linux/mm/ksm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *      Izik Eidus
  11 *      Andrea Arcangeli
  12 *      Chris Wright
  13 *      Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)         (x)
  47#define DO_NUMA(x)      do { (x); } while (0)
  48#else
  49#define NUMA(x)         (0)
  50#define DO_NUMA(x)      do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same :c:type:`struct stable_node` structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121        struct hlist_node link;
 122        struct list_head mm_list;
 123        struct rmap_item *rmap_list;
 124        struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137        struct mm_slot *mm_slot;
 138        unsigned long address;
 139        struct rmap_item **rmap_list;
 140        unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156        union {
 157                struct rb_node node;    /* when node of stable tree */
 158                struct {                /* when listed for migration */
 159                        struct list_head *head;
 160                        struct {
 161                                struct hlist_node hlist_dup;
 162                                struct list_head list;
 163                        };
 164                };
 165        };
 166        struct hlist_head hlist;
 167        union {
 168                unsigned long kpfn;
 169                unsigned long chain_prune_time;
 170        };
 171        /*
 172         * STABLE_NODE_CHAIN can be any negative number in
 173         * rmap_hlist_len negative range, but better not -1 to be able
 174         * to reliably detect underflows.
 175         */
 176#define STABLE_NODE_CHAIN -1024
 177        int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179        int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196        struct rmap_item *rmap_list;
 197        union {
 198                struct anon_vma *anon_vma;      /* when stable */
 199#ifdef CONFIG_NUMA
 200                int nid;                /* when node of unstable tree */
 201#endif
 202        };
 203        struct mm_struct *mm;
 204        unsigned long address;          /* + low bits used for flags below */
 205        unsigned int oldchecksum;       /* when unstable */
 206        union {
 207                struct rb_node node;    /* when node of unstable tree */
 208                struct {                /* when listed from stable tree */
 209                        struct stable_node *head;
 210                        struct hlist_node hlist;
 211                };
 212        };
 213};
 214
 215#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 217#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 218#define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 219                                /* to mask all the flags */
 220
 221/* The stable and unstable tree heads */
 222static struct rb_root one_stable_tree[1] = { RB_ROOT };
 223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 224static struct rb_root *root_stable_tree = one_stable_tree;
 225static struct rb_root *root_unstable_tree = one_unstable_tree;
 226
 227/* Recently migrated nodes of stable tree, pending proper placement */
 228static LIST_HEAD(migrate_nodes);
 229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 230
 231#define MM_SLOTS_HASH_BITS 10
 232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 233
 234static struct mm_slot ksm_mm_head = {
 235        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 236};
 237static struct ksm_scan ksm_scan = {
 238        .mm_slot = &ksm_mm_head,
 239};
 240
 241static struct kmem_cache *rmap_item_cache;
 242static struct kmem_cache *stable_node_cache;
 243static struct kmem_cache *mm_slot_cache;
 244
 245/* The number of nodes in the stable tree */
 246static unsigned long ksm_pages_shared;
 247
 248/* The number of page slots additionally sharing those nodes */
 249static unsigned long ksm_pages_sharing;
 250
 251/* The number of nodes in the unstable tree */
 252static unsigned long ksm_pages_unshared;
 253
 254/* The number of rmap_items in use: to calculate pages_volatile */
 255static unsigned long ksm_rmap_items;
 256
 257/* The number of stable_node chains */
 258static unsigned long ksm_stable_node_chains;
 259
 260/* The number of stable_node dups linked to the stable_node chains */
 261static unsigned long ksm_stable_node_dups;
 262
 263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 264static int ksm_stable_node_chains_prune_millisecs = 2000;
