int lim = bits/BITS_PER_LONG;
 156        unsigned long result = 0;
 157
 158        for (k = 0; k < lim; k++)
 159                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 160        if (bits % BITS_PER_LONG)
 161                result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 162                           BITMAP_LAST_WORD_MASK(bits));
 163        return result != 0;
 164}
 165EXPORT_SYMBOL(__bitmap_and);
 166
 167void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 168                                const unsigned long *bitmap2, unsigned int bits)
 169{
 170        unsigned int k;
 171        unsigned int nr = BITS_TO_LONGS(bits);
 172
 173        for (k = 0; k < nr; k++)
 174                dst[k] = bitmap1[k] | bitmap2[k];
 175}
 176EXPORT_SYMBOL(__bitmap_or);
 177
 178void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 179                                const unsigned long *bitmap2, unsigned int bits)
 180{
 181        unsigned int k;
 182        unsigned int nr = BITS_TO_LONGS(bits);
 183
 184        for (k = 0; k < nr; k++)
 185                dst[k] = bitmap1[k] ^ bitmap2[k];
 186}
 187EXPORT_SYMBOL(__bitmap_xor);
 188
 189int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 190                                const unsigned long *bitmap2, unsigned int bits)
 191{
 192        unsigned int k;
 193        unsigned int lim = bits/BITS_PER_LONG;
 194        unsigned long result = 0;
 195
 196        for (k = 0; k < lim; k++)
 197                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 198        if (bits % BITS_PER_LONG)
 199                result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 200                           BITMAP_LAST_WORD_MASK(bits));
 201        return result != 0;
 202}
 203EXPORT_SYMBOL(__bitmap_andnot);
 204
 205int __bitmap_intersects(const unsigned long *bitmap1,
 206                        const unsigned long *bitmap2, unsigned int bits)
 207{
 208        unsigned int k, lim = bits/BITS_PER_LONG;
 209        for (k = 0; k < lim; ++k)
 210                if (bitmap1[k] & bitmap2[k])
 211                        return 1;
 212
 213        if (bits % BITS_PER_LONG)
 214                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 215                        return 1;
 216        return 0;
 217}
 218EXPORT_SYMBOL(__bitmap_intersects);
 219
 220int __bitmap_subset(const unsigned long *bitmap1,
 221                    const unsigned long *bitmap2, unsigned int bits)
 222{
 223        unsigned int k, lim = bits/BITS_PER_LONG;
 224        for (k = 0; k < lim; ++k)
 225                if (bitmap1[k] & ~bitmap2[k])
 226                        return 0;
 227
 228        if (bits % BITS_PER_LONG)
 229                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 230                        return 0;
 231        return 1;
 232}
 233EXPORT_SYMBOL(__bitmap_subset);
 234
 235int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 236{
 237        unsigned int k, lim = bits/BITS_PER_LONG;
 238        int w = 0;
 239
 240        for (k = 0; k < lim; k++)
 241                w += hweight_long(bitmap[k]);
 242
 243        if (bits % BITS_PER_LONG)
 244                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 245
 246        return w;
 247}
 248EXPORT_SYMBOL(__bitmap_weight);
 249
 250void __bitmap_set(unsigned long *map, unsigned int start, int len)
 251{
 252        unsigned long *p = map + BIT_WORD(start);
 253        const unsigned int size = start + len;
 254        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 255        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 256
 257        while (len - bits_to_set >= 0) {
 258                *p |= mask_to_set;
 259                len -= bits_to_set;
 260                bits_to_set = BITS_PER_LONG;
 261                mask_to_set = ~0UL;
 262                p++;
 263        }
 264        if (len) {
 265                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 266                *p |= mask_to_set;
 267        }
 268}
 269EXPORT_SYMBOL(__bitmap_set);
 270
 271void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 272{
 273        unsigned long *p = map + BIT_WORD(start);
 274        const unsigned int size = start + len;
 275        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 276        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 277
 278        while (len - bits_to_clear >= 0) {
 279                *p &= ~mask_to_clear;
 280                len -= bits_to_clear;
 281                bits_to_clear = BITS_PER_LONG;
 282                mask_to_clear = ~0UL;
 283                p++;
 284        }
 285        if (len) {
 286                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 287                *p &= ~mask_to_clear;
 288        }
 289}
 290EXPORT_SYMBOL(__bitmap_clear);
 291
 292/**
 293 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 294 * @map: The address to base the search on
 295 * @size: The bitmap size in bits
 296 * @start: The bitnumber to start searching at
 297 * @nr: The number of zeroed bits we're looking for
 298 * @align_mask: Alignment mask for zero area
 299 * @align_offset: Alignment offset for zero area.
