linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
  42
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  79
  80        spin_unlock(&spool->lock);
  81
  82        /* If no pages are used, and no other handles to the subpool
  83         * remain, give up any reservations mased on minimum size and
  84         * free the subpool */
  85        if (free) {
  86                if (spool->min_hpages != -1)
  87                        hugetlb_acct_memory(spool->hstate,
  88                                                -spool->min_hpages);
  89                kfree(spool);
  90        }
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94                                                long min_hpages)
  95{
  96        struct hugepage_subpool *spool;
  97
  98        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99        if (!spool)
 100                return NULL;
 101
 102        spin_lock_init(&spool->lock);
 103        spool->count = 1;
 104        spool->max_hpages = max_hpages;
 105        spool->hstate = h;
 106        spool->min_hpages = min_hpages;
 107
 108        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109                kfree(spool);
 110                return NULL;
 111        }
 112        spool->rsv_hpages = min_hpages;
 113
 114        return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119        spin_lock(&spool->lock);
 120        BUG_ON(!spool->count);
 121        spool->count--;
 122        unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134                                      long delta)
 135{
 136        long ret = delta;
 137
 138        if (!spool)
 139                return ret;
 140
 141        spin_lock(&spool->lock);
 142
 143        if (spool->max_hpages != -1) {          /* maximum size accounting */
 144                if ((spool->used_hpages + delta) <= spool->max_hpages)
 145                        spool->used_hpages += delta;
 146                else {
 147                        ret = -ENOMEM;
 148                        goto unlock_ret;
 149                }
 150        }
 151
 152        /* minimum size accounting */
 153        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154                if (delta > spool->rsv_hpages) {
 155                        /*
 156                         * Asking for more reserves than those already taken on
 157                         * behalf of subpool.  Return difference.
 158                         */
 159                        ret = delta - spool->rsv_hpages;
 160                        spool->rsv_hpages = 0;
 161                } else {
 162                        ret = 0;        /* reserves already accounted for */
 163                        spool->rsv_hpages -= delta;
 164                }
 165        }
 166
 167unlock_ret:
 168        spin_unlock(&spool->lock);
 169        return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179                                       long delta)
 180{
 181        long ret = delta;
 182
 183        if (!spool)
 184                return delta;
 185
 186        spin_lock(&spool->lock);
 187
 188        if (spool->max_hpages != -1)            /* maximum size accounting */
 189                spool->used_hpages -= delta;
 190
 191         /* minimum size accounting */
 192        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193                if (spool->rsv_hpages + delta <= spool->min_hpages)
 194                        ret = 0;
 195                else
 196                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198                spool->rsv_hpages += delta;
 199                if (spool->rsv_hpages > spool->min_hpages)
 200                        spool->rsv_hpages = spool->min_hpages;
 201        }
 202
 203        /*
 204         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205         * quota reference, free it now.
 206         */
 207        unlock_or_release_subpool(spool);
 208
 209        return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214        return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219        return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 240 */
 241struct file_region {
 242        struct list_head link;
 243        long from;
 244        long to;
 245};
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 262{
 263        struct list_head *head = &resv->regions;
 264        struct file_region *rg, *nrg, *trg;
 265        long add = 0;
 266
 267        spin_lock(&resv->lock);
 268        /* Locate the region we are either in or before. */
 269        list_for_each_entry(rg, head, link)
 270                if (f <= rg->to)
 271                        break;
 272
 273        /*
 274         * If no region exists which can be expanded to include the
 275         * specified range, the list must have been modified by an
 276         * interleving call to region_del().  Pull a region descriptor
 277         * from the cache and use it for this range.
 278         */
 279        if (&rg->link == head || t < rg->from) {
 280                VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282                resv->region_cache_count--;
 283                nrg = list_first_entry(&resv->region_cache, struct file_region,
 284                                        link);
 285                list_del(&nrg->link);
 286
 287                nrg->from = f;
 288                nrg->to = t;
 289                list_add(&nrg->link, rg->link.prev);
 290
 291                add += t - f;
 292                goto out_locked;
 293        }
 294
 295        /* Round our left edge to the current segment if it encloses us. */
 296        if (f > rg->from)
 297                f = rg->from;
 298
 299        /* Check for and consume any regions we now overlap with. */
 300        nrg = rg;
 301        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302                if (&rg->link == head)
 303                        break;
 304                if (rg->from > t)
 305                        break;
 306
 307                /* If this area reaches higher then extend our area to
 308                 * include it completely.  If this is not the first area
 309                 * which we intend to reuse, free it. */
 310                if (rg->to > t)
 311                        t = rg->to;
 312                if (rg != nrg) {
 313                        /* Decrement return value by the deleted range.
 314                         * Another range will span this area so that by
 315                         * end of routine add will be >= zero
 316                         */
 317                        add -= (rg->to - rg->from);
 318                        list_del(&rg->link);
 319                        kfree(rg);
 320                }
 321        }
 322
 323        add += (nrg->from - f);         /* Added to beginning of region */
 324        nrg->from = f;
 325        add += t - nrg->to;             /* Added to end of region */
 326        nrg->to = t;
 327
 328out_locked:
 329        resv->adds_in_progress--;
 330        spin_unlock(&resv->lock);
 331        VM_BUG_ON(add < 0);
 332        return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 358{
 359        struct list_head *head = &resv->regions;
 360        struct file_region *rg, *nrg = NULL;
 361        long chg = 0;
 362
 363retry:
 364        spin_lock(&resv->lock);
 365retry_locked:
 366        resv->adds_in_progress++;
 367
 368        /*
 369         * Check for sufficient descriptors in the cache to accommodate
 370         * the number of in progress add operations.
 371         */
 372        if (resv->adds_in_progress > resv->region_cache_count) {
 373                struct file_region *trg;
 374
 375                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376                /* Must drop lock to allocate a new descriptor. */
 377                resv->adds_in_progress--;
 378                spin_unlock(&resv->lock);
 379
 380                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381                if (!trg) {
 382                        kfree(nrg);
 383                        return -ENOMEM;
 384                }
 385
 386                spin_lock(&resv->lock);
 387                list_add(&trg->link, &resv->region_cache);
 388                resv->region_cache_count++;
 389                goto retry_locked;
 390        }
 391
 392        /* Locate the region we are before or in. */
 393        list_for_each_entry(rg, head, link)
 394                if (f <= rg->to)
 395                        break;
 396
 397        /* If we are below the current region then a new region is required.
 398         * Subtle, allocate a new region at the position but make it zero
 399         * size such that we can guarantee to record the reservation. */
 400        if (&rg->link == head || t < rg->from) {
 401                if (!nrg) {
 402                        resv->adds_in_progress--;
 403                        spin_unlock(&resv->lock);
 404                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405                        if (!nrg)
 406                                return -ENOMEM;
 407
 408                        nrg->from = f;
 409                        nrg->to   = f;
 410                        INIT_LIST_HEAD(&nrg->link);
 411                        goto retry;
 412                }
 413
 414                list_add(&nrg->link, rg->link.prev);
 415                chg = t - f;
 416                goto out_nrg;
 417        }
 418
 419        /* Round our left edge to the current segment if it encloses us. */
 420        if (f > rg->from)
 421                f = rg->from;
 422        chg = t - f;
 423
 424        /* Check for and consume any regions we now overlap with. */
 425        list_for_each_entry(rg, rg->link.prev, link) {
 426                if (&rg->link == head)
 427                        break;
 428                if (rg->from > t)
 429                        goto out;
 430
 431                /* We overlap with this area, if it extends further than
 432                 * us then we must extend ourselves.  Account for its
 433                 * existing reservation. */
 434                if (rg->to > t) {
 435                        chg += rg->to - t;
 436                        t = rg->to;
 437                }
 438                chg -= rg->to - rg->from;
 439        }
 440
 441out:
 442        spin_unlock(&resv->lock);
 443        /*  We already know we raced and no longer need the new region */
 444        kfree(nrg);
 445        return chg;
 446out_nrg:
 447        spin_unlock(&resv->lock);
 448        return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 463{
 464        spin_lock(&resv->lock);
 465        VM_BUG_ON(!resv->region_cache_count);
 466        resv->adds_in_progress--;
 467        spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486        struct list_head *head = &resv->regions;
 487        struct file_region *rg, *trg;
 488        struct file_region *nrg = NULL;
 489        long del = 0;
 490
 491retry:
 492        spin_lock(&resv->lock);
 493        list_for_each_entry_safe(rg, trg, head, link) {
 494                /*
 495                 * Skip regions before the range to be deleted.  file_region
 496                 * ranges are normally of the form [from, to).  However, there
 497                 * may be a "placeholder" entry in the map which is of the form
 498                 * (from, to) with from == to.  Check for placeholder entries
 499                 * at the beginning of the range to be deleted.
 500                 */
 501                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502                        continue;
 503
 504                if (rg->from >= t)
 505                        break;
 506
 507                if (f > rg->from && t < rg->to) { /* Must split region */
 508                        /*
 509                         * Check for an entry in the cache before dropping
 510                         * lock and attempting allocation.
 511                         */
 512                        if (!nrg &&
 513                            resv->region_cache_count > resv->adds_in_progress) {
 514                                nrg = list_first_entry(&resv->region_cache,
 515                                                        struct file_region,
 516                                                        link);
 517                                list_del(&nrg->link);
 518                                resv->region_cache_count--;
 519                        }
 520
 521                        if (!nrg) {
 522                                spin_unlock(&resv->lock);
 523                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524                                if (!nrg)
 525                                        return -ENOMEM;
 526                                goto retry;
 527                        }
 528
 529                        del += t - f;
 530
 531                        /* New entry for end of split region */
 532                        nrg->from = t;
 533                        nrg->to = rg->to;
 534                        INIT_LIST_HEAD(&nrg->link);
 535
 536                        /* Original entry is trimmed */
 537                        rg->to = f;
 538
 539                        list_add(&nrg->link, &rg->link);
 540                        nrg = NULL;
 541                        break;
 542                }
 543
 544                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545                        del += rg->to - rg->from;
 546                        list_del(&rg->link);
 547                        kfree(rg);
 548                        continue;
 549                }
 550
 551                if (f <= rg->from) {    /* Trim beginning of region */
 552                        del += t - rg->from;
 553                        rg->from = t;
 554                } else {                /* Trim end of region */
 555                        del += rg->to - f;
 556                        rg->to = f;
 557                }
 558        }
 559
 560        spin_unlock(&resv->lock);
 561        kfree(nrg);
 562        return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576        struct hugepage_subpool *spool = subpool_inode(inode);
 577        long rsv_adjust;
 578
 579        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580        if (rsv_adjust) {
 581                struct hstate *h = hstate_inode(inode);
 582
 583                hugetlb_acct_memory(h, 1);
 584        }
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593        struct list_head *head = &resv->regions;
 594        struct file_region *rg;
 595        long chg = 0;
 596
 597        spin_lock(&resv->lock);
 598        /* Locate each segment we overlap with, and count that overlap. */
 599        list_for_each_entry(rg, head, link) {
 600                long seg_from;
 601                long seg_to;
 602
 603                if (rg->to <= f)
 604                        continue;
 605                if (rg->from >= t)
 606                        break;
 607
 608                seg_from = max(rg->from, f);
 609                seg_to = min(rg->to, t);
 610
 611                chg += seg_to - seg_from;
 612        }
 613        spin_unlock(&resv->lock);
 614
 615        return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623                        struct vm_area_struct *vma, unsigned long address)
 624{
 625        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626                        (vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630                                     unsigned long address)
 631{
 632        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642        if (vma->vm_ops && vma->vm_ops->pagesize)
 643                return vma->vm_ops->pagesize(vma);
 644        return PAGE_SIZE;
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 655{
 656        return vma_kernel_pagesize(vma);
 657}
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689        return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693                                                        unsigned long value)
 694{
 695        vma->vm_private_data = (void *)value;
 696}
 697
 698struct resv_map *resv_map_alloc(void)
 699{
 700        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703        if (!resv_map || !rg) {
 704                kfree(resv_map);
 705                kfree(rg);
 706                return NULL;
 707        }
 708
 709        kref_init(&resv_map->refs);
 710        spin_lock_init(&resv_map->lock);
 711        INIT_LIST_HEAD(&resv_map->regions);
 712
 713        resv_map->adds_in_progress = 0;
 714
 715        INIT_LIST_HEAD(&resv_map->region_cache);
 716        list_add(&rg->link, &resv_map->region_cache);
 717        resv_map->region_cache_count = 1;
 718
 719        return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725        struct list_head *head = &resv_map->region_cache;
 726        struct file_region *rg, *trg;
 727
 728        /* Clear out any active regions before we release the map. */
 729        region_del(resv_map, 0, LONG_MAX);
 730
 731        /* ... and any entries left in the cache */
 732        list_for_each_entry_safe(rg, trg, head, link) {
 733                list_del(&rg->link);
 734                kfree(rg);
 735        }
 736
 737        VM_BUG_ON(resv_map->adds_in_progress);
 738
 739        kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744        /*
 745         * At inode evict time, i_mapping may not point to the original
 746         * address space within the inode.  This original address space
 747         * contains the pointer to the resv_map.  So, always use the
 748         * address space embedded within the inode.
 749         * The VERY common case is inode->mapping == &inode->i_data but,
 750         * this may not be true for device special inodes.
 751         */
 752        return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758        if (vma->vm_flags & VM_MAYSHARE) {
 759                struct address_space *mapping = vma->vm_file->f_mapping;
 760                struct inode *inode = mapping->host;
 761
 762                return inode_resv_map(inode);
 763
 764        } else {
 765                return (struct resv_map *)(get_vma_private_data(vma) &
 766                                                        ~HPAGE_RESV_MASK);
 767        }
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775        set_vma_private_data(vma, (get_vma_private_data(vma) &
 776                                HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791        return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 796{
 797        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798        if (!(vma->vm_flags & VM_MAYSHARE))
 799                vma->vm_private_data = (void *)0;
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805        if (vma->vm_flags & VM_NORESERVE) {
 806                /*
 807                 * This address is already reserved by other process(chg == 0),
 808                 * so, we should decrement reserved count. Without decrementing,
 809                 * reserve count remains after releasing inode, because this
 810                 * allocated page will go into page cache and is regarded as
 811                 * coming from reserved pool in releasing step.  Currently, we
 812                 * don't have any other solution to deal with this situation
 813                 * properly, so add work-around here.
 814                 */
 815                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816                        return true;
 817                else
 818                        return false;
 819        }
 820
 821        /* Shared mappings always use reserves */
 822        if (vma->vm_flags & VM_MAYSHARE) {
 823                /*
 824                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825                 * be a region map for all pages.  The only situation where
 826                 * there is no region map is if a hole was punched via
 827                 * fallocate.  In this case, there really are no reverves to
 828                 * use.  This situation is indicated if chg != 0.
 829                 */
 830                if (chg)
 831                        return false;
 832                else
 833                        return true;
 834        }
 835
 836        /*
 837         * Only the process that called mmap() has reserves for
 838         * private mappings.
 839         */
 840        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841                /*
 842                 * Like the shared case above, a hole punch or truncate
 843                 * could have been performed on the private mapping.
 844                 * Examine the value of chg to determine if reserves
 845                 * actually exist or were previously consumed.
 846                 * Very Subtle - The value of chg comes from a previous
 847                 * call to vma_needs_reserves().  The reserve map for
 848                 * private mappings has different (opposite) semantics
 849                 * than that of shared mappings.  vma_needs_reserves()
 850                 * has already taken this difference in semantics into
 851                 * account.  Therefore, the meaning of chg is the same
 852                 * as in the shared case above.  Code could easily be
 853                 * combined, but keeping it separate draws attention to
 854                 * subtle differences.
 855                 */
 856                if (chg)
 857                        return false;
 858                else
 859                        return true;
 860        }
 861
 862        return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867        int nid = page_to_nid(page);
 868        list_move(&page->lru, &h->hugepage_freelists[nid]);
 869        h->free_huge_pages++;
 870        h->free_huge_pages_node[nid]++;
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 874{
 875        struct page *page;
 876
 877        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878                if (!PageHWPoison(page))
 879                        break;
 880        /*
 881         * if 'non-isolated free hugepage' not found on the list,
 882         * the allocation fails.
