linux/mm/khugepaged.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27        SCAN_FAIL,
  28        SCAN_SUCCEED,
  29        SCAN_PMD_NULL,
  30        SCAN_EXCEED_NONE_PTE,
  31        SCAN_PTE_NON_PRESENT,
  32        SCAN_PAGE_RO,
  33        SCAN_LACK_REFERENCED_PAGE,
  34        SCAN_PAGE_NULL,
  35        SCAN_SCAN_ABORT,
  36        SCAN_PAGE_COUNT,
  37        SCAN_PAGE_LRU,
  38        SCAN_PAGE_LOCK,
  39        SCAN_PAGE_ANON,
  40        SCAN_PAGE_COMPOUND,
  41        SCAN_ANY_PROCESS,
  42        SCAN_VMA_NULL,
  43        SCAN_VMA_CHECK,
  44        SCAN_ADDRESS_RANGE,
  45        SCAN_SWAP_CACHE_PAGE,
  46        SCAN_DEL_PAGE_LRU,
  47        SCAN_ALLOC_HUGE_PAGE_FAIL,
  48        SCAN_CGROUP_CHARGE_FAIL,
  49        SCAN_EXCEED_SWAP_PTE,
  50        SCAN_TRUNCATED,
  51};
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/huge_memory.h>
  55
  56/* default scan 8*512 pte (or vmas) every 30 second */
  57static unsigned int khugepaged_pages_to_scan __read_mostly;
  58static unsigned int khugepaged_pages_collapsed;
  59static unsigned int khugepaged_full_scans;
  60static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  61/* during fragmentation poll the hugepage allocator once every minute */
  62static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  63static unsigned long khugepaged_sleep_expire;
  64static DEFINE_SPINLOCK(khugepaged_mm_lock);
  65static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  66/*
  67 * default collapse hugepages if there is at least one pte mapped like
  68 * it would have happened if the vma was large enough during page
  69 * fault.
  70 */
  71static unsigned int khugepaged_max_ptes_none __read_mostly;
  72static unsigned int khugepaged_max_ptes_swap __read_mostly;
  73
  74#define MM_SLOTS_HASH_BITS 10
  75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  76
  77static struct kmem_cache *mm_slot_cache __read_mostly;
  78
  79/**
  80 * struct mm_slot - hash lookup from mm to mm_slot
  81 * @hash: hash collision list
  82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  83 * @mm: the mm that this information is valid for
  84 */
  85struct mm_slot {
  86        struct hlist_node hash;
  87        struct list_head mm_node;
  88        struct mm_struct *mm;
  89};
  90
  91/**
  92 * struct khugepaged_scan - cursor for scanning
  93 * @mm_head: the head of the mm list to scan
  94 * @mm_slot: the current mm_slot we are scanning
  95 * @address: the next address inside that to be scanned
  96 *
  97 * There is only the one khugepaged_scan instance of this cursor structure.
  98 */
  99struct khugepaged_scan {
 100        struct list_head mm_head;
 101        struct mm_slot *mm_slot;
 102        unsigned long address;
 103};
 104
 105static struct khugepaged_scan khugepaged_scan = {
 106        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 107};
 108
 109#ifdef CONFIG_SYSFS
 110static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 111                                         struct kobj_attribute *attr,
 112                                         char *buf)
 113{
 114        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 115}
 116
 117static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 118                                          struct kobj_attribute *attr,
 119                                          const char *buf, size_t count)
 120{
 121        unsigned long msecs;
 122        int err;
 123
 124        err = kstrtoul(buf, 10, &msecs);
 125        if (err || msecs > UINT_MAX)
 126                return -EINVAL;
 127
 128        khugepaged_scan_sleep_millisecs = msecs;
 129        khugepaged_sleep_expire = 0;
 130        wake_up_interruptible(&khugepaged_wait);
 131
 132        return count;
 133}
 134static struct kobj_attribute scan_sleep_millisecs_attr =
 135        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 136               scan_sleep_millisecs_store);
 137
 138static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 139                                          struct kobj_attribute *attr,
 140                                          char *buf)
 141{
 142        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 143}
 144
 145static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 146                                           struct kobj_attribute *attr,
 147                                           const char *buf, size_t count)
 148{
 149        unsigned long msecs;
 150        int err;
 151
 152        err = kstrtoul(buf, 10, &msecs);
 153        if (err || msecs > UINT_MAX)
 154                return -EINVAL;
 155
 156        khugepaged_alloc_sleep_millisecs = msecs;
 157        khugepaged_sleep_expire = 0;
 158        wake_up_interruptible(&khugepaged_wait);
 159
 160        return count;
 161}
 162static struct kobj_attribute alloc_sleep_millisecs_attr =
 163        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 164               alloc_sleep_millisecs_store);
 165
 166static ssize_t pages_to_scan_show(struct kobject *kobj,
 167                                  struct kobj_attribute *attr,
 168                                  char *buf)
 169{
 170        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 171}
 172static ssize_t pages_to_scan_store(struct kobject *kobj,
 173                                   struct kobj_attribute *attr,
 174                                   const char *buf, size_t count)
 175{
 176        int err;
 177        unsigned long pages;
 178
 179        err = kstrtoul(buf, 10, &pages);
 180        if (err || !pages || pages > UINT_MAX)
 181                return -EINVAL;
 182
 183        khugepaged_pages_to_scan = pages;
 184
 185        return count;
 186}
 187static struct kobj_attribute pages_to_scan_attr =
 188        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 189               pages_to_scan_store);
 190
 191static ssize_t pages_collapsed_show(struct kobject *kobj,
 192                                    struct kobj_attribute *attr,
 193                                    char *buf)
 194{
 195        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 196}
 197static struct kobj_attribute pages_collapsed_attr =
 198        __ATTR_RO(pages_collapsed);
 199
 200static ssize_t full_scans_show(struct kobject *kobj,
 201                               struct kobj_attribute *attr,
 202                               char *buf)
 203{
 204        return sprintf(buf, "%u\n", khugepaged_full_scans);
 205}
 206static struct kobj_attribute full_scans_attr =
 207        __ATTR_RO(full_scans);
 208
 209static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 210                                      struct kobj_attribute *attr, char *buf)
 211{
 212        return single_hugepage_flag_show(kobj, attr, buf,
 213                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 214}
 215static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 216                                       struct kobj_attribute *attr,
 217                                       const char *buf, size_t count)
 218{
 219        return single_hugepage_flag_store(kobj, attr, buf, count,
 220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 221}
 222static struct kobj_attribute khugepaged_defrag_attr =
 223        __ATTR(defrag, 0644, khugepaged_defrag_show,
 224               khugepaged_defrag_store);
 225
 226/*
 227 * max_ptes_none controls if khugepaged should collapse hugepages over
 228 * any unmapped ptes in turn potentially increasing the memory
 229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 230 * reduce the available free memory in the system as it
 231 * runs. Increasing max_ptes_none will instead potentially reduce the
 232 * free memory in the system during the khugepaged scan.