 300 *
 301 * The @align_mask should be one less than a power of 2; the effect is that
 302 * the bit offset of all zero areas this function finds plus @align_offset
 303 * is multiple of that power of 2.
 304 */
 305unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 306                                             unsigned long size,
 307                                             unsigned long start,
 308                                             unsigned int nr,
 309                                             unsigned long align_mask,
 310                                             unsigned long align_offset)
 311{
 312        unsigned long index, end, i;
 313again:
 314        index = find_next_zero_bit(map, size, start);
 315
 316        /* Align allocation */
 317        index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 318
 319        end = index + nr;
 320        if (end > size)
 321                return end;
 322        i = find_next_bit(map, end, index);
 323        if (i < end) {
 324                start = i + 1;
 325                goto again;
 326        }
 327        return index;
 328}
 329EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 330
 331/*
 332 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 333 * second version by Paul Jackson, third by Joe Korty.
 334 */
 335
 336#define CHUNKSZ                         32
 337#define nbits_to_hold_value(val)        fls(val)
 338#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 339
 340/**
 341 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 342 * @buf: pointer to buffer containing string.
 343 * @buflen: buffer size in bytes.  If string is smaller than this
 344 *    then it must be terminated with a \0.
 345 * @is_user: location of buffer, 0 indicates kernel space
 346 * @maskp: pointer to bitmap array that will contain result.
 347 * @nmaskbits: size of bitmap, in bits.
 348 *
 349 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 350 * bits of the resultant bitmask.  No chunk may specify a value larger
 351 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 352 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 353 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 354 * Leading and trailing whitespace accepted, but not embedded whitespace.
 355 */
 356int __bitmap_parse(const char *buf, unsigned int buflen,
 357                int is_user, unsigned long *maskp,
 358                int nmaskbits)
 359{
 360        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 361        u32 chunk;
 362        const char __user __force *ubuf = (const char __user __force *)buf;
 363
 364        bitmap_zero(maskp, nmaskbits);
 365
 366        nchunks = nbits = totaldigits = c = 0;
 367        do {
 368                chunk = 0;
 369                ndigits = totaldigits;
 370
 371                /* Get the next chunk of the bitmap */
 372                while (buflen) {
 373                        old_c = c;
 374                        if (is_user) {
 375                                if (__get_user(c, ubuf++))
 376                                        return -EFAULT;
 377                        }
 378                        else
 379                                c = *buf++;
 380                        buflen--;
 381                        if (isspace(c))
 382                                continue;
 383
 384                        /*
 385                         * If the last character was a space and the current
 386                         * character isn't '\0', we've got embedded whitespace.
 387                         * This is a no-no, so throw an error.
 388                         */
 389                        if (totaldigits && c && isspace(old_c))
 390                                return -EINVAL;
 391
 392                        /* A '\0' or a ',' signal the end of the chunk */
 393                        if (c == '\0' || c == ',')
 394                                break;
 395
 396                        if (!isxdigit(c))
 397                                return -EINVAL;
 398
 399                        /*
 400                         * Make sure there are at least 4 free bits in 'chunk'.
 401                         * If not, this hexdigit will overflow 'chunk', so
 402                         * throw an error.
 403                         */
 404                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 405                                return -EOVERFLOW;
 406
 407                        chunk = (chunk << 4) | hex_to_bin(c);
 408                        totaldigits++;
 409                }
 410                if (ndigits == totaldigits)
 411                        return -EINVAL;
 412                if (nchunks == 0 && chunk == 0)
 413                        continue;
 414
 415                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 416                *maskp |= chunk;
 417                nchunks++;
 418                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 419                if (nbits > nmaskbits)
 420                        return -EOVERFLOW;
 421        } while (buflen && c == ',');
 422
 423        return 0;
 424}
 425EXPORT_SYMBOL(__bitmap_parse);
 426
 427/**
 428 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 429 *
 430 * @ubuf: pointer to user buffer containing string.
 431 * @ulen: buffer size in bytes.  If string is smaller than this
 432 *    then it must be terminated with a \0.
 433 * @maskp: pointer to bitmap array that will contain result.
 434 * @nmaskbits: size of bitmap, in bits.
 435 *
 436 * Wrapper for __bitmap_parse(), providing it with user buffer.
