linux/mm/compaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31        count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36        count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
  52
  53static unsigned long release_freepages(struct list_head *freelist)
  54{
  55        struct page *page, *next;
  56        unsigned long high_pfn = 0;
  57
  58        list_for_each_entry_safe(page, next, freelist, lru) {
  59                unsigned long pfn = page_to_pfn(page);
  60                list_del(&page->lru);
  61                __free_page(page);
  62                if (pfn > high_pfn)
  63                        high_pfn = pfn;
  64        }
  65
  66        return high_pfn;
  67}
  68
  69static void split_map_pages(struct list_head *list)
  70{
  71        unsigned int i, order, nr_pages;
  72        struct page *page, *next;
  73        LIST_HEAD(tmp_list);
  74
  75        list_for_each_entry_safe(page, next, list, lru) {
  76                list_del(&page->lru);
  77
  78                order = page_private(page);
  79                nr_pages = 1 << order;
  80
  81                post_alloc_hook(page, order, __GFP_MOVABLE);
  82                if (order)
  83                        split_page(page, order);
  84
  85                for (i = 0; i < nr_pages; i++) {
  86                        list_add(&page->lru, &tmp_list);
  87                        page++;
  88                }
  89        }
  90
  91        list_splice(&tmp_list, list);
  92}
  93
  94#ifdef CONFIG_COMPACTION
  95
  96int PageMovable(struct page *page)
  97{
  98        struct address_space *mapping;
  99
 100        VM_BUG_ON_PAGE(!PageLocked(page), page);
 101        if (!__PageMovable(page))
 102                return 0;
 103
 104        mapping = page_mapping(page);
 105        if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 106                return 1;
 107
 108        return 0;
 109}
 110EXPORT_SYMBOL(PageMovable);
 111
 112void __SetPageMovable(struct page *page, struct address_space *mapping)
 113{
 114        VM_BUG_ON_PAGE(!PageLocked(page), page);
 115        VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 116        page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 117}
 118EXPORT_SYMBOL(__SetPageMovable);
 119
 120void __ClearPageMovable(struct page *page)
 121{
 122        VM_BUG_ON_PAGE(!PageLocked(page), page);
 123        VM_BUG_ON_PAGE(!PageMovable(page), page);
 124        /*
 125         * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 126         * flag so that VM can catch up released page by driver after isolation.
 127         * With it, VM migration doesn't try to put it back.
 128         */
 129        page->mapping = (void *)((unsigned long)page->mapping &
 130                                PAGE_MAPPING_MOVABLE);
 131}
 132EXPORT_SYMBOL(__ClearPageMovable);
 133
 134/* Do not skip compaction more than 64 times */
 135#define COMPACT_MAX_DEFER_SHIFT 6
 136
 137/*
 138 * Compaction is deferred when compaction fails to result in a page
 139 * allocation success. 1 << compact_defer_limit compactions are skipped up
 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 141 */
 142void defer_compaction(struct zone *zone, int order)
 143{
 144        zone->compact_considered = 0;
 145        zone->compact_defer_shift++;
 146
 147        if (order < zone->compact_order_failed)
 148                zone->compact_order_failed = order;
 149
 150        if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 151                zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 152
 153        trace_mm_compaction_defer_compaction(zone, order);
 154}
 155
 156/* Returns true if compaction should be skipped this time */
 157bool compaction_deferred(struct zone *zone, int order)
 158{
 159        unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 160
 161        if (order < zone->compact_order_failed)
 162                return false;
 163
 164        /* Avoid possible overflow */
 165        if (++zone->compact_considered > defer_limit)
 166                zone->compact_considered = defer_limit;
 167
 168        if (zone->compact_considered >= defer_limit)
 169                return false;
 170
 171        trace_mm_compaction_deferred(zone, order);
 172
 173        return true;
 174}
 175
 176/*
 177 * Update defer tracking counters after successful compaction of given order,
 178 * which means an allocation either succeeded (alloc_success == true) or is
 179 * expected to succeed.
 180 */
 181void compaction_defer_reset(struct zone *zone, int order,
 182                bool alloc_success)
 183{
 184        if (alloc_success) {
 185                zone->compact_considered = 0;
 186                zone->compact_defer_shift = 0;
 187        }
 188        if (order >= zone->compact_order_failed)
 189                zone->compact_order_failed = order + 1;
 190
 191        trace_mm_compaction_defer_reset(zone, order);
 192}
 193
 194/* Returns true if restarting compaction after many failures */
 195bool compaction_restarting(struct zone *zone, int order)
 196{
 197        if (order < zone->compact_order_failed)
 198                return false;
 199
 200        return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 201                zone->compact_considered >= 1UL << zone->compact_defer_shift;
 202}
 203
 204/* Returns true if the pageblock should be scanned for pages to isolate. */
 205static inline bool isolation_suitable(struct compact_control *cc,
 206                                        struct page *page)
 207{
 208        if (cc->ignore_skip_hint)
 209                return true;
 210
 211        return !get_pageblock_skip(page);
 212}
 213
 214static void reset_cached_positions(struct zone *zone)
 215{
 216        zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 217        zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 218        zone->compact_cached_free_pfn =
 219                                pageblock_start_pfn(zone_end_pfn(zone) - 1);
 220}
 221
 222/*
 223 * Compound pages of >= pageblock_order should consistenly be skipped until
 224 * released. It is always pointless to compact pages of such order (if they are
 225 * migratable), and the pageblocks they occupy cannot contain any free pages.
 226 */
 227static bool pageblock_skip_persistent(struct page *page)
 228{
 229        if (!PageCompound(page))
 230                return false;
 231
 232        page = compound_head(page);
 233
 234        if (compound_order(page) >= pageblock_order)
 235                return true;
 236
 237        return false;
 238}
 239
 240static bool
 241__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 242                                                        bool check_target)
 243{
 244        struct page *page = pfn_to_online_page(pfn);
 245        struct page *block_page;
 246        struct page *end_page;
 247        unsigned long block_pfn;
 248
 249        if (!page)
 250                return false;
 251        if (zone != page_zone(page))
 252                return false;
 253        if (pageblock_skip_persistent(page))
 254                return false;
 255
 256        /*
 257         * If skip is already cleared do no further checking once the
 258         * restart points have been set.
 259         */
 260        if (check_source && check_target && !get_pageblock_skip(page))
 261                return true;
 262
 263        /*
 264         * If clearing skip for the target scanner, do not select a
 265         * non-movable pageblock as the starting point.
 266         */
 267        if (!check_source && check_target &&
 268            get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 269                return false;
 270
 271        /* Ensure the start of the pageblock or zone is online and valid */
 272        block_pfn = pageblock_start_pfn(pfn);
 273        block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
 274        if (block_page) {
 275                page = block_page;
 276                pfn = block_pfn;
 277        }
 278
 279        /* Ensure the end of the pageblock or zone is online and valid */
 280        block_pfn += pageblock_nr_pages;
 281        block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 282        end_page = pfn_to_online_page(block_pfn);
 283        if (!end_page)
 284                return false;
 285
 286        /*
 287         * Only clear the hint if a sample indicates there is either a
 288         * free page or an LRU page in the block. One or other condition
 289         * is necessary for the block to be a migration source/target.
 290         */
 291        do {
 292                if (pfn_valid_within(pfn)) {
 293                        if (check_source && PageLRU(page)) {
 294                                clear_pageblock_skip(page);
 295                                return true;
 296                        }
 297
 298                        if (check_target && PageBuddy(page)) {
 299                                clear_pageblock_skip(page);
 300                                return true;
 301                        }
 302                }
 303
 304                page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 305                pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 306        } while (page < end_page);
 307
 308        return false;
 309}
 310
 311/*
 312 * This function is called to clear all cached information on pageblocks that
 313 * should be skipped for page isolation when the migrate and free page scanner
 314 * meet.
 315 */
 316static void __reset_isolation_suitable(struct zone *zone)
 317{
 318        unsigned long migrate_pfn = zone->zone_start_pfn;
 319        unsigned long free_pfn = zone_end_pfn(zone) - 1;
 320        unsigned long reset_migrate = free_pfn;
 321        unsigned long reset_free = migrate_pfn;
 322        bool source_set = false;
 323        bool free_set = false;
 324
 325        if (!zone->compact_blockskip_flush)
 326                return;
 327
 328        zone->compact_blockskip_flush = false;
 329
 330        /*
 331         * Walk the zone and update pageblock skip information. Source looks
 332         * for PageLRU while target looks for PageBuddy. When the scanner
 333         * is found, both PageBuddy and PageLRU are checked as the pageblock
 334         * is suitable as both source and target.
 335         */
 336        for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 337                                        free_pfn -= pageblock_nr_pages) {
 338                cond_resched();
 339
 340                /* Update the migrate PFN */
 341                if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 342                    migrate_pfn < reset_migrate) {
 343                        source_set = true;
 344                        reset_migrate = migrate_pfn;
 345                        zone->compact_init_migrate_pfn = reset_migrate;
 346                        zone->compact_cached_migrate_pfn[0] = reset_migrate;
 347                        zone->compact_cached_migrate_pfn[1] = reset_migrate;
 348                }
 349
 350                /* Update the free PFN */
 351                if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 352                    free_pfn > reset_free) {
 353                        free_set = true;
 354                        reset_free = free_pfn;
 355                        zone->compact_init_free_pfn = reset_free;
 356                        zone->compact_cached_free_pfn = reset_free;
 357                }
 358        }
 359
 360        /* Leave no distance if no suitable block was reset */
 361        if (reset_migrate >= reset_free) {
 362                zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 363                zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 364                zone->compact_cached_free_pfn = free_pfn;
 365        }
 366}
 367
 368void reset_isolation_suitable(pg_data_t *pgdat)
 369{
 370        int zoneid;
 371
 372        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 373                struct zone *zone = &pgdat->node_zones[zoneid];
 374                if (!populated_zone(zone))
 375                        continue;
 376
 377                /* Only flush if a full compaction finished recently */
 378                if (zone->compact_blockskip_flush)
 379                        __reset_isolation_suitable(zone);
 380        }
 381}
 382
 383/*
 384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 385 * locks are not required for read/writers. Returns true if it was already set.
 386 */
 387static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 388                                                        unsigned long pfn)
 389{
 390        bool skip;
 391
 392        /* Do no update if skip hint is being ignored */
 393        if (cc->ignore_skip_hint)
 394                return false;
 395
 396        if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 397                return false;
 398
 399        skip = get_pageblock_skip(page);
 400        if (!skip && !cc->no_set_skip_hint)
 401                set_pageblock_skip(page);
 402
 403        return skip;
 404}
 405
 406static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 407{
 408        struct zone *zone = cc->zone;
 409
 410        pfn = pageblock_end_pfn(pfn);
 411
 412        /* Set for isolation rather than compaction */
 413        if (cc->no_set_skip_hint)
 414                return;
 415
 416        if (pfn > zone->compact_cached_migrate_pfn[0])
 417                zone->compact_cached_migrate_pfn[0] = pfn;
 418        if (cc->mode != MIGRATE_ASYNC &&
 419            pfn > zone->compact_cached_migrate_pfn[1])
 420                zone->compact_cached_migrate_pfn[1] = pfn;
 421}
 422
 423/*
 424 * If no pages were isolated then mark this pageblock to be skipped in the
 425 * future. The information is later cleared by __reset_isolation_suitable().