 233 */
 234static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 235                                             struct kobj_attribute *attr,
 236                                             char *buf)
 237{
 238        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 239}
 240static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 241                                              struct kobj_attribute *attr,
 242                                              const char *buf, size_t count)
 243{
 244        int err;
 245        unsigned long max_ptes_none;
 246
 247        err = kstrtoul(buf, 10, &max_ptes_none);
 248        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 249                return -EINVAL;
 250
 251        khugepaged_max_ptes_none = max_ptes_none;
 252
 253        return count;
 254}
 255static struct kobj_attribute khugepaged_max_ptes_none_attr =
 256        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 257               khugepaged_max_ptes_none_store);
 258
 259static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 260                                             struct kobj_attribute *attr,
 261                                             char *buf)
 262{
 263        return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 264}
 265
 266static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 267                                              struct kobj_attribute *attr,
 268                                              const char *buf, size_t count)
 269{
 270        int err;
 271        unsigned long max_ptes_swap;
 272
 273        err  = kstrtoul(buf, 10, &max_ptes_swap);
 274        if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 275                return -EINVAL;
 276
 277        khugepaged_max_ptes_swap = max_ptes_swap;
 278
 279        return count;
 280}
 281
 282static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 283        __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 284               khugepaged_max_ptes_swap_store);
 285
 286static struct attribute *khugepaged_attr[] = {
 287        &khugepaged_defrag_attr.attr,
 288        &khugepaged_max_ptes_none_attr.attr,
 289        &pages_to_scan_attr.attr,
 290        &pages_collapsed_attr.attr,
 291        &full_scans_attr.attr,
 292        &scan_sleep_millisecs_attr.attr,
 293        &alloc_sleep_millisecs_attr.attr,
 294        &khugepaged_max_ptes_swap_attr.attr,
 295        NULL,
 296};
 297
 298struct attribute_group khugepaged_attr_group = {
 299        .attrs = khugepaged_attr,
 300        .name = "khugepaged",
 301};
 302#endif /* CONFIG_SYSFS */
 303
 304#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 305
 306int hugepage_madvise(struct vm_area_struct *vma,
 307                     unsigned long *vm_flags, int advice)
 308{
 309        switch (advice) {
 310        case MADV_HUGEPAGE:
 311#ifdef CONFIG_S390
 312                /*
 313                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 314                 * can't handle this properly after s390_enable_sie, so we simply
 315                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 316                 */
 317                if (mm_has_pgste(vma->vm_mm))
 318                        return 0;
 319#endif
 320                *vm_flags &= ~VM_NOHUGEPAGE;
 321                *vm_flags |= VM_HUGEPAGE;
 322                /*
 323                 * If the vma become good for khugepaged to scan,
 324                 * register it here without waiting a page fault that
 325                 * may not happen any time soon.
 326                 */
 327                if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 328                                khugepaged_enter_vma_merge(vma, *vm_flags))
 329                        return -ENOMEM;
 330                break;
 331        case MADV_NOHUGEPAGE:
 332                *vm_flags &= ~VM_HUGEPAGE;
 333                *vm_flags |= VM_NOHUGEPAGE;
 334                /*
 335                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 336                 * this vma even if we leave the mm registered in khugepaged if
 337                 * it got registered before VM_NOHUGEPAGE was set.
 338                 */
 339                break;
 340        }
 341
 342        return 0;
 343}
 344
 345int __init khugepaged_init(void)
 346{
 347        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 348                                          sizeof(struct mm_slot),
 349                                          __alignof__(struct mm_slot), 0, NULL);
 350        if (!mm_slot_cache)
 351                return -ENOMEM;
 352
 353        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 354        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 355        khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 356
 357        return 0;
 358}
 359
 360void __init khugepaged_destroy(void)
 361{
 362        kmem_cache_destroy(mm_slot_cache);
 363}
 364
 365static inline struct mm_slot *alloc_mm_slot(void)
 366{
 367        if (!mm_slot_cache)     /* initialization failed */
 368                return NULL;
 369        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 370}
 371
 372static inline void free_mm_slot(struct mm_slot *mm_slot)
 373{
 374        kmem_cache_free(mm_slot_cache, mm_slot);
 375}
 376
 377static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 378{
 379        struct mm_slot *mm_slot;
 380
 381        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 382                if (mm == mm_slot->mm)
 383                        return mm_slot;
 384
 385        return NULL;
 386}
 387
 388static void insert_to_mm_slots_hash(struct mm_struct *mm,
 389                                    struct mm_slot *mm_slot)
 390{
 391        mm_slot->mm = mm;
 392        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 393}
 394
 395static inline int khugepaged_test_exit(struct mm_struct *mm)
 396{
 397        return atomic_read(&mm->mm_users) == 0;
 398}
 399
 400static bool hugepage_vma_check(struct vm_area_struct *vma,
 401                               unsigned long vm_flags)
 402{
 403        if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 404            (vm_flags & VM_NOHUGEPAGE) ||
 405            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 406                return false;
 407        if (shmem_file(vma->vm_file)) {
 408                if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 409                        return false;
 410                return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 411                                HPAGE_PMD_NR);
 412        }
 413        if (!vma->anon_vma || vma->vm_ops)
 414                return false;
 415        if (is_vma_temporary_stack(vma))
 416                return false;
 417        return !(vm_flags & VM_NO_KHUGEPAGED);
 418}
 419
 420int __khugepaged_enter(struct mm_struct *mm)
 421{
 422        struct mm_slot *mm_slot;
 423        int wakeup;
 424
 425        mm_slot = alloc_mm_slot();
 426        if (!mm_slot)
 427                return -ENOMEM;
 428
 429        /* __khugepaged_exit() must not run from under us */
 430        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 431        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 432                free_mm_slot(mm_slot);
 433                return 0;
 434        }
 435
 436        spin_lock(&khugepaged_mm_lock);
 437        insert_to_mm_slots_hash(mm, mm_slot);
 438        /*
 439         * Insert just behind the scanning cursor, to let the area settle
 440         * down a little.
 441         */
 442        wakeup = list_empty(&khugepaged_scan.mm_head);
 443        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 444        spin_unlock(&khugepaged_mm_lock);
 445
 446        mmgrab(mm);
 447        if (wakeup)
 448                wake_up_interruptible(&khugepaged_wait);
 449
 450        return 0;
 451}
 452
 453int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 454                               unsigned long vm_flags)
 455{
 456        unsigned long hstart, hend;
 457
 458        /*
 459         * khugepaged does not yet work on non-shmem files or special
 460         * mappings. And file-private shmem THP is not supported.
 461         */
 462        if (!hugepage_vma_check(vma, vm_flags))
 463                return 0;
 464
 465        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 466        hend = vma->vm_end & HPAGE_PMD_MASK;
 467        if (hstart < hend)
 468                return khugepaged_enter(vma, vm_flags);
 469        return 0;
 470}
 471
 472void __khugepaged_exit(struct mm_struct *mm)
 473{
 474        struct mm_slot *mm_slot;
 475        int free = 0;
 476
 477        spin_lock(&khugepaged_mm_lock);
 478        mm_slot = get_mm_slot(mm);
 479        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 480                hash_del(&mm_slot->hash);
 481                list_del(&mm_slot->mm_node);
 482                free = 1;
 483        }
 484        spin_unlock(&khugepaged_mm_lock);
 485
 486        if (free) {
 487                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 488                free_mm_slot(mm_slot);
 489                mmdrop(mm);
 490        } else if (mm_slot) {
 491                /*
 492                 * This is required to serialize against
 493                 * khugepaged_test_exit() (which is guaranteed to run
 494                 * under mmap sem read mode). Stop here (after we
 495                 * return all pagetables will be destroyed) until
 496                 * khugepaged has finished working on the pagetables
 497                 * under the mmap_sem.
