linux/lib/scatterlist.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:         The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
  25        if (sg_is_last(sg))
  26                return NULL;
  27
  28        sg++;
  29        if (unlikely(sg_is_chain(sg)))
  30                sg = sg_chain_ptr(sg);
  31
  32        return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:         The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into acount
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47        int nents;
  48        for (nents = 0; sg; sg = sg_next(sg))
  49                nents++;
  50        return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:         The scatterlist
  58 * @len:        The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into acount chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70        int nents;
  71        u64 total;
  72
  73        if (!len)
  74                return 0;
  75
  76        for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77                nents++;
  78                total += sg->length;
  79                if (total >= len)
  80                        return nents;
  81        }
  82
  83        return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:        First entry in the scatterlist
  90 * @nents:      Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 103        struct scatterlist *sg, *ret = NULL;
 104        unsigned int i;
 105
 106        for_each_sg(sgl, sg, nents, i)
 107                ret = sg;
 108
 109        BUG_ON(!sg_is_last(ret));
 110        return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:           The SG table
 117 * @nents:         Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126        memset(sgl, 0, sizeof(*sgl) * nents);
 127        sg_init_marker(sgl, nents);
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:          SG entry
 134 * @buf:         Virtual address for IO
 135 * @buflen:      IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140        sg_init_table(sg, 1);
 141        sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151        if (nents == SG_MAX_SINGLE_ALLOC) {
 152                /*
 153                 * Kmemleak doesn't track page allocations as they are not
 154                 * commonly used (in a raw form) for kernel data structures.
 155                 * As we chain together a list of pages and then a normal
 156                 * kmalloc (tracked by kmemleak), in order to for that last
 157                 * allocation not to become decoupled (and thus a
 158                 * false-positive) we need to inform kmemleak of all the
 159                 * intermediate allocations.
 160                 */
 161                void *ptr = (void *) __get_free_page(gfp_mask);
 162                kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163                return ptr;
 164        } else
 165                return kmalloc_array(nents, sizeof(struct scatterlist),
 166                                     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171        if (nents == SG_MAX_SINGLE_ALLOC) {
 172                kmemleak_free(sg);
 173                free_page((unsigned long) sg);
 174        } else
 175                kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:      The sg table header to use
 181 * @max_ents:   The maximum number of entries per single scatterlist
 182 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 183 * @free_fn:    Free function
 184 *
 185 *  Description:
 186 *    Free an sg table previously allocated and setup with
 187 *    __sg_alloc_table().  The @max_ents value must be identical to
 188 *    that previously used with __sg_alloc_table().
 189 *
 190 **/
 191void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 192                     bool skip_first_chunk, sg_free_fn *free_fn)
 193{
 194        struct scatterlist *sgl, *next;
 195
 196        if (unlikely(!table->sgl))
 197                return;
 198
 199        sgl = table->sgl;
 200        while (table->orig_nents) {
 201                unsigned int alloc_size = table->orig_nents;
 202                unsigned int sg_size;
 203
 204                /*
 205                 * If we have more than max_ents segments left,
 206                 * then assign 'next' to the sg table after the current one.
 207                 * sg_size is then one less than alloc size, since the last
 208                 * element is the chain pointer.
 209                 */
 210                if (alloc_size > max_ents) {
 211                        next = sg_chain_ptr(&sgl[max_ents - 1]);
 212                        alloc_size = max_ents;
 213                        sg_size = alloc_size - 1;
 214                } else {
 215                        sg_size = alloc_size;
 216                        next = NULL;
 217                }
 218
 219                table->orig_nents -= sg_size;
 220                if (skip_first_chunk)
 221                        skip_first_chunk = false;
 222                else
 223                        free_fn(sgl, alloc_size);
 224                sgl = next;
 225        }
 226
 227        table->sgl = NULL;
 228}
 229EXPORT_SYMBOL(__sg_free_table);
 230
 231/**
 232 * sg_free_table - Free a previously allocated sg table
 233 * @table:      The mapped sg table header
 234 *
 235 **/
 236void sg_free_table(struct sg_table *table)
 237{
 238        __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 239}
 240EXPORT_SYMBOL(sg_free_table);
 241
 242/**
 243 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 244 * @table:      The sg table header to use
 245 * @nents:      Number of entries in sg list
 246 * @max_ents:   The maximum number of entries the allocator returns per call
 247 * @gfp_mask:   GFP allocation mask
 248 * @alloc_fn:   Allocator to use
 249 *
 250 * Description:
 251 *   This function returns a @table @nents long. The allocator is
 252 *   defined to return scatterlist chunks of maximum size @max_ents.