 437 *
 438 * We cannot have this as an inline function in bitmap.h because it needs
 439 * linux/uaccess.h to get the access_ok() declaration and this causes
 440 * cyclic dependencies.
 441 */
 442int bitmap_parse_user(const char __user *ubuf,
 443                        unsigned int ulen, unsigned long *maskp,
 444                        int nmaskbits)
 445{
 446        if (!access_ok(ubuf, ulen))
 447                return -EFAULT;
 448        return __bitmap_parse((const char __force *)ubuf,
 449                                ulen, 1, maskp, nmaskbits);
 450
 451}
 452EXPORT_SYMBOL(bitmap_parse_user);
 453
 454/**
 455 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 456 * @list: indicates whether the bitmap must be list
 457 * @buf: page aligned buffer into which string is placed
 458 * @maskp: pointer to bitmap to convert
 459 * @nmaskbits: size of bitmap, in bits
 460 *
 461 * Output format is a comma-separated list of decimal numbers and
 462 * ranges if list is specified or hex digits grouped into comma-separated
 463 * sets of 8 digits/set. Returns the number of characters written to buf.
 464 *
 465 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 466 * area and that sufficient storage remains at @buf to accommodate the
 467 * bitmap_print_to_pagebuf() output. Returns the number of characters
 468 * actually printed to @buf, excluding terminating '\0'.
 469 */
 470int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 471                            int nmaskbits)
 472{
 473        ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 474
 475        return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 476                      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 477}
 478EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 479
 480/*
 481 * Region 9-38:4/10 describes the following bitmap structure:
 482 * 0       9  12    18                  38
 483 * .........****......****......****......
 484 *          ^  ^     ^                   ^
 485 *      start  off   group_len         end
 486 */
 487struct region {
 488        unsigned int start;
 489        unsigned int off;
 490        unsigned int group_len;
 491        unsigned int end;
 492};
 493
 494static int bitmap_set_region(const struct region *r,
 495                                unsigned long *bitmap, int nbits)
 496{
 497        unsigned int start;
 498
 499        if (r->end >= nbits)
 500                return -ERANGE;
 501
 502        for (start = r->start; start <= r->end; start += r->group_len)
 503                bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 504
 505        return 0;
 506}
 507
 508static int bitmap_check_region(const struct region *r)
 509{
 510        if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 511                return -EINVAL;
 512
 513        return 0;
 514}
 515
 516static const char *bitmap_getnum(const char *str, unsigned int *num)
 517{
 518        unsigned long long n;
 519        unsigned int len;
 520
 521        len = _parse_integer(str, 10, &n);
 522        if (!len)
 523                return ERR_PTR(-EINVAL);
 524        if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 525                return ERR_PTR(-EOVERFLOW);
 526
 527        *num = n;
 528        return str + len;
 529}
 530
 531static inline bool end_of_str(char c)
 532{
 533        return c == '\0' || c == '\n';
 534}
 535
 536static inline bool __end_of_region(char c)
 537{
 538        return isspace(c) || c == ',';
 539}
 540
 541static inline bool end_of_region(char c)
 542{
 543        return __end_of_region(c) || end_of_str(c);
 544}
 545
 546/*
 547 * The format allows commas and whitespases at the beginning
 548 * of the region.
 549 */
 550static const char *bitmap_find_region(const char *str)
 551{
 552        while (__end_of_region(*str))
 553                str++;
 554
 555        return end_of_str(*str) ? NULL : str;
 556}
 557
 558static const char *bitmap_parse_region(const char *str, struct region *r)
 559{
 560        str = bitmap_getnum(str, &r->start);
 561        if (IS_ERR(str))
 562                return str;
 563
 564        if (end_of_region(*str))
 565                goto no_end;
 566
 567        if (*str != '-')
 568                return ERR_PTR(-EINVAL);
 569
 570        str = bitmap_getnum(str + 1, &r->end);
 571        if (IS_ERR(str))
 572                return str;
 573
 574        if (end_of_region(*str))
 575                goto no_pattern;
 576
 577        if (*str != ':')
 578                return ERR_PTR(-EINVAL);
 579
 580        str = bitmap_getnum(str + 1, &r->off);
 581        if (IS_ERR(str))
 582                return str;
 583
 584        if (*str != '/')
 585                return ERR_PTR(-EINVAL);
 586
 587        return bitmap_getnum(str + 1, &r->group_len);
 588
 589no_end:
 590        r->end = r->start;
 591no_pattern:
 592        r->off = r->end + 1;
 593        r->group_len = r->end + 1;
 594
 595        return end_of_str(*str) ? NULL : str;
 596}
 597
 598/**
 599 * bitmap_parselist - convert list format ASCII string to bitmap
 600 * @buf: read user string from this buffer; must be terminated
 601 *    with a \0 or \n.