 498                 */
 499                down_write(&mm->mmap_sem);
 500                up_write(&mm->mmap_sem);
 501        }
 502}
 503
 504static void release_pte_page(struct page *page)
 505{
 506        dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
 507        unlock_page(page);
 508        putback_lru_page(page);
 509}
 510
 511static void release_pte_pages(pte_t *pte, pte_t *_pte)
 512{
 513        while (--_pte >= pte) {
 514                pte_t pteval = *_pte;
 515                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 516                        release_pte_page(pte_page(pteval));
 517        }
 518}
 519
 520static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 521                                        unsigned long address,
 522                                        pte_t *pte)
 523{
 524        struct page *page = NULL;
 525        pte_t *_pte;
 526        int none_or_zero = 0, result = 0, referenced = 0;
 527        bool writable = false;
 528
 529        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 530             _pte++, address += PAGE_SIZE) {
 531                pte_t pteval = *_pte;
 532                if (pte_none(pteval) || (pte_present(pteval) &&
 533                                is_zero_pfn(pte_pfn(pteval)))) {
 534                        if (!userfaultfd_armed(vma) &&
 535                            ++none_or_zero <= khugepaged_max_ptes_none) {
 536                                continue;
 537                        } else {
 538                                result = SCAN_EXCEED_NONE_PTE;
 539                                goto out;
 540                        }
 541                }
 542                if (!pte_present(pteval)) {
 543                        result = SCAN_PTE_NON_PRESENT;
 544                        goto out;
 545                }
 546                page = vm_normal_page(vma, address, pteval);
 547                if (unlikely(!page)) {
 548                        result = SCAN_PAGE_NULL;
 549                        goto out;
 550                }
 551
 552                /* TODO: teach khugepaged to collapse THP mapped with pte */
 553                if (PageCompound(page)) {
 554                        result = SCAN_PAGE_COMPOUND;
 555                        goto out;
 556                }
 557
 558                VM_BUG_ON_PAGE(!PageAnon(page), page);
 559
 560                /*
 561                 * We can do it before isolate_lru_page because the
 562                 * page can't be freed from under us. NOTE: PG_lock
 563                 * is needed to serialize against split_huge_page
 564                 * when invoked from the VM.
 565                 */
 566                if (!trylock_page(page)) {
 567                        result = SCAN_PAGE_LOCK;
 568                        goto out;
 569                }
 570
 571                /*
 572                 * cannot use mapcount: can't collapse if there's a gup pin.
 573                 * The page must only be referenced by the scanned process
 574                 * and page swap cache.
 575                 */
 576                if (page_count(page) != 1 + PageSwapCache(page)) {
 577                        unlock_page(page);
 578                        result = SCAN_PAGE_COUNT;
 579                        goto out;
 580                }
 581                if (pte_write(pteval)) {
 582                        writable = true;
 583                } else {
 584                        if (PageSwapCache(page) &&
 585                            !reuse_swap_page(page, NULL)) {
 586                                unlock_page(page);
 587                                result = SCAN_SWAP_CACHE_PAGE;
 588                                goto out;
 589                        }
 590                        /*
 591                         * Page is not in the swap cache. It can be collapsed
 592                         * into a THP.
 593                         */
 594                }
 595
 596                /*
 597                 * Isolate the page to avoid collapsing an hugepage
 598                 * currently in use by the VM.
 599                 */
 600                if (isolate_lru_page(page)) {
 601                        unlock_page(page);
 602                        result = SCAN_DEL_PAGE_LRU;
 603                        goto out;
 604                }
 605                inc_node_page_state(page,
 606                                NR_ISOLATED_ANON + page_is_file_cache(page));
 607                VM_BUG_ON_PAGE(!PageLocked(page), page);
 608                VM_BUG_ON_PAGE(PageLRU(page), page);
 609
 610                /* There should be enough young pte to collapse the page */
 611                if (pte_young(pteval) ||
 612                    page_is_young(page) || PageReferenced(page) ||
 613                    mmu_notifier_test_young(vma->vm_mm, address))
 614                        referenced++;
 615        }
 616        if (likely(writable)) {
 617                if (likely(referenced)) {
 618                        result = SCAN_SUCCEED;
 619                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 620                                                            referenced, writable, result);
 621                        return 1;
 622                }
 623        } else {
 624                result = SCAN_PAGE_RO;
 625        }
 626
 627out:
 628        release_pte_pages(pte, _pte);
 629        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 630                                            referenced, writable, result);
 631        return 0;
 632}
 633
 634static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 635                                      struct vm_area_struct *vma,
 636                                      unsigned long address,
 637                                      spinlock_t *ptl)
 638{
 639        pte_t *_pte;
 640        for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 641                                _pte++, page++, address += PAGE_SIZE) {
 642                pte_t pteval = *_pte;
 643                struct page *src_page;
 644
 645                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 646                        clear_user_highpage(page, address);
 647                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 648                        if (is_zero_pfn(pte_pfn(pteval))) {
 649                                /*
 650                                 * ptl mostly unnecessary.
 651                                 */
 652                                spin_lock(ptl);
 653                                /*
 654                                 * paravirt calls inside pte_clear here are
 655                                 * superfluous.
 656                                 */
 657                                pte_clear(vma->vm_mm, address, _pte);
 658                                spin_unlock(ptl);
 659                        }
 660                } else {
 661                        src_page = pte_page(pteval);
 662                        copy_user_highpage(page, src_page, address, vma);
 663                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 664                        release_pte_page(src_page);
 665                        /*
 666                         * ptl mostly unnecessary, but preempt has to
 667                         * be disabled to update the per-cpu stats
 668                         * inside page_remove_rmap().
 669                         */
 670                        spin_lock(ptl);
 671                        /*
 672                         * paravirt calls inside pte_clear here are
 673                         * superfluous.
 674                         */
 675                        pte_clear(vma->vm_mm, address, _pte);
 676                        page_remove_rmap(src_page, false);
 677                        spin_unlock(ptl);
 678                        free_page_and_swap_cache(src_page);
 679                }
 680        }
 681}
 682
 683static void khugepaged_alloc_sleep(void)
 684{
 685        DEFINE_WAIT(wait);
 686
 687        add_wait_queue(&khugepaged_wait, &wait);
 688        freezable_schedule_timeout_interruptible(
 689                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 690        remove_wait_queue(&khugepaged_wait, &wait);
 691}
 692
 693static int khugepaged_node_load[MAX_NUMNODES];
 694
 695static bool khugepaged_scan_abort(int nid)
 696{
 697        int i;
 698
 699        /*
 700         * If node_reclaim_mode is disabled, then no extra effort is made to
 701         * allocate memory locally.