 426 */
 427static void update_pageblock_skip(struct compact_control *cc,
 428                        struct page *page, unsigned long pfn)
 429{
 430        struct zone *zone = cc->zone;
 431
 432        if (cc->no_set_skip_hint)
 433                return;
 434
 435        if (!page)
 436                return;
 437
 438        set_pageblock_skip(page);
 439
 440        /* Update where async and sync compaction should restart */
 441        if (pfn < zone->compact_cached_free_pfn)
 442                zone->compact_cached_free_pfn = pfn;
 443}
 444#else
 445static inline bool isolation_suitable(struct compact_control *cc,
 446                                        struct page *page)
 447{
 448        return true;
 449}
 450
 451static inline bool pageblock_skip_persistent(struct page *page)
 452{
 453        return false;
 454}
 455
 456static inline void update_pageblock_skip(struct compact_control *cc,
 457                        struct page *page, unsigned long pfn)
 458{
 459}
 460
 461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 462{
 463}
 464
 465static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 466                                                        unsigned long pfn)
 467{
 468        return false;
 469}
 470#endif /* CONFIG_COMPACTION */
 471
 472/*
 473 * Compaction requires the taking of some coarse locks that are potentially
 474 * very heavily contended. For async compaction, trylock and record if the
 475 * lock is contended. The lock will still be acquired but compaction will
 476 * abort when the current block is finished regardless of success rate.
 477 * Sync compaction acquires the lock.
 478 *
 479 * Always returns true which makes it easier to track lock state in callers.
 480 */
 481static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 482                                                struct compact_control *cc)
 483{
 484        /* Track if the lock is contended in async mode */
 485        if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 486                if (spin_trylock_irqsave(lock, *flags))
 487                        return true;
 488
 489                cc->contended = true;
 490        }
 491
 492        spin_lock_irqsave(lock, *flags);
 493        return true;
 494}
 495
 496/*
 497 * Compaction requires the taking of some coarse locks that are potentially
 498 * very heavily contended. The lock should be periodically unlocked to avoid
 499 * having disabled IRQs for a long time, even when there is nobody waiting on
 500 * the lock. It might also be that allowing the IRQs will result in
 501 * need_resched() becoming true. If scheduling is needed, async compaction
 502 * aborts. Sync compaction schedules.
 503 * Either compaction type will also abort if a fatal signal is pending.
 504 * In either case if the lock was locked, it is dropped and not regained.
 505 *
 506 * Returns true if compaction should abort due to fatal signal pending, or
 507 *              async compaction due to need_resched()
 508 * Returns false when compaction can continue (sync compaction might have
 509 *              scheduled)
 510 */
 511static bool compact_unlock_should_abort(spinlock_t *lock,
 512                unsigned long flags, bool *locked, struct compact_control *cc)
 513{
 514        if (*locked) {
 515                spin_unlock_irqrestore(lock, flags);
 516                *locked = false;
 517        }
 518
 519        if (fatal_signal_pending(current)) {
 520                cc->contended = true;
 521                return true;
 522        }
 523
 524        cond_resched();
 525
 526        return false;
 527}
 528
 529/*
 530 * Isolate free pages onto a private freelist. If @strict is true, will abort
 531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 532 * (even though it may still end up isolating some pages).
 533 */
 534static unsigned long isolate_freepages_block(struct compact_control *cc,
 535                                unsigned long *start_pfn,
 536                                unsigned long end_pfn,
 537                                struct list_head *freelist,
 538                                unsigned int stride,
 539                                bool strict)
 540{
 541        int nr_scanned = 0, total_isolated = 0;
 542        struct page *cursor;
 543        unsigned long flags = 0;
 544        bool locked = false;
 545        unsigned long blockpfn = *start_pfn;
 546        unsigned int order;
 547
 548        /* Strict mode is for isolation, speed is secondary */
 549        if (strict)
 550                stride = 1;
 551
 552        cursor = pfn_to_page(blockpfn);
 553
 554        /* Isolate free pages. */
 555        for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 556                int isolated;
 557                struct page *page = cursor;
 558
 559                /*
 560                 * Periodically drop the lock (if held) regardless of its
 561                 * contention, to give chance to IRQs. Abort if fatal signal
 562                 * pending or async compaction detects need_resched()
 563                 */
 564                if (!(blockpfn % SWAP_CLUSTER_MAX)
 565                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 566                                                                &locked, cc))
 567                        break;
 568
 569                nr_scanned++;
 570                if (!pfn_valid_within(blockpfn))
 571                        goto isolate_fail;
 572
 573                /*
 574                 * For compound pages such as THP and hugetlbfs, we can save
 575                 * potentially a lot of iterations if we skip them at once.
 576                 * The check is racy, but we can consider only valid values
 577                 * and the only danger is skipping too much.
 578                 */
 579                if (PageCompound(page)) {
 580                        const unsigned int order = compound_order(page);
 581
 582                        if (likely(order < MAX_ORDER)) {
 583                                blockpfn += (1UL << order) - 1;
 584                                cursor += (1UL << order) - 1;
 585                        }
 586                        goto isolate_fail;
 587                }
 588
 589                if (!PageBuddy(page))
 590                        goto isolate_fail;
 591
 592                /*
 593                 * If we already hold the lock, we can skip some rechecking.
 594                 * Note that if we hold the lock now, checked_pageblock was
 595                 * already set in some previous iteration (or strict is true),
 596                 * so it is correct to skip the suitable migration target
 597                 * recheck as well.
 598                 */
 599                if (!locked) {
 600                        locked = compact_lock_irqsave(&cc->zone->lock,
 601                                                                &flags, cc);
 602
 603                        /* Recheck this is a buddy page under lock */
 604                        if (!PageBuddy(page))
 605                                goto isolate_fail;
 606                }
 607
 608                /* Found a free page, will break it into order-0 pages */
 609                order = page_order(page);
 610                isolated = __isolate_free_page(page, order);
 611                if (!isolated)
 612                        break;
 613                set_page_private(page, order);
 614
 615                total_isolated += isolated;
 616                cc->nr_freepages += isolated;
 617                list_add_tail(&page->lru, freelist);
 618
 619                if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 620                        blockpfn += isolated;
 621                        break;
 622                }
 623                /* Advance to the end of split page */
 624                blockpfn += isolated - 1;
 625                cursor += isolated - 1;
 626                continue;
 627
 628isolate_fail:
 629                if (strict)
 630                        break;
 631                else
 632                        continue;
 633
 634        }
 635
 636        if (locked)
 637                spin_unlock_irqrestore(&cc->zone->lock, flags);
 638
 639        /*
 640         * There is a tiny chance that we have read bogus compound_order(),
 641         * so be careful to not go outside of the pageblock.
 642         */
 643        if (unlikely(blockpfn > end_pfn))
 644                blockpfn = end_pfn;
 645
 646        trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 647                                        nr_scanned, total_isolated);
 648
 649        /* Record how far we have got within the block */
 650        *start_pfn = blockpfn;
 651
 652        /*
 653         * If strict isolation is requested by CMA then check that all the
 654         * pages requested were isolated. If there were any failures, 0 is
 655         * returned and CMA will fail.
 656         */
 657        if (strict && blockpfn < end_pfn)
 658                total_isolated = 0;
 659
 660        cc->total_free_scanned += nr_scanned;
 661        if (total_isolated)
 662                count_compact_events(COMPACTISOLATED, total_isolated);
 663        return total_isolated;
 664}
 665
 666/**
 667 * isolate_freepages_range() - isolate free pages.
 668 * @cc:        Compaction control structure.
 669 * @start_pfn: The first PFN to start isolating.
 670 * @end_pfn:   The one-past-last PFN.
 671 *
 672 * Non-free pages, invalid PFNs, or zone boundaries within the
 673 * [start_pfn, end_pfn) range are considered errors, cause function to
 674 * undo its actions and return zero.
 675 *
 676 * Otherwise, function returns one-past-the-last PFN of isolated page
 677 * (which may be greater then end_pfn if end fell in a middle of
 678 * a free page).
 679 */
 680unsigned long
 681isolate_freepages_range(struct compact_control *cc,
 682                        unsigned long start_pfn, unsigned long end_pfn)
 683{
 684        unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 685        LIST_HEAD(freelist);
 686
 687        pfn = start_pfn;
 688        block_start_pfn = pageblock_start_pfn(pfn);
 689        if (block_start_pfn < cc->zone->zone_start_pfn)
 690                block_start_pfn = cc->zone->zone_start_pfn;
 691        block_end_pfn = pageblock_end_pfn(pfn);
 692
 693        for (; pfn < end_pfn; pfn += isolated,
 694                                block_start_pfn = block_end_pfn,
 695                                block_end_pfn += pageblock_nr_pages) {
 696                /* Protect pfn from changing by isolate_freepages_block */
 697                unsigned long isolate_start_pfn = pfn;
 698
 699                block_end_pfn = min(block_end_pfn, end_pfn);
 700
 701                /*
 702                 * pfn could pass the block_end_pfn if isolated freepage
 703                 * is more than pageblock order. In this case, we adjust
 704                 * scanning range to right one.
 705                 */
 706                if (pfn >= block_end_pfn) {
 707                        block_start_pfn = pageblock_start_pfn(pfn);
 708                        block_end_pfn = pageblock_end_pfn(pfn);
 709                        block_end_pfn = min(block_end_pfn, end_pfn);
 710                }
 711
 712                if (!pageblock_pfn_to_page(block_start_pfn,
 713                                        block_end_pfn, cc->zone))
 714                        break;
 715
 716                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 717                                        block_end_pfn, &freelist, 0, true);
 718
 719                /*
 720                 * In strict mode, isolate_freepages_block() returns 0 if
 721                 * there are any holes in the block (ie. invalid PFNs or
 722                 * non-free pages).
 723                 */
 724                if (!isolated)
 725                        break;
 726
 727                /*
 728                 * If we managed to isolate pages, it is always (1 << n) *
 729                 * pageblock_nr_pages for some non-negative n.  (Max order
 730                 * page may span two pageblocks).