 602 * @maskp: write resulting mask here
 603 * @nmaskbits: number of bits in mask to be written
 604 *
 605 * Input format is a comma-separated list of decimal numbers and
 606 * ranges.  Consecutively set bits are shown as two hyphen-separated
 607 * decimal numbers, the smallest and largest bit numbers set in
 608 * the range.
 609 * Optionally each range can be postfixed to denote that only parts of it
 610 * should be set. The range will divided to groups of specific size.
 611 * From each group will be used only defined amount of bits.
 612 * Syntax: range:used_size/group_size
 613 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 614 *
 615 * Returns: 0 on success, -errno on invalid input strings. Error values:
 616 *
 617 *   - ``-EINVAL``: wrong region format
 618 *   - ``-EINVAL``: invalid character in string
 619 *   - ``-ERANGE``: bit number specified too large for mask
 620 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 621 */
 622int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 623{
 624        struct region r;
 625        long ret;
 626
 627        bitmap_zero(maskp, nmaskbits);
 628
 629        while (buf) {
 630                buf = bitmap_find_region(buf);
 631                if (buf == NULL)
 632                        return 0;
 633
 634                buf = bitmap_parse_region(buf, &r);
 635                if (IS_ERR(buf))
 636                        return PTR_ERR(buf);
 637
 638                ret = bitmap_check_region(&r);
 639                if (ret)
 640                        return ret;
 641
 642                ret = bitmap_set_region(&r, maskp, nmaskbits);
 643                if (ret)
 644                        return ret;
 645        }
 646
 647        return 0;
 648}
 649EXPORT_SYMBOL(bitmap_parselist);
 650
 651
 652/**
 653 * bitmap_parselist_user()
 654 *
 655 * @ubuf: pointer to user buffer containing string.
 656 * @ulen: buffer size in bytes.  If string is smaller than this
 657 *    then it must be terminated with a \0.
 658 * @maskp: pointer to bitmap array that will contain result.
 659 * @nmaskbits: size of bitmap, in bits.
 660 *
 661 * Wrapper for bitmap_parselist(), providing it with user buffer.
 662 */
 663int bitmap_parselist_user(const char __user *ubuf,
 664                        unsigned int ulen, unsigned long *maskp,
 665                        int nmaskbits)
 666{
 667        char *buf;
 668        int ret;
 669
 670        buf = memdup_user_nul(ubuf, ulen);
 671        if (IS_ERR(buf))
 672                return PTR_ERR(buf);
 673
 674        ret = bitmap_parselist(buf, maskp, nmaskbits);
 675
 676        kfree(buf);
 677        return ret;
 678}
 679EXPORT_SYMBOL(bitmap_parselist_user);
 680
 681
 682#ifdef CONFIG_NUMA
 683/**
 684 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 685 *      @buf: pointer to a bitmap
 686 *      @pos: a bit position in @buf (0 <= @pos < @nbits)
 687 *      @nbits: number of valid bit positions in @buf
 688 *
 689 * Map the bit at position @pos in @buf (of length @nbits) to the
 690 * ordinal of which set bit it is.  If it is not set or if @pos
 691 * is not a valid bit position, map to -1.
 692 *
 693 * If for example, just bits 4 through 7 are set in @buf, then @pos
 694 * values 4 through 7 will get mapped to 0 through 3, respectively,
 695 * and other @pos values will get mapped to -1.  When @pos value 7
 696 * gets mapped to (returns) @ord value 3 in this example, that means
 697 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 698 *
 699 * The bit positions 0 through @bits are valid positions in @buf.
 700 */
 701static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 702{
 703        if (pos >= nbits || !test_bit(pos, buf))
 704                return -1;
 705
 706        return __bitmap_weight(buf, pos);
 707}
 708
 709/**
 710 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 711 *      @buf: pointer to bitmap
 712 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 713 *      @nbits: number of valid bit positions in @buf
 714 *
 715 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 716 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 717 * >= weight(buf), returns @nbits.