 702         */
 703        if (!node_reclaim_mode)
 704                return false;
 705
 706        /* If there is a count for this node already, it must be acceptable */
 707        if (khugepaged_node_load[nid])
 708                return false;
 709
 710        for (i = 0; i < MAX_NUMNODES; i++) {
 711                if (!khugepaged_node_load[i])
 712                        continue;
 713                if (node_distance(nid, i) > RECLAIM_DISTANCE)
 714                        return true;
 715        }
 716        return false;
 717}
 718
 719/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 720static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 721{
 722        return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 723}
 724
 725#ifdef CONFIG_NUMA
 726static int khugepaged_find_target_node(void)
 727{
 728        static int last_khugepaged_target_node = NUMA_NO_NODE;
 729        int nid, target_node = 0, max_value = 0;
 730
 731        /* find first node with max normal pages hit */
 732        for (nid = 0; nid < MAX_NUMNODES; nid++)
 733                if (khugepaged_node_load[nid] > max_value) {
 734                        max_value = khugepaged_node_load[nid];
 735                        target_node = nid;
 736                }
 737
 738        /* do some balance if several nodes have the same hit record */
 739        if (target_node <= last_khugepaged_target_node)
 740                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 741                                nid++)
 742                        if (max_value == khugepaged_node_load[nid]) {
 743                                target_node = nid;
 744                                break;
 745                        }
 746
 747        last_khugepaged_target_node = target_node;
 748        return target_node;
 749}
 750
 751static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 752{
 753        if (IS_ERR(*hpage)) {
 754                if (!*wait)
 755                        return false;
 756
 757                *wait = false;
 758                *hpage = NULL;
 759                khugepaged_alloc_sleep();
 760        } else if (*hpage) {
 761                put_page(*hpage);
 762                *hpage = NULL;
 763        }
 764
 765        return true;
 766}
 767
 768static struct page *
 769khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 770{
 771        VM_BUG_ON_PAGE(*hpage, *hpage);
 772
 773        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 774        if (unlikely(!*hpage)) {
 775                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 776                *hpage = ERR_PTR(-ENOMEM);
 777                return NULL;
 778        }
 779
 780        prep_transhuge_page(*hpage);
 781        count_vm_event(THP_COLLAPSE_ALLOC);
 782        return *hpage;
 783}
 784#else
 785static int khugepaged_find_target_node(void)
 786{
 787        return 0;
 788}
 789
 790static inline struct page *alloc_khugepaged_hugepage(void)
 791{
 792        struct page *page;
 793
 794        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 795                           HPAGE_PMD_ORDER);
 796        if (page)
 797                prep_transhuge_page(page);
 798        return page;
 799}
 800
 801static struct page *khugepaged_alloc_hugepage(bool *wait)
 802{
 803        struct page *hpage;
 804
 805        do {
 806                hpage = alloc_khugepaged_hugepage();
 807                if (!hpage) {
 808                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 809                        if (!*wait)
 810                                return NULL;
 811
 812                        *wait = false;
 813                        khugepaged_alloc_sleep();
 814                } else
 815                        count_vm_event(THP_COLLAPSE_ALLOC);
 816        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
 817
 818        return hpage;
 819}
 820
 821static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 822{
 823        if (!*hpage)
 824                *hpage = khugepaged_alloc_hugepage(wait);
 825
 826        if (unlikely(!*hpage))
 827                return false;
 828
 829        return true;
 830}
 831
 832static struct page *
 833khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 834{
 835        VM_BUG_ON(!*hpage);
 836
 837        return  *hpage;
 838}
 839#endif
 840
 841/*
 842 * If mmap_sem temporarily dropped, revalidate vma
 843 * before taking mmap_sem.
 844 * Return 0 if succeeds, otherwise return none-zero
 845 * value (scan code).
 846 */
 847
 848static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 849                struct vm_area_struct **vmap)
 850{
 851        struct vm_area_struct *vma;
 852        unsigned long hstart, hend;
 853
 854        if (unlikely(khugepaged_test_exit(mm)))
 855                return SCAN_ANY_PROCESS;
 856
 857        *vmap = vma = find_vma(mm, address);
 858        if (!vma)
 859                return SCAN_VMA_NULL;
 860
 861        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 862        hend = vma->vm_end & HPAGE_PMD_MASK;
 863        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 864                return SCAN_ADDRESS_RANGE;
 865        if (!hugepage_vma_check(vma, vma->vm_flags))
 866                return SCAN_VMA_CHECK;
 867        return 0;
 868}
 869
 870/*
 871 * Bring missing pages in from swap, to complete THP collapse.
 872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 873 *
 874 * Called and returns without pte mapped or spinlocks held,
 875 * but with mmap_sem held to protect against vma changes.
 876 */
 877
 878static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 879                                        struct vm_area_struct *vma,
 880                                        unsigned long address, pmd_t *pmd,
 881                                        int referenced)
 882{
 883        int swapped_in = 0;
 884        vm_fault_t ret = 0;
 885        struct vm_fault vmf = {
 886                .vma = vma,
 887                .address = address,
 888                .flags = FAULT_FLAG_ALLOW_RETRY,
 889                .pmd = pmd,
 890                .pgoff = linear_page_index(vma, address),
 891        };
 892
 893        /* we only decide to swapin, if there is enough young ptes */
 894        if (referenced < HPAGE_PMD_NR/2) {
 895                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 896                return false;
 897        }
 898        vmf.pte = pte_offset_map(pmd, address);
 899        for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 900                        vmf.pte++, vmf.address += PAGE_SIZE) {
 901                vmf.orig_pte = *vmf.pte;
 902                if (!is_swap_pte(vmf.orig_pte))
 903                        continue;
 904                swapped_in++;
 905                ret = do_swap_page(&vmf);
 906
 907                /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 908                if (ret & VM_FAULT_RETRY) {
 909                        down_read(&mm->mmap_sem);
 910                        if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
 911                                /* vma is no longer available, don't continue to swapin */
 912                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 913                                return false;
 914                        }
 915                        /* check if the pmd is still valid */
 916                        if (mm_find_pmd(mm, address) != pmd) {
 917                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 918                                return false;
 919                        }
 920                }
 921                if (ret & VM_FAULT_ERROR) {
 922                        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 923                        return false;
 924                }
 925                /* pte is unmapped now, we need to map it */
 926                vmf.pte = pte_offset_map(pmd, vmf.address);
 927        }
 928        vmf.pte--;
 929        pte_unmap(vmf.pte);
 930        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 931        return true;
 932}
 933
 934static void collapse_huge_page(struct mm_struct *mm,
 935                                   unsigned long address,
 936                                   struct page **hpage,
 937                                   int node, int referenced)
 938{
 939        pmd_t *pmd, _pmd;
 940        pte_t *pte;
 941        pgtable_t pgtable;
 942        struct page *new_page;
 943        spinlock_t *pmd_ptl, *pte_ptl;
 944        int isolated = 0, result = 0;
 945        struct mem_cgroup *memcg;
 946        struct vm_area_struct *vma;
 947        struct mmu_notifier_range range;
 948        gfp_t gfp;
 949
 950        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 951
 952        /* Only allocate from the target node */
 953        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
 954
 955        /*
 956         * Before allocating the hugepage, release the mmap_sem read lock.
 957         * The allocation can take potentially a long time if it involves
 958         * sync compaction, and we do not need to hold the mmap_sem during
 959         * that. We will recheck the vma after taking it again in write mode.
 960         */
 961        up_read(&mm->mmap_sem);
 962        new_page = khugepaged_alloc_page(hpage, gfp, node);
 963        if (!new_page) {
 964                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 965                goto out_nolock;
 966        }
 967
 968        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 969                result = SCAN_CGROUP_CHARGE_FAIL;
 970                goto out_nolock;
 971        }
 972
 973        down_read(&mm->mmap_sem);
 974        result = hugepage_vma_revalidate(mm, address, &vma);
 975        if (result) {
 976                mem_cgroup_cancel_charge(new_page, memcg, true);
 977                up_read(&mm->mmap_sem);
 978                goto out_nolock;
 979        }
 980
 981        pmd = mm_find_pmd(mm, address);
 982        if (!pmd) {
 983                result = SCAN_PMD_NULL;
 984                mem_cgroup_cancel_charge(new_page, memcg, true);
 985                up_read(&mm->mmap_sem);
 986                goto out_nolock;
 987        }
 988
 989        /*
 990         * __collapse_huge_page_swapin always returns with mmap_sem locked.
 991         * If it fails, we release mmap_sem and jump out_nolock.
 992         * Continuing to collapse causes inconsistency.
 993         */
 994        if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
 995                mem_cgroup_cancel_charge(new_page, memcg, true);
 996                up_read(&mm->mmap_sem);
 997                goto out_nolock;
 998        }
 999
1000        up_read(&mm->mmap_sem);
1001        /*
1002         * Prevent all access to pagetables with the exception of
1003         * gup_fast later handled by the ptep_clear_flush and the VM
1004         * handled by the anon_vma lock + PG_lock.