 731                 */
 732        }
 733
 734        /* __isolate_free_page() does not map the pages */
 735        split_map_pages(&freelist);
 736
 737        if (pfn < end_pfn) {
 738                /* Loop terminated early, cleanup. */
 739                release_freepages(&freelist);
 740                return 0;
 741        }
 742
 743        /* We don't use freelists for anything. */
 744        return pfn;
 745}
 746
 747/* Similar to reclaim, but different enough that they don't share logic */
 748static bool too_many_isolated(pg_data_t *pgdat)
 749{
 750        unsigned long active, inactive, isolated;
 751
 752        inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 753                        node_page_state(pgdat, NR_INACTIVE_ANON);
 754        active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 755                        node_page_state(pgdat, NR_ACTIVE_ANON);
 756        isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 757                        node_page_state(pgdat, NR_ISOLATED_ANON);
 758
 759        return isolated > (inactive + active) / 2;
 760}
 761
 762/**
 763 * isolate_migratepages_block() - isolate all migrate-able pages within
 764 *                                a single pageblock
 765 * @cc:         Compaction control structure.
 766 * @low_pfn:    The first PFN to isolate
 767 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 768 * @isolate_mode: Isolation mode to be used.
 769 *
 770 * Isolate all pages that can be migrated from the range specified by
 771 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 772 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 773 * first page that was not scanned (which may be both less, equal to or more
 774 * than end_pfn).
 775 *
 776 * The pages are isolated on cc->migratepages list (not required to be empty),
 777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 778 * is neither read nor updated.
 779 */
 780static unsigned long
 781isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 782                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 783{
 784        pg_data_t *pgdat = cc->zone->zone_pgdat;
 785        unsigned long nr_scanned = 0, nr_isolated = 0;
 786        struct lruvec *lruvec;
 787        unsigned long flags = 0;
 788        bool locked = false;
 789        struct page *page = NULL, *valid_page = NULL;
 790        unsigned long start_pfn = low_pfn;
 791        bool skip_on_failure = false;
 792        unsigned long next_skip_pfn = 0;
 793        bool skip_updated = false;
 794
 795        /*
 796         * Ensure that there are not too many pages isolated from the LRU
 797         * list by either parallel reclaimers or compaction. If there are,
 798         * delay for some time until fewer pages are isolated
 799         */
 800        while (unlikely(too_many_isolated(pgdat))) {
 801                /* async migration should just abort */
 802                if (cc->mode == MIGRATE_ASYNC)
 803                        return 0;
 804
 805                congestion_wait(BLK_RW_ASYNC, HZ/10);
 806
 807                if (fatal_signal_pending(current))
 808                        return 0;
 809        }
 810
 811        cond_resched();
 812
 813        if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 814                skip_on_failure = true;
 815                next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 816        }
 817
 818        /* Time to isolate some pages for migration */
 819        for (; low_pfn < end_pfn; low_pfn++) {
 820
 821                if (skip_on_failure && low_pfn >= next_skip_pfn) {
 822                        /*
 823                         * We have isolated all migration candidates in the
 824                         * previous order-aligned block, and did not skip it due
 825                         * to failure. We should migrate the pages now and
 826                         * hopefully succeed compaction.
 827                         */
 828                        if (nr_isolated)
 829                                break;
 830
 831                        /*
 832                         * We failed to isolate in the previous order-aligned
 833                         * block. Set the new boundary to the end of the
 834                         * current block. Note we can't simply increase
 835                         * next_skip_pfn by 1 << order, as low_pfn might have
 836                         * been incremented by a higher number due to skipping
 837                         * a compound or a high-order buddy page in the
 838                         * previous loop iteration.
 839                         */
 840                        next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 841                }
 842
 843                /*
 844                 * Periodically drop the lock (if held) regardless of its
 845                 * contention, to give chance to IRQs. Abort async compaction
 846                 * if contended.
 847                 */
 848                if (!(low_pfn % SWAP_CLUSTER_MAX)
 849                    && compact_unlock_should_abort(&pgdat->lru_lock,
 850                                            flags, &locked, cc))
 851                        break;
 852
 853                if (!pfn_valid_within(low_pfn))
 854                        goto isolate_fail;
 855                nr_scanned++;
 856
 857                page = pfn_to_page(low_pfn);
 858
 859                /*
 860                 * Check if the pageblock has already been marked skipped.
 861                 * Only the aligned PFN is checked as the caller isolates
 862                 * COMPACT_CLUSTER_MAX at a time so the second call must
 863                 * not falsely conclude that the block should be skipped.
 864                 */
 865                if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 866                        if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 867                                low_pfn = end_pfn;
 868                                goto isolate_abort;
 869                        }
 870                        valid_page = page;
 871                }
 872
 873                /*
 874                 * Skip if free. We read page order here without zone lock
 875                 * which is generally unsafe, but the race window is small and
 876                 * the worst thing that can happen is that we skip some
 877                 * potential isolation targets.
 878                 */
 879                if (PageBuddy(page)) {
 880                        unsigned long freepage_order = page_order_unsafe(page);
 881
 882                        /*
 883                         * Without lock, we cannot be sure that what we got is
 884                         * a valid page order. Consider only values in the
 885                         * valid order range to prevent low_pfn overflow.
 886                         */
 887                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 888                                low_pfn += (1UL << freepage_order) - 1;
 889                        continue;
 890                }
 891
 892                /*
 893                 * Regardless of being on LRU, compound pages such as THP and
 894                 * hugetlbfs are not to be compacted. We can potentially save
 895                 * a lot of iterations if we skip them at once. The check is
 896                 * racy, but we can consider only valid values and the only
 897                 * danger is skipping too much.
 898                 */
 899                if (PageCompound(page)) {
 900                        const unsigned int order = compound_order(page);
 901
 902                        if (likely(order < MAX_ORDER))
 903                                low_pfn += (1UL << order) - 1;
 904                        goto isolate_fail;
 905                }
 906
 907                /*
 908                 * Check may be lockless but that's ok as we recheck later.
 909                 * It's possible to migrate LRU and non-lru movable pages.
 910                 * Skip any other type of page
 911                 */
 912                if (!PageLRU(page)) {
 913                        /*
 914                         * __PageMovable can return false positive so we need
 915                         * to verify it under page_lock.
 916                         */
 917                        if (unlikely(__PageMovable(page)) &&
 918                                        !PageIsolated(page)) {
 919                                if (locked) {
 920                                        spin_unlock_irqrestore(&pgdat->lru_lock,
 921                                                                        flags);
 922                                        locked = false;
 923                                }
 924
 925                                if (!isolate_movable_page(page, isolate_mode))
 926                                        goto isolate_success;
 927                        }
 928
 929                        goto isolate_fail;
 930                }
 931
 932                /*
 933                 * Migration will fail if an anonymous page is pinned in memory,
 934                 * so avoid taking lru_lock and isolating it unnecessarily in an
 935                 * admittedly racy check.
 936                 */
 937                if (!page_mapping(page) &&
 938                    page_count(page) > page_mapcount(page))
 939                        goto isolate_fail;
 940
 941                /*
 942                 * Only allow to migrate anonymous pages in GFP_NOFS context
 943                 * because those do not depend on fs locks.
 944                 */
 945                if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 946                        goto isolate_fail;
 947
 948                /* If we already hold the lock, we can skip some rechecking */
 949                if (!locked) {
 950                        locked = compact_lock_irqsave(&pgdat->lru_lock,
 951                                                                &flags, cc);
 952
 953                        /* Try get exclusive access under lock */
 954                        if (!skip_updated) {
 955                                skip_updated = true;
 956                                if (test_and_set_skip(cc, page, low_pfn))
 957                                        goto isolate_abort;
 958                        }
 959
 960                        /* Recheck PageLRU and PageCompound under lock */
 961                        if (!PageLRU(page))
 962                                goto isolate_fail;
 963
 964                        /*
 965                         * Page become compound since the non-locked check,
 966                         * and it's on LRU. It can only be a THP so the order
 967                         * is safe to read and it's 0 for tail pages.
 968                         */
 969                        if (unlikely(PageCompound(page))) {
 970                                low_pfn += (1UL << compound_order(page)) - 1;
 971                                goto isolate_fail;
 972                        }
 973                }
 974
 975                lruvec = mem_cgroup_page_lruvec(page, pgdat);
 976
 977                /* Try isolate the page */
 978                if (__isolate_lru_page(page, isolate_mode) != 0)
 979                        goto isolate_fail;
 980
 981                VM_BUG_ON_PAGE(PageCompound(page), page);
 982
 983                /* Successfully isolated */
 984                del_page_from_lru_list(page, lruvec, page_lru(page));
 985                inc_node_page_state(page,
 986                                NR_ISOLATED_ANON + page_is_file_cache(page));
 987
 988isolate_success:
 989                list_add(&page->lru, &cc->migratepages);
 990                cc->nr_migratepages++;
 991                nr_isolated++;
 992
 993                /*
 994                 * Avoid isolating too much unless this block is being
 995                 * rescanned (e.g. dirty/writeback pages, parallel allocation)
 996                 * or a lock is contended. For contention, isolate quickly to
 997                 * potentially remove one source of contention.
 998                 */
 999                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000                    !cc->rescan && !cc->contended) {
1001                        ++low_pfn;
1002                        break;
1003                }
1004
1005                continue;
1006isolate_fail:
1007                if (!skip_on_failure)
1008                        continue;
1009
1010                /*
1011                 * We have isolated some pages, but then failed. Release them
1012                 * instead of migrating, as we cannot form the cc->order buddy
1013                 * page anyway.
1014                 */
1015                if (nr_isolated) {
1016                        if (locked) {
1017                                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018                                locked = false;
1019                        }
1020                        putback_movable_pages(&cc->migratepages);
1021                        cc->nr_migratepages = 0;
1022                        nr_isolated = 0;
1023                }
1024
1025                if (low_pfn < next_skip_pfn) {
1026                        low_pfn = next_skip_pfn - 1;
1027                        /*
1028                         * The check near the loop beginning would have updated
1029                         * next_skip_pfn too, but this is a bit simpler.
1030                         */
1031                        next_skip_pfn += 1UL << cc->order;
1032                }
1033        }
1034
1035        /*
1036         * The PageBuddy() check could have potentially brought us outside
1037         * the range to be scanned.
1038         */
1039        if (unlikely(low_pfn > end_pfn))
1040                low_pfn = end_pfn;
1041
1042isolate_abort:
1043        if (locked)
1044                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046        /*
1047         * Updated the cached scanner pfn once the pageblock has been scanned
1048         * Pages will either be migrated in which case there is no point
1049         * scanning in the near future or migration failed in which case the
1050         * failure reason may persist. The block is marked for skipping if
1051         * there were no pages isolated in the block or if the block is
1052         * rescanned twice in a row.
