linux/lib/genalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Basic general purpose allocator for managing special purpose
   4 * memory, for example, memory that is not managed by the regular
   5 * kmalloc/kfree interface.  Uses for this includes on-device special
   6 * memory, uncached memory etc.
   7 *
   8 * It is safe to use the allocator in NMI handlers and other special
   9 * unblockable contexts that could otherwise deadlock on locks.  This
  10 * is implemented by using atomic operations and retries on any
  11 * conflicts.  The disadvantage is that there may be livelocks in
  12 * extreme cases.  For better scalability, one allocator can be used
  13 * for each CPU.
  14 *
  15 * The lockless operation only works if there is enough memory
  16 * available.  If new memory is added to the pool a lock has to be
  17 * still taken.  So any user relying on locklessness has to ensure
  18 * that sufficient memory is preallocated.
  19 *
  20 * The basic atomic operation of this allocator is cmpxchg on long.
  21 * On architectures that don't have NMI-safe cmpxchg implementation,
  22 * the allocator can NOT be used in NMI handler.  So code uses the
  23 * allocator in NMI handler should depend on
  24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
  25 *
  26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
  27 */
  28
  29#include <linux/slab.h>
  30#include <linux/export.h>
  31#include <linux/bitmap.h>
  32#include <linux/rculist.h>
  33#include <linux/interrupt.h>
  34#include <linux/genalloc.h>
  35#include <linux/of_device.h>
  36#include <linux/vmalloc.h>
  37
  38static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
  39{
  40        return chunk->end_addr - chunk->start_addr + 1;
  41}
  42
  43static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
  44{
  45        unsigned long val, nval;
  46
  47        nval = *addr;
  48        do {
  49                val = nval;
  50                if (val & mask_to_set)
  51                        return -EBUSY;
  52                cpu_relax();
  53        } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
  54
  55        return 0;
  56}
  57
  58static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
  59{
  60        unsigned long val, nval;
  61
  62        nval = *addr;
  63        do {
  64                val = nval;
  65                if ((val & mask_to_clear) != mask_to_clear)
  66                        return -EBUSY;
  67                cpu_relax();
  68        } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
  69
  70        return 0;
  71}
  72
  73/*
  74 * bitmap_set_ll - set the specified number of bits at the specified position
  75 * @map: pointer to a bitmap
  76 * @start: a bit position in @map
  77 * @nr: number of bits to set
  78 *
  79 * Set @nr bits start from @start in @map lock-lessly. Several users
  80 * can set/clear the same bitmap simultaneously without lock. If two
  81 * users set the same bit, one user will return remain bits, otherwise
  82 * return 0.
  83 */
  84static int bitmap_set_ll(unsigned long *map, int start, int nr)
  85{
  86        unsigned long *p = map + BIT_WORD(start);
  87        const int size = start + nr;
  88        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  89        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  90
  91        while (nr - bits_to_set >= 0) {
  92                if (set_bits_ll(p, mask_to_set))
  93                        return nr;
  94                nr -= bits_to_set;
  95                bits_to_set = BITS_PER_LONG;
  96                mask_to_set = ~0UL;
  97                p++;
  98        }
  99        if (nr) {
 100                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 101                if (set_bits_ll(p, mask_to_set))
 102                        return nr;
 103        }
 104
 105        return 0;
 106}
 107
 108/*
 109 * bitmap_clear_ll - clear the specified number of bits at the specified position
 110 * @map: pointer to a bitmap
 111 * @start: a bit position in @map
 112 * @nr: number of bits to set
 113 *
 114 * Clear @nr bits start from @start in @map lock-lessly. Several users
 115 * can set/clear the same bitmap simultaneously without lock. If two
 116 * users clear the same bit, one user will return remain bits,
 117 * otherwise return 0.
 118 */
 119static int bitmap_clear_ll(unsigned long *map, int start, int nr)
 120{
 121        unsigned long *p = map + BIT_WORD(start);
 122        const int size = start + nr;
 123        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 124        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 125
 126        while (nr - bits_to_clear >= 0) {
 127                if (clear_bits_ll(p, mask_to_clear))
 128                        return nr;
 129                nr -= bits_to_clear;
 130                bits_to_clear = BITS_PER_LONG;
 131                mask_to_clear = ~0UL;
 132                p++;
 133        }
 134        if (nr) {
 135                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 136                if (clear_bits_ll(p, mask_to_clear))
 137                        return nr;
 138        }
 139
 140        return 0;
 141}
 142
 143/**
 144 * gen_pool_create - create a new special memory pool
 145 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
 146 * @nid: node id of the node the pool structure should be allocated on, or -1
 147 *
 148 * Create a new special memory pool that can be used to manage special purpose
 149 * memory not managed by the regular kmalloc/kfree interface.