1005         */
1006        down_write(&mm->mmap_sem);
1007        result = SCAN_ANY_PROCESS;
1008        if (!mmget_still_valid(mm))
1009                goto out;
1010        result = hugepage_vma_revalidate(mm, address, &vma);
1011        if (result)
1012                goto out;
1013        /* check if the pmd is still valid */
1014        if (mm_find_pmd(mm, address) != pmd)
1015                goto out;
1016
1017        anon_vma_lock_write(vma->anon_vma);
1018
1019        pte = pte_offset_map(pmd, address);
1020        pte_ptl = pte_lockptr(mm, pmd);
1021
1022        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1023                                address, address + HPAGE_PMD_SIZE);
1024        mmu_notifier_invalidate_range_start(&range);
1025        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1026        /*
1027         * After this gup_fast can't run anymore. This also removes
1028         * any huge TLB entry from the CPU so we won't allow
1029         * huge and small TLB entries for the same virtual address
1030         * to avoid the risk of CPU bugs in that area.
1031         */
1032        _pmd = pmdp_collapse_flush(vma, address, pmd);
1033        spin_unlock(pmd_ptl);
1034        mmu_notifier_invalidate_range_end(&range);
1035
1036        spin_lock(pte_ptl);
1037        isolated = __collapse_huge_page_isolate(vma, address, pte);
1038        spin_unlock(pte_ptl);
1039
1040        if (unlikely(!isolated)) {
1041                pte_unmap(pte);
1042                spin_lock(pmd_ptl);
1043                BUG_ON(!pmd_none(*pmd));
1044                /*
1045                 * We can only use set_pmd_at when establishing
1046                 * hugepmds and never for establishing regular pmds that
1047                 * points to regular pagetables. Use pmd_populate for that
1048                 */
1049                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1050                spin_unlock(pmd_ptl);
1051                anon_vma_unlock_write(vma->anon_vma);
1052                result = SCAN_FAIL;
1053                goto out;
1054        }
1055
1056        /*
1057         * All pages are isolated and locked so anon_vma rmap
1058         * can't run anymore.
1059         */
1060        anon_vma_unlock_write(vma->anon_vma);
1061
1062        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1063        pte_unmap(pte);
1064        __SetPageUptodate(new_page);
1065        pgtable = pmd_pgtable(_pmd);
1066
1067        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1068        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1069
1070        /*
1071         * spin_lock() below is not the equivalent of smp_wmb(), so
1072         * this is needed to avoid the copy_huge_page writes to become
1073         * visible after the set_pmd_at() write.
1074         */
1075        smp_wmb();
1076
1077        spin_lock(pmd_ptl);
1078        BUG_ON(!pmd_none(*pmd));
1079        page_add_new_anon_rmap(new_page, vma, address, true);
1080        mem_cgroup_commit_charge(new_page, memcg, false, true);
1081        count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1082        lru_cache_add_active_or_unevictable(new_page, vma);
1083        pgtable_trans_huge_deposit(mm, pmd, pgtable);
1084        set_pmd_at(mm, address, pmd, _pmd);
1085        update_mmu_cache_pmd(vma, address, pmd);
1086        spin_unlock(pmd_ptl);
1087
1088        *hpage = NULL;
1089
1090        khugepaged_pages_collapsed++;
1091        result = SCAN_SUCCEED;
1092out_up_write:
1093        up_write(&mm->mmap_sem);
1094out_nolock:
1095        trace_mm_collapse_huge_page(mm, isolated, result);
1096        return;
1097out:
1098        mem_cgroup_cancel_charge(new_page, memcg, true);
1099        goto out_up_write;
1100}
1101
1102static int khugepaged_scan_pmd(struct mm_struct *mm,
1103                               struct vm_area_struct *vma,
1104                               unsigned long address,
1105                               struct page **hpage)
1106{
1107        pmd_t *pmd;
1108        pte_t *pte, *_pte;
1109        int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1110        struct page *page = NULL;
1111        unsigned long _address;
1112        spinlock_t *ptl;
1113        int node = NUMA_NO_NODE, unmapped = 0;
1114        bool writable = false;
1115
1116        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1117
1118        pmd = mm_find_pmd(mm, address);
1119        if (!pmd) {
1120                result = SCAN_PMD_NULL;
1121                goto out;
1122        }
1123
1124        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1125        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1126        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1127             _pte++, _address += PAGE_SIZE) {
1128                pte_t pteval = *_pte;
1129                if (is_swap_pte(pteval)) {
1130                        if (++unmapped <= khugepaged_max_ptes_swap) {
1131                                continue;
1132                        } else {
1133                                result = SCAN_EXCEED_SWAP_PTE;
1134                                goto out_unmap;
1135                        }
1136                }
1137                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1138                        if (!userfaultfd_armed(vma) &&
1139                            ++none_or_zero <= khugepaged_max_ptes_none) {
1140                                continue;
1141                        } else {
1142                                result = SCAN_EXCEED_NONE_PTE;
1143                                goto out_unmap;
1144                        }
1145                }
1146                if (!pte_present(pteval)) {
1147                        result = SCAN_PTE_NON_PRESENT;
1148                        goto out_unmap;
1149                }
1150                if (pte_write(pteval))
1151                        writable = true;
1152
1153                page = vm_normal_page(vma, _address, pteval);
1154                if (unlikely(!page)) {
1155                        result = SCAN_PAGE_NULL;
1156                        goto out_unmap;
1157                }
1158
1159                /* TODO: teach khugepaged to collapse THP mapped with pte */
1160                if (PageCompound(page)) {
1161                        result = SCAN_PAGE_COMPOUND;
1162                        goto out_unmap;
1163                }
1164
1165                /*
1166                 * Record which node the original page is from and save this
1167                 * information to khugepaged_node_load[].
1168                 * Khupaged will allocate hugepage from the node has the max
1169                 * hit record.
1170                 */
1171                node = page_to_nid(page);
1172                if (khugepaged_scan_abort(node)) {
1173                        result = SCAN_SCAN_ABORT;
1174                        goto out_unmap;
1175                }
1176                khugepaged_node_load[node]++;
1177                if (!PageLRU(page)) {
1178                        result = SCAN_PAGE_LRU;
1179                        goto out_unmap;
1180                }
1181                if (PageLocked(page)) {
1182                        result = SCAN_PAGE_LOCK;
1183                        goto out_unmap;
1184                }
1185                if (!PageAnon(page)) {
1186                        result = SCAN_PAGE_ANON;
1187                        goto out_unmap;
1188                }
1189
1190                /*
1191                 * cannot use mapcount: can't collapse if there's a gup pin.
1192                 * The page must only be referenced by the scanned process
1193                 * and page swap cache.
1194                 */
1195                if (page_count(page) != 1 + PageSwapCache(page)) {
1196                        result = SCAN_PAGE_COUNT;
1197                        goto out_unmap;
1198                }
1199                if (pte_young(pteval) ||
1200                    page_is_young(page) || PageReferenced(page) ||
1201                    mmu_notifier_test_young(vma->vm_mm, address))
1202                        referenced++;
1203        }
1204        if (writable) {
1205                if (referenced) {
1206                        result = SCAN_SUCCEED;
1207                        ret = 1;
1208                } else {
1209                        result = SCAN_LACK_REFERENCED_PAGE;
1210                }
1211        } else {
1212                result = SCAN_PAGE_RO;
1213        }
1214out_unmap:
1215        pte_unmap_unlock(pte, ptl);
1216        if (ret) {
1217                node = khugepaged_find_target_node();
1218                /* collapse_huge_page will return with the mmap_sem released */
1219                collapse_huge_page(mm, address, hpage, node, referenced);
1220        }
1221out:
1222        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1223                                     none_or_zero, result, unmapped);
1224        return ret;
1225}
1226
1227static void collect_mm_slot(struct mm_slot *mm_slot)
1228{
1229        struct mm_struct *mm = mm_slot->mm;
1230
1231        lockdep_assert_held(&khugepaged_mm_lock);
1232
1233        if (khugepaged_test_exit(mm)) {
1234                /* free mm_slot */
1235                hash_del(&mm_slot->hash);
1236                list_del(&mm_slot->mm_node);
1237
1238                /*
1239                 * Not strictly needed because the mm exited already.