 253 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 254 *   chained in units of @max_ents.
 255 *
 256 * Notes:
 257 *   If this function returns non-0 (eg failure), the caller must call
 258 *   __sg_free_table() to cleanup any leftover allocations.
 259 *
 260 **/
 261int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 262                     unsigned int max_ents, struct scatterlist *first_chunk,
 263                     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 264{
 265        struct scatterlist *sg, *prv;
 266        unsigned int left;
 267
 268        memset(table, 0, sizeof(*table));
 269
 270        if (nents == 0)
 271                return -EINVAL;
 272#ifdef CONFIG_ARCH_NO_SG_CHAIN
 273        if (WARN_ON_ONCE(nents > max_ents))
 274                return -EINVAL;
 275#endif
 276
 277        left = nents;
 278        prv = NULL;
 279        do {
 280                unsigned int sg_size, alloc_size = left;
 281
 282                if (alloc_size > max_ents) {
 283                        alloc_size = max_ents;
 284                        sg_size = alloc_size - 1;
 285                } else
 286                        sg_size = alloc_size;
 287
 288                left -= sg_size;
 289
 290                if (first_chunk) {
 291                        sg = first_chunk;
 292                        first_chunk = NULL;
 293                } else {
 294                        sg = alloc_fn(alloc_size, gfp_mask);
 295                }
 296                if (unlikely(!sg)) {
 297                        /*
 298                         * Adjust entry count to reflect that the last
 299                         * entry of the previous table won't be used for
 300                         * linkage.  Without this, sg_kfree() may get
 301                         * confused.
 302                         */
 303                        if (prv)
 304                                table->nents = ++table->orig_nents;
 305
 306                        return -ENOMEM;
 307                }
 308
 309                sg_init_table(sg, alloc_size);
 310                table->nents = table->orig_nents += sg_size;
 311
 312                /*
 313                 * If this is the first mapping, assign the sg table header.
 314                 * If this is not the first mapping, chain previous part.
 315                 */
 316                if (prv)
 317                        sg_chain(prv, max_ents, sg);
 318                else
 319                        table->sgl = sg;
 320
 321                /*
 322                 * If no more entries after this one, mark the end
 323                 */
 324                if (!left)
 325                        sg_mark_end(&sg[sg_size - 1]);
 326
 327                prv = sg;
 328        } while (left);
 329
 330        return 0;
 331}
 332EXPORT_SYMBOL(__sg_alloc_table);
 333
 334/**
 335 * sg_alloc_table - Allocate and initialize an sg table
 336 * @table:      The sg table header to use
 337 * @nents:      Number of entries in sg list
 338 * @gfp_mask:   GFP allocation mask
 339 *
 340 *  Description:
 341 *    Allocate and initialize an sg table. If @nents@ is larger than
 342 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 343 *
 344 **/
 345int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 346{
 347        int ret;
 348
 349        ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 350                               NULL, gfp_mask, sg_kmalloc);
 351        if (unlikely(ret))
 352                __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 353
 354        return ret;
 355}
 356EXPORT_SYMBOL(sg_alloc_table);
 357
 358/**
 359 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 360 *                               an array of pages
 361 * @sgt:         The sg table header to use
 362 * @pages:       Pointer to an array of page pointers
 363 * @n_pages:     Number of pages in the pages array
 364 * @offset:      Offset from start of the first page to the start of a buffer
 365 * @size:        Number of valid bytes in the buffer (after offset)
 366 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
 367 * @gfp_mask:    GFP allocation mask
 368 *
 369 *  Description:
 370 *    Allocate and initialize an sg table from a list of pages. Contiguous
 371 *    ranges of the pages are squashed into a single scatterlist node up to the
 372 *    maximum size specified in @max_segment. An user may provide an offset at a
 373 *    start and a size of valid data in a buffer specified by the page array.