 150 */
 151struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
 152{
 153        struct gen_pool *pool;
 154
 155        pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
 156        if (pool != NULL) {
 157                spin_lock_init(&pool->lock);
 158                INIT_LIST_HEAD(&pool->chunks);
 159                pool->min_alloc_order = min_alloc_order;
 160                pool->algo = gen_pool_first_fit;
 161                pool->data = NULL;
 162                pool->name = NULL;
 163        }
 164        return pool;
 165}
 166EXPORT_SYMBOL(gen_pool_create);
 167
 168/**
 169 * gen_pool_add_owner- add a new chunk of special memory to the pool
 170 * @pool: pool to add new memory chunk to
 171 * @virt: virtual starting address of memory chunk to add to pool
 172 * @phys: physical starting address of memory chunk to add to pool
 173 * @size: size in bytes of the memory chunk to add to pool
 174 * @nid: node id of the node the chunk structure and bitmap should be
 175 *       allocated on, or -1
 176 * @owner: private data the publisher would like to recall at alloc time
 177 *
 178 * Add a new chunk of special memory to the specified pool.
 179 *
 180 * Returns 0 on success or a -ve errno on failure.
 181 */
 182int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
 183                 size_t size, int nid, void *owner)
 184{
 185        struct gen_pool_chunk *chunk;
 186        int nbits = size >> pool->min_alloc_order;
 187        int nbytes = sizeof(struct gen_pool_chunk) +
 188                                BITS_TO_LONGS(nbits) * sizeof(long);
 189
 190        chunk = vzalloc_node(nbytes, nid);
 191        if (unlikely(chunk == NULL))
 192                return -ENOMEM;
 193
 194        chunk->phys_addr = phys;
 195        chunk->start_addr = virt;
 196        chunk->end_addr = virt + size - 1;
 197        chunk->owner = owner;
 198        atomic_long_set(&chunk->avail, size);
 199
 200        spin_lock(&pool->lock);
 201        list_add_rcu(&chunk->next_chunk, &pool->chunks);
 202        spin_unlock(&pool->lock);
 203
 204        return 0;
 205}
 206EXPORT_SYMBOL(gen_pool_add_owner);
 207
 208/**
 209 * gen_pool_virt_to_phys - return the physical address of memory
 210 * @pool: pool to allocate from
 211 * @addr: starting address of memory
 212 *
 213 * Returns the physical address on success, or -1 on error.
 214 */
 215phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
 216{
 217        struct gen_pool_chunk *chunk;
 218        phys_addr_t paddr = -1;
 219
 220        rcu_read_lock();
 221        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 222                if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
 223                        paddr = chunk->phys_addr + (addr - chunk->start_addr);
 224                        break;
 225                }
 226        }
 227        rcu_read_unlock();
 228
 229        return paddr;
 230}
 231EXPORT_SYMBOL(gen_pool_virt_to_phys);
 232
 233/**
 234 * gen_pool_destroy - destroy a special memory pool
 235 * @pool: pool to destroy
 236 *
 237 * Destroy the specified special memory pool. Verifies that there are no
 238 * outstanding allocations.
 239 */
 240void gen_pool_destroy(struct gen_pool *pool)
 241{
 242        struct list_head *_chunk, *_next_chunk;
 243        struct gen_pool_chunk *chunk;
 244        int order = pool->min_alloc_order;
 245        int bit, end_bit;
 246
 247        list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
 248                chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
 249                list_del(&chunk->next_chunk);
 250
 251                end_bit = chunk_size(chunk) >> order;
 252                bit = find_next_bit(chunk->bits, end_bit, 0);
 253                BUG_ON(bit < end_bit);
 254
 255                vfree(chunk);
 256        }
 257        kfree_const(pool->name);
 258        kfree(pool);
 259}
 260EXPORT_SYMBOL(gen_pool_destroy);
 261
 262/**
 263 * gen_pool_alloc_algo_owner - allocate special memory from the pool
 264 * @pool: pool to allocate from
 265 * @size: number of bytes to allocate from the pool
 266 * @algo: algorithm passed from caller
 267 * @data: data passed to algorithm
 268 * @owner: optionally retrieve the chunk owner
 269 *
 270 * Allocate the requested number of bytes from the specified pool.