1053         */
1054        if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055                if (valid_page && !skip_updated)
1056                        set_pageblock_skip(valid_page);
1057                update_cached_migrate(cc, low_pfn);
1058        }
1059
1060        trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061                                                nr_scanned, nr_isolated);
1062
1063        cc->total_migrate_scanned += nr_scanned;
1064        if (nr_isolated)
1065                count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067        return low_pfn;
1068}
1069
1070/**
1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072 * @cc:        Compaction control structure.
1073 * @start_pfn: The first PFN to start isolating.
1074 * @end_pfn:   The one-past-last PFN.
1075 *
1076 * Returns zero if isolation fails fatally due to e.g. pending signal.
1077 * Otherwise, function returns one-past-the-last PFN of isolated page
1078 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079 */
1080unsigned long
1081isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082                                                        unsigned long end_pfn)
1083{
1084        unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086        /* Scan block by block. First and last block may be incomplete */
1087        pfn = start_pfn;
1088        block_start_pfn = pageblock_start_pfn(pfn);
1089        if (block_start_pfn < cc->zone->zone_start_pfn)
1090                block_start_pfn = cc->zone->zone_start_pfn;
1091        block_end_pfn = pageblock_end_pfn(pfn);
1092
1093        for (; pfn < end_pfn; pfn = block_end_pfn,
1094                                block_start_pfn = block_end_pfn,
1095                                block_end_pfn += pageblock_nr_pages) {
1096
1097                block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099                if (!pageblock_pfn_to_page(block_start_pfn,
1100                                        block_end_pfn, cc->zone))
1101                        continue;
1102
1103                pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104                                                        ISOLATE_UNEVICTABLE);
1105
1106                if (!pfn)
1107                        break;
1108
1109                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110                        break;
1111        }
1112
1113        return pfn;
1114}
1115
1116#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117#ifdef CONFIG_COMPACTION
1118
1119static bool suitable_migration_source(struct compact_control *cc,
1120                                                        struct page *page)
1121{
1122        int block_mt;
1123
1124        if (pageblock_skip_persistent(page))
1125                return false;
1126
1127        if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128                return true;
1129
1130        block_mt = get_pageblock_migratetype(page);
1131
1132        if (cc->migratetype == MIGRATE_MOVABLE)
1133                return is_migrate_movable(block_mt);
1134        else
1135                return block_mt == cc->migratetype;
1136}
1137
1138/* Returns true if the page is within a block suitable for migration to */
1139static bool suitable_migration_target(struct compact_control *cc,
1140                                                        struct page *page)
1141{
1142        /* If the page is a large free page, then disallow migration */
1143        if (PageBuddy(page)) {
1144                /*
1145                 * We are checking page_order without zone->lock taken. But
1146                 * the only small danger is that we skip a potentially suitable
1147                 * pageblock, so it's not worth to check order for valid range.
1148                 */
1149                if (page_order_unsafe(page) >= pageblock_order)
1150                        return false;
1151        }
1152
1153        if (cc->ignore_block_suitable)
1154                return true;
1155
1156        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157        if (is_migrate_movable(get_pageblock_migratetype(page)))
1158                return true;
1159
1160        /* Otherwise skip the block */
1161        return false;
1162}
1163
1164static inline unsigned int
1165freelist_scan_limit(struct compact_control *cc)
1166{
1167        unsigned short shift = BITS_PER_LONG - 1;
1168
1169        return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1170}
1171
1172/*
1173 * Test whether the free scanner has reached the same or lower pageblock than
1174 * the migration scanner, and compaction should thus terminate.
1175 */
1176static inline bool compact_scanners_met(struct compact_control *cc)
1177{
1178        return (cc->free_pfn >> pageblock_order)
1179                <= (cc->migrate_pfn >> pageblock_order);
1180}
1181
1182/*
1183 * Used when scanning for a suitable migration target which scans freelists
1184 * in reverse. Reorders the list such as the unscanned pages are scanned
1185 * first on the next iteration of the free scanner
1186 */
1187static void
1188move_freelist_head(struct list_head *freelist, struct page *freepage)
1189{
1190        LIST_HEAD(sublist);
1191
1192        if (!list_is_last(freelist, &freepage->lru)) {
1193                list_cut_before(&sublist, freelist, &freepage->lru);
1194                if (!list_empty(&sublist))
1195                        list_splice_tail(&sublist, freelist);
1196        }
1197}
1198
1199/*
1200 * Similar to move_freelist_head except used by the migration scanner
1201 * when scanning forward. It's possible for these list operations to
1202 * move against each other if they search the free list exactly in
1203 * lockstep.
1204 */
1205static void
1206move_freelist_tail(struct list_head *freelist, struct page *freepage)
1207{
1208        LIST_HEAD(sublist);
1209
1210        if (!list_is_first(freelist, &freepage->lru)) {
1211                list_cut_position(&sublist, freelist, &freepage->lru);
1212                if (!list_empty(&sublist))
1213                        list_splice_tail(&sublist, freelist);
1214        }
1215}
1216
1217static void
1218fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1219{
1220        unsigned long start_pfn, end_pfn;
1221        struct page *page = pfn_to_page(pfn);
1222
1223        /* Do not search around if there are enough pages already */
1224        if (cc->nr_freepages >= cc->nr_migratepages)
1225                return;
1226
1227        /* Minimise scanning during async compaction */
1228        if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1229                return;
1230
1231        /* Pageblock boundaries */
1232        start_pfn = pageblock_start_pfn(pfn);
1233        end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1234
1235        /* Scan before */
1236        if (start_pfn != pfn) {
1237                isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1238                if (cc->nr_freepages >= cc->nr_migratepages)
1239                        return;
1240        }
1241
1242        /* Scan after */
1243        start_pfn = pfn + nr_isolated;
1244        if (start_pfn < end_pfn)
1245                isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1246
1247        /* Skip this pageblock in the future as it's full or nearly full */
1248        if (cc->nr_freepages < cc->nr_migratepages)
1249                set_pageblock_skip(page);
1250}
1251
1252/* Search orders in round-robin fashion */
1253static int next_search_order(struct compact_control *cc, int order)
1254{
1255        order--;
1256        if (order < 0)
1257                order = cc->order - 1;
1258
1259        /* Search wrapped around? */
1260        if (order == cc->search_order) {
1261                cc->search_order--;
1262                if (cc->search_order < 0)
1263                        cc->search_order = cc->order - 1;
1264                return -1;
1265        }
1266
1267        return order;
1268}
1269
1270static unsigned long
1271fast_isolate_freepages(struct compact_control *cc)
1272{
1273        unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1274        unsigned int nr_scanned = 0;
1275        unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1276        unsigned long nr_isolated = 0;
1277        unsigned long distance;
1278        struct page *page = NULL;
1279        bool scan_start = false;
1280        int order;
1281
1282        /* Full compaction passes in a negative order */
1283        if (cc->order <= 0)
1284                return cc->free_pfn;
1285
1286        /*
1287         * If starting the scan, use a deeper search and use the highest
1288         * PFN found if a suitable one is not found.
1289         */
1290        if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1291                limit = pageblock_nr_pages >> 1;
1292                scan_start = true;
1293        }
1294
1295        /*
1296         * Preferred point is in the top quarter of the scan space but take
1297         * a pfn from the top half if the search is problematic.
1298         */
1299        distance = (cc->free_pfn - cc->migrate_pfn);
1300        low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1301        min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1302
1303        if (WARN_ON_ONCE(min_pfn > low_pfn))
1304                low_pfn = min_pfn;
1305
1306        /*
1307         * Search starts from the last successful isolation order or the next
1308         * order to search after a previous failure
1309         */
1310        cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1311
1312        for (order = cc->search_order;
1313             !page && order >= 0;
1314             order = next_search_order(cc, order)) {
1315                struct free_area *area = &cc->zone->free_area[order];
1316                struct list_head *freelist;
1317                struct page *freepage;
1318                unsigned long flags;
1319                unsigned int order_scanned = 0;
1320
1321                if (!area->nr_free)
1322                        continue;
1323
1324                spin_lock_irqsave(&cc->zone->lock, flags);
1325                freelist = &area->free_list[MIGRATE_MOVABLE];
1326                list_for_each_entry_reverse(freepage, freelist, lru) {
1327                        unsigned long pfn;
1328
1329                        order_scanned++;
1330                        nr_scanned++;
1331                        pfn = page_to_pfn(freepage);
1332
1333                        if (pfn >= highest)
1334                                highest = pageblock_start_pfn(pfn);
1335
1336                        if (pfn >= low_pfn) {
1337                                cc->fast_search_fail = 0;
1338                                cc->search_order = order;
1339                                page = freepage;
1340                                break;
1341                        }
1342
1343                        if (pfn >= min_pfn && pfn > high_pfn) {
1344                                high_pfn = pfn;
1345
1346                                /* Shorten the scan if a candidate is found */
1347                                limit >>= 1;
1348                        }
1349
1350                        if (order_scanned >= limit)
1351                                break;
1352                }
1353
1354                /* Use a minimum pfn if a preferred one was not found */
1355                if (!page && high_pfn) {
1356                        page = pfn_to_page(high_pfn);
1357
1358                        /* Update freepage for the list reorder below */
1359                        freepage = page;
1360                }
1361
1362                /* Reorder to so a future search skips recent pages */
1363                move_freelist_head(freelist, freepage);
1364
1365                /* Isolate the page if available */
1366                if (page) {
1367                        if (__isolate_free_page(page, order)) {
1368                                set_page_private(page, order);
1369                                nr_isolated = 1 << order;
1370                                cc->nr_freepages += nr_isolated;
1371                                list_add_tail(&page->lru, &cc->freepages);
1372                                count_compact_events(COMPACTISOLATED, nr_isolated);
1373                        } else {
1374                                /* If isolation fails, abort the search */
1375                                order = cc->search_order + 1;
1376                                page = NULL;
1377                        }
1378                }
1379
1380                spin_unlock_irqrestore(&cc->zone->lock, flags);
1381
1382                /*
1383                 * Smaller scan on next order so the total scan ig related
1384                 * to freelist_scan_limit.
1385                 */
1386                if (order_scanned >= limit)
1387                        limit = min(1U, limit >> 1);
1388        }
1389
1390        if (!page) {
1391                cc->fast_search_fail++;
1392                if (scan_start) {
1393                        /*
1394                         * Use the highest PFN found above min. If one was
1395                         * not found, be pessemistic for direct compaction
1396                         * and use the min mark.
1397                         */
1398                        if (highest) {
1399                                page = pfn_to_page(highest);
1400                                cc->free_pfn = highest;
1401                        } else {
1402                                if (cc->direct_compaction && pfn_valid(min_pfn)) {
1403                                        page = pfn_to_page(min_pfn);
1404                                        cc->free_pfn = min_pfn;
1405                                }
1406                        }
1407                }
1408        }
1409
1410        if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1411                highest -= pageblock_nr_pages;
1412                cc->zone->compact_cached_free_pfn = highest;
1413        }
1414
1415        cc->total_free_scanned += nr_scanned;
1416        if (!page)
1417                return cc->free_pfn;
1418
1419        low_pfn = page_to_pfn(page);
1420        fast_isolate_around(cc, low_pfn, nr_isolated);
1421        return low_pfn;
1422}
1423
1424/*
1425 * Based on information in the current compact_control, find blocks
1426 * suitable for isolating free pages from and then isolate them.