 374 *    The returned sg table is released by sg_free_table.
 375 *
 376 * Returns:
 377 *   0 on success, negative error on failure
 378 */
 379int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 380                                unsigned int n_pages, unsigned int offset,
 381                                unsigned long size, unsigned int max_segment,
 382                                gfp_t gfp_mask)
 383{
 384        unsigned int chunks, cur_page, seg_len, i;
 385        int ret;
 386        struct scatterlist *s;
 387
 388        if (WARN_ON(!max_segment || offset_in_page(max_segment)))
 389                return -EINVAL;
 390
 391        /* compute number of contiguous chunks */
 392        chunks = 1;
 393        seg_len = 0;
 394        for (i = 1; i < n_pages; i++) {
 395                seg_len += PAGE_SIZE;
 396                if (seg_len >= max_segment ||
 397                    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
 398                        chunks++;
 399                        seg_len = 0;
 400                }
 401        }
 402
 403        ret = sg_alloc_table(sgt, chunks, gfp_mask);
 404        if (unlikely(ret))
 405                return ret;
 406
 407        /* merging chunks and putting them into the scatterlist */
 408        cur_page = 0;
 409        for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
 410                unsigned int j, chunk_size;
 411
 412                /* look for the end of the current chunk */
 413                seg_len = 0;
 414                for (j = cur_page + 1; j < n_pages; j++) {
 415                        seg_len += PAGE_SIZE;
 416                        if (seg_len >= max_segment ||
 417                            page_to_pfn(pages[j]) !=
 418                            page_to_pfn(pages[j - 1]) + 1)
 419                                break;
 420                }
 421
 422                chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 423                sg_set_page(s, pages[cur_page],
 424                            min_t(unsigned long, size, chunk_size), offset);
 425                size -= chunk_size;
 426                offset = 0;
 427                cur_page = j;
 428        }
 429
 430        return 0;
 431}
 432EXPORT_SYMBOL(__sg_alloc_table_from_pages);
 433
 434/**
 435 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 436 *                             an array of pages
 437 * @sgt:         The sg table header to use
 438 * @pages:       Pointer to an array of page pointers
 439 * @n_pages:     Number of pages in the pages array
 440 * @offset:      Offset from start of the first page to the start of a buffer
 441 * @size:        Number of valid bytes in the buffer (after offset)
 442 * @gfp_mask:    GFP allocation mask
 443 *
 444 *  Description:
 445 *    Allocate and initialize an sg table from a list of pages. Contiguous
 446 *    ranges of the pages are squashed into a single scatterlist node. A user
 447 *    may provide an offset at a start and a size of valid data in a buffer
 448 *    specified by the page array. The returned sg table is released by
 449 *    sg_free_table.