 271 * Uses the pool allocation function (with first-fit algorithm by default).
 272 * Can not be used in NMI handler on architectures without
 273 * NMI-safe cmpxchg implementation.
 274 */
 275unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
 276                genpool_algo_t algo, void *data, void **owner)
 277{
 278        struct gen_pool_chunk *chunk;
 279        unsigned long addr = 0;
 280        int order = pool->min_alloc_order;
 281        int nbits, start_bit, end_bit, remain;
 282
 283#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 284        BUG_ON(in_nmi());
 285#endif
 286
 287        if (owner)
 288                *owner = NULL;
 289
 290        if (size == 0)
 291                return 0;
 292
 293        nbits = (size + (1UL << order) - 1) >> order;
 294        rcu_read_lock();
 295        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 296                if (size > atomic_long_read(&chunk->avail))
 297                        continue;
 298
 299                start_bit = 0;
 300                end_bit = chunk_size(chunk) >> order;
 301retry:
 302                start_bit = algo(chunk->bits, end_bit, start_bit,
 303                                 nbits, data, pool, chunk->start_addr);
 304                if (start_bit >= end_bit)
 305                        continue;
 306                remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
 307                if (remain) {
 308                        remain = bitmap_clear_ll(chunk->bits, start_bit,
 309                                                 nbits - remain);
 310                        BUG_ON(remain);
 311                        goto retry;
 312                }
 313
 314                addr = chunk->start_addr + ((unsigned long)start_bit << order);
 315                size = nbits << order;
 316                atomic_long_sub(size, &chunk->avail);
 317                if (owner)
 318                        *owner = chunk->owner;
 319                break;
 320        }
 321        rcu_read_unlock();
 322        return addr;
 323}
 324EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
 325
 326/**
 327 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
 328 * @pool: pool to allocate from
 329 * @size: number of bytes to allocate from the pool
 330 * @dma: dma-view physical address return value.  Use NULL if unneeded.
 331 *
 332 * Allocate the requested number of bytes from the specified pool.
 333 * Uses the pool allocation function (with first-fit algorithm by default).
 334 * Can not be used in NMI handler on architectures without
 335 * NMI-safe cmpxchg implementation.
 336 */
 337void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
 338{
 339        unsigned long vaddr;
 340
 341        if (!pool)
 342                return NULL;
 343
 344        vaddr = gen_pool_alloc(pool, size);
 345        if (!vaddr)
 346                return NULL;
 347
 348        if (dma)
 349                *dma = gen_pool_virt_to_phys(pool, vaddr);
 350
 351        return (void *)vaddr;
 352}
 353EXPORT_SYMBOL(gen_pool_dma_alloc);
 354
 355/**
 356 * gen_pool_free - free allocated special memory back to the pool
 357 * @pool: pool to free to
 358 * @addr: starting address of memory to free back to pool
 359 * @size: size in bytes of memory to free
 360 * @owner: private data stashed at gen_pool_add() time
 361 *
 362 * Free previously allocated special memory back to the specified
 363 * pool.  Can not be used in NMI handler on architectures without
 364 * NMI-safe cmpxchg implementation.
 365 */
 366void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
 367                void **owner)
 368{
 369        struct gen_pool_chunk *chunk;
 370        int order = pool->min_alloc_order;
 371        int start_bit, nbits, remain;
 372
 373#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 374        BUG_ON(in_nmi());
 375#endif
 376
 377        if (owner)
 378                *owner = NULL;
 379
 380        nbits = (size + (1UL << order) - 1) >> order;
 381        rcu_read_lock();
 382        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 383                if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
 384                        BUG_ON(addr + size - 1 > chunk->end_addr);
 385                        start_bit = (addr - chunk->start_addr) >> order;
 386                        remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
 387                        BUG_ON(remain);
 388                        size = nbits << order;
 389                        atomic_long_add(size, &chunk->avail);
 390                        if (owner)
 391                                *owner = chunk->owner;
 392                        rcu_read_unlock();
 393                        return;
 394                }
 395        }
 396        rcu_read_unlock();
 397        BUG();
 398}
 399EXPORT_SYMBOL(gen_pool_free_owner);
 400
 401/**
 402 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
 403 * @pool:       the generic memory pool
 404 * @func:       func to call
 405 * @data:       additional data used by @func
 406 *
 407 * Call @func for every chunk of generic memory pool.  The @func is
 408 * called with rcu_read_lock held.