 883         */
 884        if (&h->hugepage_freelists[nid] == &page->lru)
 885                return NULL;
 886        list_move(&page->lru, &h->hugepage_activelist);
 887        set_page_refcounted(page);
 888        h->free_huge_pages--;
 889        h->free_huge_pages_node[nid]--;
 890        return page;
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894                nodemask_t *nmask)
 895{
 896        unsigned int cpuset_mems_cookie;
 897        struct zonelist *zonelist;
 898        struct zone *zone;
 899        struct zoneref *z;
 900        int node = NUMA_NO_NODE;
 901
 902        zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905        cpuset_mems_cookie = read_mems_allowed_begin();
 906        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907                struct page *page;
 908
 909                if (!cpuset_zone_allowed(zone, gfp_mask))
 910                        continue;
 911                /*
 912                 * no need to ask again on the same node. Pool is node rather than
 913                 * zone aware
 914                 */
 915                if (zone_to_nid(zone) == node)
 916                        continue;
 917                node = zone_to_nid(zone);
 918
 919                page = dequeue_huge_page_node_exact(h, node);
 920                if (page)
 921                        return page;
 922        }
 923        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924                goto retry_cpuset;
 925
 926        return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932        if (hugepage_movable_supported(h))
 933                return GFP_HIGHUSER_MOVABLE;
 934        else
 935                return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939                                struct vm_area_struct *vma,
 940                                unsigned long address, int avoid_reserve,
 941                                long chg)
 942{
 943        struct page *page;
 944        struct mempolicy *mpol;
 945        gfp_t gfp_mask;
 946        nodemask_t *nodemask;
 947        int nid;
 948
 949        /*
 950         * A child process with MAP_PRIVATE mappings created by their parent
 951         * have no page reserves. This check ensures that reservations are
 952         * not "stolen". The child may still get SIGKILLed
 953         */
 954        if (!vma_has_reserves(vma, chg) &&
 955                        h->free_huge_pages - h->resv_huge_pages == 0)
 956                goto err;
 957
 958        /* If reserves cannot be used, ensure enough pages are in the pool */
 959        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960                goto err;
 961
 962        gfp_mask = htlb_alloc_mask(h);
 963        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966                SetPagePrivate(page);
 967                h->resv_huge_pages--;
 968        }
 969
 970        mpol_cond_put(mpol);
 971        return page;
 972
 973err:
 974        return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986        nid = next_node_in(nid, *nodes_allowed);
 987        VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989        return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994        if (!node_isset(nid, *nodes_allowed))
 995                nid = next_node_allowed(nid, nodes_allowed);
 996        return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006                                        nodemask_t *nodes_allowed)
1007{
1008        int nid;
1009
1010        VM_BUG_ON(!nodes_allowed);
1011
1012        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015        return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026        int nid;
1027
1028        VM_BUG_ON(!nodes_allowed);
1029
1030        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033        return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1037        for (nr_nodes = nodes_weight(*mask);                            \
1038                nr_nodes > 0 &&                                         \
1039                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1040                nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1043        for (nr_nodes = nodes_weight(*mask);                            \
1044                nr_nodes > 0 &&                                         \
1045                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1046                nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050                                        unsigned int order)
1051{
1052        int i;
1053        int nr_pages = 1 << order;
1054        struct page *p = page + 1;
1055
1056        atomic_set(compound_mapcount_ptr(page), 0);
1057        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058                clear_compound_head(p);
1059                set_page_refcounted(p);
1060        }
1061
1062        set_compound_order(page, 0);
1063        __ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
1068        free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073                                unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075        unsigned long end_pfn = start_pfn + nr_pages;
1076        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077                                  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081                        unsigned long start_pfn, unsigned long nr_pages)
1082{
1083        unsigned long i, end_pfn = start_pfn + nr_pages;
1084        struct page *page;
1085
1086        for (i = start_pfn; i < end_pfn; i++) {
1087                if (!pfn_valid(i))
1088                        return false;
1089
1090                page = pfn_to_page(i);
1091
1092                if (page_zone(page) != z)
1093                        return false;
1094
1095                if (PageReserved(page))
1096                        return false;
1097
1098                if (page_count(page) > 0)
1099                        return false;
1100
1101                if (PageHuge(page))
1102                        return false;
1103        }
1104
1105        return true;
1106}
1107
1108static bool zone_spans_last_pfn(const struct zone *zone,
1109                        unsigned long start_pfn, unsigned long nr_pages)
1110{
1111        unsigned long last_pfn = start_pfn + nr_pages - 1;
1112        return zone_spans_pfn(zone, last_pfn);
1113}
1114
1115static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116                int nid, nodemask_t *nodemask)
1117{
1118        unsigned int order = huge_page_order(h);
1119        unsigned long nr_pages = 1 << order;
1120        unsigned long ret, pfn, flags;
1121        struct zonelist *zonelist;
1122        struct zone *zone;
1123        struct zoneref *z;
1124
1125        zonelist = node_zonelist(nid, gfp_mask);
1126        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127                spin_lock_irqsave(&zone->lock, flags);
1128
1129                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132                                /*
1133                                 * We release the zone lock here because
1134                                 * alloc_contig_range() will also lock the zone
1135                                 * at some point. If there's an allocation
1136                                 * spinning on this lock, it may win the race
1137                                 * and cause alloc_contig_range() to fail...
1138                                 */
1139                                spin_unlock_irqrestore(&zone->lock, flags);
1140                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141                                if (!ret)
1142                                        return pfn_to_page(pfn);
1143                                spin_lock_irqsave(&zone->lock, flags);
1144                        }
1145                        pfn += nr_pages;
1146                }
1147
1148                spin_unlock_irqrestore(&zone->lock, flags);
1149        }
1150
1151        return NULL;
1152}
1153
1154static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156#else /* !CONFIG_CONTIG_ALLOC */
1157static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158                                        int nid, nodemask_t *nodemask)
1159{
1160        return NULL;
1161}
1162#endif /* CONFIG_CONTIG_ALLOC */
1163
1164#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166                                        int nid, nodemask_t *nodemask)
1167{
1168        return NULL;
1169}
1170static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171static inline void destroy_compound_gigantic_page(struct page *page,
1172                                                unsigned int order) { }
1173#endif
1174
1175static void update_and_free_page(struct hstate *h, struct page *page)
1176{
1177        int i;
1178
1179        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180                return;
1181
1182        h->nr_huge_pages--;
1183        h->nr_huge_pages_node[page_to_nid(page)]--;
1184        for (i = 0; i < pages_per_huge_page(h); i++) {
1185                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186                                1 << PG_referenced | 1 << PG_dirty |
1187                                1 << PG_active | 1 << PG_private |
1188                                1 << PG_writeback);
1189        }
1190        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192        set_page_refcounted(page);
1193        if (hstate_is_gigantic(h)) {
1194                destroy_compound_gigantic_page(page, huge_page_order(h));
1195                free_gigantic_page(page, huge_page_order(h));
1196        } else {
1197                __free_pages(page, huge_page_order(h));
1198        }
1199}
1200
1201struct hstate *size_to_hstate(unsigned long size)
1202{
1203        struct hstate *h;
1204
1205        for_each_hstate(h) {
1206                if (huge_page_size(h) == size)
1207                        return h;
1208        }
1209        return NULL;
1210}
1211
1212/*
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1215 *
1216 * This function can be called for tail pages, but never returns true for them.
1217 */
1218bool page_huge_active(struct page *page)
1219{
1220        VM_BUG_ON_PAGE(!PageHuge(page), page);
1221        return PageHead(page) && PagePrivate(&page[1]);
1222}
1223
1224/* never called for tail page */
1225static void set_page_huge_active(struct page *page)
1226{
1227        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228        SetPagePrivate(&page[1]);
1229}
1230
1231static void clear_page_huge_active(struct page *page)
1232{
1233        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234        ClearPagePrivate(&page[1]);
1235}
1236
1237/*
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1240 */
1241static inline bool PageHugeTemporary(struct page *page)
1242{
1243        if (!PageHuge(page))
1244                return false;
1245
1246        return (unsigned long)page[2].mapping == -1U;
1247}
1248
1249static inline void SetPageHugeTemporary(struct page *page)
1250{
1251        page[2].mapping = (void *)-1U;
1252}
1253
1254static inline void ClearPageHugeTemporary(struct page *page)
1255{
1256        page[2].mapping = NULL;
1257}
1258
1259void free_huge_page(struct page *page)
1260{
1261        /*
1262         * Can't pass hstate in here because it is called from the
1263         * compound page destructor.
1264         */
1265        struct hstate *h = page_hstate(page);
1266        int nid = page_to_nid(page);
1267        struct hugepage_subpool *spool =
1268                (struct hugepage_subpool *)page_private(page);
1269        bool restore_reserve;
1270
1271        VM_BUG_ON_PAGE(page_count(page), page);
1272        VM_BUG_ON_PAGE(page_mapcount(page), page);
1273
1274        set_page_private(page, 0);
1275        page->mapping = NULL;
1276        restore_reserve = PagePrivate(page);
1277        ClearPagePrivate(page);
1278
1279        /*
1280         * If PagePrivate() was set on page, page allocation consumed a
1281         * reservation.  If the page was associated with a subpool, there
1282         * would have been a page reserved in the subpool before allocation
1283         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1284         * reservtion, do not call hugepage_subpool_put_pages() as this will
1285         * remove the reserved page from the subpool.
1286         */
1287        if (!restore_reserve) {
1288                /*
1289                 * A return code of zero implies that the subpool will be
1290                 * under its minimum size if the reservation is not restored
1291                 * after page is free.  Therefore, force restore_reserve
1292                 * operation.
1293                 */
1294                if (hugepage_subpool_put_pages(spool, 1) == 0)
1295                        restore_reserve = true;
1296        }
1297
1298        spin_lock(&hugetlb_lock);
1299        clear_page_huge_active(page);
1300        hugetlb_cgroup_uncharge_page(hstate_index(h),
1301                                     pages_per_huge_page(h), page);
1302        if (restore_reserve)
1303                h->resv_huge_pages++;
1304
1305        if (PageHugeTemporary(page)) {
1306                list_del(&page->lru);
1307                ClearPageHugeTemporary(page);
1308                update_and_free_page(h, page);
1309        } else if (h->surplus_huge_pages_node[nid]) {
1310                /* remove the page from active list */
1311                list_del(&page->lru);
1312                update_and_free_page(h, page);
1313                h->surplus_huge_pages--;
1314                h->surplus_huge_pages_node[nid]--;
1315        } else {
1316                arch_clear_hugepage_flags(page);
1317                enqueue_huge_page(h, page);
1318        }
1319        spin_unlock(&hugetlb_lock);
1320}
1321
1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1323{
1324        INIT_LIST_HEAD(&page->lru);
1325        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326        spin_lock(&hugetlb_lock);
1327        set_hugetlb_cgroup(page, NULL);
1328        h->nr_huge_pages++;
1329        h->nr_huge_pages_node[nid]++;
1330        spin_unlock(&hugetlb_lock);
1331}
1332
1333static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1334{
1335        int i;
1336        int nr_pages = 1 << order;
1337        struct page *p = page + 1;
1338
1339        /* we rely on prep_new_huge_page to set the destructor */
1340        set_compound_order(page, order);
1341        __ClearPageReserved(page);
1342        __SetPageHead(page);
1343        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1344                /*
1345                 * For gigantic hugepages allocated through bootmem at
1346                 * boot, it's safer to be consistent with the not-gigantic
1347                 * hugepages and clear the PG_reserved bit from all tail pages
1348                 * too.  Otherwse drivers using get_user_pages() to access tail
1349                 * pages may get the reference counting wrong if they see
1350                 * PG_reserved set on a tail page (despite the head page not
1351                 * having PG_reserved set).  Enforcing this consistency between
1352                 * head and tail pages allows drivers to optimize away a check
1353                 * on the head page when they need know if put_page() is needed
1354                 * after get_user_pages().
1355                 */
1356                __ClearPageReserved(p);
1357                set_page_count(p, 0);
1358                set_compound_head(p, page);
1359        }
1360        atomic_set(compound_mapcount_ptr(page), -1);
1361}
1362
1363/*
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages.  See the PageTransHuge() documentation for more
1366 * details.
1367 */
1368int PageHuge(struct page *page)
1369{
1370        if (!PageCompound(page))
1371                return 0;
1372
1373        page = compound_head(page);
1374        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1375}
1376EXPORT_SYMBOL_GPL(PageHuge);
1377
1378/*
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1381 */
1382int PageHeadHuge(struct page *page_head)
1383{
1384        if (!PageHead(page_head))
1385                return 0;
1386
1387        return get_compound_page_dtor(page_head) == free_huge_page;
1388}
1389
1390pgoff_t __basepage_index(struct page *page)
1391{
1392        struct page *page_head = compound_head(page);
1393        pgoff_t index = page_index(page_head);
1394        unsigned long compound_idx;
1395
1396        if (!PageHuge(page_head))
1397                return page_index(page);
1398
1399        if (compound_order(page_head) >= MAX_ORDER)
1400                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401        else
1402                compound_idx = page - page_head;
1403
1404        return (index << compound_order(page_head)) + compound_idx;
1405}
1406
1407static struct page *alloc_buddy_huge_page(struct hstate *h,
1408                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409{
1410        int order = huge_page_order(h);
1411        struct page *page;
1412
1413        gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414        if (nid == NUMA_NO_NODE)
1415                nid = numa_mem_id();
1416        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417        if (page)
1418                __count_vm_event(HTLB_BUDDY_PGALLOC);
1419        else
1420                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1421
1422        return page;
1423}
1424
1425/*
1426 * Common helper to allocate a fresh hugetlb page. All specific allocators
1427 * should use this function to get new hugetlb pages
1428 */
1429static struct page *alloc_fresh_huge_page(struct hstate *h,
1430                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1431{
1432        struct page *page;
1433
1434        if (hstate_is_gigantic(h))
1435                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436        else
1437                page = alloc_buddy_huge_page(h, gfp_mask,
1438                                nid, nmask);
1439        if (!page)
1440                return NULL;
1441
1442        if (hstate_is_gigantic(h))
1443                prep_compound_gigantic_page(page, huge_page_order(h));
1444        prep_new_huge_page(h, page, page_to_nid(page));
1445
1446        return page;
1447}
1448
1449/*
1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451 * manner.
1452 */
1453static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1454{
1455        struct page *page;
1456        int nr_nodes, node;
1457        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1458
1459        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1461                if (page)
1462                        break;
1463        }
1464
1465        if (!page)
1466                return 0;
1467
1468        put_page(page); /* free it into the hugepage allocator */
1469
1470        return 1;
1471}
1472
1473/*
1474 * Free huge page from pool from next node to free.
1475 * Attempt to keep persistent huge pages more or less
1476 * balanced over allowed nodes.
1477 * Called with hugetlb_lock locked.
1478 */
1479static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480                                                         bool acct_surplus)
1481{
1482        int nr_nodes, node;
1483        int ret = 0;
1484
1485        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1486                /*
1487                 * If we're returning unused surplus pages, only examine
1488                 * nodes with surplus pages.
1489                 */
1490                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491                    !list_empty(&h->hugepage_freelists[node])) {
1492                        struct page *page =
1493                                list_entry(h->hugepage_freelists[node].next,
1494                                          struct page, lru);
1495                        list_del(&page->lru);
1496                        h->free_huge_pages--;
1497                        h->free_huge_pages_node[node]--;
1498                        if (acct_surplus) {
1499                                h->surplus_huge_pages--;
1500                                h->surplus_huge_pages_node[node]--;
1501                        }
1502                        update_and_free_page(h, page);
1503                        ret = 1;
1504                        break;
1505                }
1506        }
1507
1508        return ret;
1509}
1510
1511/*
1512 * Dissolve a given free hugepage into free buddy pages. This function does
1513 * nothing for in-use hugepages and non-hugepages.
1514 * This function returns values like below:
1515 *
1516 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1517 *          (allocated or reserved.)
1518 *       0: successfully dissolved free hugepages or the page is not a
1519 *          hugepage (considered as already dissolved)
1520 */
1521int dissolve_free_huge_page(struct page *page)
1522{
1523        int rc = -EBUSY;
1524
1525        /* Not to disrupt normal path by vainly holding hugetlb_lock */
1526        if (!PageHuge(page))
1527                return 0;
1528
1529        spin_lock(&hugetlb_lock);
1530        if (!PageHuge(page)) {
1531                rc = 0;
1532                goto out;
1533        }
1534
1535        if (!page_count(page)) {
1536                struct page *head = compound_head(page);
1537                struct hstate *h = page_hstate(head);
1538                int nid = page_to_nid(head);
1539                if (h->free_huge_pages - h->resv_huge_pages == 0)
1540                        goto out;
1541                /*
1542                 * Move PageHWPoison flag from head page to the raw error page,
1543                 * which makes any subpages rather than the error page reusable.
1544                 */
1545                if (PageHWPoison(head) && page != head) {
1546                        SetPageHWPoison(page);
1547                        ClearPageHWPoison(head);
1548                }
1549                list_del(&head->lru);
1550                h->free_huge_pages--;
1551                h->free_huge_pages_node[nid]--;
1552                h->max_huge_pages--;
1553                update_and_free_page(h, head);
1554                rc = 0;
1555        }
1556out:
1557        spin_unlock(&hugetlb_lock);
1558        return rc;
1559}
1560
1561/*
1562 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1563 * make specified memory blocks removable from the system.
1564 * Note that this will dissolve a free gigantic hugepage completely, if any
1565 * part of it lies within the given range.
1566 * Also note that if dissolve_free_huge_page() returns with an error, all
1567 * free hugepages that were dissolved before that error are lost.
1568 */
1569int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1570{
1571        unsigned long pfn;
1572        struct page *page;
1573        int rc = 0;
1574
1575        if (!hugepages_supported())
1576                return rc;
1577
1578        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1579                page = pfn_to_page(pfn);
1580                rc = dissolve_free_huge_page(page);
1581                if (rc)
1582                        break;
1583        }
1584
1585        return rc;
1586}
1587
1588/*
1589 * Allocates a fresh surplus page from the page allocator.
1590 */
1591static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1592                int nid, nodemask_t *nmask)
1593{
1594        struct page *page = NULL;
1595
1596        if (hstate_is_gigantic(h))
1597                return NULL;
1598
1599        spin_lock(&hugetlb_lock);
1600        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1601                goto out_unlock;
1602        spin_unlock(&hugetlb_lock);
1603
1604        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605        if (!page)
1606                return NULL;
1607
1608        spin_lock(&hugetlb_lock);
1609        /*
1610         * We could have raced with the pool size change.