 718 *
 719 * If for example, just bits 4 through 7 are set in @buf, then @ord
 720 * values 0 through 3 will get mapped to 4 through 7, respectively,
 721 * and all other @ord values returns @nbits.  When @ord value 3
 722 * gets mapped to (returns) @pos value 7 in this example, that means
 723 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 724 *
 725 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 726 */
 727unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 728{
 729        unsigned int pos;
 730
 731        for (pos = find_first_bit(buf, nbits);
 732             pos < nbits && ord;
 733             pos = find_next_bit(buf, nbits, pos + 1))
 734                ord--;
 735
 736        return pos;
 737}
 738
 739/**
 740 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 741 *      @dst: remapped result
 742 *      @src: subset to be remapped
 743 *      @old: defines domain of map
 744 *      @new: defines range of map
 745 *      @nbits: number of bits in each of these bitmaps
 746 *
 747 * Let @old and @new define a mapping of bit positions, such that
 748 * whatever position is held by the n-th set bit in @old is mapped
 749 * to the n-th set bit in @new.  In the more general case, allowing
 750 * for the possibility that the weight 'w' of @new is less than the
 751 * weight of @old, map the position of the n-th set bit in @old to
 752 * the position of the m-th set bit in @new, where m == n % w.
 753 *
 754 * If either of the @old and @new bitmaps are empty, or if @src and
 755 * @dst point to the same location, then this routine copies @src
 756 * to @dst.
 757 *
 758 * The positions of unset bits in @old are mapped to themselves
 759 * (the identify map).
 760 *
 761 * Apply the above specified mapping to @src, placing the result in
 762 * @dst, clearing any bits previously set in @dst.
 763 *
 764 * For example, lets say that @old has bits 4 through 7 set, and
 765 * @new has bits 12 through 15 set.  This defines the mapping of bit
 766 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 767 * bit positions unchanged.  So if say @src comes into this routine
 768 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 769 * 13 and 15 set.
 770 */
 771void bitmap_remap(unsigned long *dst, const unsigned long *src,
 772                const unsigned long *old, const unsigned long *new,
 773                unsigned int nbits)
 774{
 775        unsigned int oldbit, w;
 776
 777        if (dst == src)         /* following doesn't handle inplace remaps */
 778                return;
 779        bitmap_zero(dst, nbits);
 780
 781        w = bitmap_weight(new, nbits);
 782        for_each_set_bit(oldbit, src, nbits) {
 783                int n = bitmap_pos_to_ord(old, oldbit, nbits);
 784
 785                if (n < 0 || w == 0)
 786                        set_bit(oldbit, dst);   /* identity map */
 787                else
 788                        set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 789        }
 790}
 791
 792/**
 793 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 794 *      @oldbit: bit position to be mapped
 795 *      @old: defines domain of map
 796 *      @new: defines range of map
 797 *      @bits: number of bits in each of these bitmaps
 798 *
 799 * Let @old and @new define a mapping of bit positions, such that
 800 * whatever position is held by the n-th set bit in @old is mapped
 801 * to the n-th set bit in @new.  In the more general case, allowing
 802 * for the possibility that the weight 'w' of @new is less than the
 803 * weight of @old, map the position of the n-th set bit in @old to
 804 * the position of the m-th set bit in @new, where m == n % w.
 805 *
 806 * The positions of unset bits in @old are mapped to themselves
 807 * (the identify map).
 808 *
 809 * Apply the above specified mapping to bit position @oldbit, returning
 810 * the new bit position.
 811 *
 812 * For example, lets say that @old has bits 4 through 7 set, and
 813 * @new has bits 12 through 15 set.  This defines the mapping of bit
 814 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 815 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 816 * returns 13.
 817 */
 818int bitmap_bitremap(int oldbit, const unsigned long *old,
 819                                const unsigned long *new, int bits)
 820{
 821        int w = bitmap_weight(new, bits);
 822        int n = bitmap_pos_to_ord(old, oldbit, bits);
 823        if (n < 0 || w == 0)
 824                return oldbit;
 825        else
 826                return bitmap_ord_to_pos(new, n % w, bits);
 827}
 828
 829/**
 830 * bitmap_onto - translate one bitmap relative to another
 831 *      @dst: resulting translated bitmap
 832 *      @orig: original untranslated bitmap
 833 *      @relmap: bitmap relative to which translated
 834 *      @bits: number of bits in each of these bitmaps
 835 *
 836 * Set the n-th bit of @dst iff there exists some m such that the
 837 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 838 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 839 * (If you understood the previous sentence the first time your
 840 * read it, you're overqualified for your current job.)