 409 */
 410void gen_pool_for_each_chunk(struct gen_pool *pool,
 411        void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
 412        void *data)
 413{
 414        struct gen_pool_chunk *chunk;
 415
 416        rcu_read_lock();
 417        list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
 418                func(pool, chunk, data);
 419        rcu_read_unlock();
 420}
 421EXPORT_SYMBOL(gen_pool_for_each_chunk);
 422
 423/**
 424 * addr_in_gen_pool - checks if an address falls within the range of a pool
 425 * @pool:       the generic memory pool
 426 * @start:      start address
 427 * @size:       size of the region
 428 *
 429 * Check if the range of addresses falls within the specified pool. Returns
 430 * true if the entire range is contained in the pool and false otherwise.
 431 */
 432bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
 433                        size_t size)
 434{
 435        bool found = false;
 436        unsigned long end = start + size - 1;
 437        struct gen_pool_chunk *chunk;
 438
 439        rcu_read_lock();
 440        list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
 441                if (start >= chunk->start_addr && start <= chunk->end_addr) {
 442                        if (end <= chunk->end_addr) {
 443                                found = true;
 444                                break;
 445                        }
 446                }
 447        }
 448        rcu_read_unlock();
 449        return found;
 450}
 451
 452/**
 453 * gen_pool_avail - get available free space of the pool
 454 * @pool: pool to get available free space
 455 *
 456 * Return available free space of the specified pool.
 457 */
 458size_t gen_pool_avail(struct gen_pool *pool)
 459{
 460        struct gen_pool_chunk *chunk;
 461        size_t avail = 0;
 462
 463        rcu_read_lock();
 464        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 465                avail += atomic_long_read(&chunk->avail);
 466        rcu_read_unlock();
 467        return avail;
 468}
 469EXPORT_SYMBOL_GPL(gen_pool_avail);
 470
 471/**
 472 * gen_pool_size - get size in bytes of memory managed by the pool
 473 * @pool: pool to get size
 474 *
 475 * Return size in bytes of memory managed by the pool.
 476 */
 477size_t gen_pool_size(struct gen_pool *pool)
 478{
 479        struct gen_pool_chunk *chunk;
 480        size_t size = 0;
 481
 482        rcu_read_lock();
 483        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 484                size += chunk_size(chunk);
 485        rcu_read_unlock();
 486        return size;
 487}
 488EXPORT_SYMBOL_GPL(gen_pool_size);
 489
 490/**
 491 * gen_pool_set_algo - set the allocation algorithm
 492 * @pool: pool to change allocation algorithm
 493 * @algo: custom algorithm function
 494 * @data: additional data used by @algo
 495 *
 496 * Call @algo for each memory allocation in the pool.
 497 * If @algo is NULL use gen_pool_first_fit as default
 498 * memory allocation function.