 450 *
 451 * Returns:
 452 *   0 on success, negative error on failure
 453 */
 454int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 455                              unsigned int n_pages, unsigned int offset,
 456                              unsigned long size, gfp_t gfp_mask)
 457{
 458        return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
 459                                           SCATTERLIST_MAX_SEGMENT, gfp_mask);
 460}
 461EXPORT_SYMBOL(sg_alloc_table_from_pages);
 462
 463#ifdef CONFIG_SGL_ALLOC
 464
 465/**
 466 * sgl_alloc_order - allocate a scatterlist and its pages
 467 * @length: Length in bytes of the scatterlist. Must be at least one
 468 * @order: Second argument for alloc_pages()
 469 * @chainable: Whether or not to allocate an extra element in the scatterlist
 470 *      for scatterlist chaining purposes
 471 * @gfp: Memory allocation flags
 472 * @nent_p: [out] Number of entries in the scatterlist that have pages
 473 *
 474 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 475 */
 476struct scatterlist *sgl_alloc_order(unsigned long long length,
 477                                    unsigned int order, bool chainable,
 478                                    gfp_t gfp, unsigned int *nent_p)
 479{
 480        struct scatterlist *sgl, *sg;
 481        struct page *page;
 482        unsigned int nent, nalloc;
 483        u32 elem_len;
 484
 485        nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 486        /* Check for integer overflow */
 487        if (length > (nent << (PAGE_SHIFT + order)))
 488                return NULL;
 489        nalloc = nent;
 490        if (chainable) {
 491                /* Check for integer overflow */
 492                if (nalloc + 1 < nalloc)
 493                        return NULL;
 494                nalloc++;
 495        }
 496        sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 497                            (gfp & ~GFP_DMA) | __GFP_ZERO);
 498        if (!sgl)
 499                return NULL;
 500
 501        sg_init_table(sgl, nalloc);
 502        sg = sgl;
 503        while (length) {
 504                elem_len = min_t(u64, length, PAGE_SIZE << order);
 505                page = alloc_pages(gfp, order);
 506                if (!page) {
 507                        sgl_free(sgl);
 508                        return NULL;
 509                }
 510
 511                sg_set_page(sg, page, elem_len, 0);
 512                length -= elem_len;
 513                sg = sg_next(sg);
 514        }
 515        WARN_ONCE(length, "length = %lld\n", length);
 516        if (nent_p)
 517                *nent_p = nent;
 518        return sgl;
 519}
 520EXPORT_SYMBOL(sgl_alloc_order);
 521
 522/**
 523 * sgl_alloc - allocate a scatterlist and its pages
 524 * @length: Length in bytes of the scatterlist
 525 * @gfp: Memory allocation flags
 526 * @nent_p: [out] Number of entries in the scatterlist
 527 *
 528 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 529 */
 530struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 531                              unsigned int *nent_p)
 532{
 533        return sgl_alloc_order(length, 0, false, gfp, nent_p);
 534}
 535EXPORT_SYMBOL(sgl_alloc);
 536
 537/**
 538 * sgl_free_n_order - free a scatterlist and its pages
 539 * @sgl: Scatterlist with one or more elements
 540 * @nents: Maximum number of elements to free
 541 * @order: Second argument for __free_pages()
 542 *
 543 * Notes:
 544 * - If several scatterlists have been chained and each chain element is
 545 *   freed separately then it's essential to set nents correctly to avoid that a
 546 *   page would get freed twice.
 547 * - All pages in a chained scatterlist can be freed at once by setting @nents
 548 *   to a high number.