1427 */
1428static void isolate_freepages(struct compact_control *cc)
1429{
1430        struct zone *zone = cc->zone;
1431        struct page *page;
1432        unsigned long block_start_pfn;  /* start of current pageblock */
1433        unsigned long isolate_start_pfn; /* exact pfn we start at */
1434        unsigned long block_end_pfn;    /* end of current pageblock */
1435        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1436        struct list_head *freelist = &cc->freepages;
1437        unsigned int stride;
1438
1439        /* Try a small search of the free lists for a candidate */
1440        isolate_start_pfn = fast_isolate_freepages(cc);
1441        if (cc->nr_freepages)
1442                goto splitmap;
1443
1444        /*
1445         * Initialise the free scanner. The starting point is where we last
1446         * successfully isolated from, zone-cached value, or the end of the
1447         * zone when isolating for the first time. For looping we also need
1448         * this pfn aligned down to the pageblock boundary, because we do
1449         * block_start_pfn -= pageblock_nr_pages in the for loop.
1450         * For ending point, take care when isolating in last pageblock of a
1451         * a zone which ends in the middle of a pageblock.
1452         * The low boundary is the end of the pageblock the migration scanner
1453         * is using.
1454         */
1455        isolate_start_pfn = cc->free_pfn;
1456        block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1457        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1458                                                zone_end_pfn(zone));
1459        low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1460        stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1461
1462        /*
1463         * Isolate free pages until enough are available to migrate the
1464         * pages on cc->migratepages. We stop searching if the migrate
1465         * and free page scanners meet or enough free pages are isolated.
1466         */
1467        for (; block_start_pfn >= low_pfn;
1468                                block_end_pfn = block_start_pfn,
1469                                block_start_pfn -= pageblock_nr_pages,
1470                                isolate_start_pfn = block_start_pfn) {
1471                unsigned long nr_isolated;
1472
1473                /*
1474                 * This can iterate a massively long zone without finding any
1475                 * suitable migration targets, so periodically check resched.
1476                 */
1477                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1478                        cond_resched();
1479
1480                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1481                                                                        zone);
1482                if (!page)
1483                        continue;
1484
1485                /* Check the block is suitable for migration */
1486                if (!suitable_migration_target(cc, page))
1487                        continue;
1488
1489                /* If isolation recently failed, do not retry */
1490                if (!isolation_suitable(cc, page))
1491                        continue;
1492
1493                /* Found a block suitable for isolating free pages from. */
1494                nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1495                                        block_end_pfn, freelist, stride, false);
1496
1497                /* Update the skip hint if the full pageblock was scanned */
1498                if (isolate_start_pfn == block_end_pfn)
1499                        update_pageblock_skip(cc, page, block_start_pfn);
1500
1501                /* Are enough freepages isolated? */
1502                if (cc->nr_freepages >= cc->nr_migratepages) {
1503                        if (isolate_start_pfn >= block_end_pfn) {
1504                                /*
1505                                 * Restart at previous pageblock if more
1506                                 * freepages can be isolated next time.
1507                                 */
1508                                isolate_start_pfn =
1509                                        block_start_pfn - pageblock_nr_pages;
1510                        }
1511                        break;
1512                } else if (isolate_start_pfn < block_end_pfn) {
1513                        /*
1514                         * If isolation failed early, do not continue
1515                         * needlessly.
1516                         */
1517                        break;
1518                }
1519
1520                /* Adjust stride depending on isolation */
1521                if (nr_isolated) {
1522                        stride = 1;
1523                        continue;
1524                }
1525                stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1526        }
1527
1528        /*
1529         * Record where the free scanner will restart next time. Either we
1530         * broke from the loop and set isolate_start_pfn based on the last
1531         * call to isolate_freepages_block(), or we met the migration scanner
1532         * and the loop terminated due to isolate_start_pfn < low_pfn
1533         */
1534        cc->free_pfn = isolate_start_pfn;
1535
1536splitmap:
1537        /* __isolate_free_page() does not map the pages */
1538        split_map_pages(freelist);
1539}
1540
1541/*
1542 * This is a migrate-callback that "allocates" freepages by taking pages
1543 * from the isolated freelists in the block we are migrating to.
1544 */
1545static struct page *compaction_alloc(struct page *migratepage,
1546                                        unsigned long data)
1547{
1548        struct compact_control *cc = (struct compact_control *)data;
1549        struct page *freepage;
1550
1551        if (list_empty(&cc->freepages)) {
1552                isolate_freepages(cc);
1553
1554                if (list_empty(&cc->freepages))
1555                        return NULL;
1556        }
1557
1558        freepage = list_entry(cc->freepages.next, struct page, lru);
1559        list_del(&freepage->lru);
1560        cc->nr_freepages--;
1561
1562        return freepage;
1563}
1564
1565/*
1566 * This is a migrate-callback that "frees" freepages back to the isolated
1567 * freelist.  All pages on the freelist are from the same zone, so there is no
1568 * special handling needed for NUMA.
1569 */
1570static void compaction_free(struct page *page, unsigned long data)
1571{
1572        struct compact_control *cc = (struct compact_control *)data;
1573
1574        list_add(&page->lru, &cc->freepages);
1575        cc->nr_freepages++;
1576}
1577
1578/* possible outcome of isolate_migratepages */
1579typedef enum {
1580        ISOLATE_ABORT,          /* Abort compaction now */
1581        ISOLATE_NONE,           /* No pages isolated, continue scanning */
1582        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1583} isolate_migrate_t;
1584
1585/*
1586 * Allow userspace to control policy on scanning the unevictable LRU for
1587 * compactable pages.
1588 */
1589int sysctl_compact_unevictable_allowed __read_mostly = 1;
1590
1591static inline void
1592update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1593{
1594        if (cc->fast_start_pfn == ULONG_MAX)
1595                return;
1596
1597        if (!cc->fast_start_pfn)
1598                cc->fast_start_pfn = pfn;
1599
1600        cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1601}
1602
1603static inline unsigned long
1604reinit_migrate_pfn(struct compact_control *cc)
1605{
1606        if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1607                return cc->migrate_pfn;
1608
1609        cc->migrate_pfn = cc->fast_start_pfn;
1610        cc->fast_start_pfn = ULONG_MAX;
1611
1612        return cc->migrate_pfn;
1613}
1614
1615/*
1616 * Briefly search the free lists for a migration source that already has
1617 * some free pages to reduce the number of pages that need migration
1618 * before a pageblock is free.
1619 */
1620static unsigned long fast_find_migrateblock(struct compact_control *cc)
1621{
1622        unsigned int limit = freelist_scan_limit(cc);
1623        unsigned int nr_scanned = 0;
1624        unsigned long distance;
1625        unsigned long pfn = cc->migrate_pfn;
1626        unsigned long high_pfn;
1627        int order;
1628
1629        /* Skip hints are relied on to avoid repeats on the fast search */
1630        if (cc->ignore_skip_hint)
1631                return pfn;
1632
1633        /*
1634         * If the migrate_pfn is not at the start of a zone or the start
1635         * of a pageblock then assume this is a continuation of a previous
1636         * scan restarted due to COMPACT_CLUSTER_MAX.
1637         */
1638        if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1639                return pfn;
1640
1641        /*
1642         * For smaller orders, just linearly scan as the number of pages
1643         * to migrate should be relatively small and does not necessarily
1644         * justify freeing up a large block for a small allocation.
1645         */
1646        if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1647                return pfn;
1648
1649        /*
1650         * Only allow kcompactd and direct requests for movable pages to
1651         * quickly clear out a MOVABLE pageblock for allocation. This
1652         * reduces the risk that a large movable pageblock is freed for
1653         * an unmovable/reclaimable small allocation.
1654         */
1655        if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1656                return pfn;
1657
1658        /*
1659         * When starting the migration scanner, pick any pageblock within the
1660         * first half of the search space. Otherwise try and pick a pageblock
1661         * within the first eighth to reduce the chances that a migration
1662         * target later becomes a source.
1663         */
1664        distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1665        if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1666                distance >>= 2;
1667        high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1668
1669        for (order = cc->order - 1;
1670             order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1671             order--) {
1672                struct free_area *area = &cc->zone->free_area[order];
1673                struct list_head *freelist;
1674                unsigned long flags;
1675                struct page *freepage;
1676
1677                if (!area->nr_free)
1678                        continue;
1679
1680                spin_lock_irqsave(&cc->zone->lock, flags);
1681                freelist = &area->free_list[MIGRATE_MOVABLE];
1682                list_for_each_entry(freepage, freelist, lru) {
1683                        unsigned long free_pfn;
1684
1685                        nr_scanned++;
1686                        free_pfn = page_to_pfn(freepage);
1687                        if (free_pfn < high_pfn) {
1688                                /*
1689                                 * Avoid if skipped recently. Ideally it would
1690                                 * move to the tail but even safe iteration of
1691                                 * the list assumes an entry is deleted, not
1692                                 * reordered.
1693                                 */
1694                                if (get_pageblock_skip(freepage)) {
1695                                        if (list_is_last(freelist, &freepage->lru))
1696                                                break;
1697
1698                                        continue;
1699                                }
1700
1701                                /* Reorder to so a future search skips recent pages */
1702                                move_freelist_tail(freelist, freepage);
1703
1704                                update_fast_start_pfn(cc, free_pfn);
1705                                pfn = pageblock_start_pfn(free_pfn);
1706                                cc->fast_search_fail = 0;
1707                                set_pageblock_skip(freepage);
1708                                break;
1709                        }
1710
1711                        if (nr_scanned >= limit) {
1712                                cc->fast_search_fail++;
1713                                move_freelist_tail(freelist, freepage);
1714                                break;
1715                        }
1716                }
1717                spin_unlock_irqrestore(&cc->zone->lock, flags);
1718        }
1719
1720        cc->total_migrate_scanned += nr_scanned;
1721
1722        /*
1723         * If fast scanning failed then use a cached entry for a page block
1724         * that had free pages as the basis for starting a linear scan.
1725         */
1726        if (pfn == cc->migrate_pfn)
1727                pfn = reinit_migrate_pfn(cc);
1728
1729        return pfn;
1730}
1731
1732/*
1733 * Isolate all pages that can be migrated from the first suitable block,
1734 * starting at the block pointed to by the migrate scanner pfn within
1735 * compact_control.