1611         * Double check that and simply deallocate the new page
1612         * if we would end up overcommiting the surpluses. Abuse
1613         * temporary page to workaround the nasty free_huge_page
1614         * codeflow
1615         */
1616        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617                SetPageHugeTemporary(page);
1618                spin_unlock(&hugetlb_lock);
1619                put_page(page);
1620                return NULL;
1621        } else {
1622                h->surplus_huge_pages++;
1623                h->surplus_huge_pages_node[page_to_nid(page)]++;
1624        }
1625
1626out_unlock:
1627        spin_unlock(&hugetlb_lock);
1628
1629        return page;
1630}
1631
1632struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1633                                     int nid, nodemask_t *nmask)
1634{
1635        struct page *page;
1636
1637        if (hstate_is_gigantic(h))
1638                return NULL;
1639
1640        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1641        if (!page)
1642                return NULL;
1643
1644        /*
1645         * We do not account these pages as surplus because they are only
1646         * temporary and will be released properly on the last reference
1647         */
1648        SetPageHugeTemporary(page);
1649
1650        return page;
1651}
1652
1653/*
1654 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1655 */
1656static
1657struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1658                struct vm_area_struct *vma, unsigned long addr)
1659{
1660        struct page *page;
1661        struct mempolicy *mpol;
1662        gfp_t gfp_mask = htlb_alloc_mask(h);
1663        int nid;
1664        nodemask_t *nodemask;
1665
1666        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1667        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1668        mpol_cond_put(mpol);
1669
1670        return page;
1671}
1672
1673/* page migration callback function */
1674struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675{
1676        gfp_t gfp_mask = htlb_alloc_mask(h);
1677        struct page *page = NULL;
1678
1679        if (nid != NUMA_NO_NODE)
1680                gfp_mask |= __GFP_THISNODE;
1681
1682        spin_lock(&hugetlb_lock);
1683        if (h->free_huge_pages - h->resv_huge_pages > 0)
1684                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1685        spin_unlock(&hugetlb_lock);
1686
1687        if (!page)
1688                page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1689
1690        return page;
1691}
1692
1693/* page migration callback function */
1694struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1695                nodemask_t *nmask)
1696{
1697        gfp_t gfp_mask = htlb_alloc_mask(h);
1698
1699        spin_lock(&hugetlb_lock);
1700        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1701                struct page *page;
1702
1703                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1704                if (page) {
1705                        spin_unlock(&hugetlb_lock);
1706                        return page;
1707                }
1708        }
1709        spin_unlock(&hugetlb_lock);
1710
1711        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1712}
1713
1714/* mempolicy aware migration callback */
1715struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1716                unsigned long address)
1717{
1718        struct mempolicy *mpol;
1719        nodemask_t *nodemask;
1720        struct page *page;
1721        gfp_t gfp_mask;
1722        int node;
1723
1724        gfp_mask = htlb_alloc_mask(h);
1725        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1726        page = alloc_huge_page_nodemask(h, node, nodemask);
1727        mpol_cond_put(mpol);
1728
1729        return page;
1730}
1731
1732/*
1733 * Increase the hugetlb pool such that it can accommodate a reservation
1734 * of size 'delta'.
1735 */
1736static int gather_surplus_pages(struct hstate *h, int delta)
1737{
1738        struct list_head surplus_list;
1739        struct page *page, *tmp;
1740        int ret, i;
1741        int needed, allocated;
1742        bool alloc_ok = true;
1743
1744        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1745        if (needed <= 0) {
1746                h->resv_huge_pages += delta;
1747                return 0;
1748        }
1749
1750        allocated = 0;
1751        INIT_LIST_HEAD(&surplus_list);
1752
1753        ret = -ENOMEM;
1754retry:
1755        spin_unlock(&hugetlb_lock);
1756        for (i = 0; i < needed; i++) {
1757                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1758                                NUMA_NO_NODE, NULL);
1759                if (!page) {
1760                        alloc_ok = false;
1761                        break;
1762                }
1763                list_add(&page->lru, &surplus_list);
1764                cond_resched();
1765        }
1766        allocated += i;
1767
1768        /*
1769         * After retaking hugetlb_lock, we need to recalculate 'needed'
1770         * because either resv_huge_pages or free_huge_pages may have changed.
1771         */
1772        spin_lock(&hugetlb_lock);
1773        needed = (h->resv_huge_pages + delta) -
1774                        (h->free_huge_pages + allocated);
1775        if (needed > 0) {
1776                if (alloc_ok)
1777                        goto retry;
1778                /*
1779                 * We were not able to allocate enough pages to
1780                 * satisfy the entire reservation so we free what
1781                 * we've allocated so far.
1782                 */
1783                goto free;
1784        }
1785        /*
1786         * The surplus_list now contains _at_least_ the number of extra pages
1787         * needed to accommodate the reservation.  Add the appropriate number
1788         * of pages to the hugetlb pool and free the extras back to the buddy
1789         * allocator.  Commit the entire reservation here to prevent another
1790         * process from stealing the pages as they are added to the pool but
1791         * before they are reserved.
1792         */
1793        needed += allocated;
1794        h->resv_huge_pages += delta;
1795        ret = 0;
1796
1797        /* Free the needed pages to the hugetlb pool */
1798        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1799                if ((--needed) < 0)
1800                        break;
1801                /*
1802                 * This page is now managed by the hugetlb allocator and has
1803                 * no users -- drop the buddy allocator's reference.
1804                 */
1805                put_page_testzero(page);
1806                VM_BUG_ON_PAGE(page_count(page), page);
1807                enqueue_huge_page(h, page);
1808        }
1809free:
1810        spin_unlock(&hugetlb_lock);
1811
1812        /* Free unnecessary surplus pages to the buddy allocator */
1813        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1814                put_page(page);
1815        spin_lock(&hugetlb_lock);
1816
1817        return ret;
1818}
1819
1820/*
1821 * This routine has two main purposes:
1822 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1823 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1824 *    to the associated reservation map.
1825 * 2) Free any unused surplus pages that may have been allocated to satisfy
1826 *    the reservation.  As many as unused_resv_pages may be freed.
1827 *
1828 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1829 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1830 * we must make sure nobody else can claim pages we are in the process of
1831 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1832 * number of huge pages we plan to free when dropping the lock.
1833 */
1834static void return_unused_surplus_pages(struct hstate *h,
1835                                        unsigned long unused_resv_pages)
1836{
1837        unsigned long nr_pages;
1838
1839        /* Cannot return gigantic pages currently */
1840        if (hstate_is_gigantic(h))
1841                goto out;
1842
1843        /*
1844         * Part (or even all) of the reservation could have been backed
1845         * by pre-allocated pages. Only free surplus pages.
1846         */
1847        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1848
1849        /*
1850         * We want to release as many surplus pages as possible, spread
1851         * evenly across all nodes with memory. Iterate across these nodes
1852         * until we can no longer free unreserved surplus pages. This occurs
1853         * when the nodes with surplus pages have no free pages.
1854         * free_pool_huge_page() will balance the the freed pages across the
1855         * on-line nodes with memory and will handle the hstate accounting.
1856         *
1857         * Note that we decrement resv_huge_pages as we free the pages.  If
1858         * we drop the lock, resv_huge_pages will still be sufficiently large
1859         * to cover subsequent pages we may free.
1860         */
1861        while (nr_pages--) {
1862                h->resv_huge_pages--;
1863                unused_resv_pages--;
1864                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1865                        goto out;
1866                cond_resched_lock(&hugetlb_lock);
1867        }
1868
1869out:
1870        /* Fully uncommit the reservation */
1871        h->resv_huge_pages -= unused_resv_pages;
1872}
1873
1874
1875/*
1876 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1877 * are used by the huge page allocation routines to manage reservations.
1878 *
1879 * vma_needs_reservation is called to determine if the huge page at addr
1880 * within the vma has an associated reservation.  If a reservation is
1881 * needed, the value 1 is returned.  The caller is then responsible for
1882 * managing the global reservation and subpool usage counts.  After
1883 * the huge page has been allocated, vma_commit_reservation is called
1884 * to add the page to the reservation map.  If the page allocation fails,
1885 * the reservation must be ended instead of committed.  vma_end_reservation
1886 * is called in such cases.
1887 *
1888 * In the normal case, vma_commit_reservation returns the same value
1889 * as the preceding vma_needs_reservation call.  The only time this
1890 * is not the case is if a reserve map was changed between calls.  It
1891 * is the responsibility of the caller to notice the difference and
1892 * take appropriate action.
1893 *
1894 * vma_add_reservation is used in error paths where a reservation must
1895 * be restored when a newly allocated huge page must be freed.  It is
1896 * to be called after calling vma_needs_reservation to determine if a
1897 * reservation exists.
1898 */
1899enum vma_resv_mode {
1900        VMA_NEEDS_RESV,
1901        VMA_COMMIT_RESV,
1902        VMA_END_RESV,
1903        VMA_ADD_RESV,
1904};
1905static long __vma_reservation_common(struct hstate *h,
1906                                struct vm_area_struct *vma, unsigned long addr,
1907                                enum vma_resv_mode mode)
1908{
1909        struct resv_map *resv;
1910        pgoff_t idx;
1911        long ret;
1912
1913        resv = vma_resv_map(vma);
1914        if (!resv)
1915                return 1;
1916
1917        idx = vma_hugecache_offset(h, vma, addr);
1918        switch (mode) {
1919        case VMA_NEEDS_RESV:
1920                ret = region_chg(resv, idx, idx + 1);
1921                break;
1922        case VMA_COMMIT_RESV:
1923                ret = region_add(resv, idx, idx + 1);
1924                break;
1925        case VMA_END_RESV:
1926                region_abort(resv, idx, idx + 1);
1927                ret = 0;
1928                break;
1929        case VMA_ADD_RESV:
1930                if (vma->vm_flags & VM_MAYSHARE)
1931                        ret = region_add(resv, idx, idx + 1);
1932                else {
1933                        region_abort(resv, idx, idx + 1);
1934                        ret = region_del(resv, idx, idx + 1);
1935                }
1936                break;
1937        default:
1938                BUG();
1939        }
1940
1941        if (vma->vm_flags & VM_MAYSHARE)
1942                return ret;
1943        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1944                /*
1945                 * In most cases, reserves always exist for private mappings.
1946                 * However, a file associated with mapping could have been
1947                 * hole punched or truncated after reserves were consumed.
1948                 * As subsequent fault on such a range will not use reserves.
1949                 * Subtle - The reserve map for private mappings has the
1950                 * opposite meaning than that of shared mappings.  If NO
1951                 * entry is in the reserve map, it means a reservation exists.
1952                 * If an entry exists in the reserve map, it means the
1953                 * reservation has already been consumed.  As a result, the
1954                 * return value of this routine is the opposite of the
1955                 * value returned from reserve map manipulation routines above.
1956                 */
1957                if (ret)
1958                        return 0;
1959                else
1960                        return 1;
1961        }
1962        else
1963                return ret < 0 ? ret : 0;
1964}
1965
1966static long vma_needs_reservation(struct hstate *h,
1967                        struct vm_area_struct *vma, unsigned long addr)
1968{
1969        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1970}
1971
1972static long vma_commit_reservation(struct hstate *h,
1973                        struct vm_area_struct *vma, unsigned long addr)
1974{
1975        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1976}
1977
1978static void vma_end_reservation(struct hstate *h,
1979                        struct vm_area_struct *vma, unsigned long addr)
1980{
1981        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1982}
1983
1984static long vma_add_reservation(struct hstate *h,
1985                        struct vm_area_struct *vma, unsigned long addr)
1986{
1987        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1988}
1989
1990/*
1991 * This routine is called to restore a reservation on error paths.  In the
1992 * specific error paths, a huge page was allocated (via alloc_huge_page)
1993 * and is about to be freed.  If a reservation for the page existed,
1994 * alloc_huge_page would have consumed the reservation and set PagePrivate
1995 * in the newly allocated page.  When the page is freed via free_huge_page,
1996 * the global reservation count will be incremented if PagePrivate is set.
1997 * However, free_huge_page can not adjust the reserve map.  Adjust the
1998 * reserve map here to be consistent with global reserve count adjustments
1999 * to be made by free_huge_page.
2000 */
2001static void restore_reserve_on_error(struct hstate *h,
2002                        struct vm_area_struct *vma, unsigned long address,
2003                        struct page *page)
2004{
2005        if (unlikely(PagePrivate(page))) {
2006                long rc = vma_needs_reservation(h, vma, address);
2007
2008                if (unlikely(rc < 0)) {
2009                        /*
2010                         * Rare out of memory condition in reserve map
2011                         * manipulation.  Clear PagePrivate so that
2012                         * global reserve count will not be incremented
2013                         * by free_huge_page.  This will make it appear
2014                         * as though the reservation for this page was
2015                         * consumed.  This may prevent the task from
2016                         * faulting in the page at a later time.  This
2017                         * is better than inconsistent global huge page
2018                         * accounting of reserve counts.
2019                         */
2020                        ClearPagePrivate(page);
2021                } else if (rc) {
2022                        rc = vma_add_reservation(h, vma, address);
2023                        if (unlikely(rc < 0))
2024                                /*
2025                                 * See above comment about rare out of
2026                                 * memory condition.
2027                                 */
2028                                ClearPagePrivate(page);
2029                } else
2030                        vma_end_reservation(h, vma, address);
2031        }
2032}
2033
2034struct page *alloc_huge_page(struct vm_area_struct *vma,
2035                                    unsigned long addr, int avoid_reserve)
2036{
2037        struct hugepage_subpool *spool = subpool_vma(vma);
2038        struct hstate *h = hstate_vma(vma);
2039        struct page *page;
2040        long map_chg, map_commit;
2041        long gbl_chg;
2042        int ret, idx;
2043        struct hugetlb_cgroup *h_cg;
2044
2045        idx = hstate_index(h);
2046        /*
2047         * Examine the region/reserve map to determine if the process
2048         * has a reservation for the page to be allocated.  A return
2049         * code of zero indicates a reservation exists (no change).
2050         */
2051        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2052        if (map_chg < 0)
2053                return ERR_PTR(-ENOMEM);
2054
2055        /*
2056         * Processes that did not create the mapping will have no
2057         * reserves as indicated by the region/reserve map. Check
2058         * that the allocation will not exceed the subpool limit.
2059         * Allocations for MAP_NORESERVE mappings also need to be
2060         * checked against any subpool limit.
2061         */
2062        if (map_chg || avoid_reserve) {
2063                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2064                if (gbl_chg < 0) {
2065                        vma_end_reservation(h, vma, addr);
2066                        return ERR_PTR(-ENOSPC);
2067                }
2068
2069                /*
2070                 * Even though there was no reservation in the region/reserve
2071                 * map, there could be reservations associated with the
2072                 * subpool that can be used.  This would be indicated if the
2073                 * return value of hugepage_subpool_get_pages() is zero.
2074                 * However, if avoid_reserve is specified we still avoid even
2075                 * the subpool reservations.
2076                 */
2077                if (avoid_reserve)
2078                        gbl_chg = 1;
2079        }
2080
2081        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2082        if (ret)
2083                goto out_subpool_put;
2084
2085        spin_lock(&hugetlb_lock);
2086        /*
2087         * glb_chg is passed to indicate whether or not a page must be taken
2088         * from the global free pool (global change).  gbl_chg == 0 indicates
2089         * a reservation exists for the allocation.
2090         */
2091        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2092        if (!page) {
2093                spin_unlock(&hugetlb_lock);
2094                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2095                if (!page)
2096                        goto out_uncharge_cgroup;
2097                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2098                        SetPagePrivate(page);
2099                        h->resv_huge_pages--;
2100                }
2101                spin_lock(&hugetlb_lock);
2102                list_move(&page->lru, &h->hugepage_activelist);
2103                /* Fall through */
2104        }
2105        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2106        spin_unlock(&hugetlb_lock);
2107
2108        set_page_private(page, (unsigned long)spool);
2109
2110        map_commit = vma_commit_reservation(h, vma, addr);
2111        if (unlikely(map_chg > map_commit)) {
2112                /*
2113                 * The page was added to the reservation map between
2114                 * vma_needs_reservation and vma_commit_reservation.
2115                 * This indicates a race with hugetlb_reserve_pages.
2116                 * Adjust for the subpool count incremented above AND
2117                 * in hugetlb_reserve_pages for the same page.  Also,
2118                 * the reservation count added in hugetlb_reserve_pages
2119                 * no longer applies.
2120                 */
2121                long rsv_adjust;
2122
2123                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2124                hugetlb_acct_memory(h, -rsv_adjust);
2125        }
2126        return page;
2127
2128out_uncharge_cgroup:
2129        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2130out_subpool_put:
2131        if (map_chg || avoid_reserve)
2132                hugepage_subpool_put_pages(spool, 1);
2133        vma_end_reservation(h, vma, addr);
2134        return ERR_PTR(-ENOSPC);
2135}
2136
2137int alloc_bootmem_huge_page(struct hstate *h)
2138        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2139int __alloc_bootmem_huge_page(struct hstate *h)
2140{
2141        struct huge_bootmem_page *m;
2142        int nr_nodes, node;
2143
2144        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2145                void *addr;
2146
2147                addr = memblock_alloc_try_nid_raw(
2148                                huge_page_size(h), huge_page_size(h),
2149                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2150                if (addr) {
2151                        /*
2152                         * Use the beginning of the huge page to store the
2153                         * huge_bootmem_page struct (until gather_bootmem
2154                         * puts them into the mem_map).
2155                         */
2156                        m = addr;
2157                        goto found;
2158                }
2159        }
2160        return 0;
2161
2162found:
2163        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2164        /* Put them into a private list first because mem_map is not up yet */
2165        INIT_LIST_HEAD(&m->list);
2166        list_add(&m->list, &huge_boot_pages);
2167        m->hstate = h;
2168        return 1;
2169}
2170
2171static void __init prep_compound_huge_page(struct page *page,
2172                unsigned int order)
2173{
2174        if (unlikely(order > (MAX_ORDER - 1)))
2175                prep_compound_gigantic_page(page, order);
2176        else
2177                prep_compound_page(page, order);
2178}
2179
2180/* Put bootmem huge pages into the standard lists after mem_map is up */
2181static void __init gather_bootmem_prealloc(void)
2182{
2183        struct huge_bootmem_page *m;
2184
2185        list_for_each_entry(m, &huge_boot_pages, list) {
2186                struct page *page = virt_to_page(m);
2187                struct hstate *h = m->hstate;
2188
2189                WARN_ON(page_count(page) != 1);
2190                prep_compound_huge_page(page, h->order);
2191                WARN_ON(PageReserved(page));
2192                prep_new_huge_page(h, page, page_to_nid(page));
2193                put_page(page); /* free it into the hugepage allocator */
2194
2195                /*
2196                 * If we had gigantic hugepages allocated at boot time, we need
2197                 * to restore the 'stolen' pages to totalram_pages in order to
2198                 * fix confusing memory reports from free(1) and another
2199                 * side-effects, like CommitLimit going negative.