 549 */
 550void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 551{
 552        struct scatterlist *sg;
 553        struct page *page;
 554        int i;
 555
 556        for_each_sg(sgl, sg, nents, i) {
 557                if (!sg)
 558                        break;
 559                page = sg_page(sg);
 560                if (page)
 561                        __free_pages(page, order);
 562        }
 563        kfree(sgl);
 564}
 565EXPORT_SYMBOL(sgl_free_n_order);
 566
 567/**
 568 * sgl_free_order - free a scatterlist and its pages
 569 * @sgl: Scatterlist with one or more elements
 570 * @order: Second argument for __free_pages()
 571 */
 572void sgl_free_order(struct scatterlist *sgl, int order)
 573{
 574        sgl_free_n_order(sgl, INT_MAX, order);
 575}
 576EXPORT_SYMBOL(sgl_free_order);
 577
 578/**
 579 * sgl_free - free a scatterlist and its pages
 580 * @sgl: Scatterlist with one or more elements
 581 */
 582void sgl_free(struct scatterlist *sgl)
 583{
 584        sgl_free_order(sgl, 0);
 585}
 586EXPORT_SYMBOL(sgl_free);
 587
 588#endif /* CONFIG_SGL_ALLOC */
 589
 590void __sg_page_iter_start(struct sg_page_iter *piter,
 591                          struct scatterlist *sglist, unsigned int nents,
 592                          unsigned long pgoffset)
 593{
 594        piter->__pg_advance = 0;
 595        piter->__nents = nents;
 596
 597        piter->sg = sglist;
 598        piter->sg_pgoffset = pgoffset;
 599}
 600EXPORT_SYMBOL(__sg_page_iter_start);
 601
 602static int sg_page_count(struct scatterlist *sg)
 603{
 604        return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 605}
 606
 607bool __sg_page_iter_next(struct sg_page_iter *piter)
 608{
 609        if (!piter->__nents || !piter->sg)
 610                return false;
 611
 612        piter->sg_pgoffset += piter->__pg_advance;
 613        piter->__pg_advance = 1;
 614
 615        while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 616                piter->sg_pgoffset -= sg_page_count(piter->sg);
 617                piter->sg = sg_next(piter->sg);
 618                if (!--piter->__nents || !piter->sg)
 619                        return false;
 620        }
 621
 622        return true;
 623}
 624EXPORT_SYMBOL(__sg_page_iter_next);
 625
 626static int sg_dma_page_count(struct scatterlist *sg)
 627{
 628        return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 629}
 630
 631bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 632{
 633        struct sg_page_iter *piter = &dma_iter->base;
 634
 635        if (!piter->__nents || !piter->sg)
 636                return false;
 637
 638        piter->sg_pgoffset += piter->__pg_advance;
 639        piter->__pg_advance = 1;
 640
 641        while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 642                piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 643                piter->sg = sg_next(piter->sg);
 644                if (!--piter->__nents || !piter->sg)
 645                        return false;
 646        }
 647
 648        return true;
 649}
 650EXPORT_SYMBOL(__sg_page_iter_dma_next);
 651
 652/**
 653 * sg_miter_start - start mapping iteration over a sg list
 654 * @miter: sg mapping iter to be started
 655 * @sgl: sg list to iterate over
 656 * @nents: number of sg entries
 657 *
 658 * Description:
 659 *   Starts mapping iterator @miter.
 660 *
 661 * Context:
 662 *   Don't care.
 663 */
 664void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 665                    unsigned int nents, unsigned int flags)
 666{
 667        memset(miter, 0, sizeof(struct sg_mapping_iter));
 668
 669        __sg_page_iter_start(&miter->piter, sgl, nents, 0);
 670        WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 671        miter->__flags = flags;
 672}
 673EXPORT_SYMBOL(sg_miter_start);
 674
 675static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 676{
 677        if (!miter->__remaining) {
 678                struct scatterlist *sg;
 679                unsigned long pgoffset;
 680
 681                if (!__sg_page_iter_next(&miter->piter))
 682                        return false;
 683
 684                sg = miter->piter.sg;
 685                pgoffset = miter->piter.sg_pgoffset;
 686
 687                miter->__offset = pgoffset ? 0 : sg->offset;
 688                miter->__remaining = sg->offset + sg->length -
 689                                (pgoffset << PAGE_SHIFT) - miter->__offset;
 690                miter->__remaining = min_t(unsigned long, miter->__remaining,
 691                                           PAGE_SIZE - miter->__offset);
 692        }
 693
 694        return true;
 695}
 696
 697/**
 698 * sg_miter_skip - reposition mapping iterator
 699 * @miter: sg mapping iter to be skipped
 700 * @offset: number of bytes to plus the current location
 701 *
 702 * Description:
 703 *   Sets the offset of @miter to its current location plus @offset bytes.
 704 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 705 *   stops @miter.
 706 *
 707 * Context:
 708 *   Don't care if @miter is stopped, or not proceeded yet.
 709 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 710 *
 711 * Returns:
 712 *   true if @miter contains the valid mapping.  false if end of sg
 713 *   list is reached.