 265
 266/* Maximum number of page slots sharing a stable node */
 267static int ksm_max_page_sharing = 256;
 268
 269/* Number of pages ksmd should scan in one batch */
 270static unsigned int ksm_thread_pages_to_scan = 100;
 271
 272/* Milliseconds ksmd should sleep between batches */
 273static unsigned int ksm_thread_sleep_millisecs = 20;
 274
 275/* Checksum of an empty (zeroed) page */
 276static unsigned int zero_checksum __read_mostly;
 277
 278/* Whether to merge empty (zeroed) pages with actual zero pages */
 279static bool ksm_use_zero_pages __read_mostly;
 280
 281#ifdef CONFIG_NUMA
 282/* Zeroed when merging across nodes is not allowed */
 283static unsigned int ksm_merge_across_nodes = 1;
 284static int ksm_nr_node_ids = 1;
 285#else
 286#define ksm_merge_across_nodes  1U
 287#define ksm_nr_node_ids         1
 288#endif
 289
 290#define KSM_RUN_STOP    0
 291#define KSM_RUN_MERGE   1
 292#define KSM_RUN_UNMERGE 2
 293#define KSM_RUN_OFFLINE 4
 294static unsigned long ksm_run = KSM_RUN_STOP;
 295static void wait_while_offlining(void);
 296
 297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 299static DEFINE_MUTEX(ksm_thread_mutex);
 300static DEFINE_SPINLOCK(ksm_mmlist_lock);
 301
 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 303                sizeof(struct __struct), __alignof__(struct __struct),\
 304                (__flags), NULL)
 305
 306static int __init ksm_slab_init(void)
 307{
 308        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 309        if (!rmap_item_cache)
 310                goto out;
 311
 312        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 313        if (!stable_node_cache)
 314                goto out_free1;
 315
 316        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 317        if (!mm_slot_cache)
 318                goto out_free2;
 319
 320        return 0;
 321
 322out_free2:
 323        kmem_cache_destroy(stable_node_cache);
 324out_free1:
 325        kmem_cache_destroy(rmap_item_cache);
 326out:
 327        return -ENOMEM;
 328}
 329
 330static void __init ksm_slab_free(void)
 331{
 332        kmem_cache_destroy(mm_slot_cache);
 333        kmem_cache_destroy(stable_node_cache);
 334        kmem_cache_destroy(rmap_item_cache);
 335        mm_slot_cache = NULL;
 336}
 337
 338static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 339{
 340        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 341}
 342
 343static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 344{
 345        return dup->head == STABLE_NODE_DUP_HEAD;
 346}
 347
 348static inline void stable_node_chain_add_dup(struct stable_node *dup,
 349                                             struct stable_node *chain)
 350{
 351        VM_BUG_ON(is_stable_node_dup(dup));
 352        dup->head = STABLE_NODE_DUP_HEAD;
 353        VM_BUG_ON(!is_stable_node_chain(chain));
 354        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 355        ksm_stable_node_dups++;
 356}
 357
 358static inline void __stable_node_dup_del(struct stable_node *dup)
 359{
 360        VM_BUG_ON(!is_stable_node_dup(dup));
 361        hlist_del(&dup->hlist_dup);
 362        ksm_stable_node_dups--;
 363}
 364
 365static inline void stable_node_dup_del(struct stable_node *dup)
 366{
 367        VM_BUG_ON(is_stable_node_chain(dup));
 368        if (is_stable_node_dup(dup))
 369                __stable_node_dup_del(dup);
 370        else
 371                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 372#ifdef CONFIG_DEBUG_VM
 373        dup->head = NULL;
 374#endif
 375}
 376
 377static inline struct rmap_item *alloc_rmap_item(void)
 378{
 379        struct rmap_item *rmap_item;
 380
 381        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 382                                                __GFP_NORETRY | __GFP_NOWARN);
 383        if (rmap_item)
 384                ksm_rmap_items++;
 385        return rmap_item;
 386}
 387
 388static inline void free_rmap_item(struct rmap_item *rmap_item)
 389{
 390        ksm_rmap_items--;
 391        rmap_item->mm = NULL;   /* debug safety */
 392        kmem_cache_free(rmap_item_cache, rmap_item);
 393}
 394
 395static inline struct stable_node *alloc_stable_node(void)
 396{
 397        /*
 398         * The allocation can take too long with GFP_KERNEL when memory is under
 399         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 400         * grants access to memory reserves, helping to avoid this problem.