2200                 */
2201                if (hstate_is_gigantic(h))
2202                        adjust_managed_page_count(page, 1 << h->order);
2203                cond_resched();
2204        }
2205}
2206
2207static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2208{
2209        unsigned long i;
2210
2211        for (i = 0; i < h->max_huge_pages; ++i) {
2212                if (hstate_is_gigantic(h)) {
2213                        if (!alloc_bootmem_huge_page(h))
2214                                break;
2215                } else if (!alloc_pool_huge_page(h,
2216                                         &node_states[N_MEMORY]))
2217                        break;
2218                cond_resched();
2219        }
2220        if (i < h->max_huge_pages) {
2221                char buf[32];
2222
2223                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2224                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2225                        h->max_huge_pages, buf, i);
2226                h->max_huge_pages = i;
2227        }
2228}
2229
2230static void __init hugetlb_init_hstates(void)
2231{
2232        struct hstate *h;
2233
2234        for_each_hstate(h) {
2235                if (minimum_order > huge_page_order(h))
2236                        minimum_order = huge_page_order(h);
2237
2238                /* oversize hugepages were init'ed in early boot */
2239                if (!hstate_is_gigantic(h))
2240                        hugetlb_hstate_alloc_pages(h);
2241        }
2242        VM_BUG_ON(minimum_order == UINT_MAX);
2243}
2244
2245static void __init report_hugepages(void)
2246{
2247        struct hstate *h;
2248
2249        for_each_hstate(h) {
2250                char buf[32];
2251
2252                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2253                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2254                        buf, h->free_huge_pages);
2255        }
2256}
2257
2258#ifdef CONFIG_HIGHMEM
2259static void try_to_free_low(struct hstate *h, unsigned long count,
2260                                                nodemask_t *nodes_allowed)
2261{
2262        int i;
2263
2264        if (hstate_is_gigantic(h))
2265                return;
2266
2267        for_each_node_mask(i, *nodes_allowed) {
2268                struct page *page, *next;
2269                struct list_head *freel = &h->hugepage_freelists[i];
2270                list_for_each_entry_safe(page, next, freel, lru) {
2271                        if (count >= h->nr_huge_pages)
2272                                return;
2273                        if (PageHighMem(page))
2274                                continue;
2275                        list_del(&page->lru);
2276                        update_and_free_page(h, page);
2277                        h->free_huge_pages--;
2278                        h->free_huge_pages_node[page_to_nid(page)]--;
2279                }
2280        }
2281}
2282#else
2283static inline void try_to_free_low(struct hstate *h, unsigned long count,
2284                                                nodemask_t *nodes_allowed)
2285{
2286}
2287#endif
2288
2289/*
2290 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2291 * balanced by operating on them in a round-robin fashion.
2292 * Returns 1 if an adjustment was made.
2293 */
2294static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2295                                int delta)
2296{
2297        int nr_nodes, node;
2298
2299        VM_BUG_ON(delta != -1 && delta != 1);
2300
2301        if (delta < 0) {
2302                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2303                        if (h->surplus_huge_pages_node[node])
2304                                goto found;
2305                }
2306        } else {
2307                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2308                        if (h->surplus_huge_pages_node[node] <
2309                                        h->nr_huge_pages_node[node])
2310                                goto found;
2311                }
2312        }
2313        return 0;
2314
2315found:
2316        h->surplus_huge_pages += delta;
2317        h->surplus_huge_pages_node[node] += delta;
2318        return 1;
2319}
2320
2321#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2322static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2323                              nodemask_t *nodes_allowed)
2324{
2325        unsigned long min_count, ret;
2326
2327        spin_lock(&hugetlb_lock);
2328
2329        /*
2330         * Check for a node specific request.
2331         * Changing node specific huge page count may require a corresponding
2332         * change to the global count.  In any case, the passed node mask
2333         * (nodes_allowed) will restrict alloc/free to the specified node.
2334         */
2335        if (nid != NUMA_NO_NODE) {
2336                unsigned long old_count = count;
2337
2338                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339                /*
2340                 * User may have specified a large count value which caused the
2341                 * above calculation to overflow.  In this case, they wanted
2342                 * to allocate as many huge pages as possible.  Set count to
2343                 * largest possible value to align with their intention.
2344                 */
2345                if (count < old_count)
2346                        count = ULONG_MAX;
2347        }
2348
2349        /*
2350         * Gigantic pages runtime allocation depend on the capability for large
2351         * page range allocation.
2352         * If the system does not provide this feature, return an error when
2353         * the user tries to allocate gigantic pages but let the user free the
2354         * boottime allocated gigantic pages.
2355         */
2356        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2357                if (count > persistent_huge_pages(h)) {
2358                        spin_unlock(&hugetlb_lock);
2359                        return -EINVAL;
2360                }
2361                /* Fall through to decrease pool */
2362        }
2363
2364        /*
2365         * Increase the pool size
2366         * First take pages out of surplus state.  Then make up the
2367         * remaining difference by allocating fresh huge pages.
2368         *
2369         * We might race with alloc_surplus_huge_page() here and be unable
2370         * to convert a surplus huge page to a normal huge page. That is
2371         * not critical, though, it just means the overall size of the
2372         * pool might be one hugepage larger than it needs to be, but
2373         * within all the constraints specified by the sysctls.
2374         */
2375        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2376                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2377                        break;
2378        }
2379
2380        while (count > persistent_huge_pages(h)) {
2381                /*
2382                 * If this allocation races such that we no longer need the
2383                 * page, free_huge_page will handle it by freeing the page
2384                 * and reducing the surplus.
2385                 */
2386                spin_unlock(&hugetlb_lock);
2387
2388                /* yield cpu to avoid soft lockup */
2389                cond_resched();
2390
2391                ret = alloc_pool_huge_page(h, nodes_allowed);
2392                spin_lock(&hugetlb_lock);
2393                if (!ret)
2394                        goto out;
2395
2396                /* Bail for signals. Probably ctrl-c from user */
2397                if (signal_pending(current))
2398                        goto out;
2399        }
2400
2401        /*
2402         * Decrease the pool size
2403         * First return free pages to the buddy allocator (being careful
2404         * to keep enough around to satisfy reservations).  Then place
2405         * pages into surplus state as needed so the pool will shrink
2406         * to the desired size as pages become free.
2407         *
2408         * By placing pages into the surplus state independent of the
2409         * overcommit value, we are allowing the surplus pool size to
2410         * exceed overcommit. There are few sane options here. Since
2411         * alloc_surplus_huge_page() is checking the global counter,
2412         * though, we'll note that we're not allowed to exceed surplus
2413         * and won't grow the pool anywhere else. Not until one of the
2414         * sysctls are changed, or the surplus pages go out of use.
2415         */
2416        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2417        min_count = max(count, min_count);
2418        try_to_free_low(h, min_count, nodes_allowed);
2419        while (min_count < persistent_huge_pages(h)) {
2420                if (!free_pool_huge_page(h, nodes_allowed, 0))
2421                        break;
2422                cond_resched_lock(&hugetlb_lock);
2423        }
2424        while (count < persistent_huge_pages(h)) {
2425                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2426                        break;
2427        }
2428out:
2429        h->max_huge_pages = persistent_huge_pages(h);
2430        spin_unlock(&hugetlb_lock);
2431
2432        return 0;
2433}
2434
2435#define HSTATE_ATTR_RO(_name) \
2436        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2437
2438#define HSTATE_ATTR(_name) \
2439        static struct kobj_attribute _name##_attr = \
2440                __ATTR(_name, 0644, _name##_show, _name##_store)
2441
2442static struct kobject *hugepages_kobj;
2443static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2444
2445static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2446
2447static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2448{
2449        int i;
2450
2451        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2452                if (hstate_kobjs[i] == kobj) {
2453                        if (nidp)
2454                                *nidp = NUMA_NO_NODE;
2455                        return &hstates[i];
2456                }
2457
2458        return kobj_to_node_hstate(kobj, nidp);
2459}
2460
2461static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2462                                        struct kobj_attribute *attr, char *buf)
2463{
2464        struct hstate *h;
2465        unsigned long nr_huge_pages;
2466        int nid;
2467
2468        h = kobj_to_hstate(kobj, &nid);
2469        if (nid == NUMA_NO_NODE)
2470                nr_huge_pages = h->nr_huge_pages;
2471        else
2472                nr_huge_pages = h->nr_huge_pages_node[nid];
2473
2474        return sprintf(buf, "%lu\n", nr_huge_pages);
2475}
2476
2477static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2478                                           struct hstate *h, int nid,
2479                                           unsigned long count, size_t len)
2480{
2481        int err;
2482        nodemask_t nodes_allowed, *n_mask;
2483
2484        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2485                return -EINVAL;
2486
2487        if (nid == NUMA_NO_NODE) {
2488                /*
2489                 * global hstate attribute
2490                 */
2491                if (!(obey_mempolicy &&
2492                                init_nodemask_of_mempolicy(&nodes_allowed)))
2493                        n_mask = &node_states[N_MEMORY];
2494                else
2495                        n_mask = &nodes_allowed;
2496        } else {
2497                /*
2498                 * Node specific request.  count adjustment happens in
2499                 * set_max_huge_pages() after acquiring hugetlb_lock.
2500                 */
2501                init_nodemask_of_node(&nodes_allowed, nid);
2502                n_mask = &nodes_allowed;
2503        }
2504
2505        err = set_max_huge_pages(h, count, nid, n_mask);
2506
2507        return err ? err : len;
2508}
2509
2510static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2511                                         struct kobject *kobj, const char *buf,
2512                                         size_t len)
2513{
2514        struct hstate *h;
2515        unsigned long count;
2516        int nid;
2517        int err;
2518
2519        err = kstrtoul(buf, 10, &count);
2520        if (err)
2521                return err;
2522
2523        h = kobj_to_hstate(kobj, &nid);
2524        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2525}
2526
2527static ssize_t nr_hugepages_show(struct kobject *kobj,
2528                                       struct kobj_attribute *attr, char *buf)
2529{
2530        return nr_hugepages_show_common(kobj, attr, buf);
2531}
2532
2533static ssize_t nr_hugepages_store(struct kobject *kobj,
2534               struct kobj_attribute *attr, const char *buf, size_t len)
2535{
2536        return nr_hugepages_store_common(false, kobj, buf, len);
2537}
2538HSTATE_ATTR(nr_hugepages);
2539
2540#ifdef CONFIG_NUMA
2541
2542/*
2543 * hstate attribute for optionally mempolicy-based constraint on persistent
2544 * huge page alloc/free.
2545 */
2546static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2547                                       struct kobj_attribute *attr, char *buf)
2548{
2549        return nr_hugepages_show_common(kobj, attr, buf);
2550}
2551
2552static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2553               struct kobj_attribute *attr, const char *buf, size_t len)
2554{
2555        return nr_hugepages_store_common(true, kobj, buf, len);
2556}
2557HSTATE_ATTR(nr_hugepages_mempolicy);
2558#endif
2559
2560
2561static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2562                                        struct kobj_attribute *attr, char *buf)
2563{
2564        struct hstate *h = kobj_to_hstate(kobj, NULL);
2565        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2566}
2567
2568static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2569                struct kobj_attribute *attr, const char *buf, size_t count)
2570{
2571        int err;
2572        unsigned long input;
2573        struct hstate *h = kobj_to_hstate(kobj, NULL);
2574
2575        if (hstate_is_gigantic(h))
2576                return -EINVAL;
2577
2578        err = kstrtoul(buf, 10, &input);
2579        if (err)
2580                return err;
2581
2582        spin_lock(&hugetlb_lock);
2583        h->nr_overcommit_huge_pages = input;
2584        spin_unlock(&hugetlb_lock);
2585
2586        return count;
2587}
2588HSTATE_ATTR(nr_overcommit_hugepages);
2589
2590static ssize_t free_hugepages_show(struct kobject *kobj,
2591                                        struct kobj_attribute *attr, char *buf)
2592{
2593        struct hstate *h;
2594        unsigned long free_huge_pages;
2595        int nid;
2596
2597        h = kobj_to_hstate(kobj, &nid);
2598        if (nid == NUMA_NO_NODE)
2599                free_huge_pages = h->free_huge_pages;
2600        else
2601                free_huge_pages = h->free_huge_pages_node[nid];
2602
2603        return sprintf(buf, "%lu\n", free_huge_pages);
2604}
2605HSTATE_ATTR_RO(free_hugepages);
2606
2607static ssize_t resv_hugepages_show(struct kobject *kobj,
2608                                        struct kobj_attribute *attr, char *buf)
2609{
2610        struct hstate *h = kobj_to_hstate(kobj, NULL);
2611        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2612}
2613HSTATE_ATTR_RO(resv_hugepages);
2614
2615static ssize_t surplus_hugepages_show(struct kobject *kobj,
2616                                        struct kobj_attribute *attr, char *buf)
2617{
2618        struct hstate *h;
2619        unsigned long surplus_huge_pages;
2620        int nid;
2621
2622        h = kobj_to_hstate(kobj, &nid);
2623        if (nid == NUMA_NO_NODE)
2624                surplus_huge_pages = h->surplus_huge_pages;
2625        else
2626                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2627
2628        return sprintf(buf, "%lu\n", surplus_huge_pages);
2629}
2630HSTATE_ATTR_RO(surplus_hugepages);
2631
2632static struct attribute *hstate_attrs[] = {
2633        &nr_hugepages_attr.attr,
2634        &nr_overcommit_hugepages_attr.attr,
2635        &free_hugepages_attr.attr,
2636        &resv_hugepages_attr.attr,
2637        &surplus_hugepages_attr.attr,
2638#ifdef CONFIG_NUMA
2639        &nr_hugepages_mempolicy_attr.attr,
2640#endif
2641        NULL,
2642};
2643
2644static const struct attribute_group hstate_attr_group = {
2645        .attrs = hstate_attrs,
2646};
2647
2648static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2649                                    struct kobject **hstate_kobjs,
2650                                    const struct attribute_group *hstate_attr_group)
2651{
2652        int retval;
2653        int hi = hstate_index(h);
2654
2655        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2656        if (!hstate_kobjs[hi])
2657                return -ENOMEM;
2658
2659        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2660        if (retval)
2661                kobject_put(hstate_kobjs[hi]);
2662
2663        return retval;
2664}
2665
2666static void __init hugetlb_sysfs_init(void)
2667{
2668        struct hstate *h;
2669        int err;
2670
2671        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2672        if (!hugepages_kobj)
2673                return;
2674
2675        for_each_hstate(h) {
2676                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2677                                         hstate_kobjs, &hstate_attr_group);
2678                if (err)
2679                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2680        }
2681}
2682
2683#ifdef CONFIG_NUMA
2684
2685/*
2686 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2687 * with node devices in node_devices[] using a parallel array.  The array
2688 * index of a node device or _hstate == node id.
2689 * This is here to avoid any static dependency of the node device driver, in
2690 * the base kernel, on the hugetlb module.
2691 */
2692struct node_hstate {
2693        struct kobject          *hugepages_kobj;
2694        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2695};
2696static struct node_hstate node_hstates[MAX_NUMNODES];
2697
2698/*
2699 * A subset of global hstate attributes for node devices
2700 */
2701static struct attribute *per_node_hstate_attrs[] = {
2702        &nr_hugepages_attr.attr,
2703        &free_hugepages_attr.attr,
2704        &surplus_hugepages_attr.attr,
2705        NULL,
2706};
2707
2708static const struct attribute_group per_node_hstate_attr_group = {
2709        .attrs = per_node_hstate_attrs,
2710};
2711
2712/*
2713 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2714 * Returns node id via non-NULL nidp.
2715 */
2716static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2717{
2718        int nid;
2719
2720        for (nid = 0; nid < nr_node_ids; nid++) {
2721                struct node_hstate *nhs = &node_hstates[nid];
2722                int i;
2723                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2724                        if (nhs->hstate_kobjs[i] == kobj) {
2725                                if (nidp)
2726                                        *nidp = nid;
2727                                return &hstates[i];
2728                        }
2729        }
2730
2731        BUG();
2732        return NULL;
2733}
2734
2735/*
2736 * Unregister hstate attributes from a single node device.
2737 * No-op if no hstate attributes attached.
2738 */
2739static void hugetlb_unregister_node(struct node *node)
2740{
2741        struct hstate *h;
2742        struct node_hstate *nhs = &node_hstates[node->dev.id];
2743
2744        if (!nhs->hugepages_kobj)
2745                return;         /* no hstate attributes */
2746
2747        for_each_hstate(h) {
2748                int idx = hstate_index(h);
2749                if (nhs->hstate_kobjs[idx]) {
2750                        kobject_put(nhs->hstate_kobjs[idx]);
2751                        nhs->hstate_kobjs[idx] = NULL;
2752                }
2753        }
2754
2755        kobject_put(nhs->hugepages_kobj);
2756        nhs->hugepages_kobj = NULL;
2757}
2758
2759
2760/*
2761 * Register hstate attributes for a single node device.
2762 * No-op if attributes already registered.