 714 */
 715bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 716{
 717        sg_miter_stop(miter);
 718
 719        while (offset) {
 720                off_t consumed;
 721
 722                if (!sg_miter_get_next_page(miter))
 723                        return false;
 724
 725                consumed = min_t(off_t, offset, miter->__remaining);
 726                miter->__offset += consumed;
 727                miter->__remaining -= consumed;
 728                offset -= consumed;
 729        }
 730
 731        return true;
 732}
 733EXPORT_SYMBOL(sg_miter_skip);
 734
 735/**
 736 * sg_miter_next - proceed mapping iterator to the next mapping
 737 * @miter: sg mapping iter to proceed
 738 *
 739 * Description:
 740 *   Proceeds @miter to the next mapping.  @miter should have been started
 741 *   using sg_miter_start().  On successful return, @miter->page,
 742 *   @miter->addr and @miter->length point to the current mapping.
 743 *
 744 * Context:
 745 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 746 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 747 *
 748 * Returns:
 749 *   true if @miter contains the next mapping.  false if end of sg
 750 *   list is reached.
 751 */
 752bool sg_miter_next(struct sg_mapping_iter *miter)
 753{
 754        sg_miter_stop(miter);
 755
 756        /*
 757         * Get to the next page if necessary.
 758         * __remaining, __offset is adjusted by sg_miter_stop
 759         */
 760        if (!sg_miter_get_next_page(miter))
 761                return false;
 762
 763        miter->page = sg_page_iter_page(&miter->piter);
 764        miter->consumed = miter->length = miter->__remaining;
 765
 766        if (miter->__flags & SG_MITER_ATOMIC)
 767                miter->addr = kmap_atomic(miter->page) + miter->__offset;
 768        else
 769                miter->addr = kmap(miter->page) + miter->__offset;
 770
 771        return true;
 772}
 773EXPORT_SYMBOL(sg_miter_next);
 774
 775/**
 776 * sg_miter_stop - stop mapping iteration
 777 * @miter: sg mapping iter to be stopped
 778 *
 779 * Description:
 780 *   Stops mapping iterator @miter.  @miter should have been started
 781 *   using sg_miter_start().  A stopped iteration can be resumed by
 782 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 783 *   need to be released during iteration.
 784 *
 785 * Context:
 786 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 787 *   otherwise.
 788 */
 789void sg_miter_stop(struct sg_mapping_iter *miter)
 790{
 791        WARN_ON(miter->consumed > miter->length);
 792
 793        /* drop resources from the last iteration */
 794        if (miter->addr) {
 795                miter->__offset += miter->consumed;
 796                miter->__remaining -= miter->consumed;
 797
 798                if ((miter->__flags & SG_MITER_TO_SG) &&
 799                    !PageSlab(miter->page))
 800                        flush_kernel_dcache_page(miter->page);
 801
 802                if (miter->__flags & SG_MITER_ATOMIC) {
 803                        WARN_ON_ONCE(preemptible());
 804                        kunmap_atomic(miter->addr);
 805                } else
 806                        kunmap(miter->page);
 807
 808                miter->page = NULL;
 809                miter->addr = NULL;
 810                miter->length = 0;
 811                miter->consumed = 0;
 812        }
 813}
 814EXPORT_SYMBOL(sg_miter_stop);
 815
 816/**
 817 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 818 * @sgl:                 The SG list
 819 * @nents:               Number of SG entries
 820 * @buf:                 Where to copy from
 821 * @buflen:              The number of bytes to copy
 822 * @skip:                Number of bytes to skip before copying
 823 * @to_buffer:           transfer direction (true == from an sg list to a
 824 *                       buffer, false == from a buffer to an sg list
 825 *
 826 * Returns the number of copied bytes.