 499 */
 500void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
 501{
 502        rcu_read_lock();
 503
 504        pool->algo = algo;
 505        if (!pool->algo)
 506                pool->algo = gen_pool_first_fit;
 507
 508        pool->data = data;
 509
 510        rcu_read_unlock();
 511}
 512EXPORT_SYMBOL(gen_pool_set_algo);
 513
 514/**
 515 * gen_pool_first_fit - find the first available region
 516 * of memory matching the size requirement (no alignment constraint)
 517 * @map: The address to base the search on
 518 * @size: The bitmap size in bits
 519 * @start: The bitnumber to start searching at
 520 * @nr: The number of zeroed bits we're looking for
 521 * @data: additional data - unused
 522 * @pool: pool to find the fit region memory from
 523 */
 524unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
 525                unsigned long start, unsigned int nr, void *data,
 526                struct gen_pool *pool, unsigned long start_addr)
 527{
 528        return bitmap_find_next_zero_area(map, size, start, nr, 0);
 529}
 530EXPORT_SYMBOL(gen_pool_first_fit);
 531
 532/**
 533 * gen_pool_first_fit_align - find the first available region
 534 * of memory matching the size requirement (alignment constraint)
 535 * @map: The address to base the search on
 536 * @size: The bitmap size in bits
 537 * @start: The bitnumber to start searching at
 538 * @nr: The number of zeroed bits we're looking for
 539 * @data: data for alignment
 540 * @pool: pool to get order from
 541 */
 542unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
 543                unsigned long start, unsigned int nr, void *data,
 544                struct gen_pool *pool, unsigned long start_addr)
 545{
 546        struct genpool_data_align *alignment;
 547        unsigned long align_mask, align_off;
 548        int order;
 549
 550        alignment = data;
 551        order = pool->min_alloc_order;
 552        align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
 553        align_off = (start_addr & (alignment->align - 1)) >> order;
 554
 555        return bitmap_find_next_zero_area_off(map, size, start, nr,
 556                                              align_mask, align_off);
 557}
 558EXPORT_SYMBOL(gen_pool_first_fit_align);
 559
 560/**
 561 * gen_pool_fixed_alloc - reserve a specific region
 562 * @map: The address to base the search on
 563 * @size: The bitmap size in bits
 564 * @start: The bitnumber to start searching at
 565 * @nr: The number of zeroed bits we're looking for
 566 * @data: data for alignment
 567 * @pool: pool to get order from
 568 */
 569unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
 570                unsigned long start, unsigned int nr, void *data,
 571                struct gen_pool *pool, unsigned long start_addr)
 572{
 573        struct genpool_data_fixed *fixed_data;
 574        int order;
 575        unsigned long offset_bit;
 576        unsigned long start_bit;
 577
 578        fixed_data = data;
 579        order = pool->min_alloc_order;
 580        offset_bit = fixed_data->offset >> order;
 581        if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
 582                return size;
 583
 584        start_bit = bitmap_find_next_zero_area(map, size,
 585                        start + offset_bit, nr, 0);
 586        if (start_bit != offset_bit)
 587                start_bit = size;
 588        return start_bit;
 589}
 590EXPORT_SYMBOL(gen_pool_fixed_alloc);
 591
 592/**
 593 * gen_pool_first_fit_order_align - find the first available region
 594 * of memory matching the size requirement. The region will be aligned
 595 * to the order of the size specified.
 596 * @map: The address to base the search on
 597 * @size: The bitmap size in bits
 598 * @start: The bitnumber to start searching at
 599 * @nr: The number of zeroed bits we're looking for
 600 * @data: additional data - unused
 601 * @pool: pool to find the fit region memory from
 602 */
 603unsigned long gen_pool_first_fit_order_align(unsigned long *map,
 604                unsigned long size, unsigned long start,
 605                unsigned int nr, void *data, struct gen_pool *pool,
 606                unsigned long start_addr)
 607{
 608        unsigned long align_mask = roundup_pow_of_two(nr) - 1;
 609
 610        return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
 611}
 612EXPORT_SYMBOL(gen_pool_first_fit_order_align);
 613
 614/**
 615 * gen_pool_best_fit - find the best fitting region of memory
 616 * macthing the size requirement (no alignment constraint)
 617 * @map: The address to base the search on
 618 * @size: The bitmap size in bits
 619 * @start: The bitnumber to start searching at
 620 * @nr: The number of zeroed bits we're looking for
 621 * @data: additional data - unused
 622 * @pool: pool to find the fit region memory from
 623 *
 624 * Iterate over the bitmap to find the smallest free region
 625 * which we can allocate the memory.