 841 *
 842 * In other words, @orig is mapped onto (surjectively) @dst,
 843 * using the map { <n, m> | the n-th bit of @relmap is the
 844 * m-th set bit of @relmap }.
 845 *
 846 * Any set bits in @orig above bit number W, where W is the
 847 * weight of (number of set bits in) @relmap are mapped nowhere.
 848 * In particular, if for all bits m set in @orig, m >= W, then
 849 * @dst will end up empty.  In situations where the possibility
 850 * of such an empty result is not desired, one way to avoid it is
 851 * to use the bitmap_fold() operator, below, to first fold the
 852 * @orig bitmap over itself so that all its set bits x are in the
 853 * range 0 <= x < W.  The bitmap_fold() operator does this by
 854 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 855 *
 856 * Example [1] for bitmap_onto():
 857 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 858 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 859 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 860 *
 861 *  When bit 0 is set in @orig, it means turn on the bit in
 862 *  @dst corresponding to whatever is the first bit (if any)
 863 *  that is turned on in @relmap.  Since bit 0 was off in the
 864 *  above example, we leave off that bit (bit 30) in @dst.
 865 *
 866 *  When bit 1 is set in @orig (as in the above example), it
 867 *  means turn on the bit in @dst corresponding to whatever
 868 *  is the second bit that is turned on in @relmap.  The second
 869 *  bit in @relmap that was turned on in the above example was
 870 *  bit 31, so we turned on bit 31 in @dst.
 871 *
 872 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 873 *  because they were the 4th, 6th, 8th and 10th set bits
 874 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 875 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 876 *
 877 *  When bit 11 is set in @orig, it means turn on the bit in
 878 *  @dst corresponding to whatever is the twelfth bit that is
 879 *  turned on in @relmap.  In the above example, there were
 880 *  only ten bits turned on in @relmap (30..39), so that bit
 881 *  11 was set in @orig had no affect on @dst.
 882 *
 883 * Example [2] for bitmap_fold() + bitmap_onto():
 884 *  Let's say @relmap has these ten bits set::
 885 *
 886 *              40 41 42 43 45 48 53 61 74 95
 887 *
 888 *  (for the curious, that's 40 plus the first ten terms of the
 889 *  Fibonacci sequence.)
 890 *
 891 *  Further lets say we use the following code, invoking
 892 *  bitmap_fold() then bitmap_onto, as suggested above to
 893 *  avoid the possibility of an empty @dst result::
 894 *
 895 *      unsigned long *tmp;     // a temporary bitmap's bits
 896 *
 897 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 898 *      bitmap_onto(dst, tmp, relmap, bits);
 899 *
 900 *  Then this table shows what various values of @dst would be, for
 901 *  various @orig's.  I list the zero-based positions of each set bit.
 902 *  The tmp column shows the intermediate result, as computed by
 903 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 904 *  (the weight of @relmap):
 905 *
 906 *      =============== ============== =================
 907 *      @orig           tmp            @dst
 908 *      0                0             40
 909 *      1                1             41
 910 *      9                9             95
 911 *      10               0             40 [#f1]_
 912 *      1 3 5 7          1 3 5 7       41 43 48 61
 913 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 914 *      0 9 18 27        0 9 8 7       40 61 74 95
 915 *      0 10 20 30       0             40
 916 *      0 11 22 33       0 1 2 3       40 41 42 43
 917 *      0 12 24 36       0 2 4 6       40 42 45 53
 918 *      78 102 211       1 2 8         41 42 74 [#f1]_
 919 *      =============== ============== =================
 920 *
 921 * .. [#f1]
 922 *
 923 *     For these marked lines, if we hadn't first done bitmap_fold()
 924 *     into tmp, then the @dst result would have been empty.
 925 *
 926 * If either of @orig or @relmap is empty (no set bits), then @dst
 927 * will be returned empty.
 928 *
 929 * If (as explained above) the only set bits in @orig are in positions
 930 * m where m >= W, (where W is the weight of @relmap) then @dst will
 931 * once again be returned empty.
 932 *
 933 * All bits in @dst not set by the above rule are cleared.