1736 */
1737static isolate_migrate_t isolate_migratepages(struct zone *zone,
1738                                        struct compact_control *cc)
1739{
1740        unsigned long block_start_pfn;
1741        unsigned long block_end_pfn;
1742        unsigned long low_pfn;
1743        struct page *page;
1744        const isolate_mode_t isolate_mode =
1745                (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1746                (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1747        bool fast_find_block;
1748
1749        /*
1750         * Start at where we last stopped, or beginning of the zone as
1751         * initialized by compact_zone(). The first failure will use
1752         * the lowest PFN as the starting point for linear scanning.
1753         */
1754        low_pfn = fast_find_migrateblock(cc);
1755        block_start_pfn = pageblock_start_pfn(low_pfn);
1756        if (block_start_pfn < zone->zone_start_pfn)
1757                block_start_pfn = zone->zone_start_pfn;
1758
1759        /*
1760         * fast_find_migrateblock marks a pageblock skipped so to avoid
1761         * the isolation_suitable check below, check whether the fast
1762         * search was successful.
1763         */
1764        fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1765
1766        /* Only scan within a pageblock boundary */
1767        block_end_pfn = pageblock_end_pfn(low_pfn);
1768
1769        /*
1770         * Iterate over whole pageblocks until we find the first suitable.
1771         * Do not cross the free scanner.
1772         */
1773        for (; block_end_pfn <= cc->free_pfn;
1774                        fast_find_block = false,
1775                        low_pfn = block_end_pfn,
1776                        block_start_pfn = block_end_pfn,
1777                        block_end_pfn += pageblock_nr_pages) {
1778
1779                /*
1780                 * This can potentially iterate a massively long zone with
1781                 * many pageblocks unsuitable, so periodically check if we
1782                 * need to schedule.
1783                 */
1784                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1785                        cond_resched();
1786
1787                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1788                                                                        zone);
1789                if (!page)
1790                        continue;
1791
1792                /*
1793                 * If isolation recently failed, do not retry. Only check the
1794                 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1795                 * to be visited multiple times. Assume skip was checked
1796                 * before making it "skip" so other compaction instances do
1797                 * not scan the same block.
1798                 */
1799                if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1800                    !fast_find_block && !isolation_suitable(cc, page))
1801                        continue;
1802
1803                /*
1804                 * For async compaction, also only scan in MOVABLE blocks
1805                 * without huge pages. Async compaction is optimistic to see
1806                 * if the minimum amount of work satisfies the allocation.
1807                 * The cached PFN is updated as it's possible that all
1808                 * remaining blocks between source and target are unsuitable
1809                 * and the compaction scanners fail to meet.
1810                 */
1811                if (!suitable_migration_source(cc, page)) {
1812                        update_cached_migrate(cc, block_end_pfn);
1813                        continue;
1814                }
1815
1816                /* Perform the isolation */
1817                low_pfn = isolate_migratepages_block(cc, low_pfn,
1818                                                block_end_pfn, isolate_mode);
1819
1820                if (!low_pfn)
1821                        return ISOLATE_ABORT;
1822
1823                /*
1824                 * Either we isolated something and proceed with migration. Or
1825                 * we failed and compact_zone should decide if we should
1826                 * continue or not.
1827                 */
1828                break;
1829        }
1830
1831        /* Record where migration scanner will be restarted. */
1832        cc->migrate_pfn = low_pfn;
1833
1834        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1835}
1836
1837/*
1838 * order == -1 is expected when compacting via
1839 * /proc/sys/vm/compact_memory
1840 */
1841static inline bool is_via_compact_memory(int order)
1842{
1843        return order == -1;
1844}
1845
1846static enum compact_result __compact_finished(struct compact_control *cc)
1847{
1848        unsigned int order;
1849        const int migratetype = cc->migratetype;
1850        int ret;
1851
1852        /* Compaction run completes if the migrate and free scanner meet */
1853        if (compact_scanners_met(cc)) {
1854                /* Let the next compaction start anew. */
1855                reset_cached_positions(cc->zone);
1856
1857                /*
1858                 * Mark that the PG_migrate_skip information should be cleared
1859                 * by kswapd when it goes to sleep. kcompactd does not set the
1860                 * flag itself as the decision to be clear should be directly
1861                 * based on an allocation request.
1862                 */
1863                if (cc->direct_compaction)
1864                        cc->zone->compact_blockskip_flush = true;
1865
1866                if (cc->whole_zone)
1867                        return COMPACT_COMPLETE;
1868                else
1869                        return COMPACT_PARTIAL_SKIPPED;
1870        }
1871
1872        if (is_via_compact_memory(cc->order))
1873                return COMPACT_CONTINUE;
1874
1875        /*
1876         * Always finish scanning a pageblock to reduce the possibility of
1877         * fallbacks in the future. This is particularly important when
1878         * migration source is unmovable/reclaimable but it's not worth
1879         * special casing.
1880         */
1881        if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1882                return COMPACT_CONTINUE;
1883
1884        /* Direct compactor: Is a suitable page free? */
1885        ret = COMPACT_NO_SUITABLE_PAGE;
1886        for (order = cc->order; order < MAX_ORDER; order++) {
1887                struct free_area *area = &cc->zone->free_area[order];
1888                bool can_steal;
1889
1890                /* Job done if page is free of the right migratetype */
1891                if (!free_area_empty(area, migratetype))
1892                        return COMPACT_SUCCESS;
1893
1894#ifdef CONFIG_CMA
1895                /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1896                if (migratetype == MIGRATE_MOVABLE &&
1897                        !free_area_empty(area, MIGRATE_CMA))
1898                        return COMPACT_SUCCESS;
1899#endif
1900                /*
1901                 * Job done if allocation would steal freepages from
1902                 * other migratetype buddy lists.
1903                 */
1904                if (find_suitable_fallback(area, order, migratetype,
1905                                                true, &can_steal) != -1) {
1906
1907                        /* movable pages are OK in any pageblock */
1908                        if (migratetype == MIGRATE_MOVABLE)
1909                                return COMPACT_SUCCESS;
1910
1911                        /*
1912                         * We are stealing for a non-movable allocation. Make
1913                         * sure we finish compacting the current pageblock
1914                         * first so it is as free as possible and we won't
1915                         * have to steal another one soon. This only applies
1916                         * to sync compaction, as async compaction operates
1917                         * on pageblocks of the same migratetype.
1918                         */
1919                        if (cc->mode == MIGRATE_ASYNC ||
1920                                        IS_ALIGNED(cc->migrate_pfn,
1921                                                        pageblock_nr_pages)) {
1922                                return COMPACT_SUCCESS;
1923                        }
1924
1925                        ret = COMPACT_CONTINUE;
1926                        break;
1927                }
1928        }
1929
1930        if (cc->contended || fatal_signal_pending(current))
1931                ret = COMPACT_CONTENDED;
1932
1933        return ret;
1934}
1935
1936static enum compact_result compact_finished(struct compact_control *cc)
1937{
1938        int ret;
1939
1940        ret = __compact_finished(cc);
1941        trace_mm_compaction_finished(cc->zone, cc->order, ret);
1942        if (ret == COMPACT_NO_SUITABLE_PAGE)
1943                ret = COMPACT_CONTINUE;
1944
1945        return ret;
1946}
1947
1948/*
1949 * compaction_suitable: Is this suitable to run compaction on this zone now?
1950 * Returns
1951 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1952 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1953 *   COMPACT_CONTINUE - If compaction should run now
1954 */
1955static enum compact_result __compaction_suitable(struct zone *zone, int order,
1956                                        unsigned int alloc_flags,
1957                                        int classzone_idx,
1958                                        unsigned long wmark_target)
1959{
1960        unsigned long watermark;
1961
1962        if (is_via_compact_memory(order))
1963                return COMPACT_CONTINUE;
1964
1965        watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1966        /*
1967         * If watermarks for high-order allocation are already met, there
1968         * should be no need for compaction at all.
1969         */
1970        if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1971                                                                alloc_flags))
1972                return COMPACT_SUCCESS;
1973
1974        /*
1975         * Watermarks for order-0 must be met for compaction to be able to
1976         * isolate free pages for migration targets. This means that the
1977         * watermark and alloc_flags have to match, or be more pessimistic than
1978         * the check in __isolate_free_page(). We don't use the direct
1979         * compactor's alloc_flags, as they are not relevant for freepage
1980         * isolation. We however do use the direct compactor's classzone_idx to
1981         * skip over zones where lowmem reserves would prevent allocation even
1982         * if compaction succeeds.
1983         * For costly orders, we require low watermark instead of min for
1984         * compaction to proceed to increase its chances.
1985         * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1986         * suitable migration targets
1987         */
1988        watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1989                                low_wmark_pages(zone) : min_wmark_pages(zone);
1990        watermark += compact_gap(order);
1991        if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1992                                                ALLOC_CMA, wmark_target))
1993                return COMPACT_SKIPPED;
1994
1995        return COMPACT_CONTINUE;
1996}
1997
1998enum compact_result compaction_suitable(struct zone *zone, int order,
1999                                        unsigned int alloc_flags,
2000                                        int classzone_idx)
2001{
2002        enum compact_result ret;
2003        int fragindex;
2004
2005        ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2006                                    zone_page_state(zone, NR_FREE_PAGES));
2007        /*
2008         * fragmentation index determines if allocation failures are due to
2009         * low memory or external fragmentation
2010         *
2011         * index of -1000 would imply allocations might succeed depending on
2012         * watermarks, but we already failed the high-order watermark check
2013         * index towards 0 implies failure is due to lack of memory
2014         * index towards 1000 implies failure is due to fragmentation
2015         *
2016         * Only compact if a failure would be due to fragmentation. Also
2017         * ignore fragindex for non-costly orders where the alternative to
2018         * a successful reclaim/compaction is OOM. Fragindex and the
2019         * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2020         * excessive compaction for costly orders, but it should not be at the
2021         * expense of system stability.
2022         */
2023        if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2024                fragindex = fragmentation_index(zone, order);
2025                if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2026                        ret = COMPACT_NOT_SUITABLE_ZONE;
2027        }
2028
2029        trace_mm_compaction_suitable(zone, order, ret);
2030        if (ret == COMPACT_NOT_SUITABLE_ZONE)
2031                ret = COMPACT_SKIPPED;
2032
2033        return ret;
2034}
2035
2036bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2037                int alloc_flags)
2038{
2039        struct zone *zone;
2040        struct zoneref *z;
2041
2042        /*
2043         * Make sure at least one zone would pass __compaction_suitable if we continue
2044         * retrying the reclaim.
2045         */
2046        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2047                                        ac->nodemask) {
2048                unsigned long available;
2049                enum compact_result compact_result;
2050
2051                /*
2052                 * Do not consider all the reclaimable memory because we do not
2053                 * want to trash just for a single high order allocation which
2054                 * is even not guaranteed to appear even if __compaction_suitable
2055                 * is happy about the watermark check.