2763 */
2764static void hugetlb_register_node(struct node *node)
2765{
2766        struct hstate *h;
2767        struct node_hstate *nhs = &node_hstates[node->dev.id];
2768        int err;
2769
2770        if (nhs->hugepages_kobj)
2771                return;         /* already allocated */
2772
2773        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2774                                                        &node->dev.kobj);
2775        if (!nhs->hugepages_kobj)
2776                return;
2777
2778        for_each_hstate(h) {
2779                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2780                                                nhs->hstate_kobjs,
2781                                                &per_node_hstate_attr_group);
2782                if (err) {
2783                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2784                                h->name, node->dev.id);
2785                        hugetlb_unregister_node(node);
2786                        break;
2787                }
2788        }
2789}
2790
2791/*
2792 * hugetlb init time:  register hstate attributes for all registered node
2793 * devices of nodes that have memory.  All on-line nodes should have
2794 * registered their associated device by this time.
2795 */
2796static void __init hugetlb_register_all_nodes(void)
2797{
2798        int nid;
2799
2800        for_each_node_state(nid, N_MEMORY) {
2801                struct node *node = node_devices[nid];
2802                if (node->dev.id == nid)
2803                        hugetlb_register_node(node);
2804        }
2805
2806        /*
2807         * Let the node device driver know we're here so it can
2808         * [un]register hstate attributes on node hotplug.
2809         */
2810        register_hugetlbfs_with_node(hugetlb_register_node,
2811                                     hugetlb_unregister_node);
2812}
2813#else   /* !CONFIG_NUMA */
2814
2815static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2816{
2817        BUG();
2818        if (nidp)
2819                *nidp = -1;
2820        return NULL;
2821}
2822
2823static void hugetlb_register_all_nodes(void) { }
2824
2825#endif
2826
2827static int __init hugetlb_init(void)
2828{
2829        int i;
2830
2831        if (!hugepages_supported())
2832                return 0;
2833
2834        if (!size_to_hstate(default_hstate_size)) {
2835                if (default_hstate_size != 0) {
2836                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2837                               default_hstate_size, HPAGE_SIZE);
2838                }
2839
2840                default_hstate_size = HPAGE_SIZE;
2841                if (!size_to_hstate(default_hstate_size))
2842                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2843        }
2844        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2845        if (default_hstate_max_huge_pages) {
2846                if (!default_hstate.max_huge_pages)
2847                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2848        }
2849
2850        hugetlb_init_hstates();
2851        gather_bootmem_prealloc();
2852        report_hugepages();
2853
2854        hugetlb_sysfs_init();
2855        hugetlb_register_all_nodes();
2856        hugetlb_cgroup_file_init();
2857
2858#ifdef CONFIG_SMP
2859        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2860#else
2861        num_fault_mutexes = 1;
2862#endif
2863        hugetlb_fault_mutex_table =
2864                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2865                              GFP_KERNEL);
2866        BUG_ON(!hugetlb_fault_mutex_table);
2867
2868        for (i = 0; i < num_fault_mutexes; i++)
2869                mutex_init(&hugetlb_fault_mutex_table[i]);
2870        return 0;
2871}
2872subsys_initcall(hugetlb_init);
2873
2874/* Should be called on processing a hugepagesz=... option */
2875void __init hugetlb_bad_size(void)
2876{
2877        parsed_valid_hugepagesz = false;
2878}
2879
2880void __init hugetlb_add_hstate(unsigned int order)
2881{
2882        struct hstate *h;
2883        unsigned long i;
2884
2885        if (size_to_hstate(PAGE_SIZE << order)) {
2886                pr_warn("hugepagesz= specified twice, ignoring\n");
2887                return;
2888        }
2889        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2890        BUG_ON(order == 0);
2891        h = &hstates[hugetlb_max_hstate++];
2892        h->order = order;
2893        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2894        h->nr_huge_pages = 0;
2895        h->free_huge_pages = 0;
2896        for (i = 0; i < MAX_NUMNODES; ++i)
2897                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2898        INIT_LIST_HEAD(&h->hugepage_activelist);
2899        h->next_nid_to_alloc = first_memory_node;
2900        h->next_nid_to_free = first_memory_node;
2901        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2902                                        huge_page_size(h)/1024);
2903
2904        parsed_hstate = h;
2905}
2906
2907static int __init hugetlb_nrpages_setup(char *s)
2908{
2909        unsigned long *mhp;
2910        static unsigned long *last_mhp;
2911
2912        if (!parsed_valid_hugepagesz) {
2913                pr_warn("hugepages = %s preceded by "
2914                        "an unsupported hugepagesz, ignoring\n", s);
2915                parsed_valid_hugepagesz = true;
2916                return 1;
2917        }
2918        /*
2919         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2920         * so this hugepages= parameter goes to the "default hstate".
2921         */
2922        else if (!hugetlb_max_hstate)
2923                mhp = &default_hstate_max_huge_pages;
2924        else
2925                mhp = &parsed_hstate->max_huge_pages;
2926
2927        if (mhp == last_mhp) {
2928                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2929                return 1;
2930        }
2931
2932        if (sscanf(s, "%lu", mhp) <= 0)
2933                *mhp = 0;
2934
2935        /*
2936         * Global state is always initialized later in hugetlb_init.
2937         * But we need to allocate >= MAX_ORDER hstates here early to still
2938         * use the bootmem allocator.
2939         */
2940        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2941                hugetlb_hstate_alloc_pages(parsed_hstate);
2942
2943        last_mhp = mhp;
2944
2945        return 1;
2946}
2947__setup("hugepages=", hugetlb_nrpages_setup);
2948
2949static int __init hugetlb_default_setup(char *s)
2950{
2951        default_hstate_size = memparse(s, &s);
2952        return 1;
2953}
2954__setup("default_hugepagesz=", hugetlb_default_setup);
2955
2956static unsigned int cpuset_mems_nr(unsigned int *array)
2957{
2958        int node;
2959        unsigned int nr = 0;
2960
2961        for_each_node_mask(node, cpuset_current_mems_allowed)
2962                nr += array[node];
2963
2964        return nr;
2965}
2966
2967#ifdef CONFIG_SYSCTL
2968static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2969                         struct ctl_table *table, int write,
2970                         void __user *buffer, size_t *length, loff_t *ppos)
2971{
2972        struct hstate *h = &default_hstate;
2973        unsigned long tmp = h->max_huge_pages;
2974        int ret;
2975
2976        if (!hugepages_supported())
2977                return -EOPNOTSUPP;
2978
2979        table->data = &tmp;
2980        table->maxlen = sizeof(unsigned long);
2981        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2982        if (ret)
2983                goto out;
2984
2985        if (write)
2986                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2987                                                  NUMA_NO_NODE, tmp, *length);
2988out:
2989        return ret;
2990}
2991
2992int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2993                          void __user *buffer, size_t *length, loff_t *ppos)
2994{
2995
2996        return hugetlb_sysctl_handler_common(false, table, write,
2997                                                        buffer, length, ppos);
2998}
2999
3000#ifdef CONFIG_NUMA
3001int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3002                          void __user *buffer, size_t *length, loff_t *ppos)
3003{
3004        return hugetlb_sysctl_handler_common(true, table, write,
3005                                                        buffer, length, ppos);
3006}
3007#endif /* CONFIG_NUMA */
3008
3009int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3010                        void __user *buffer,
3011                        size_t *length, loff_t *ppos)
3012{
3013        struct hstate *h = &default_hstate;
3014        unsigned long tmp;
3015        int ret;
3016
3017        if (!hugepages_supported())
3018                return -EOPNOTSUPP;
3019
3020        tmp = h->nr_overcommit_huge_pages;
3021
3022        if (write && hstate_is_gigantic(h))
3023                return -EINVAL;
3024
3025        table->data = &tmp;
3026        table->maxlen = sizeof(unsigned long);
3027        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3028        if (ret)
3029                goto out;
3030
3031        if (write) {
3032                spin_lock(&hugetlb_lock);
3033                h->nr_overcommit_huge_pages = tmp;
3034                spin_unlock(&hugetlb_lock);
3035        }
3036out:
3037        return ret;
3038}
3039
3040#endif /* CONFIG_SYSCTL */
3041
3042void hugetlb_report_meminfo(struct seq_file *m)
3043{
3044        struct hstate *h;
3045        unsigned long total = 0;
3046
3047        if (!hugepages_supported())
3048                return;
3049
3050        for_each_hstate(h) {
3051                unsigned long count = h->nr_huge_pages;
3052
3053                total += (PAGE_SIZE << huge_page_order(h)) * count;
3054
3055                if (h == &default_hstate)
3056                        seq_printf(m,
3057                                   "HugePages_Total:   %5lu\n"
3058                                   "HugePages_Free:    %5lu\n"
3059                                   "HugePages_Rsvd:    %5lu\n"
3060                                   "HugePages_Surp:    %5lu\n"
3061                                   "Hugepagesize:   %8lu kB\n",
3062                                   count,
3063                                   h->free_huge_pages,
3064                                   h->resv_huge_pages,
3065                                   h->surplus_huge_pages,
3066                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3067        }
3068
3069        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3070}
3071
3072int hugetlb_report_node_meminfo(int nid, char *buf)
3073{
3074        struct hstate *h = &default_hstate;
3075        if (!hugepages_supported())
3076                return 0;
3077        return sprintf(buf,
3078                "Node %d HugePages_Total: %5u\n"
3079                "Node %d HugePages_Free:  %5u\n"
3080                "Node %d HugePages_Surp:  %5u\n",
3081                nid, h->nr_huge_pages_node[nid],
3082                nid, h->free_huge_pages_node[nid],
3083                nid, h->surplus_huge_pages_node[nid]);
3084}
3085
3086void hugetlb_show_meminfo(void)
3087{
3088        struct hstate *h;
3089        int nid;
3090
3091        if (!hugepages_supported())
3092                return;
3093
3094        for_each_node_state(nid, N_MEMORY)
3095                for_each_hstate(h)
3096                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3097                                nid,
3098                                h->nr_huge_pages_node[nid],
3099                                h->free_huge_pages_node[nid],
3100                                h->surplus_huge_pages_node[nid],
3101                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3102}
3103
3104void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3105{
3106        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3107                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3108}
3109
3110/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3111unsigned long hugetlb_total_pages(void)
3112{
3113        struct hstate *h;
3114        unsigned long nr_total_pages = 0;
3115
3116        for_each_hstate(h)
3117                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3118        return nr_total_pages;
3119}
3120
3121static int hugetlb_acct_memory(struct hstate *h, long delta)
3122{
3123        int ret = -ENOMEM;
3124
3125        spin_lock(&hugetlb_lock);
3126        /*
3127         * When cpuset is configured, it breaks the strict hugetlb page
3128         * reservation as the accounting is done on a global variable. Such
3129         * reservation is completely rubbish in the presence of cpuset because
3130         * the reservation is not checked against page availability for the
3131         * current cpuset. Application can still potentially OOM'ed by kernel
3132         * with lack of free htlb page in cpuset that the task is in.
3133         * Attempt to enforce strict accounting with cpuset is almost
3134         * impossible (or too ugly) because cpuset is too fluid that
3135         * task or memory node can be dynamically moved between cpusets.
3136         *
3137         * The change of semantics for shared hugetlb mapping with cpuset is
3138         * undesirable. However, in order to preserve some of the semantics,
3139         * we fall back to check against current free page availability as
3140         * a best attempt and hopefully to minimize the impact of changing
3141         * semantics that cpuset has.
3142         */
3143        if (delta > 0) {
3144                if (gather_surplus_pages(h, delta) < 0)
3145                        goto out;
3146
3147                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3148                        return_unused_surplus_pages(h, delta);
3149                        goto out;
3150                }
3151        }
3152
3153        ret = 0;
3154        if (delta < 0)
3155                return_unused_surplus_pages(h, (unsigned long) -delta);
3156
3157out:
3158        spin_unlock(&hugetlb_lock);
3159        return ret;
3160}
3161
3162static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3163{
3164        struct resv_map *resv = vma_resv_map(vma);
3165
3166        /*
3167         * This new VMA should share its siblings reservation map if present.
3168         * The VMA will only ever have a valid reservation map pointer where
3169         * it is being copied for another still existing VMA.  As that VMA
3170         * has a reference to the reservation map it cannot disappear until
3171         * after this open call completes.  It is therefore safe to take a
3172         * new reference here without additional locking.
3173         */
3174        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3175                kref_get(&resv->refs);
3176}
3177
3178static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3179{
3180        struct hstate *h = hstate_vma(vma);
3181        struct resv_map *resv = vma_resv_map(vma);
3182        struct hugepage_subpool *spool = subpool_vma(vma);
3183        unsigned long reserve, start, end;
3184        long gbl_reserve;
3185
3186        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3187                return;
3188
3189        start = vma_hugecache_offset(h, vma, vma->vm_start);
3190        end = vma_hugecache_offset(h, vma, vma->vm_end);
3191
3192        reserve = (end - start) - region_count(resv, start, end);
3193
3194        kref_put(&resv->refs, resv_map_release);
3195
3196        if (reserve) {
3197                /*
3198                 * Decrement reserve counts.  The global reserve count may be
3199                 * adjusted if the subpool has a minimum size.
3200                 */
3201                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3202                hugetlb_acct_memory(h, -gbl_reserve);
3203        }
3204}
3205
3206static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3207{
3208        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3209                return -EINVAL;
3210        return 0;
3211}
3212
3213static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3214{
3215        struct hstate *hstate = hstate_vma(vma);
3216
3217        return 1UL << huge_page_shift(hstate);
3218}
3219
3220/*
3221 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3222 * handle_mm_fault() to try to instantiate regular-sized pages in the
3223 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3224 * this far.
3225 */
3226static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3227{
3228        BUG();
3229        return 0;
3230}
3231
3232/*
3233 * When a new function is introduced to vm_operations_struct and added
3234 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3235 * This is because under System V memory model, mappings created via
3236 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3237 * their original vm_ops are overwritten with shm_vm_ops.
3238 */
3239const struct vm_operations_struct hugetlb_vm_ops = {
3240        .fault = hugetlb_vm_op_fault,
3241        .open = hugetlb_vm_op_open,
3242        .close = hugetlb_vm_op_close,
3243        .split = hugetlb_vm_op_split,
3244        .pagesize = hugetlb_vm_op_pagesize,
3245};
3246
3247static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3248                                int writable)
3249{
3250        pte_t entry;
3251
3252        if (writable) {
3253                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3254                                         vma->vm_page_prot)));
3255        } else {
3256                entry = huge_pte_wrprotect(mk_huge_pte(page,
3257                                           vma->vm_page_prot));
3258        }
3259        entry = pte_mkyoung(entry);
3260        entry = pte_mkhuge(entry);
3261        entry = arch_make_huge_pte(entry, vma, page, writable);
3262
3263        return entry;
3264}
3265
3266static void set_huge_ptep_writable(struct vm_area_struct *vma,
3267                                   unsigned long address, pte_t *ptep)
3268{
3269        pte_t entry;
3270
3271        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3272        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3273                update_mmu_cache(vma, address, ptep);
3274}
3275
3276bool is_hugetlb_entry_migration(pte_t pte)
3277{
3278        swp_entry_t swp;
3279
3280        if (huge_pte_none(pte) || pte_present(pte))
3281                return false;
3282        swp = pte_to_swp_entry(pte);
3283        if (non_swap_entry(swp) && is_migration_entry(swp))
3284                return true;
3285        else
3286                return false;
3287}
3288
3289static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3290{
3291        swp_entry_t swp;
3292
3293        if (huge_pte_none(pte) || pte_present(pte))
3294                return 0;
3295        swp = pte_to_swp_entry(pte);
3296        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3297                return 1;
3298        else
3299                return 0;
3300}
3301
3302int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3303                            struct vm_area_struct *vma)
3304{
3305        pte_t *src_pte, *dst_pte, entry, dst_entry;
3306        struct page *ptepage;
3307        unsigned long addr;
3308        int cow;
3309        struct hstate *h = hstate_vma(vma);
3310        unsigned long sz = huge_page_size(h);
3311        struct mmu_notifier_range range;
3312        int ret = 0;
3313
3314        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3315
3316        if (cow) {
3317                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3318                                        vma->vm_start,
3319                                        vma->vm_end);
3320                mmu_notifier_invalidate_range_start(&range);
3321        }
3322
3323        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3324                spinlock_t *src_ptl, *dst_ptl;
3325                src_pte = huge_pte_offset(src, addr, sz);
3326                if (!src_pte)
3327                        continue;
3328                dst_pte = huge_pte_alloc(dst, addr, sz);
3329                if (!dst_pte) {
3330                        ret = -ENOMEM;
3331                        break;
3332                }
3333
3334                /*
3335                 * If the pagetables are shared don't copy or take references.
3336                 * dst_pte == src_pte is the common case of src/dest sharing.
3337                 *
3338                 * However, src could have 'unshared' and dst shares with
3339                 * another vma.  If dst_pte !none, this implies sharing.
3340                 * Check here before taking page table lock, and once again
3341                 * after taking the lock below.
3342                 */
3343                dst_entry = huge_ptep_get(dst_pte);
3344                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3345                        continue;
3346
3347                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3348                src_ptl = huge_pte_lockptr(h, src, src_pte);
3349                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3350                entry = huge_ptep_get(src_pte);
3351                dst_entry = huge_ptep_get(dst_pte);
3352                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3353                        /*
3354                         * Skip if src entry none.  Also, skip in the
3355                         * unlikely case dst entry !none as this implies
3356                         * sharing with another vma.
3357                         */
3358                        ;
3359                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3360                                    is_hugetlb_entry_hwpoisoned(entry))) {
3361                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3362
3363                        if (is_write_migration_entry(swp_entry) && cow) {
3364                                /*
3365                                 * COW mappings require pages in both
3366                                 * parent and child to be set to read.