1240                 *
1241                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1242                 */
1243
1244                /* khugepaged_mm_lock actually not necessary for the below */
1245                free_mm_slot(mm_slot);
1246                mmdrop(mm);
1247        }
1248}
1249
1250#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1251static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1252{
1253        struct vm_area_struct *vma;
1254        unsigned long addr;
1255        pmd_t *pmd, _pmd;
1256
1257        i_mmap_lock_write(mapping);
1258        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1259                /* probably overkill */
1260                if (vma->anon_vma)
1261                        continue;
1262                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1263                if (addr & ~HPAGE_PMD_MASK)
1264                        continue;
1265                if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1266                        continue;
1267                pmd = mm_find_pmd(vma->vm_mm, addr);
1268                if (!pmd)
1269                        continue;
1270                /*
1271                 * We need exclusive mmap_sem to retract page table.
1272                 * If trylock fails we would end up with pte-mapped THP after
1273                 * re-fault. Not ideal, but it's more important to not disturb
1274                 * the system too much.
1275                 */
1276                if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1277                        spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1278                        /* assume page table is clear */
1279                        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1280                        spin_unlock(ptl);
1281                        up_write(&vma->vm_mm->mmap_sem);
1282                        mm_dec_nr_ptes(vma->vm_mm);
1283                        pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1284                }
1285        }
1286        i_mmap_unlock_write(mapping);
1287}
1288
1289/**
1290 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1291 *
1292 * Basic scheme is simple, details are more complex:
1293 *  - allocate and lock a new huge page;
1294 *  - scan page cache replacing old pages with the new one
1295 *    + swap in pages if necessary;
1296 *    + fill in gaps;
1297 *    + keep old pages around in case rollback is required;
1298 *  - if replacing succeeds:
1299 *    + copy data over;
1300 *    + free old pages;
1301 *    + unlock huge page;
1302 *  - if replacing failed;
1303 *    + put all pages back and unfreeze them;
1304 *    + restore gaps in the page cache;
1305 *    + unlock and free huge page;
1306 */
1307static void collapse_shmem(struct mm_struct *mm,
1308                struct address_space *mapping, pgoff_t start,
1309                struct page **hpage, int node)
1310{
1311        gfp_t gfp;
1312        struct page *new_page;
1313        struct mem_cgroup *memcg;
1314        pgoff_t index, end = start + HPAGE_PMD_NR;
1315        LIST_HEAD(pagelist);
1316        XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1317        int nr_none = 0, result = SCAN_SUCCEED;
1318
1319        VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1320
1321        /* Only allocate from the target node */
1322        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1323
1324        new_page = khugepaged_alloc_page(hpage, gfp, node);
1325        if (!new_page) {
1326                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1327                goto out;
1328        }
1329
1330        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1331                result = SCAN_CGROUP_CHARGE_FAIL;
1332                goto out;
1333        }
1334
1335        /* This will be less messy when we use multi-index entries */
1336        do {
1337                xas_lock_irq(&xas);
1338                xas_create_range(&xas);
1339                if (!xas_error(&xas))
1340                        break;
1341                xas_unlock_irq(&xas);
1342                if (!xas_nomem(&xas, GFP_KERNEL)) {
1343                        mem_cgroup_cancel_charge(new_page, memcg, true);
1344                        result = SCAN_FAIL;
1345                        goto out;
1346                }
1347        } while (1);
1348
1349        __SetPageLocked(new_page);
1350        __SetPageSwapBacked(new_page);
1351        new_page->index = start;
1352        new_page->mapping = mapping;
1353
1354        /*
1355         * At this point the new_page is locked and not up-to-date.
1356         * It's safe to insert it into the page cache, because nobody would
1357         * be able to map it or use it in another way until we unlock it.
1358         */
1359
1360        xas_set(&xas, start);
1361        for (index = start; index < end; index++) {
1362                struct page *page = xas_next(&xas);
1363
1364                VM_BUG_ON(index != xas.xa_index);
1365                if (!page) {
1366                        /*
1367                         * Stop if extent has been truncated or hole-punched,
1368                         * and is now completely empty.
1369                         */
1370                        if (index == start) {
1371                                if (!xas_next_entry(&xas, end - 1)) {
1372                                        result = SCAN_TRUNCATED;
1373                                        goto xa_locked;
1374                                }
1375                                xas_set(&xas, index);
1376                        }
1377                        if (!shmem_charge(mapping->host, 1)) {
1378                                result = SCAN_FAIL;
1379                                goto xa_locked;
1380                        }
1381                        xas_store(&xas, new_page + (index % HPAGE_PMD_NR));
1382                        nr_none++;
1383                        continue;
1384                }
1385
1386                if (xa_is_value(page) || !PageUptodate(page)) {
1387                        xas_unlock_irq(&xas);
1388                        /* swap in or instantiate fallocated page */
1389                        if (shmem_getpage(mapping->host, index, &page,
1390                                                SGP_NOHUGE)) {
1391                                result = SCAN_FAIL;
1392                                goto xa_unlocked;
1393                        }
1394                } else if (trylock_page(page)) {
1395                        get_page(page);
1396                        xas_unlock_irq(&xas);
1397                } else {
1398                        result = SCAN_PAGE_LOCK;
1399                        goto xa_locked;
1400                }
1401
1402                /*
1403                 * The page must be locked, so we can drop the i_pages lock
1404                 * without racing with truncate.
1405                 */
1406                VM_BUG_ON_PAGE(!PageLocked(page), page);
1407                VM_BUG_ON_PAGE(!PageUptodate(page), page);
1408
1409                /*
1410                 * If file was truncated then extended, or hole-punched, before
1411                 * we locked the first page, then a THP might be there already.
1412                 */
1413                if (PageTransCompound(page)) {
1414                        result = SCAN_PAGE_COMPOUND;
1415                        goto out_unlock;
1416                }
1417
1418                if (page_mapping(page) != mapping) {
1419                        result = SCAN_TRUNCATED;
1420                        goto out_unlock;
1421                }
1422
1423                if (isolate_lru_page(page)) {
1424                        result = SCAN_DEL_PAGE_LRU;
1425                        goto out_unlock;
1426                }
1427
1428                if (page_mapped(page))
1429                        unmap_mapping_pages(mapping, index, 1, false);
1430
1431                xas_lock_irq(&xas);
1432                xas_set(&xas, index);
1433
1434                VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1435                VM_BUG_ON_PAGE(page_mapped(page), page);
1436
1437                /*
1438                 * The page is expected to have page_count() == 3:
1439                 *  - we hold a pin on it;
1440                 *  - one reference from page cache;
1441                 *  - one from isolate_lru_page;
1442                 */
1443                if (!page_ref_freeze(page, 3)) {
1444                        result = SCAN_PAGE_COUNT;
1445                        xas_unlock_irq(&xas);
1446                        putback_lru_page(page);
1447                        goto out_unlock;
1448                }
1449
1450                /*
1451                 * Add the page to the list to be able to undo the collapse if
1452                 * something go wrong.
1453                 */
1454                list_add_tail(&page->lru, &pagelist);
1455
1456                /* Finally, replace with the new page. */
1457                xas_store(&xas, new_page + (index % HPAGE_PMD_NR));
1458                continue;
1459out_unlock:
1460                unlock_page(page);
1461                put_page(page);
1462                goto xa_unlocked;
1463        }
1464
1465        __inc_node_page_state(new_page, NR_SHMEM_THPS);
1466        if (nr_none) {
1467                struct zone *zone = page_zone(new_page);
1468
1469                __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1470                __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1471        }
1472
1473xa_locked:
1474        xas_unlock_irq(&xas);
1475xa_unlocked:
1476
1477        if (result == SCAN_SUCCEED) {
1478                struct page *page, *tmp;
1479
1480                /*
1481                 * Replacing old pages with new one has succeeded, now we
1482                 * need to copy the content and free the old pages.