2056                 */
2057                available = zone_reclaimable_pages(zone) / order;
2058                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2059                compact_result = __compaction_suitable(zone, order, alloc_flags,
2060                                ac_classzone_idx(ac), available);
2061                if (compact_result != COMPACT_SKIPPED)
2062                        return true;
2063        }
2064
2065        return false;
2066}
2067
2068static enum compact_result
2069compact_zone(struct compact_control *cc, struct capture_control *capc)
2070{
2071        enum compact_result ret;
2072        unsigned long start_pfn = cc->zone->zone_start_pfn;
2073        unsigned long end_pfn = zone_end_pfn(cc->zone);
2074        unsigned long last_migrated_pfn;
2075        const bool sync = cc->mode != MIGRATE_ASYNC;
2076        bool update_cached;
2077
2078        cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2079        ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2080                                                        cc->classzone_idx);
2081        /* Compaction is likely to fail */
2082        if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2083                return ret;
2084
2085        /* huh, compaction_suitable is returning something unexpected */
2086        VM_BUG_ON(ret != COMPACT_CONTINUE);
2087
2088        /*
2089         * Clear pageblock skip if there were failures recently and compaction
2090         * is about to be retried after being deferred.
2091         */
2092        if (compaction_restarting(cc->zone, cc->order))
2093                __reset_isolation_suitable(cc->zone);
2094
2095        /*
2096         * Setup to move all movable pages to the end of the zone. Used cached
2097         * information on where the scanners should start (unless we explicitly
2098         * want to compact the whole zone), but check that it is initialised
2099         * by ensuring the values are within zone boundaries.
2100         */
2101        cc->fast_start_pfn = 0;
2102        if (cc->whole_zone) {
2103                cc->migrate_pfn = start_pfn;
2104                cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2105        } else {
2106                cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2107                cc->free_pfn = cc->zone->compact_cached_free_pfn;
2108                if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2109                        cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2110                        cc->zone->compact_cached_free_pfn = cc->free_pfn;
2111                }
2112                if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2113                        cc->migrate_pfn = start_pfn;
2114                        cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2115                        cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2116                }
2117
2118                if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2119                        cc->whole_zone = true;
2120        }
2121
2122        last_migrated_pfn = 0;
2123
2124        /*
2125         * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2126         * the basis that some migrations will fail in ASYNC mode. However,
2127         * if the cached PFNs match and pageblocks are skipped due to having
2128         * no isolation candidates, then the sync state does not matter.
2129         * Until a pageblock with isolation candidates is found, keep the
2130         * cached PFNs in sync to avoid revisiting the same blocks.
2131         */
2132        update_cached = !sync &&
2133                cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2134
2135        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2136                                cc->free_pfn, end_pfn, sync);
2137
2138        migrate_prep_local();
2139
2140        while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2141                int err;
2142                unsigned long start_pfn = cc->migrate_pfn;
2143
2144                /*
2145                 * Avoid multiple rescans which can happen if a page cannot be
2146                 * isolated (dirty/writeback in async mode) or if the migrated
2147                 * pages are being allocated before the pageblock is cleared.
2148                 * The first rescan will capture the entire pageblock for
2149                 * migration. If it fails, it'll be marked skip and scanning
2150                 * will proceed as normal.
2151                 */
2152                cc->rescan = false;
2153                if (pageblock_start_pfn(last_migrated_pfn) ==
2154                    pageblock_start_pfn(start_pfn)) {
2155                        cc->rescan = true;
2156                }
2157
2158                switch (isolate_migratepages(cc->zone, cc)) {
2159                case ISOLATE_ABORT:
2160                        ret = COMPACT_CONTENDED;
2161                        putback_movable_pages(&cc->migratepages);
2162                        cc->nr_migratepages = 0;
2163                        last_migrated_pfn = 0;
2164                        goto out;
2165                case ISOLATE_NONE:
2166                        if (update_cached) {
2167                                cc->zone->compact_cached_migrate_pfn[1] =
2168                                        cc->zone->compact_cached_migrate_pfn[0];
2169                        }
2170
2171                        /*
2172                         * We haven't isolated and migrated anything, but
2173                         * there might still be unflushed migrations from
2174                         * previous cc->order aligned block.
2175                         */
2176                        goto check_drain;
2177                case ISOLATE_SUCCESS:
2178                        update_cached = false;
2179                        last_migrated_pfn = start_pfn;
2180                        ;
2181                }
2182
2183                err = migrate_pages(&cc->migratepages, compaction_alloc,
2184                                compaction_free, (unsigned long)cc, cc->mode,
2185                                MR_COMPACTION);
2186
2187                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2188                                                        &cc->migratepages);
2189
2190                /* All pages were either migrated or will be released */
2191                cc->nr_migratepages = 0;
2192                if (err) {
2193                        putback_movable_pages(&cc->migratepages);
2194                        /*
2195                         * migrate_pages() may return -ENOMEM when scanners meet
2196                         * and we want compact_finished() to detect it
2197                         */
2198                        if (err == -ENOMEM && !compact_scanners_met(cc)) {
2199                                ret = COMPACT_CONTENDED;
2200                                goto out;
2201                        }
2202                        /*
2203                         * We failed to migrate at least one page in the current
2204                         * order-aligned block, so skip the rest of it.
2205                         */
2206                        if (cc->direct_compaction &&
2207                                                (cc->mode == MIGRATE_ASYNC)) {
2208                                cc->migrate_pfn = block_end_pfn(
2209                                                cc->migrate_pfn - 1, cc->order);
2210                                /* Draining pcplists is useless in this case */
2211                                last_migrated_pfn = 0;
2212                        }
2213                }
2214
2215check_drain:
2216                /*
2217                 * Has the migration scanner moved away from the previous
2218                 * cc->order aligned block where we migrated from? If yes,
2219                 * flush the pages that were freed, so that they can merge and
2220                 * compact_finished() can detect immediately if allocation
2221                 * would succeed.
2222                 */
2223                if (cc->order > 0 && last_migrated_pfn) {
2224                        int cpu;
2225                        unsigned long current_block_start =
2226                                block_start_pfn(cc->migrate_pfn, cc->order);
2227
2228                        if (last_migrated_pfn < current_block_start) {
2229                                cpu = get_cpu();
2230                                lru_add_drain_cpu(cpu);
2231                                drain_local_pages(cc->zone);
2232                                put_cpu();
2233                                /* No more flushing until we migrate again */
2234                                last_migrated_pfn = 0;
2235                        }
2236                }
2237
2238                /* Stop if a page has been captured */
2239                if (capc && capc->page) {
2240                        ret = COMPACT_SUCCESS;
2241                        break;
2242                }
2243        }
2244
2245out:
2246        /*
2247         * Release free pages and update where the free scanner should restart,
2248         * so we don't leave any returned pages behind in the next attempt.
2249         */
2250        if (cc->nr_freepages > 0) {
2251                unsigned long free_pfn = release_freepages(&cc->freepages);
2252
2253                cc->nr_freepages = 0;
2254                VM_BUG_ON(free_pfn == 0);
2255                /* The cached pfn is always the first in a pageblock */
2256                free_pfn = pageblock_start_pfn(free_pfn);
2257                /*
2258                 * Only go back, not forward. The cached pfn might have been
2259                 * already reset to zone end in compact_finished()
2260                 */
2261                if (free_pfn > cc->zone->compact_cached_free_pfn)
2262                        cc->zone->compact_cached_free_pfn = free_pfn;
2263        }
2264
2265        count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2266        count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2267
2268        trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2269                                cc->free_pfn, end_pfn, sync, ret);
2270
2271        return ret;
2272}
2273
2274static enum compact_result compact_zone_order(struct zone *zone, int order,
2275                gfp_t gfp_mask, enum compact_priority prio,
2276                unsigned int alloc_flags, int classzone_idx,
2277                struct page **capture)
2278{
2279        enum compact_result ret;
2280        struct compact_control cc = {
2281                .nr_freepages = 0,
2282                .nr_migratepages = 0,
2283                .total_migrate_scanned = 0,
2284                .total_free_scanned = 0,
2285                .order = order,
2286                .search_order = order,
2287                .gfp_mask = gfp_mask,
2288                .zone = zone,
2289                .mode = (prio == COMPACT_PRIO_ASYNC) ?
2290                                        MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2291                .alloc_flags = alloc_flags,
2292                .classzone_idx = classzone_idx,
2293                .direct_compaction = true,
2294                .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2295                .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2296                .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2297        };
2298        struct capture_control capc = {
2299                .cc = &cc,
2300                .page = NULL,
2301        };
2302
2303        if (capture)
2304                current->capture_control = &capc;
2305        INIT_LIST_HEAD(&cc.freepages);
2306        INIT_LIST_HEAD(&cc.migratepages);
2307
2308        ret = compact_zone(&cc, &capc);
2309
2310        VM_BUG_ON(!list_empty(&cc.freepages));
2311        VM_BUG_ON(!list_empty(&cc.migratepages));
2312
2313        *capture = capc.page;
2314        current->capture_control = NULL;
2315
2316        return ret;
2317}
2318
2319int sysctl_extfrag_threshold = 500;
2320
2321/**
2322 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2323 * @gfp_mask: The GFP mask of the current allocation
2324 * @order: The order of the current allocation
2325 * @alloc_flags: The allocation flags of the current allocation
2326 * @ac: The context of current allocation
2327 * @prio: Determines how hard direct compaction should try to succeed
2328 *
2329 * This is the main entry point for direct page compaction.
2330 */
2331enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2332                unsigned int alloc_flags, const struct alloc_context *ac,
2333                enum compact_priority prio, struct page **capture)
2334{
2335        int may_perform_io = gfp_mask & __GFP_IO;
2336        struct zoneref *z;
2337        struct zone *zone;
2338        enum compact_result rc = COMPACT_SKIPPED;
2339
2340        /*
2341         * Check if the GFP flags allow compaction - GFP_NOIO is really
2342         * tricky context because the migration might require IO
2343         */
2344        if (!may_perform_io)
2345                return COMPACT_SKIPPED;
2346
2347        trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2348
2349        /* Compact each zone in the list */
2350        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2351                                                                ac->nodemask) {
2352                enum compact_result status;
2353
2354                if (prio > MIN_COMPACT_PRIORITY
2355                                        && compaction_deferred(zone, order)) {
2356                        rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2357                        continue;
2358                }
2359
2360                status = compact_zone_order(zone, order, gfp_mask, prio,
2361                                alloc_flags, ac_classzone_idx(ac), capture);
2362                rc = max(status, rc);
2363
2364                /* The allocation should succeed, stop compacting */
2365                if (status == COMPACT_SUCCESS) {
2366                        /*
2367                         * We think the allocation will succeed in this zone,
2368                         * but it is not certain, hence the false. The caller
2369                         * will repeat this with true if allocation indeed
2370                         * succeeds in this zone.