 401         */
 402        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 403}
 404
 405static inline void free_stable_node(struct stable_node *stable_node)
 406{
 407        VM_BUG_ON(stable_node->rmap_hlist_len &&
 408                  !is_stable_node_chain(stable_node));
 409        kmem_cache_free(stable_node_cache, stable_node);
 410}
 411
 412static inline struct mm_slot *alloc_mm_slot(void)
 413{
 414        if (!mm_slot_cache)     /* initialization failed */
 415                return NULL;
 416        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 417}
 418
 419static inline void free_mm_slot(struct mm_slot *mm_slot)
 420{
 421        kmem_cache_free(mm_slot_cache, mm_slot);
 422}
 423
 424static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 425{
 426        struct mm_slot *slot;
 427
 428        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 429                if (slot->mm == mm)
 430                        return slot;
 431
 432        return NULL;
 433}
 434
 435static void insert_to_mm_slots_hash(struct mm_struct *mm,
 436                                    struct mm_slot *mm_slot)
 437{
 438        mm_slot->mm = mm;
 439        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 440}
 441
 442/*
 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 444 * page tables after it has passed through ksm_exit() - which, if necessary,
 445 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 446 * a special flag: they can just back out as soon as mm_users goes to zero.
 447 * ksm_test_exit() is used throughout to make this test for exit: in some
 448 * places for correctness, in some places just to avoid unnecessary work.
 449 */
 450static inline bool ksm_test_exit(struct mm_struct *mm)
 451{
 452        return atomic_read(&mm->mm_users) == 0;
 453}
 454
 455/*
 456 * We use break_ksm to break COW on a ksm page: it's a stripped down
 457 *
 458 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 459 *              put_page(page);
 460 *
 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 462 * in case the application has unmapped and remapped mm,addr meanwhile.
 463 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 465 *
 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 467 * of the process that owns 'vma'.  We also do not want to enforce
 468 * protection keys here anyway.
 469 */
 470static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 471{
 472        struct page *page;
 473        vm_fault_t ret = 0;
 474
 475        do {
 476                cond_resched();
 477                page = follow_page(vma, addr,
 478                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 479                if (IS_ERR_OR_NULL(page))
 480                        break;
 481                if (PageKsm(page))
 482                        ret = handle_mm_fault(vma, addr,
 483                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 484                else
 485                        ret = VM_FAULT_WRITE;
 486                put_page(page);
 487        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 488        /*
 489         * We must loop because handle_mm_fault() may back out if there's
 490         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 491         *
 492         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 493         * COW has been broken, even if the vma does not permit VM_WRITE;
 494         * but note that a concurrent fault might break PageKsm for us.
 495         *
 496         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 497         * backing file, which also invalidates anonymous pages: that's
 498         * okay, that truncation will have unmapped the PageKsm for us.
 499         *
 500         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 501         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 502         * current task has TIF_MEMDIE set, and will be OOM killed on return
 503         * to user; and ksmd, having no mm, would never be chosen for that.
 504         *
 505         * But if the mm is in a limited mem_cgroup, then the fault may fail
 506         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 507         * even ksmd can fail in this way - though it's usually breaking ksm
 508         * just to undo a merge it made a moment before, so unlikely to oom.
 509         *
 510         * That's a pity: we might therefore have more kernel pages allocated
 511         * than we're counting as nodes in the stable tree; but ksm_do_scan
 512         * will retry to break_cow on each pass, so should recover the page
 513         * in due course.  The important thing is to not let VM_MERGEABLE
 514         * be cleared while any such pages might remain in the area.
 515         */
 516        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 517}
 518
 519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 520                unsigned long addr)
 521{
 522        struct vm_area_struct *vma;
 523        if (ksm_test_exit(mm))
 524                return NULL;
 525        vma = find_vma(mm, addr);
 526        if (!vma || vma->vm_start > addr)
 527                return NULL;
 528        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 529                return NULL;
 530        return vma;
 531}
 532
 533static void break_cow(struct rmap_item *rmap_item)
 534{
 535        struct mm_struct *mm = rmap_item->mm;
 536        unsigned long addr = rmap_item->address;
 537        struct vm_area_struct *vma;
 538
 539        /*
 540         * It is not an accident that whenever we want to break COW
 541         * to undo, we also need to drop a reference to the anon_vma.