1483                 */
1484                index = start;
1485                list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486                        while (index < page->index) {
1487                                clear_highpage(new_page + (index % HPAGE_PMD_NR));
1488                                index++;
1489                        }
1490                        copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1491                                        page);
1492                        list_del(&page->lru);
1493                        page->mapping = NULL;
1494                        page_ref_unfreeze(page, 1);
1495                        ClearPageActive(page);
1496                        ClearPageUnevictable(page);
1497                        unlock_page(page);
1498                        put_page(page);
1499                        index++;
1500                }
1501                while (index < end) {
1502                        clear_highpage(new_page + (index % HPAGE_PMD_NR));
1503                        index++;
1504                }
1505
1506                SetPageUptodate(new_page);
1507                page_ref_add(new_page, HPAGE_PMD_NR - 1);
1508                set_page_dirty(new_page);
1509                mem_cgroup_commit_charge(new_page, memcg, false, true);
1510                count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1511                lru_cache_add_anon(new_page);
1512
1513                /*
1514                 * Remove pte page tables, so we can re-fault the page as huge.
1515                 */
1516                retract_page_tables(mapping, start);
1517                *hpage = NULL;
1518
1519                khugepaged_pages_collapsed++;
1520        } else {
1521                struct page *page;
1522
1523                /* Something went wrong: roll back page cache changes */
1524                xas_lock_irq(&xas);
1525                mapping->nrpages -= nr_none;
1526                shmem_uncharge(mapping->host, nr_none);
1527
1528                xas_set(&xas, start);
1529                xas_for_each(&xas, page, end - 1) {
1530                        page = list_first_entry_or_null(&pagelist,
1531                                        struct page, lru);
1532                        if (!page || xas.xa_index < page->index) {
1533                                if (!nr_none)
1534                                        break;
1535                                nr_none--;
1536                                /* Put holes back where they were */
1537                                xas_store(&xas, NULL);
1538                                continue;
1539                        }
1540
1541                        VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1542
1543                        /* Unfreeze the page. */
1544                        list_del(&page->lru);
1545                        page_ref_unfreeze(page, 2);
1546                        xas_store(&xas, page);
1547                        xas_pause(&xas);
1548                        xas_unlock_irq(&xas);
1549                        unlock_page(page);
1550                        putback_lru_page(page);
1551                        xas_lock_irq(&xas);
1552                }
1553                VM_BUG_ON(nr_none);
1554                xas_unlock_irq(&xas);
1555
1556                mem_cgroup_cancel_charge(new_page, memcg, true);
1557                new_page->mapping = NULL;
1558        }
1559
1560        unlock_page(new_page);
1561out:
1562        VM_BUG_ON(!list_empty(&pagelist));
1563        /* TODO: tracepoints */
1564}
1565
1566static void khugepaged_scan_shmem(struct mm_struct *mm,
1567                struct address_space *mapping,
1568                pgoff_t start, struct page **hpage)
1569{
1570        struct page *page = NULL;
1571        XA_STATE(xas, &mapping->i_pages, start);
1572        int present, swap;
1573        int node = NUMA_NO_NODE;
1574        int result = SCAN_SUCCEED;
1575
1576        present = 0;
1577        swap = 0;
1578        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1579        rcu_read_lock();
1580        xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1581                if (xas_retry(&xas, page))
1582                        continue;
1583
1584                if (xa_is_value(page)) {
1585                        if (++swap > khugepaged_max_ptes_swap) {
1586                                result = SCAN_EXCEED_SWAP_PTE;
1587                                break;
1588                        }
1589                        continue;
1590                }
1591
1592                if (PageTransCompound(page)) {
1593                        result = SCAN_PAGE_COMPOUND;
1594                        break;
1595                }
1596
1597                node = page_to_nid(page);
1598                if (khugepaged_scan_abort(node)) {
1599                        result = SCAN_SCAN_ABORT;
1600                        break;
1601                }
1602                khugepaged_node_load[node]++;
1603
1604                if (!PageLRU(page)) {
1605                        result = SCAN_PAGE_LRU;
1606                        break;
1607                }
1608
1609                if (page_count(page) != 1 + page_mapcount(page)) {
1610                        result = SCAN_PAGE_COUNT;
1611                        break;
1612                }
1613
1614                /*
1615                 * We probably should check if the page is referenced here, but
1616                 * nobody would transfer pte_young() to PageReferenced() for us.
1617                 * And rmap walk here is just too costly...
1618                 */
1619
1620                present++;
1621
1622                if (need_resched()) {
1623                        xas_pause(&xas);
1624                        cond_resched_rcu();
1625                }
1626        }
1627        rcu_read_unlock();
1628
1629        if (result == SCAN_SUCCEED) {
1630                if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1631                        result = SCAN_EXCEED_NONE_PTE;
1632                } else {
1633                        node = khugepaged_find_target_node();
1634                        collapse_shmem(mm, mapping, start, hpage, node);
1635                }
1636        }
1637
1638        /* TODO: tracepoints */
1639}
1640#else
1641static void khugepaged_scan_shmem(struct mm_struct *mm,
1642                struct address_space *mapping,
1643                pgoff_t start, struct page **hpage)
1644{
1645        BUILD_BUG();
1646}
1647#endif
1648
1649static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1650                                            struct page **hpage)
1651        __releases(&khugepaged_mm_lock)
1652        __acquires(&khugepaged_mm_lock)
1653{
1654        struct mm_slot *mm_slot;
1655        struct mm_struct *mm;
1656        struct vm_area_struct *vma;
1657        int progress = 0;
1658
1659        VM_BUG_ON(!pages);
1660        lockdep_assert_held(&khugepaged_mm_lock);
1661
1662        if (khugepaged_scan.mm_slot)
1663                mm_slot = khugepaged_scan.mm_slot;
1664        else {
1665                mm_slot = list_entry(khugepaged_scan.mm_head.next,
1666                                     struct mm_slot, mm_node);
1667                khugepaged_scan.address = 0;
1668                khugepaged_scan.mm_slot = mm_slot;
1669        }
1670        spin_unlock(&khugepaged_mm_lock);
1671
1672        mm = mm_slot->mm;
1673        /*
1674         * Don't wait for semaphore (to avoid long wait times).  Just move to
1675         * the next mm on the list.