2371                         */
2372                        compaction_defer_reset(zone, order, false);
2373
2374                        break;
2375                }
2376
2377                if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2378                                        status == COMPACT_PARTIAL_SKIPPED))
2379                        /*
2380                         * We think that allocation won't succeed in this zone
2381                         * so we defer compaction there. If it ends up
2382                         * succeeding after all, it will be reset.
2383                         */
2384                        defer_compaction(zone, order);
2385
2386                /*
2387                 * We might have stopped compacting due to need_resched() in
2388                 * async compaction, or due to a fatal signal detected. In that
2389                 * case do not try further zones
2390                 */
2391                if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2392                                        || fatal_signal_pending(current))
2393                        break;
2394        }
2395
2396        return rc;
2397}
2398
2399
2400/* Compact all zones within a node */
2401static void compact_node(int nid)
2402{
2403        pg_data_t *pgdat = NODE_DATA(nid);
2404        int zoneid;
2405        struct zone *zone;
2406        struct compact_control cc = {
2407                .order = -1,
2408                .total_migrate_scanned = 0,
2409                .total_free_scanned = 0,
2410                .mode = MIGRATE_SYNC,
2411                .ignore_skip_hint = true,
2412                .whole_zone = true,
2413                .gfp_mask = GFP_KERNEL,
2414        };
2415
2416
2417        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2418
2419                zone = &pgdat->node_zones[zoneid];
2420                if (!populated_zone(zone))
2421                        continue;
2422
2423                cc.nr_freepages = 0;
2424                cc.nr_migratepages = 0;
2425                cc.zone = zone;
2426                INIT_LIST_HEAD(&cc.freepages);
2427                INIT_LIST_HEAD(&cc.migratepages);
2428
2429                compact_zone(&cc, NULL);
2430
2431                VM_BUG_ON(!list_empty(&cc.freepages));
2432                VM_BUG_ON(!list_empty(&cc.migratepages));
2433        }
2434}
2435
2436/* Compact all nodes in the system */
2437static void compact_nodes(void)
2438{
2439        int nid;
2440
2441        /* Flush pending updates to the LRU lists */
2442        lru_add_drain_all();
2443
2444        for_each_online_node(nid)
2445                compact_node(nid);
2446}
2447
2448/* The written value is actually unused, all memory is compacted */
2449int sysctl_compact_memory;
2450
2451/*
2452 * This is the entry point for compacting all nodes via
2453 * /proc/sys/vm/compact_memory
2454 */
2455int sysctl_compaction_handler(struct ctl_table *table, int write,
2456                        void __user *buffer, size_t *length, loff_t *ppos)
2457{
2458        if (write)
2459                compact_nodes();
2460
2461        return 0;
2462}
2463
2464#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2465static ssize_t sysfs_compact_node(struct device *dev,
2466                        struct device_attribute *attr,
2467                        const char *buf, size_t count)
2468{
2469        int nid = dev->id;
2470
2471        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472                /* Flush pending updates to the LRU lists */
2473                lru_add_drain_all();
2474
2475                compact_node(nid);
2476        }
2477
2478        return count;
2479}
2480static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481
2482int compaction_register_node(struct node *node)
2483{
2484        return device_create_file(&node->dev, &dev_attr_compact);
2485}
2486
2487void compaction_unregister_node(struct node *node)
2488{
2489        return device_remove_file(&node->dev, &dev_attr_compact);
2490}
2491#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492
2493static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494{
2495        return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496}
2497
2498static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499{
2500        int zoneid;
2501        struct zone *zone;
2502        enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503
2504        for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505                zone = &pgdat->node_zones[zoneid];
2506
2507                if (!populated_zone(zone))
2508                        continue;
2509
2510                if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511                                        classzone_idx) == COMPACT_CONTINUE)
2512                        return true;
2513        }
2514
2515        return false;
2516}
2517
2518static void kcompactd_do_work(pg_data_t *pgdat)
2519{
2520        /*
2521         * With no special task, compact all zones so that a page of requested
2522         * order is allocatable.
2523         */
2524        int zoneid;
2525        struct zone *zone;
2526        struct compact_control cc = {
2527                .order = pgdat->kcompactd_max_order,
2528                .search_order = pgdat->kcompactd_max_order,
2529                .total_migrate_scanned = 0,
2530                .total_free_scanned = 0,
2531                .classzone_idx = pgdat->kcompactd_classzone_idx,
2532                .mode = MIGRATE_SYNC_LIGHT,
2533                .ignore_skip_hint = false,
2534                .gfp_mask = GFP_KERNEL,
2535        };
2536        trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537                                                        cc.classzone_idx);
2538        count_compact_event(KCOMPACTD_WAKE);
2539
2540        for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541                int status;
2542
2543                zone = &pgdat->node_zones[zoneid];
2544                if (!populated_zone(zone))
2545                        continue;
2546
2547                if (compaction_deferred(zone, cc.order))
2548                        continue;
2549
2550                if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551                                                        COMPACT_CONTINUE)
2552                        continue;
2553
2554                cc.nr_freepages = 0;
2555                cc.nr_migratepages = 0;
2556                cc.total_migrate_scanned = 0;
2557                cc.total_free_scanned = 0;
2558                cc.zone = zone;
2559                INIT_LIST_HEAD(&cc.freepages);
2560                INIT_LIST_HEAD(&cc.migratepages);
2561
2562                if (kthread_should_stop())
2563                        return;
2564                status = compact_zone(&cc, NULL);
2565
2566                if (status == COMPACT_SUCCESS) {
2567                        compaction_defer_reset(zone, cc.order, false);
2568                } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2569                        /*
2570                         * Buddy pages may become stranded on pcps that could
2571                         * otherwise coalesce on the zone's free area for
2572                         * order >= cc.order.  This is ratelimited by the
2573                         * upcoming deferral.
2574                         */
2575                        drain_all_pages(zone);
2576
2577                        /*
2578                         * We use sync migration mode here, so we defer like
2579                         * sync direct compaction does.
2580                         */
2581                        defer_compaction(zone, cc.order);
2582                }
2583
2584                count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2585                                     cc.total_migrate_scanned);
2586                count_compact_events(KCOMPACTD_FREE_SCANNED,
2587                                     cc.total_free_scanned);
2588
2589                VM_BUG_ON(!list_empty(&cc.freepages));
2590                VM_BUG_ON(!list_empty(&cc.migratepages));
2591        }
2592
2593        /*
2594         * Regardless of success, we are done until woken up next. But remember
2595         * the requested order/classzone_idx in case it was higher/tighter than
2596         * our current ones
2597         */
2598        if (pgdat->kcompactd_max_order <= cc.order)
2599                pgdat->kcompactd_max_order = 0;
2600        if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2601                pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2602}
2603
2604void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2605{
2606        if (!order)
2607                return;
2608
2609        if (pgdat->kcompactd_max_order < order)
2610                pgdat->kcompactd_max_order = order;
2611
2612        if (pgdat->kcompactd_classzone_idx > classzone_idx)
2613                pgdat->kcompactd_classzone_idx = classzone_idx;
2614
2615        /*
2616         * Pairs with implicit barrier in wait_event_freezable()
2617         * such that wakeups are not missed.
2618         */
2619        if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2620                return;
2621
2622        if (!kcompactd_node_suitable(pgdat))
2623                return;
2624
2625        trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2626                                                        classzone_idx);
2627        wake_up_interruptible(&pgdat->kcompactd_wait);
2628}
2629
2630/*
2631 * The background compaction daemon, started as a kernel thread
2632 * from the init process.
2633 */
2634static int kcompactd(void *p)
2635{
2636        pg_data_t *pgdat = (pg_data_t*)p;
2637        struct task_struct *tsk = current;
2638
2639        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2640
2641        if (!cpumask_empty(cpumask))
2642                set_cpus_allowed_ptr(tsk, cpumask);
2643
2644        set_freezable();
2645
2646        pgdat->kcompactd_max_order = 0;
2647        pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2648
2649        while (!kthread_should_stop()) {
2650                unsigned long pflags;
2651
2652                trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2653                wait_event_freezable(pgdat->kcompactd_wait,
2654                                kcompactd_work_requested(pgdat));
2655
2656                psi_memstall_enter(&pflags);
2657                kcompactd_do_work(pgdat);
2658                psi_memstall_leave(&pflags);
2659        }
2660
2661        return 0;
2662}
2663
2664/*
2665 * This kcompactd start function will be called by init and node-hot-add.
2666 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2667 */
2668int kcompactd_run(int nid)
2669{
2670        pg_data_t *pgdat = NODE_DATA(nid);
2671        int ret = 0;
2672
2673        if (pgdat->kcompactd)
2674                return 0;
2675
2676        pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2677        if (IS_ERR(pgdat->kcompactd)) {
2678                pr_err("Failed to start kcompactd on node %d\n", nid);
2679                ret = PTR_ERR(pgdat->kcompactd);
2680                pgdat->kcompactd = NULL;
2681        }
2682        return ret;
2683}
2684
2685/*
2686 * Called by memory hotplug when all memory in a node is offlined. Caller must
2687 * hold mem_hotplug_begin/end().
2688 */
2689void kcompactd_stop(int nid)
2690{
2691        struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2692
2693        if (kcompactd) {
2694                kthread_stop(kcompactd);
2695                NODE_DATA(nid)->kcompactd = NULL;
2696        }
2697}
2698
2699/*
2700 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2701 * not required for correctness. So if the last cpu in a node goes
2702 * away, we get changed to run anywhere: as the first one comes back,
2703 * restore their cpu bindings.
2704 */
2705static int kcompactd_cpu_online(unsigned int cpu)
2706{
2707        int nid;
2708
2709        for_each_node_state(nid, N_MEMORY) {
2710                pg_data_t *pgdat = NODE_DATA(nid);
2711                const struct cpumask *mask;
2712
2713                mask = cpumask_of_node(pgdat->node_id);
2714
2715                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2716                        /* One of our CPUs online: restore mask */
2717                        set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2718        }
2719        return 0;
2720}
2721
2722static int __init kcompactd_init(void)
2723{
2724        int nid;
2725        int ret;
2726
2727        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2728                                        "mm/compaction:online",
2729                                        kcompactd_cpu_online, NULL);
2730        if (ret < 0) {
2731                pr_err("kcompactd: failed to register hotplug callbacks.\n");
2732                return ret;
2733        }
2734
2735        for_each_node_state(nid, N_MEMORY)
2736                kcompactd_run(nid);
2737        return 0;
2738}
2739subsys_initcall(kcompactd_init)
2740
2741#endif /* CONFIG_COMPACTION */
2742