 934 */
 935void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 936                        const unsigned long *relmap, unsigned int bits)
 937{
 938        unsigned int n, m;      /* same meaning as in above comment */
 939
 940        if (dst == orig)        /* following doesn't handle inplace mappings */
 941                return;
 942        bitmap_zero(dst, bits);
 943
 944        /*
 945         * The following code is a more efficient, but less
 946         * obvious, equivalent to the loop:
 947         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 948         *              n = bitmap_ord_to_pos(orig, m, bits);
 949         *              if (test_bit(m, orig))
 950         *                      set_bit(n, dst);
 951         *      }
 952         */
 953
 954        m = 0;
 955        for_each_set_bit(n, relmap, bits) {
 956                /* m == bitmap_pos_to_ord(relmap, n, bits) */
 957                if (test_bit(m, orig))
 958                        set_bit(n, dst);
 959                m++;
 960        }
 961}
 962
 963/**
 964 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 965 *      @dst: resulting smaller bitmap
 966 *      @orig: original larger bitmap
 967 *      @sz: specified size
 968 *      @nbits: number of bits in each of these bitmaps
 969 *
 970 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 971 * Clear all other bits in @dst.  See further the comment and
 972 * Example [2] for bitmap_onto() for why and how to use this.
 973 */
 974void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 975                        unsigned int sz, unsigned int nbits)
 976{
 977        unsigned int oldbit;
 978
 979        if (dst == orig)        /* following doesn't handle inplace mappings */
 980                return;
 981        bitmap_zero(dst, nbits);
 982
 983        for_each_set_bit(oldbit, orig, nbits)
 984                set_bit(oldbit % sz, dst);
 985}
 986#endif /* CONFIG_NUMA */
 987
 988/*
 989 * Common code for bitmap_*_region() routines.
 990 *      bitmap: array of unsigned longs corresponding to the bitmap
 991 *      pos: the beginning of the region
 992 *      order: region size (log base 2 of number of bits)
 993 *      reg_op: operation(s) to perform on that region of bitmap
 994 *
 995 * Can set, verify and/or release a region of bits in a bitmap,
 996 * depending on which combination of REG_OP_* flag bits is set.
 997 *
 998 * A region of a bitmap is a sequence of bits in the bitmap, of
 999 * some size '1 << order' (a power of two), aligned to that same
1000 * '1 << order' power of two.
1001 *
1002 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1003 * Returns 0 in all other cases and reg_ops.
1004 */
1005
1006enum {
1007        REG_OP_ISFREE,          /* true if region is all zero bits */
1008        REG_OP_ALLOC,           /* set all bits in region */
1009        REG_OP_RELEASE,         /* clear all bits in region */
1010};
1011
1012static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1013{
1014        int nbits_reg;          /* number of bits in region */
1015        int index;              /* index first long of region in bitmap */
1016        int offset;             /* bit offset region in bitmap[index] */
1017        int nlongs_reg;         /* num longs spanned by region in bitmap */
1018        int nbitsinlong;        /* num bits of region in each spanned long */
1019        unsigned long mask;     /* bitmask for one long of region */
1020        int i;                  /* scans bitmap by longs */
1021        int ret = 0;            /* return value */
1022
1023        /*
1024         * Either nlongs_reg == 1 (for small orders that fit in one long)
1025         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1026         */
1027        nbits_reg = 1 << order;
1028        index = pos / BITS_PER_LONG;
1029        offset = pos - (index * BITS_PER_LONG);
1030        nlongs_reg = BITS_TO_LONGS(nbits_reg);
1031        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1032
1033        /*
1034         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1035         * overflows if nbitsinlong == BITS_PER_LONG.
1036         */
1037        mask = (1UL << (nbitsinlong - 1));
1038        mask += mask - 1;
1039        mask <<= offset;
1040
1041        switch (reg_op) {
1042        case REG_OP_ISFREE:
1043                for (i = 0; i < nlongs_reg; i++) {
1044                        if (bitmap[index + i] & mask)
1045                                goto done;
1046                }
1047                ret = 1;        /* all bits in region free (zero) */
1048                break;
1049
1050        case REG_OP_ALLOC:
1051                for (i = 0; i < nlongs_reg; i++)
1052                        bitmap[index + i] |= mask;
1053                break;
1054
1055        case REG_OP_RELEASE:
1056                for (i = 0; i < nlongs_reg; i++)
1057                        bitmap[index + i] &= ~mask;
1058                break;
1059        }
1060done:
1061        return ret;
1062}
1063
1064/**
1065 * bitmap_find_free_region - find a contiguous aligned mem region
1066 *      @bitmap: array of unsigned longs corresponding to the bitmap
1067 *      @bits: number of bits in the bitmap
1068 *      @order: region size (log base 2 of number of bits) to find
1069 *
1070 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1071 * allocate them (set them to one).  Only consider regions of length
1072 * a power (@order) of two, aligned to that power of two, which
1073 * makes the search algorithm much faster.