3367                                 */
3368                                make_migration_entry_read(&swp_entry);
3369                                entry = swp_entry_to_pte(swp_entry);
3370                                set_huge_swap_pte_at(src, addr, src_pte,
3371                                                     entry, sz);
3372                        }
3373                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3374                } else {
3375                        if (cow) {
3376                                /*
3377                                 * No need to notify as we are downgrading page
3378                                 * table protection not changing it to point
3379                                 * to a new page.
3380                                 *
3381                                 * See Documentation/vm/mmu_notifier.rst
3382                                 */
3383                                huge_ptep_set_wrprotect(src, addr, src_pte);
3384                        }
3385                        entry = huge_ptep_get(src_pte);
3386                        ptepage = pte_page(entry);
3387                        get_page(ptepage);
3388                        page_dup_rmap(ptepage, true);
3389                        set_huge_pte_at(dst, addr, dst_pte, entry);
3390                        hugetlb_count_add(pages_per_huge_page(h), dst);
3391                }
3392                spin_unlock(src_ptl);
3393                spin_unlock(dst_ptl);
3394        }
3395
3396        if (cow)
3397                mmu_notifier_invalidate_range_end(&range);
3398
3399        return ret;
3400}
3401
3402void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3403                            unsigned long start, unsigned long end,
3404                            struct page *ref_page)
3405{
3406        struct mm_struct *mm = vma->vm_mm;
3407        unsigned long address;
3408        pte_t *ptep;
3409        pte_t pte;
3410        spinlock_t *ptl;
3411        struct page *page;
3412        struct hstate *h = hstate_vma(vma);
3413        unsigned long sz = huge_page_size(h);
3414        struct mmu_notifier_range range;
3415
3416        WARN_ON(!is_vm_hugetlb_page(vma));
3417        BUG_ON(start & ~huge_page_mask(h));
3418        BUG_ON(end & ~huge_page_mask(h));
3419
3420        /*
3421         * This is a hugetlb vma, all the pte entries should point
3422         * to huge page.
3423         */
3424        tlb_change_page_size(tlb, sz);
3425        tlb_start_vma(tlb, vma);
3426
3427        /*
3428         * If sharing possible, alert mmu notifiers of worst case.
3429         */
3430        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3431                                end);
3432        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3433        mmu_notifier_invalidate_range_start(&range);
3434        address = start;
3435        for (; address < end; address += sz) {
3436                ptep = huge_pte_offset(mm, address, sz);
3437                if (!ptep)
3438                        continue;
3439
3440                ptl = huge_pte_lock(h, mm, ptep);
3441                if (huge_pmd_unshare(mm, &address, ptep)) {
3442                        spin_unlock(ptl);
3443                        /*
3444                         * We just unmapped a page of PMDs by clearing a PUD.
3445                         * The caller's TLB flush range should cover this area.
3446                         */
3447                        continue;
3448                }
3449
3450                pte = huge_ptep_get(ptep);
3451                if (huge_pte_none(pte)) {
3452                        spin_unlock(ptl);
3453                        continue;
3454                }
3455
3456                /*
3457                 * Migrating hugepage or HWPoisoned hugepage is already
3458                 * unmapped and its refcount is dropped, so just clear pte here.
3459                 */
3460                if (unlikely(!pte_present(pte))) {
3461                        huge_pte_clear(mm, address, ptep, sz);
3462                        spin_unlock(ptl);
3463                        continue;
3464                }
3465
3466                page = pte_page(pte);
3467                /*
3468                 * If a reference page is supplied, it is because a specific
3469                 * page is being unmapped, not a range. Ensure the page we
3470                 * are about to unmap is the actual page of interest.
3471                 */
3472                if (ref_page) {
3473                        if (page != ref_page) {
3474                                spin_unlock(ptl);
3475                                continue;
3476                        }
3477                        /*
3478                         * Mark the VMA as having unmapped its page so that
3479                         * future faults in this VMA will fail rather than
3480                         * looking like data was lost
3481                         */
3482                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3483                }
3484
3485                pte = huge_ptep_get_and_clear(mm, address, ptep);
3486                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3487                if (huge_pte_dirty(pte))
3488                        set_page_dirty(page);
3489
3490                hugetlb_count_sub(pages_per_huge_page(h), mm);
3491                page_remove_rmap(page, true);
3492
3493                spin_unlock(ptl);
3494                tlb_remove_page_size(tlb, page, huge_page_size(h));
3495                /*
3496                 * Bail out after unmapping reference page if supplied
3497                 */
3498                if (ref_page)
3499                        break;
3500        }
3501        mmu_notifier_invalidate_range_end(&range);
3502        tlb_end_vma(tlb, vma);
3503}
3504
3505void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3506                          struct vm_area_struct *vma, unsigned long start,
3507                          unsigned long end, struct page *ref_page)
3508{
3509        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3510
3511        /*
3512         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3513         * test will fail on a vma being torn down, and not grab a page table
3514         * on its way out.  We're lucky that the flag has such an appropriate
3515         * name, and can in fact be safely cleared here. We could clear it
3516         * before the __unmap_hugepage_range above, but all that's necessary
3517         * is to clear it before releasing the i_mmap_rwsem. This works
3518         * because in the context this is called, the VMA is about to be
3519         * destroyed and the i_mmap_rwsem is held.
3520         */
3521        vma->vm_flags &= ~VM_MAYSHARE;
3522}
3523
3524void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3525                          unsigned long end, struct page *ref_page)
3526{
3527        struct mm_struct *mm;
3528        struct mmu_gather tlb;
3529        unsigned long tlb_start = start;
3530        unsigned long tlb_end = end;
3531
3532        /*
3533         * If shared PMDs were possibly used within this vma range, adjust
3534         * start/end for worst case tlb flushing.
3535         * Note that we can not be sure if PMDs are shared until we try to
3536         * unmap pages.  However, we want to make sure TLB flushing covers
3537         * the largest possible range.
3538         */
3539        adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3540
3541        mm = vma->vm_mm;
3542
3543        tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3544        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3545        tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3546}
3547
3548/*
3549 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3550 * mappping it owns the reserve page for. The intention is to unmap the page
3551 * from other VMAs and let the children be SIGKILLed if they are faulting the
3552 * same region.
3553 */
3554static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3555                              struct page *page, unsigned long address)
3556{
3557        struct hstate *h = hstate_vma(vma);
3558        struct vm_area_struct *iter_vma;
3559        struct address_space *mapping;
3560        pgoff_t pgoff;
3561
3562        /*
3563         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3564         * from page cache lookup which is in HPAGE_SIZE units.
3565         */
3566        address = address & huge_page_mask(h);
3567        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3568                        vma->vm_pgoff;
3569        mapping = vma->vm_file->f_mapping;
3570
3571        /*
3572         * Take the mapping lock for the duration of the table walk. As
3573         * this mapping should be shared between all the VMAs,
3574         * __unmap_hugepage_range() is called as the lock is already held
3575         */
3576        i_mmap_lock_write(mapping);
3577        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3578                /* Do not unmap the current VMA */
3579                if (iter_vma == vma)
3580                        continue;
3581
3582                /*
3583                 * Shared VMAs have their own reserves and do not affect
3584                 * MAP_PRIVATE accounting but it is possible that a shared
3585                 * VMA is using the same page so check and skip such VMAs.
3586                 */
3587                if (iter_vma->vm_flags & VM_MAYSHARE)
3588                        continue;
3589
3590                /*
3591                 * Unmap the page from other VMAs without their own reserves.
3592                 * They get marked to be SIGKILLed if they fault in these
3593                 * areas. This is because a future no-page fault on this VMA
3594                 * could insert a zeroed page instead of the data existing
3595                 * from the time of fork. This would look like data corruption
3596                 */
3597                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3598                        unmap_hugepage_range(iter_vma, address,
3599                                             address + huge_page_size(h), page);
3600        }
3601        i_mmap_unlock_write(mapping);
3602}
3603
3604/*
3605 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3606 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3607 * cannot race with other handlers or page migration.
3608 * Keep the pte_same checks anyway to make transition from the mutex easier.
3609 */
3610static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3611                       unsigned long address, pte_t *ptep,
3612                       struct page *pagecache_page, spinlock_t *ptl)
3613{
3614        pte_t pte;
3615        struct hstate *h = hstate_vma(vma);
3616        struct page *old_page, *new_page;
3617        int outside_reserve = 0;
3618        vm_fault_t ret = 0;
3619        unsigned long haddr = address & huge_page_mask(h);
3620        struct mmu_notifier_range range;
3621
3622        pte = huge_ptep_get(ptep);
3623        old_page = pte_page(pte);
3624
3625retry_avoidcopy:
3626        /* If no-one else is actually using this page, avoid the copy
3627         * and just make the page writable */
3628        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3629                page_move_anon_rmap(old_page, vma);
3630                set_huge_ptep_writable(vma, haddr, ptep);
3631                return 0;
3632        }
3633
3634        /*
3635         * If the process that created a MAP_PRIVATE mapping is about to
3636         * perform a COW due to a shared page count, attempt to satisfy
3637         * the allocation without using the existing reserves. The pagecache
3638         * page is used to determine if the reserve at this address was
3639         * consumed or not. If reserves were used, a partial faulted mapping
3640         * at the time of fork() could consume its reserves on COW instead
3641         * of the full address range.
3642         */
3643        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3644                        old_page != pagecache_page)
3645                outside_reserve = 1;
3646
3647        get_page(old_page);
3648
3649        /*
3650         * Drop page table lock as buddy allocator may be called. It will
3651         * be acquired again before returning to the caller, as expected.
3652         */
3653        spin_unlock(ptl);
3654        new_page = alloc_huge_page(vma, haddr, outside_reserve);
3655
3656        if (IS_ERR(new_page)) {
3657                /*
3658                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3659                 * it is due to references held by a child and an insufficient
3660                 * huge page pool. To guarantee the original mappers
3661                 * reliability, unmap the page from child processes. The child
3662                 * may get SIGKILLed if it later faults.
3663                 */
3664                if (outside_reserve) {
3665                        put_page(old_page);
3666                        BUG_ON(huge_pte_none(pte));
3667                        unmap_ref_private(mm, vma, old_page, haddr);
3668                        BUG_ON(huge_pte_none(pte));
3669                        spin_lock(ptl);
3670                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3671                        if (likely(ptep &&
3672                                   pte_same(huge_ptep_get(ptep), pte)))
3673                                goto retry_avoidcopy;
3674                        /*
3675                         * race occurs while re-acquiring page table
3676                         * lock, and our job is done.
3677                         */
3678                        return 0;
3679                }
3680
3681                ret = vmf_error(PTR_ERR(new_page));
3682                goto out_release_old;
3683        }
3684
3685        /*
3686         * When the original hugepage is shared one, it does not have
3687         * anon_vma prepared.
3688         */
3689        if (unlikely(anon_vma_prepare(vma))) {
3690                ret = VM_FAULT_OOM;
3691                goto out_release_all;
3692        }
3693
3694        copy_user_huge_page(new_page, old_page, address, vma,
3695                            pages_per_huge_page(h));
3696        __SetPageUptodate(new_page);
3697
3698        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3699                                haddr + huge_page_size(h));
3700        mmu_notifier_invalidate_range_start(&range);
3701
3702        /*
3703         * Retake the page table lock to check for racing updates
3704         * before the page tables are altered
3705         */
3706        spin_lock(ptl);
3707        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3708        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3709                ClearPagePrivate(new_page);
3710
3711                /* Break COW */
3712                huge_ptep_clear_flush(vma, haddr, ptep);
3713                mmu_notifier_invalidate_range(mm, range.start, range.end);
3714                set_huge_pte_at(mm, haddr, ptep,
3715                                make_huge_pte(vma, new_page, 1));
3716                page_remove_rmap(old_page, true);
3717                hugepage_add_new_anon_rmap(new_page, vma, haddr);
3718                set_page_huge_active(new_page);
3719                /* Make the old page be freed below */
3720                new_page = old_page;
3721        }
3722        spin_unlock(ptl);
3723        mmu_notifier_invalidate_range_end(&range);
3724out_release_all:
3725        restore_reserve_on_error(h, vma, haddr, new_page);
3726        put_page(new_page);
3727out_release_old:
3728        put_page(old_page);
3729
3730        spin_lock(ptl); /* Caller expects lock to be held */
3731        return ret;
3732}
3733
3734/* Return the pagecache page at a given address within a VMA */
3735static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3736                        struct vm_area_struct *vma, unsigned long address)
3737{
3738        struct address_space *mapping;
3739        pgoff_t idx;
3740
3741        mapping = vma->vm_file->f_mapping;
3742        idx = vma_hugecache_offset(h, vma, address);
3743
3744        return find_lock_page(mapping, idx);
3745}
3746
3747/*
3748 * Return whether there is a pagecache page to back given address within VMA.
3749 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3750 */
3751static bool hugetlbfs_pagecache_present(struct hstate *h,
3752                        struct vm_area_struct *vma, unsigned long address)
3753{
3754        struct address_space *mapping;
3755        pgoff_t idx;
3756        struct page *page;
3757
3758        mapping = vma->vm_file->f_mapping;
3759        idx = vma_hugecache_offset(h, vma, address);
3760
3761        page = find_get_page(mapping, idx);
3762        if (page)
3763                put_page(page);
3764        return page != NULL;
3765}
3766
3767int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3768                           pgoff_t idx)
3769{
3770        struct inode *inode = mapping->host;
3771        struct hstate *h = hstate_inode(inode);
3772        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3773
3774        if (err)
3775                return err;
3776        ClearPagePrivate(page);
3777
3778        /*
3779         * set page dirty so that it will not be removed from cache/file
3780         * by non-hugetlbfs specific code paths.
3781         */
3782        set_page_dirty(page);
3783
3784        spin_lock(&inode->i_lock);
3785        inode->i_blocks += blocks_per_huge_page(h);
3786        spin_unlock(&inode->i_lock);
3787        return 0;
3788}
3789
3790static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3791                        struct vm_area_struct *vma,
3792                        struct address_space *mapping, pgoff_t idx,
3793                        unsigned long address, pte_t *ptep, unsigned int flags)
3794{
3795        struct hstate *h = hstate_vma(vma);
3796        vm_fault_t ret = VM_FAULT_SIGBUS;
3797        int anon_rmap = 0;
3798        unsigned long size;
3799        struct page *page;
3800        pte_t new_pte;
3801        spinlock_t *ptl;
3802        unsigned long haddr = address & huge_page_mask(h);
3803        bool new_page = false;
3804
3805        /*
3806         * Currently, we are forced to kill the process in the event the
3807         * original mapper has unmapped pages from the child due to a failed
3808         * COW. Warn that such a situation has occurred as it may not be obvious
3809         */
3810        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3811                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3812                           current->pid);
3813                return ret;
3814        }
3815
3816        /*
3817         * Use page lock to guard against racing truncation
3818         * before we get page_table_lock.
3819         */
3820retry:
3821        page = find_lock_page(mapping, idx);
3822        if (!page) {
3823                size = i_size_read(mapping->host) >> huge_page_shift(h);
3824                if (idx >= size)
3825                        goto out;
3826
3827                /*
3828                 * Check for page in userfault range
3829                 */
3830                if (userfaultfd_missing(vma)) {
3831                        u32 hash;
3832                        struct vm_fault vmf = {
3833                                .vma = vma,
3834                                .address = haddr,
3835                                .flags = flags,
3836                                /*
3837                                 * Hard to debug if it ends up being
3838                                 * used by a callee that assumes
3839                                 * something about the other
3840                                 * uninitialized fields... same as in
3841                                 * memory.c
3842                                 */
3843                        };
3844
3845                        /*
3846                         * hugetlb_fault_mutex must be dropped before
3847                         * handling userfault.  Reacquire after handling
3848                         * fault to make calling code simpler.
3849                         */
3850                        hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3851                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3852                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3853                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3854                        goto out;
3855                }
3856
3857                page = alloc_huge_page(vma, haddr, 0);
3858                if (IS_ERR(page)) {
3859                        ret = vmf_error(PTR_ERR(page));
3860                        goto out;
3861                }
3862                clear_huge_page(page, address, pages_per_huge_page(h));
3863                __SetPageUptodate(page);
3864                new_page = true;
3865
3866                if (vma->vm_flags & VM_MAYSHARE) {
3867                        int err = huge_add_to_page_cache(page, mapping, idx);
3868                        if (err) {
3869                                put_page(page);
3870                                if (err == -EEXIST)
3871                                        goto retry;
3872                                goto out;
3873                        }
3874                } else {
3875                        lock_page(page);
3876                        if (unlikely(anon_vma_prepare(vma))) {
3877                                ret = VM_FAULT_OOM;
3878                                goto backout_unlocked;
3879                        }
3880                        anon_rmap = 1;
3881                }
3882        } else {
3883                /*
3884                 * If memory error occurs between mmap() and fault, some process
3885                 * don't have hwpoisoned swap entry for errored virtual address.
3886                 * So we need to block hugepage fault by PG_hwpoison bit check.
3887                 */
3888                if (unlikely(PageHWPoison(page))) {
3889                        ret = VM_FAULT_HWPOISON |
3890                                VM_FAULT_SET_HINDEX(hstate_index(h));
3891                        goto backout_unlocked;
3892                }
3893        }
3894
3895        /*
3896         * If we are going to COW a private mapping later, we examine the
3897         * pending reservations for this page now. This will ensure that
3898         * any allocations necessary to record that reservation occur outside
3899         * the spinlock.