 626 */
 627unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
 628                unsigned long start, unsigned int nr, void *data,
 629                struct gen_pool *pool, unsigned long start_addr)
 630{
 631        unsigned long start_bit = size;
 632        unsigned long len = size + 1;
 633        unsigned long index;
 634
 635        index = bitmap_find_next_zero_area(map, size, start, nr, 0);
 636
 637        while (index < size) {
 638                int next_bit = find_next_bit(map, size, index + nr);
 639                if ((next_bit - index) < len) {
 640                        len = next_bit - index;
 641                        start_bit = index;
 642                        if (len == nr)
 643                                return start_bit;
 644                }
 645                index = bitmap_find_next_zero_area(map, size,
 646                                                   next_bit + 1, nr, 0);
 647        }
 648
 649        return start_bit;
 650}
 651EXPORT_SYMBOL(gen_pool_best_fit);
 652
 653static void devm_gen_pool_release(struct device *dev, void *res)
 654{
 655        gen_pool_destroy(*(struct gen_pool **)res);
 656}
 657
 658static int devm_gen_pool_match(struct device *dev, void *res, void *data)
 659{
 660        struct gen_pool **p = res;
 661
 662        /* NULL data matches only a pool without an assigned name */
 663        if (!data && !(*p)->name)
 664                return 1;
 665
 666        if (!data || !(*p)->name)
 667                return 0;
 668
 669        return !strcmp((*p)->name, data);
 670}
 671
 672/**
 673 * gen_pool_get - Obtain the gen_pool (if any) for a device
 674 * @dev: device to retrieve the gen_pool from
 675 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
 676 *
 677 * Returns the gen_pool for the device if one is present, or NULL.
 678 */
 679struct gen_pool *gen_pool_get(struct device *dev, const char *name)
 680{
 681        struct gen_pool **p;
 682
 683        p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
 684                        (void *)name);
 685        if (!p)
 686                return NULL;
 687        return *p;
 688}
 689EXPORT_SYMBOL_GPL(gen_pool_get);
 690
 691/**
 692 * devm_gen_pool_create - managed gen_pool_create
 693 * @dev: device that provides the gen_pool
 694 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
 695 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
 696 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
 697 *
 698 * Create a new special memory pool that can be used to manage special purpose
 699 * memory not managed by the regular kmalloc/kfree interface. The pool will be
 700 * automatically destroyed by the device management code.
 701 */
 702struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
 703                                      int nid, const char *name)
 704{
 705        struct gen_pool **ptr, *pool;
 706        const char *pool_name = NULL;
 707
 708        /* Check that genpool to be created is uniquely addressed on device */
 709        if (gen_pool_get(dev, name))
 710                return ERR_PTR(-EINVAL);
 711
 712        if (name) {
 713                pool_name = kstrdup_const(name, GFP_KERNEL);
 714                if (!pool_name)
 715                        return ERR_PTR(-ENOMEM);
 716        }
 717
 718        ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
 719        if (!ptr)
 720                goto free_pool_name;
 721
 722        pool = gen_pool_create(min_alloc_order, nid);
 723        if (!pool)
 724                goto free_devres;
 725
 726        *ptr = pool;
 727        pool->name = pool_name;
 728        devres_add(dev, ptr);
 729
 730        return pool;
 731
 732free_devres:
 733        devres_free(ptr);
 734free_pool_name:
 735        kfree_const(pool_name);
 736
 737        return ERR_PTR(-ENOMEM);
 738}
 739EXPORT_SYMBOL(devm_gen_pool_create);
 740
 741#ifdef CONFIG_OF
 742/**
 743 * of_gen_pool_get - find a pool by phandle property
 744 * @np: device node
 745 * @propname: property name containing phandle(s)
 746 * @index: index into the phandle array
 747 *
 748 * Returns the pool that contains the chunk starting at the physical
 749 * address of the device tree node pointed at by the phandle property,
 750 * or NULL if not found.
 751 */
 752struct gen_pool *of_gen_pool_get(struct device_node *np,
 753        const char *propname, int index)
 754{
 755        struct platform_device *pdev;
 756        struct device_node *np_pool, *parent;
 757        const char *name = NULL;
 758        struct gen_pool *pool = NULL;
 759
 760        np_pool = of_parse_phandle(np, propname, index);
 761        if (!np_pool)
 762                return NULL;
 763
 764        pdev = of_find_device_by_node(np_pool);
 765        if (!pdev) {
 766                /* Check if named gen_pool is created by parent node device */
 767                parent = of_get_parent(np_pool);
 768                pdev = of_find_device_by_node(parent);
 769                of_node_put(parent);
 770
 771                of_property_read_string(np_pool, "label", &name);
 772                if (!name)
 773                        name = np_pool->name;
 774        }
 775        if (pdev)
 776                pool = gen_pool_get(&pdev->dev, name);
 777        of_node_put(np_pool);
 778
 779        return pool;
 780}
 781EXPORT_SYMBOL_GPL(of_gen_pool_get);
 782#endif /* CONFIG_OF */
 783