1676         */
1677        vma = NULL;
1678        if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1679                goto breakouterloop_mmap_sem;
1680        if (likely(!khugepaged_test_exit(mm)))
1681                vma = find_vma(mm, khugepaged_scan.address);
1682
1683        progress++;
1684        for (; vma; vma = vma->vm_next) {
1685                unsigned long hstart, hend;
1686
1687                cond_resched();
1688                if (unlikely(khugepaged_test_exit(mm))) {
1689                        progress++;
1690                        break;
1691                }
1692                if (!hugepage_vma_check(vma, vma->vm_flags)) {
1693skip:
1694                        progress++;
1695                        continue;
1696                }
1697                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1698                hend = vma->vm_end & HPAGE_PMD_MASK;
1699                if (hstart >= hend)
1700                        goto skip;
1701                if (khugepaged_scan.address > hend)
1702                        goto skip;
1703                if (khugepaged_scan.address < hstart)
1704                        khugepaged_scan.address = hstart;
1705                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1706
1707                while (khugepaged_scan.address < hend) {
1708                        int ret;
1709                        cond_resched();
1710                        if (unlikely(khugepaged_test_exit(mm)))
1711                                goto breakouterloop;
1712
1713                        VM_BUG_ON(khugepaged_scan.address < hstart ||
1714                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
1715                                  hend);
1716                        if (shmem_file(vma->vm_file)) {
1717                                struct file *file;
1718                                pgoff_t pgoff = linear_page_index(vma,
1719                                                khugepaged_scan.address);
1720                                if (!shmem_huge_enabled(vma))
1721                                        goto skip;
1722                                file = get_file(vma->vm_file);
1723                                up_read(&mm->mmap_sem);
1724                                ret = 1;
1725                                khugepaged_scan_shmem(mm, file->f_mapping,
1726                                                pgoff, hpage);
1727                                fput(file);
1728                        } else {
1729                                ret = khugepaged_scan_pmd(mm, vma,
1730                                                khugepaged_scan.address,
1731                                                hpage);
1732                        }
1733                        /* move to next address */
1734                        khugepaged_scan.address += HPAGE_PMD_SIZE;
1735                        progress += HPAGE_PMD_NR;
1736                        if (ret)
1737                                /* we released mmap_sem so break loop */
1738                                goto breakouterloop_mmap_sem;
1739                        if (progress >= pages)
1740                                goto breakouterloop;
1741                }
1742        }
1743breakouterloop:
1744        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1745breakouterloop_mmap_sem:
1746
1747        spin_lock(&khugepaged_mm_lock);
1748        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1749        /*
1750         * Release the current mm_slot if this mm is about to die, or
1751         * if we scanned all vmas of this mm.
1752         */
1753        if (khugepaged_test_exit(mm) || !vma) {
1754                /*
1755                 * Make sure that if mm_users is reaching zero while
1756                 * khugepaged runs here, khugepaged_exit will find
1757                 * mm_slot not pointing to the exiting mm.
1758                 */
1759                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1760                        khugepaged_scan.mm_slot = list_entry(
1761                                mm_slot->mm_node.next,
1762                                struct mm_slot, mm_node);
1763                        khugepaged_scan.address = 0;
1764                } else {
1765                        khugepaged_scan.mm_slot = NULL;
1766                        khugepaged_full_scans++;
1767                }
1768
1769                collect_mm_slot(mm_slot);
1770        }
1771
1772        return progress;
1773}
1774
1775static int khugepaged_has_work(void)
1776{
1777        return !list_empty(&khugepaged_scan.mm_head) &&
1778                khugepaged_enabled();
1779}
1780
1781static int khugepaged_wait_event(void)
1782{
1783        return !list_empty(&khugepaged_scan.mm_head) ||
1784                kthread_should_stop();
1785}
1786
1787static void khugepaged_do_scan(void)
1788{
1789        struct page *hpage = NULL;
1790        unsigned int progress = 0, pass_through_head = 0;
1791        unsigned int pages = khugepaged_pages_to_scan;
1792        bool wait = true;
1793
1794        barrier(); /* write khugepaged_pages_to_scan to local stack */
1795
1796        while (progress < pages) {
1797                if (!khugepaged_prealloc_page(&hpage, &wait))
1798                        break;
1799
1800                cond_resched();
1801
1802                if (unlikely(kthread_should_stop() || try_to_freeze()))
1803                        break;
1804
1805                spin_lock(&khugepaged_mm_lock);
1806                if (!khugepaged_scan.mm_slot)
1807                        pass_through_head++;
1808                if (khugepaged_has_work() &&
1809                    pass_through_head < 2)
1810                        progress += khugepaged_scan_mm_slot(pages - progress,
1811                                                            &hpage);
1812                else
1813                        progress = pages;
1814                spin_unlock(&khugepaged_mm_lock);
1815        }
1816
1817        if (!IS_ERR_OR_NULL(hpage))
1818                put_page(hpage);
1819}
1820
1821static bool khugepaged_should_wakeup(void)
1822{
1823        return kthread_should_stop() ||
1824               time_after_eq(jiffies, khugepaged_sleep_expire);
1825}
1826
1827static void khugepaged_wait_work(void)
1828{
1829        if (khugepaged_has_work()) {
1830                const unsigned long scan_sleep_jiffies =
1831                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1832
1833                if (!scan_sleep_jiffies)
1834                        return;
1835
1836                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1837                wait_event_freezable_timeout(khugepaged_wait,
1838                                             khugepaged_should_wakeup(),
1839                                             scan_sleep_jiffies);
1840                return;
1841        }
1842
1843        if (khugepaged_enabled())
1844                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1845}
1846
1847static int khugepaged(void *none)
1848{
1849        struct mm_slot *mm_slot;
1850
1851        set_freezable();
1852        set_user_nice(current, MAX_NICE);
1853
1854        while (!kthread_should_stop()) {
1855                khugepaged_do_scan();
1856                khugepaged_wait_work();
1857        }
1858
1859        spin_lock(&khugepaged_mm_lock);
1860        mm_slot = khugepaged_scan.mm_slot;
1861        khugepaged_scan.mm_slot = NULL;
1862        if (mm_slot)
1863                collect_mm_slot(mm_slot);
1864        spin_unlock(&khugepaged_mm_lock);
1865        return 0;
1866}
1867
1868static void set_recommended_min_free_kbytes(void)
1869{
1870        struct zone *zone;
1871        int nr_zones = 0;
1872        unsigned long recommended_min;
1873
1874        for_each_populated_zone(zone) {
1875                /*
1876                 * We don't need to worry about fragmentation of
1877                 * ZONE_MOVABLE since it only has movable pages.
1878                 */
1879                if (zone_idx(zone) > gfp_zone(GFP_USER))
1880                        continue;
1881
1882                nr_zones++;
1883        }
1884
1885        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1886        recommended_min = pageblock_nr_pages * nr_zones * 2;
1887
1888        /*
1889         * Make sure that on average at least two pageblocks are almost free
1890         * of another type, one for a migratetype to fall back to and a
1891         * second to avoid subsequent fallbacks of other types There are 3
1892         * MIGRATE_TYPES we care about.
1893         */
1894        recommended_min += pageblock_nr_pages * nr_zones *
1895                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1896
1897        /* don't ever allow to reserve more than 5% of the lowmem */
1898        recommended_min = min(recommended_min,
1899                              (unsigned long) nr_free_buffer_pages() / 20);
1900        recommended_min <<= (PAGE_SHIFT-10);
1901
1902        if (recommended_min > min_free_kbytes) {
1903                if (user_min_free_kbytes >= 0)
1904                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1905                                min_free_kbytes, recommended_min);
1906
1907                min_free_kbytes = recommended_min;
1908        }
1909        setup_per_zone_wmarks();
1910}
1911
1912int start_stop_khugepaged(void)
1913{
1914        static struct task_struct *khugepaged_thread __read_mostly;
1915        static DEFINE_MUTEX(khugepaged_mutex);
1916        int err = 0;
1917
1918        mutex_lock(&khugepaged_mutex);
1919        if (khugepaged_enabled()) {
1920                if (!khugepaged_thread)
1921                        khugepaged_thread = kthread_run(khugepaged, NULL,
1922                                                        "khugepaged");
1923                if (IS_ERR(khugepaged_thread)) {
1924                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1925                        err = PTR_ERR(khugepaged_thread);
1926                        khugepaged_thread = NULL;
1927                        goto fail;
1928                }
1929
1930                if (!list_empty(&khugepaged_scan.mm_head))
1931                        wake_up_interruptible(&khugepaged_wait);
1932
1933                set_recommended_min_free_kbytes();
1934        } else if (khugepaged_thread) {
1935                kthread_stop(khugepaged_thread);
1936                khugepaged_thread = NULL;
1937        }
1938fail:
1939        mutex_unlock(&khugepaged_mutex);
1940        return err;
1941}
1942