3900         */
3901        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3902                if (vma_needs_reservation(h, vma, haddr) < 0) {
3903                        ret = VM_FAULT_OOM;
3904                        goto backout_unlocked;
3905                }
3906                /* Just decrements count, does not deallocate */
3907                vma_end_reservation(h, vma, haddr);
3908        }
3909
3910        ptl = huge_pte_lock(h, mm, ptep);
3911        size = i_size_read(mapping->host) >> huge_page_shift(h);
3912        if (idx >= size)
3913                goto backout;
3914
3915        ret = 0;
3916        if (!huge_pte_none(huge_ptep_get(ptep)))
3917                goto backout;
3918
3919        if (anon_rmap) {
3920                ClearPagePrivate(page);
3921                hugepage_add_new_anon_rmap(page, vma, haddr);
3922        } else
3923                page_dup_rmap(page, true);
3924        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3925                                && (vma->vm_flags & VM_SHARED)));
3926        set_huge_pte_at(mm, haddr, ptep, new_pte);
3927
3928        hugetlb_count_add(pages_per_huge_page(h), mm);
3929        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3930                /* Optimization, do the COW without a second fault */
3931                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3932        }
3933
3934        spin_unlock(ptl);
3935
3936        /*
3937         * Only make newly allocated pages active.  Existing pages found
3938         * in the pagecache could be !page_huge_active() if they have been
3939         * isolated for migration.
3940         */
3941        if (new_page)
3942                set_page_huge_active(page);
3943
3944        unlock_page(page);
3945out:
3946        return ret;
3947
3948backout:
3949        spin_unlock(ptl);
3950backout_unlocked:
3951        unlock_page(page);
3952        restore_reserve_on_error(h, vma, haddr, page);
3953        put_page(page);
3954        goto out;
3955}
3956
3957#ifdef CONFIG_SMP
3958u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3959                            pgoff_t idx, unsigned long address)
3960{
3961        unsigned long key[2];
3962        u32 hash;
3963
3964        key[0] = (unsigned long) mapping;
3965        key[1] = idx;
3966
3967        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3968
3969        return hash & (num_fault_mutexes - 1);
3970}
3971#else
3972/*
3973 * For uniprocesor systems we always use a single mutex, so just
3974 * return 0 and avoid the hashing overhead.
3975 */
3976u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3977                            pgoff_t idx, unsigned long address)
3978{
3979        return 0;
3980}
3981#endif
3982
3983vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3984                        unsigned long address, unsigned int flags)
3985{
3986        pte_t *ptep, entry;
3987        spinlock_t *ptl;
3988        vm_fault_t ret;
3989        u32 hash;
3990        pgoff_t idx;
3991        struct page *page = NULL;
3992        struct page *pagecache_page = NULL;
3993        struct hstate *h = hstate_vma(vma);
3994        struct address_space *mapping;
3995        int need_wait_lock = 0;
3996        unsigned long haddr = address & huge_page_mask(h);
3997
3998        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3999        if (ptep) {
4000                entry = huge_ptep_get(ptep);
4001                if (unlikely(is_hugetlb_entry_migration(entry))) {
4002                        migration_entry_wait_huge(vma, mm, ptep);
4003                        return 0;
4004                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4005                        return VM_FAULT_HWPOISON_LARGE |
4006                                VM_FAULT_SET_HINDEX(hstate_index(h));
4007        } else {
4008                ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4009                if (!ptep)
4010                        return VM_FAULT_OOM;
4011        }
4012
4013        mapping = vma->vm_file->f_mapping;
4014        idx = vma_hugecache_offset(h, vma, haddr);
4015
4016        /*
4017         * Serialize hugepage allocation and instantiation, so that we don't
4018         * get spurious allocation failures if two CPUs race to instantiate
4019         * the same page in the page cache.
4020         */
4021        hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4022        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4023
4024        entry = huge_ptep_get(ptep);
4025        if (huge_pte_none(entry)) {
4026                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4027                goto out_mutex;
4028        }
4029
4030        ret = 0;
4031
4032        /*
4033         * entry could be a migration/hwpoison entry at this point, so this
4034         * check prevents the kernel from going below assuming that we have
4035         * a active hugepage in pagecache. This goto expects the 2nd page fault,
4036         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4037         * handle it.
4038         */
4039        if (!pte_present(entry))
4040                goto out_mutex;
4041
4042        /*
4043         * If we are going to COW the mapping later, we examine the pending
4044         * reservations for this page now. This will ensure that any
4045         * allocations necessary to record that reservation occur outside the
4046         * spinlock. For private mappings, we also lookup the pagecache
4047         * page now as it is used to determine if a reservation has been
4048         * consumed.
4049         */
4050        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4051                if (vma_needs_reservation(h, vma, haddr) < 0) {
4052                        ret = VM_FAULT_OOM;
4053                        goto out_mutex;
4054                }
4055                /* Just decrements count, does not deallocate */
4056                vma_end_reservation(h, vma, haddr);
4057
4058                if (!(vma->vm_flags & VM_MAYSHARE))
4059                        pagecache_page = hugetlbfs_pagecache_page(h,
4060                                                                vma, haddr);
4061        }
4062
4063        ptl = huge_pte_lock(h, mm, ptep);
4064
4065        /* Check for a racing update before calling hugetlb_cow */
4066        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4067                goto out_ptl;
4068
4069        /*
4070         * hugetlb_cow() requires page locks of pte_page(entry) and
4071         * pagecache_page, so here we need take the former one
4072         * when page != pagecache_page or !pagecache_page.
4073         */
4074        page = pte_page(entry);
4075        if (page != pagecache_page)
4076                if (!trylock_page(page)) {
4077                        need_wait_lock = 1;
4078                        goto out_ptl;
4079                }
4080
4081        get_page(page);
4082
4083        if (flags & FAULT_FLAG_WRITE) {
4084                if (!huge_pte_write(entry)) {
4085                        ret = hugetlb_cow(mm, vma, address, ptep,
4086                                          pagecache_page, ptl);
4087                        goto out_put_page;
4088                }
4089                entry = huge_pte_mkdirty(entry);
4090        }
4091        entry = pte_mkyoung(entry);
4092        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4093                                                flags & FAULT_FLAG_WRITE))
4094                update_mmu_cache(vma, haddr, ptep);
4095out_put_page:
4096        if (page != pagecache_page)
4097                unlock_page(page);
4098        put_page(page);
4099out_ptl:
4100        spin_unlock(ptl);
4101
4102        if (pagecache_page) {
4103                unlock_page(pagecache_page);
4104                put_page(pagecache_page);
4105        }
4106out_mutex:
4107        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4108        /*
4109         * Generally it's safe to hold refcount during waiting page lock. But
4110         * here we just wait to defer the next page fault to avoid busy loop and
4111         * the page is not used after unlocked before returning from the current
4112         * page fault. So we are safe from accessing freed page, even if we wait
4113         * here without taking refcount.
4114         */
4115        if (need_wait_lock)
4116                wait_on_page_locked(page);
4117        return ret;
4118}
4119
4120/*
4121 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4122 * modifications for huge pages.
4123 */
4124int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4125                            pte_t *dst_pte,
4126                            struct vm_area_struct *dst_vma,
4127                            unsigned long dst_addr,
4128                            unsigned long src_addr,
4129                            struct page **pagep)
4130{
4131        struct address_space *mapping;
4132        pgoff_t idx;
4133        unsigned long size;
4134        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4135        struct hstate *h = hstate_vma(dst_vma);
4136        pte_t _dst_pte;
4137        spinlock_t *ptl;
4138        int ret;
4139        struct page *page;
4140
4141        if (!*pagep) {
4142                ret = -ENOMEM;
4143                page = alloc_huge_page(dst_vma, dst_addr, 0);
4144                if (IS_ERR(page))
4145                        goto out;
4146
4147                ret = copy_huge_page_from_user(page,
4148                                                (const void __user *) src_addr,
4149                                                pages_per_huge_page(h), false);
4150
4151                /* fallback to copy_from_user outside mmap_sem */
4152                if (unlikely(ret)) {
4153                        ret = -ENOENT;
4154                        *pagep = page;
4155                        /* don't free the page */
4156                        goto out;
4157                }
4158        } else {
4159                page = *pagep;
4160                *pagep = NULL;
4161        }
4162
4163        /*
4164         * The memory barrier inside __SetPageUptodate makes sure that
4165         * preceding stores to the page contents become visible before
4166         * the set_pte_at() write.
4167         */
4168        __SetPageUptodate(page);
4169
4170        mapping = dst_vma->vm_file->f_mapping;
4171        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4172
4173        /*
4174         * If shared, add to page cache
4175         */
4176        if (vm_shared) {
4177                size = i_size_read(mapping->host) >> huge_page_shift(h);
4178                ret = -EFAULT;
4179                if (idx >= size)
4180                        goto out_release_nounlock;
4181
4182                /*
4183                 * Serialization between remove_inode_hugepages() and
4184                 * huge_add_to_page_cache() below happens through the
4185                 * hugetlb_fault_mutex_table that here must be hold by
4186                 * the caller.
4187                 */
4188                ret = huge_add_to_page_cache(page, mapping, idx);
4189                if (ret)
4190                        goto out_release_nounlock;
4191        }
4192
4193        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4194        spin_lock(ptl);
4195
4196        /*
4197         * Recheck the i_size after holding PT lock to make sure not
4198         * to leave any page mapped (as page_mapped()) beyond the end
4199         * of the i_size (remove_inode_hugepages() is strict about
4200         * enforcing that). If we bail out here, we'll also leave a
4201         * page in the radix tree in the vm_shared case beyond the end
4202         * of the i_size, but remove_inode_hugepages() will take care
4203         * of it as soon as we drop the hugetlb_fault_mutex_table.
4204         */
4205        size = i_size_read(mapping->host) >> huge_page_shift(h);
4206        ret = -EFAULT;
4207        if (idx >= size)
4208                goto out_release_unlock;
4209
4210        ret = -EEXIST;
4211        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4212                goto out_release_unlock;
4213
4214        if (vm_shared) {
4215                page_dup_rmap(page, true);
4216        } else {
4217                ClearPagePrivate(page);
4218                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4219        }
4220
4221        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4222        if (dst_vma->vm_flags & VM_WRITE)
4223                _dst_pte = huge_pte_mkdirty(_dst_pte);
4224        _dst_pte = pte_mkyoung(_dst_pte);
4225
4226        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4227
4228        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4229                                        dst_vma->vm_flags & VM_WRITE);
4230        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4231
4232        /* No need to invalidate - it was non-present before */
4233        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4234
4235        spin_unlock(ptl);
4236        set_page_huge_active(page);
4237        if (vm_shared)
4238                unlock_page(page);
4239        ret = 0;
4240out:
4241        return ret;
4242out_release_unlock:
4243        spin_unlock(ptl);
4244        if (vm_shared)
4245                unlock_page(page);
4246out_release_nounlock:
4247        put_page(page);
4248        goto out;
4249}
4250
4251long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4252                         struct page **pages, struct vm_area_struct **vmas,
4253                         unsigned long *position, unsigned long *nr_pages,
4254                         long i, unsigned int flags, int *nonblocking)
4255{
4256        unsigned long pfn_offset;
4257        unsigned long vaddr = *position;
4258        unsigned long remainder = *nr_pages;
4259        struct hstate *h = hstate_vma(vma);
4260        int err = -EFAULT;
4261
4262        while (vaddr < vma->vm_end && remainder) {
4263                pte_t *pte;
4264                spinlock_t *ptl = NULL;
4265                int absent;
4266                struct page *page;
4267
4268                /*
4269                 * If we have a pending SIGKILL, don't keep faulting pages and
4270                 * potentially allocating memory.
4271                 */
4272                if (fatal_signal_pending(current)) {
4273                        remainder = 0;
4274                        break;
4275                }
4276
4277                /*
4278                 * Some archs (sparc64, sh*) have multiple pte_ts to
4279                 * each hugepage.  We have to make sure we get the
4280                 * first, for the page indexing below to work.
4281                 *
4282                 * Note that page table lock is not held when pte is null.
4283                 */
4284                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4285                                      huge_page_size(h));
4286                if (pte)
4287                        ptl = huge_pte_lock(h, mm, pte);
4288                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4289
4290                /*
4291                 * When coredumping, it suits get_dump_page if we just return
4292                 * an error where there's an empty slot with no huge pagecache
4293                 * to back it.  This way, we avoid allocating a hugepage, and
4294                 * the sparse dumpfile avoids allocating disk blocks, but its
4295                 * huge holes still show up with zeroes where they need to be.
4296                 */
4297                if (absent && (flags & FOLL_DUMP) &&
4298                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4299                        if (pte)
4300                                spin_unlock(ptl);
4301                        remainder = 0;
4302                        break;
4303                }
4304
4305                /*
4306                 * We need call hugetlb_fault for both hugepages under migration
4307                 * (in which case hugetlb_fault waits for the migration,) and
4308                 * hwpoisoned hugepages (in which case we need to prevent the
4309                 * caller from accessing to them.) In order to do this, we use
4310                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4311                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4312                 * both cases, and because we can't follow correct pages
4313                 * directly from any kind of swap entries.
4314                 */
4315                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4316                    ((flags & FOLL_WRITE) &&
4317                      !huge_pte_write(huge_ptep_get(pte)))) {
4318                        vm_fault_t ret;
4319                        unsigned int fault_flags = 0;
4320
4321                        if (pte)
4322                                spin_unlock(ptl);
4323                        if (flags & FOLL_WRITE)
4324                                fault_flags |= FAULT_FLAG_WRITE;
4325                        if (nonblocking)
4326                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4327                        if (flags & FOLL_NOWAIT)
4328                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4329                                        FAULT_FLAG_RETRY_NOWAIT;
4330                        if (flags & FOLL_TRIED) {
4331                                VM_WARN_ON_ONCE(fault_flags &
4332                                                FAULT_FLAG_ALLOW_RETRY);
4333                                fault_flags |= FAULT_FLAG_TRIED;
4334                        }
4335                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4336                        if (ret & VM_FAULT_ERROR) {
4337                                err = vm_fault_to_errno(ret, flags);
4338                                remainder = 0;
4339                                break;
4340                        }
4341                        if (ret & VM_FAULT_RETRY) {
4342                                if (nonblocking &&
4343                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4344                                        *nonblocking = 0;
4345                                *nr_pages = 0;
4346                                /*
4347                                 * VM_FAULT_RETRY must not return an
4348                                 * error, it will return zero
4349                                 * instead.
4350                                 *
4351                                 * No need to update "position" as the
4352                                 * caller will not check it after
4353                                 * *nr_pages is set to 0.
4354                                 */
4355                                return i;
4356                        }
4357                        continue;
4358                }
4359
4360                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4361                page = pte_page(huge_ptep_get(pte));
4362
4363                /*
4364                 * Instead of doing 'try_get_page()' below in the same_page
4365                 * loop, just check the count once here.
4366                 */
4367                if (unlikely(page_count(page) <= 0)) {
4368                        if (pages) {
4369                                spin_unlock(ptl);
4370                                remainder = 0;
4371                                err = -ENOMEM;
4372                                break;
4373                        }
4374                }
4375same_page:
4376                if (pages) {
4377                        pages[i] = mem_map_offset(page, pfn_offset);
4378                        get_page(pages[i]);
4379                }
4380
4381                if (vmas)
4382                        vmas[i] = vma;
4383
4384                vaddr += PAGE_SIZE;
4385                ++pfn_offset;
4386                --remainder;
4387                ++i;
4388                if (vaddr < vma->vm_end && remainder &&
4389                                pfn_offset < pages_per_huge_page(h)) {
4390                        /*
4391                         * We use pfn_offset to avoid touching the pageframes
4392                         * of this compound page.
4393                         */
4394                        goto same_page;
4395                }
4396                spin_unlock(ptl);
4397        }
4398        *nr_pages = remainder;
4399        /*
4400         * setting position is actually required only if remainder is
4401         * not zero but it's faster not to add a "if (remainder)"
4402         * branch.
4403         */
4404        *position = vaddr;
4405
4406        return i ? i : err;
4407}
4408
4409#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4410/*
4411 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4412 * implement this.
4413 */
4414#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4415#endif
4416
4417unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4418                unsigned long address, unsigned long end, pgprot_t newprot)
4419{
4420        struct mm_struct *mm = vma->vm_mm;
4421        unsigned long start = address;
4422        pte_t *ptep;
4423        pte_t pte;
4424        struct hstate *h = hstate_vma(vma);
4425        unsigned long pages = 0;
4426        bool shared_pmd = false;
4427        struct mmu_notifier_range range;
4428
4429        /*
4430         * In the case of shared PMDs, the area to flush could be beyond
4431         * start/end.  Set range.start/range.end to cover the maximum possible
4432         * range if PMD sharing is possible.
4433         */
4434        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4435                                0, vma, mm, start, end);
4436        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4437
4438        BUG_ON(address >= end);
4439        flush_cache_range(vma, range.start, range.end);
4440
4441        mmu_notifier_invalidate_range_start(&range);
4442        i_mmap_lock_write(vma->vm_file->f_mapping);
4443        for (; address < end; address += huge_page_size(h)) {
4444                spinlock_t *ptl;
4445                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4446                if (!ptep)
4447                        continue;
4448                ptl = huge_pte_lock(h, mm, ptep);
4449                if (huge_pmd_unshare(mm, &address, ptep)) {
4450                        pages++;
4451                        spin_unlock(ptl);
4452                        shared_pmd = true;
4453                        continue;
4454                }
4455                pte = huge_ptep_get(ptep);
4456                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4457                        spin_unlock(ptl);
4458                        continue;
4459                }
4460                if (unlikely(is_hugetlb_entry_migration(pte))) {
4461                        swp_entry_t entry = pte_to_swp_entry(pte);
4462
4463                        if (is_write_migration_entry(entry)) {
4464                                pte_t newpte;
4465
4466                                make_migration_entry_read(&entry);
4467                                newpte = swp_entry_to_pte(entry);
4468                                set_huge_swap_pte_at(mm, address, ptep,
4469                                                     newpte, huge_page_size(h));
4470                                pages++;
4471                        }
4472                        spin_unlock(ptl);
4473                        continue;
4474                }
4475                if (!huge_pte_none(pte)) {
4476                        pte_t old_pte;
4477
4478                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4479                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4480                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4481                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4482                        pages++;
4483                }
4484                spin_unlock(ptl);
4485        }
4486        /*
4487         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4488         * may have cleared our pud entry and done put_page on the page table:
4489         * once we release i_mmap_rwsem, another task can do the final put_page
4490         * and that page table be reused and filled with junk.  If we actually
4491         * did unshare a page of pmds, flush the range corresponding to the pud.