1074 *
1075 * Return the bit offset in bitmap of the allocated region,
1076 * or -errno on failure.
1077 */
1078int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1079{
1080        unsigned int pos, end;          /* scans bitmap by regions of size order */
1081
1082        for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1083                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1084                        continue;
1085                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1086                return pos;
1087        }
1088        return -ENOMEM;
1089}
1090EXPORT_SYMBOL(bitmap_find_free_region);
1091
1092/**
1093 * bitmap_release_region - release allocated bitmap region
1094 *      @bitmap: array of unsigned longs corresponding to the bitmap
1095 *      @pos: beginning of bit region to release
1096 *      @order: region size (log base 2 of number of bits) to release
1097 *
1098 * This is the complement to __bitmap_find_free_region() and releases
1099 * the found region (by clearing it in the bitmap).
1100 *
1101 * No return value.
1102 */
1103void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1104{
1105        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1106}
1107EXPORT_SYMBOL(bitmap_release_region);
1108
1109/**
1110 * bitmap_allocate_region - allocate bitmap region
1111 *      @bitmap: array of unsigned longs corresponding to the bitmap
1112 *      @pos: beginning of bit region to allocate
1113 *      @order: region size (log base 2 of number of bits) to allocate
1114 *
1115 * Allocate (set bits in) a specified region of a bitmap.
1116 *
1117 * Return 0 on success, or %-EBUSY if specified region wasn't
1118 * free (not all bits were zero).
1119 */
1120int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1121{
1122        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1123                return -EBUSY;
1124        return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1125}
1126EXPORT_SYMBOL(bitmap_allocate_region);
1127
1128/**
1129 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1130 * @dst:   destination buffer
1131 * @src:   bitmap to copy
1132 * @nbits: number of bits in the bitmap
1133 *
1134 * Require nbits % BITS_PER_LONG == 0.
1135 */
1136#ifdef __BIG_ENDIAN
1137void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1138{
1139        unsigned int i;
1140
1141        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1142                if (BITS_PER_LONG == 64)
1143                        dst[i] = cpu_to_le64(src[i]);
1144                else
1145                        dst[i] = cpu_to_le32(src[i]);
1146        }
1147}
1148EXPORT_SYMBOL(bitmap_copy_le);
1149#endif
1150
1151unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1152{
1153        return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1154                             flags);
1155}
1156EXPORT_SYMBOL(bitmap_alloc);
1157
1158unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1159{
1160        return bitmap_alloc(nbits, flags | __GFP_ZERO);
1161}
1162EXPORT_SYMBOL(bitmap_zalloc);
1163
1164void bitmap_free(const unsigned long *bitmap)
1165{
1166        kfree(bitmap);
1167}
1168EXPORT_SYMBOL(bitmap_free);
1169
1170#if BITS_PER_LONG == 64
1171/**
1172 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1173 *      @bitmap: array of unsigned longs, the destination bitmap
1174 *      @buf: array of u32 (in host byte order), the source bitmap
1175 *      @nbits: number of bits in @bitmap
1176 */
1177void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1178{
1179        unsigned int i, halfwords;
1180
1181        halfwords = DIV_ROUND_UP(nbits, 32);
1182        for (i = 0; i < halfwords; i++) {
1183                bitmap[i/2] = (unsigned long) buf[i];
1184                if (++i < halfwords)
1185                        bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1186        }
1187
1188        /* Clear tail bits in last word beyond nbits. */
1189        if (nbits % BITS_PER_LONG)
1190                bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1191}
1192EXPORT_SYMBOL(bitmap_from_arr32);
1193
1194/**
1195 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1196 *      @buf: array of u32 (in host byte order), the dest bitmap
1197 *      @bitmap: array of unsigned longs, the source bitmap
1198 *      @nbits: number of bits in @bitmap
1199 */
1200void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1201{
1202        unsigned int i, halfwords;
1203
1204        halfwords = DIV_ROUND_UP(nbits, 32);
1205        for (i = 0; i < halfwords; i++) {
1206                buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1207                if (++i < halfwords)
1208                        buf[i] = (u32) (bitmap[i/2] >> 32);
1209        }
1210
1211        /* Clear tail bits in last element of array beyond nbits. */
1212        if (nbits % BITS_PER_LONG)
1213                buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1214}
1215EXPORT_SYMBOL(bitmap_to_arr32);
1216
1217#endif
1218