 827 *
 828 **/
 829size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 830                      size_t buflen, off_t skip, bool to_buffer)
 831{
 832        unsigned int offset = 0;
 833        struct sg_mapping_iter miter;
 834        unsigned int sg_flags = SG_MITER_ATOMIC;
 835
 836        if (to_buffer)
 837                sg_flags |= SG_MITER_FROM_SG;
 838        else
 839                sg_flags |= SG_MITER_TO_SG;
 840
 841        sg_miter_start(&miter, sgl, nents, sg_flags);
 842
 843        if (!sg_miter_skip(&miter, skip))
 844                return false;
 845
 846        while ((offset < buflen) && sg_miter_next(&miter)) {
 847                unsigned int len;
 848
 849                len = min(miter.length, buflen - offset);
 850
 851                if (to_buffer)
 852                        memcpy(buf + offset, miter.addr, len);
 853                else
 854                        memcpy(miter.addr, buf + offset, len);
 855
 856                offset += len;
 857        }
 858
 859        sg_miter_stop(&miter);
 860
 861        return offset;
 862}
 863EXPORT_SYMBOL(sg_copy_buffer);
 864
 865/**
 866 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 867 * @sgl:                 The SG list
 868 * @nents:               Number of SG entries
 869 * @buf:                 Where to copy from
 870 * @buflen:              The number of bytes to copy
 871 *
 872 * Returns the number of copied bytes.
 873 *
 874 **/
 875size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 876                           const void *buf, size_t buflen)
 877{
 878        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 879}
 880EXPORT_SYMBOL(sg_copy_from_buffer);
 881
 882/**
 883 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 884 * @sgl:                 The SG list
 885 * @nents:               Number of SG entries
 886 * @buf:                 Where to copy to
 887 * @buflen:              The number of bytes to copy
 888 *
 889 * Returns the number of copied bytes.
 890 *
 891 **/
 892size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 893                         void *buf, size_t buflen)
 894{
 895        return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 896}
 897EXPORT_SYMBOL(sg_copy_to_buffer);
 898
 899/**
 900 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 901 * @sgl:                 The SG list
 902 * @nents:               Number of SG entries
 903 * @buf:                 Where to copy from
 904 * @buflen:              The number of bytes to copy
 905 * @skip:                Number of bytes to skip before copying
 906 *
 907 * Returns the number of copied bytes.
 908 *
 909 **/
 910size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 911                            const void *buf, size_t buflen, off_t skip)
 912{
 913        return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
 914}
 915EXPORT_SYMBOL(sg_pcopy_from_buffer);
 916
 917/**
 918 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
 919 * @sgl:                 The SG list
 920 * @nents:               Number of SG entries
 921 * @buf:                 Where to copy to
 922 * @buflen:              The number of bytes to copy
 923 * @skip:                Number of bytes to skip before copying
 924 *
 925 * Returns the number of copied bytes.
 926 *
 927 **/
 928size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 929                          void *buf, size_t buflen, off_t skip)
 930{
 931        return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
 932}
 933EXPORT_SYMBOL(sg_pcopy_to_buffer);
 934
 935/**
 936 * sg_zero_buffer - Zero-out a part of a SG list
 937 * @sgl:                 The SG list
 938 * @nents:               Number of SG entries
 939 * @buflen:              The number of bytes to zero out
 940 * @skip:                Number of bytes to skip before zeroing
 941 *
 942 * Returns the number of bytes zeroed.
 943 **/
 944size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
 945                       size_t buflen, off_t skip)
 946{
 947        unsigned int offset = 0;
 948        struct sg_mapping_iter miter;
 949        unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
 950
 951        sg_miter_start(&miter, sgl, nents, sg_flags);
 952
 953        if (!sg_miter_skip(&miter, skip))
 954                return false;
 955
 956        while (offset < buflen && sg_miter_next(&miter)) {
 957                unsigned int len;
 958
 959                len = min(miter.length, buflen - offset);
 960                memset(miter.addr, 0, len);
 961
 962                offset += len;
 963        }
 964
 965        sg_miter_stop(&miter);
 966        return offset;
 967}
 968EXPORT_SYMBOL(sg_zero_buffer);
 969