4492         */
4493        if (shared_pmd)
4494                flush_hugetlb_tlb_range(vma, range.start, range.end);
4495        else
4496                flush_hugetlb_tlb_range(vma, start, end);
4497        /*
4498         * No need to call mmu_notifier_invalidate_range() we are downgrading
4499         * page table protection not changing it to point to a new page.
4500         *
4501         * See Documentation/vm/mmu_notifier.rst
4502         */
4503        i_mmap_unlock_write(vma->vm_file->f_mapping);
4504        mmu_notifier_invalidate_range_end(&range);
4505
4506        return pages << h->order;
4507}
4508
4509int hugetlb_reserve_pages(struct inode *inode,
4510                                        long from, long to,
4511                                        struct vm_area_struct *vma,
4512                                        vm_flags_t vm_flags)
4513{
4514        long ret, chg;
4515        struct hstate *h = hstate_inode(inode);
4516        struct hugepage_subpool *spool = subpool_inode(inode);
4517        struct resv_map *resv_map;
4518        long gbl_reserve;
4519
4520        /* This should never happen */
4521        if (from > to) {
4522                VM_WARN(1, "%s called with a negative range\n", __func__);
4523                return -EINVAL;
4524        }
4525
4526        /*
4527         * Only apply hugepage reservation if asked. At fault time, an
4528         * attempt will be made for VM_NORESERVE to allocate a page
4529         * without using reserves
4530         */
4531        if (vm_flags & VM_NORESERVE)
4532                return 0;
4533
4534        /*
4535         * Shared mappings base their reservation on the number of pages that
4536         * are already allocated on behalf of the file. Private mappings need
4537         * to reserve the full area even if read-only as mprotect() may be
4538         * called to make the mapping read-write. Assume !vma is a shm mapping
4539         */
4540        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4541                /*
4542                 * resv_map can not be NULL as hugetlb_reserve_pages is only
4543                 * called for inodes for which resv_maps were created (see
4544                 * hugetlbfs_get_inode).
4545                 */
4546                resv_map = inode_resv_map(inode);
4547
4548                chg = region_chg(resv_map, from, to);
4549
4550        } else {
4551                resv_map = resv_map_alloc();
4552                if (!resv_map)
4553                        return -ENOMEM;
4554
4555                chg = to - from;
4556
4557                set_vma_resv_map(vma, resv_map);
4558                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4559        }
4560
4561        if (chg < 0) {
4562                ret = chg;
4563                goto out_err;
4564        }
4565
4566        /*
4567         * There must be enough pages in the subpool for the mapping. If
4568         * the subpool has a minimum size, there may be some global
4569         * reservations already in place (gbl_reserve).
4570         */
4571        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4572        if (gbl_reserve < 0) {
4573                ret = -ENOSPC;
4574                goto out_err;
4575        }
4576
4577        /*
4578         * Check enough hugepages are available for the reservation.
4579         * Hand the pages back to the subpool if there are not
4580         */
4581        ret = hugetlb_acct_memory(h, gbl_reserve);
4582        if (ret < 0) {
4583                /* put back original number of pages, chg */
4584                (void)hugepage_subpool_put_pages(spool, chg);
4585                goto out_err;
4586        }
4587
4588        /*
4589         * Account for the reservations made. Shared mappings record regions
4590         * that have reservations as they are shared by multiple VMAs.
4591         * When the last VMA disappears, the region map says how much
4592         * the reservation was and the page cache tells how much of
4593         * the reservation was consumed. Private mappings are per-VMA and
4594         * only the consumed reservations are tracked. When the VMA
4595         * disappears, the original reservation is the VMA size and the
4596         * consumed reservations are stored in the map. Hence, nothing
4597         * else has to be done for private mappings here
4598         */
4599        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4600                long add = region_add(resv_map, from, to);
4601
4602                if (unlikely(chg > add)) {
4603                        /*
4604                         * pages in this range were added to the reserve
4605                         * map between region_chg and region_add.  This
4606                         * indicates a race with alloc_huge_page.  Adjust
4607                         * the subpool and reserve counts modified above
4608                         * based on the difference.
4609                         */
4610                        long rsv_adjust;
4611
4612                        rsv_adjust = hugepage_subpool_put_pages(spool,
4613                                                                chg - add);
4614                        hugetlb_acct_memory(h, -rsv_adjust);
4615                }
4616        }
4617        return 0;
4618out_err:
4619        if (!vma || vma->vm_flags & VM_MAYSHARE)
4620                /* Don't call region_abort if region_chg failed */
4621                if (chg >= 0)
4622                        region_abort(resv_map, from, to);
4623        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4624                kref_put(&resv_map->refs, resv_map_release);
4625        return ret;
4626}
4627
4628long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4629                                                                long freed)
4630{
4631        struct hstate *h = hstate_inode(inode);
4632        struct resv_map *resv_map = inode_resv_map(inode);
4633        long chg = 0;
4634        struct hugepage_subpool *spool = subpool_inode(inode);
4635        long gbl_reserve;
4636
4637        /*
4638         * Since this routine can be called in the evict inode path for all
4639         * hugetlbfs inodes, resv_map could be NULL.
4640         */
4641        if (resv_map) {
4642                chg = region_del(resv_map, start, end);
4643                /*
4644                 * region_del() can fail in the rare case where a region
4645                 * must be split and another region descriptor can not be
4646                 * allocated.  If end == LONG_MAX, it will not fail.
4647                 */
4648                if (chg < 0)
4649                        return chg;
4650        }
4651
4652        spin_lock(&inode->i_lock);
4653        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4654        spin_unlock(&inode->i_lock);
4655
4656        /*
4657         * If the subpool has a minimum size, the number of global
4658         * reservations to be released may be adjusted.
4659         */
4660        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4661        hugetlb_acct_memory(h, -gbl_reserve);
4662
4663        return 0;
4664}
4665
4666#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4667static unsigned long page_table_shareable(struct vm_area_struct *svma,
4668                                struct vm_area_struct *vma,
4669                                unsigned long addr, pgoff_t idx)
4670{
4671        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4672                                svma->vm_start;
4673        unsigned long sbase = saddr & PUD_MASK;
4674        unsigned long s_end = sbase + PUD_SIZE;
4675
4676        /* Allow segments to share if only one is marked locked */
4677        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4678        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4679
4680        /*
4681         * match the virtual addresses, permission and the alignment of the
4682         * page table page.
4683         */
4684        if (pmd_index(addr) != pmd_index(saddr) ||
4685            vm_flags != svm_flags ||
4686            sbase < svma->vm_start || svma->vm_end < s_end)
4687                return 0;
4688
4689        return saddr;
4690}
4691
4692static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4693{
4694        unsigned long base = addr & PUD_MASK;
4695        unsigned long end = base + PUD_SIZE;
4696
4697        /*
4698         * check on proper vm_flags and page table alignment
4699         */
4700        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4701                return true;
4702        return false;
4703}
4704
4705/*
4706 * Determine if start,end range within vma could be mapped by shared pmd.
4707 * If yes, adjust start and end to cover range associated with possible
4708 * shared pmd mappings.
4709 */
4710void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4711                                unsigned long *start, unsigned long *end)
4712{
4713        unsigned long check_addr = *start;
4714
4715        if (!(vma->vm_flags & VM_MAYSHARE))
4716                return;
4717
4718        for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4719                unsigned long a_start = check_addr & PUD_MASK;
4720                unsigned long a_end = a_start + PUD_SIZE;
4721
4722                /*
4723                 * If sharing is possible, adjust start/end if necessary.
4724                 */
4725                if (range_in_vma(vma, a_start, a_end)) {
4726                        if (a_start < *start)
4727                                *start = a_start;
4728                        if (a_end > *end)
4729                                *end = a_end;
4730                }
4731        }
4732}
4733
4734/*
4735 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4736 * and returns the corresponding pte. While this is not necessary for the
4737 * !shared pmd case because we can allocate the pmd later as well, it makes the
4738 * code much cleaner. pmd allocation is essential for the shared case because
4739 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4740 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4741 * bad pmd for sharing.
4742 */
4743pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4744{
4745        struct vm_area_struct *vma = find_vma(mm, addr);
4746        struct address_space *mapping = vma->vm_file->f_mapping;
4747        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4748                        vma->vm_pgoff;
4749        struct vm_area_struct *svma;
4750        unsigned long saddr;
4751        pte_t *spte = NULL;
4752        pte_t *pte;
4753        spinlock_t *ptl;
4754
4755        if (!vma_shareable(vma, addr))
4756                return (pte_t *)pmd_alloc(mm, pud, addr);
4757
4758        i_mmap_lock_write(mapping);
4759        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4760                if (svma == vma)
4761                        continue;
4762
4763                saddr = page_table_shareable(svma, vma, addr, idx);
4764                if (saddr) {
4765                        spte = huge_pte_offset(svma->vm_mm, saddr,
4766                                               vma_mmu_pagesize(svma));
4767                        if (spte) {
4768                                get_page(virt_to_page(spte));
4769                                break;
4770                        }
4771                }
4772        }
4773
4774        if (!spte)
4775                goto out;
4776
4777        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4778        if (pud_none(*pud)) {
4779                pud_populate(mm, pud,
4780                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4781                mm_inc_nr_pmds(mm);
4782        } else {
4783                put_page(virt_to_page(spte));
4784        }
4785        spin_unlock(ptl);
4786out:
4787        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4788        i_mmap_unlock_write(mapping);
4789        return pte;
4790}
4791
4792/*
4793 * unmap huge page backed by shared pte.
4794 *
4795 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4796 * indicated by page_count > 1, unmap is achieved by clearing pud and
4797 * decrementing the ref count. If count == 1, the pte page is not shared.
4798 *
4799 * called with page table lock held.
4800 *
4801 * returns: 1 successfully unmapped a shared pte page
4802 *          0 the underlying pte page is not shared, or it is the last user
4803 */
4804int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4805{
4806        pgd_t *pgd = pgd_offset(mm, *addr);
4807        p4d_t *p4d = p4d_offset(pgd, *addr);
4808        pud_t *pud = pud_offset(p4d, *addr);
4809
4810        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4811        if (page_count(virt_to_page(ptep)) == 1)
4812                return 0;
4813
4814        pud_clear(pud);
4815        put_page(virt_to_page(ptep));
4816        mm_dec_nr_pmds(mm);
4817        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4818        return 1;
4819}
4820#define want_pmd_share()        (1)
4821#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4822pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4823{
4824        return NULL;
4825}
4826
4827int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4828{
4829        return 0;
4830}
4831
4832void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4833                                unsigned long *start, unsigned long *end)
4834{
4835}
4836#define want_pmd_share()        (0)
4837#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4838
4839#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4840pte_t *huge_pte_alloc(struct mm_struct *mm,
4841                        unsigned long addr, unsigned long sz)
4842{
4843        pgd_t *pgd;
4844        p4d_t *p4d;
4845        pud_t *pud;
4846        pte_t *pte = NULL;
4847
4848        pgd = pgd_offset(mm, addr);
4849        p4d = p4d_alloc(mm, pgd, addr);
4850        if (!p4d)
4851                return NULL;
4852        pud = pud_alloc(mm, p4d, addr);
4853        if (pud) {
4854                if (sz == PUD_SIZE) {
4855                        pte = (pte_t *)pud;
4856                } else {
4857                        BUG_ON(sz != PMD_SIZE);
4858                        if (want_pmd_share() && pud_none(*pud))
4859                                pte = huge_pmd_share(mm, addr, pud);
4860                        else
4861                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4862                }
4863        }
4864        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4865
4866        return pte;
4867}
4868
4869/*
4870 * huge_pte_offset() - Walk the page table to resolve the hugepage
4871 * entry at address @addr
4872 *
4873 * Return: Pointer to page table or swap entry (PUD or PMD) for
4874 * address @addr, or NULL if a p*d_none() entry is encountered and the
4875 * size @sz doesn't match the hugepage size at this level of the page
4876 * table.
4877 */
4878pte_t *huge_pte_offset(struct mm_struct *mm,
4879                       unsigned long addr, unsigned long sz)
4880{
4881        pgd_t *pgd;
4882        p4d_t *p4d;
4883        pud_t *pud;
4884        pmd_t *pmd;
4885
4886        pgd = pgd_offset(mm, addr);
4887        if (!pgd_present(*pgd))
4888                return NULL;
4889        p4d = p4d_offset(pgd, addr);
4890        if (!p4d_present(*p4d))
4891                return NULL;
4892
4893        pud = pud_offset(p4d, addr);
4894        if (sz != PUD_SIZE && pud_none(*pud))
4895                return NULL;
4896        /* hugepage or swap? */
4897        if (pud_huge(*pud) || !pud_present(*pud))
4898                return (pte_t *)pud;
4899
4900        pmd = pmd_offset(pud, addr);
4901        if (sz != PMD_SIZE && pmd_none(*pmd))
4902                return NULL;
4903        /* hugepage or swap? */
4904        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4905                return (pte_t *)pmd;
4906
4907        return NULL;
4908}
4909
4910#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4911
4912/*
4913 * These functions are overwritable if your architecture needs its own
4914 * behavior.
4915 */
4916struct page * __weak
4917follow_huge_addr(struct mm_struct *mm, unsigned long address,
4918                              int write)
4919{
4920        return ERR_PTR(-EINVAL);
4921}
4922
4923struct page * __weak
4924follow_huge_pd(struct vm_area_struct *vma,
4925               unsigned long address, hugepd_t hpd, int flags, int pdshift)
4926{
4927        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4928        return NULL;
4929}
4930
4931struct page * __weak
4932follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4933                pmd_t *pmd, int flags)
4934{
4935        struct page *page = NULL;
4936        spinlock_t *ptl;
4937        pte_t pte;
4938retry:
4939        ptl = pmd_lockptr(mm, pmd);
4940        spin_lock(ptl);
4941        /*
4942         * make sure that the address range covered by this pmd is not
4943         * unmapped from other threads.
4944         */
4945        if (!pmd_huge(*pmd))
4946                goto out;
4947        pte = huge_ptep_get((pte_t *)pmd);
4948        if (pte_present(pte)) {
4949                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4950                if (flags & FOLL_GET)
4951                        get_page(page);
4952        } else {
4953                if (is_hugetlb_entry_migration(pte)) {
4954                        spin_unlock(ptl);
4955                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4956                        goto retry;
4957                }
4958                /*
4959                 * hwpoisoned entry is treated as no_page_table in
4960                 * follow_page_mask().
4961                 */
4962        }
4963out:
4964        spin_unlock(ptl);
4965        return page;
4966}
4967
4968struct page * __weak
4969follow_huge_pud(struct mm_struct *mm, unsigned long address,
4970                pud_t *pud, int flags)
4971{
4972        if (flags & FOLL_GET)
4973                return NULL;
4974
4975        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4976}
4977
4978struct page * __weak
4979follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4980{
4981        if (flags & FOLL_GET)
4982                return NULL;
4983
4984        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4985}
4986
4987bool isolate_huge_page(struct page *page, struct list_head *list)
4988{
4989        bool ret = true;
4990
4991        VM_BUG_ON_PAGE(!PageHead(page), page);
4992        spin_lock(&hugetlb_lock);
4993        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4994                ret = false;
4995                goto unlock;
4996        }
4997        clear_page_huge_active(page);
4998        list_move_tail(&page->lru, list);
4999unlock:
5000        spin_unlock(&hugetlb_lock);
5001        return ret;
5002}
5003
5004void putback_active_hugepage(struct page *page)
5005{
5006        VM_BUG_ON_PAGE(!PageHead(page), page);
5007        spin_lock(&hugetlb_lock);
5008        set_page_huge_active(page);
5009        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5010        spin_unlock(&hugetlb_lock);
5011        put_page(page);
5012}
5013
5014void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5015{
5016        struct hstate *h = page_hstate(oldpage);
5017
5018        hugetlb_cgroup_migrate(oldpage, newpage);
5019        set_page_owner_migrate_reason(newpage, reason);
5020
5021        /*
5022         * transfer temporary state of the new huge page. This is
5023         * reverse to other transitions because the newpage is going to
5024         * be final while the old one will be freed so it takes over
5025         * the temporary status.
5026         *
5027         * Also note that we have to transfer the per-node surplus state
5028         * here as well otherwise the global surplus count will not match
5029         * the per-node's.
5030         */
5031        if (PageHugeTemporary(newpage)) {
5032                int old_nid = page_to_nid(oldpage);
5033                int new_nid = page_to_nid(newpage);
5034
5035                SetPageHugeTemporary(oldpage);
5036                ClearPageHugeTemporary(newpage);
5037
5038                spin_lock(&hugetlb_lock);
5039                if (h->surplus_huge_pages_node[old_nid]) {
5040                        h->surplus_huge_pages_node[old_nid]--;
5041                        h->surplus_huge_pages_node[new_nid]++;
5042                }
5043                spin_unlock(&hugetlb_lock);
5044        }
5045}
5046