 542         */
 543        put_anon_vma(rmap_item->anon_vma);
 544
 545        down_read(&mm->mmap_sem);
 546        vma = find_mergeable_vma(mm, addr);
 547        if (vma)
 548                break_ksm(vma, addr);
 549        up_read(&mm->mmap_sem);
 550}
 551
 552static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 553{
 554        struct mm_struct *mm = rmap_item->mm;
 555        unsigned long addr = rmap_item->address;
 556        struct vm_area_struct *vma;
 557        struct page *page;
 558
 559        down_read(&mm->mmap_sem);
 560        vma = find_mergeable_vma(mm, addr);
 561        if (!vma)
 562                goto out;
 563
 564        page = follow_page(vma, addr, FOLL_GET);
 565        if (IS_ERR_OR_NULL(page))
 566                goto out;
 567        if (PageAnon(page)) {
 568                flush_anon_page(vma, page, addr);
 569                flush_dcache_page(page);
 570        } else {
 571                put_page(page);
 572out:
 573                page = NULL;
 574        }
 575        up_read(&mm->mmap_sem);
 576        return page;
 577}
 578
 579/*
 580 * This helper is used for getting right index into array of tree roots.
 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 583 * every node has its own stable and unstable tree.
 584 */
 585static inline int get_kpfn_nid(unsigned long kpfn)
 586{
 587        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 588}
 589
 590static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 591                                                   struct rb_root *root)
 592{
 593        struct stable_node *chain = alloc_stable_node();
 594        VM_BUG_ON(is_stable_node_chain(dup));
 595        if (likely(chain)) {
 596                INIT_HLIST_HEAD(&chain->hlist);
 597                chain->chain_prune_time = jiffies;
 598                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 599#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 600                chain->nid = NUMA_NO_NODE; /* debug */
 601#endif
 602                ksm_stable_node_chains++;
 603
 604                /*
 605                 * Put the stable node chain in the first dimension of
 606                 * the stable tree and at the same time remove the old
 607                 * stable node.
 608                 */
 609                rb_replace_node(&dup->node, &chain->node, root);
 610
 611                /*
 612                 * Move the old stable node to the second dimension
 613                 * queued in the hlist_dup. The invariant is that all
 614                 * dup stable_nodes in the chain->hlist point to pages
 615                 * that are wrprotected and have the exact same
 616                 * content.
 617                 */
 618                stable_node_chain_add_dup(dup, chain);
 619        }
 620        return chain;
 621}
 622
 623static inline void free_stable_node_chain(struct stable_node *chain,
 624                                          struct rb_root *root)
 625{
 626        rb_erase(&chain->node, root);
 627        free_stable_node(chain);
 628        ksm_stable_node_chains--;
 629}
 630
 631static void remove_node_from_stable_tree(struct stable_node *stable_node)
 632{
 633        struct rmap_item *rmap_item;
 634
 635        /* check it's not STABLE_NODE_CHAIN or negative */
 636        BUG_ON(stable_node->rmap_hlist_len < 0);
 637
 638        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 639                if (rmap_item->hlist.next)
 640                        ksm_pages_sharing--;
 641                else
 642                        ksm_pages_shared--;
 643                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 644                stable_node->rmap_hlist_len--;
 645                put_anon_vma(rmap_item->anon_vma);
 646                rmap_item->address &= PAGE_MASK;
 647                cond_resched();
 648        }
 649
 650        /*
 651         * We need the second aligned pointer of the migrate_nodes
 652         * list_head to stay clear from the rb_parent_color union
 653         * (aligned and different than any node) and also different
 654         * from &migrate_nodes. This will verify that future list.h changes
 655         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 656         */
 657#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 658        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 659        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 660#endif
 661
 662        if (stable_node->head == &migrate_nodes)
 663                list_del(&stable_node->list);
 664        else
 665                stable_node_dup_del(stable_node);
 666        free_stable_node(stable_node);
 667}
 668
 669enum get_ksm_page_flags {
 670        GET_KSM_PAGE_NOLOCK,
 671        GET_KSM_PAGE_LOCK,
 672        GET_KSM_PAGE_TRYLOCK
 673};
 674
 675/*
 676 * get_ksm_page: checks if the page indicated by the stable node
 677 * is still its ksm page, despite having held no reference to it.
 678 * In which case we can trust the content of the page, and it
 679 * returns the gotten page; but if the page has now been zapped,
 680 * remove the stale node from the stable tree and return NULL.
 681 * But beware, the stable node's page might be being migrated.
 682 *
 683 * You would expect the stable_node to hold a reference to the ksm page.
 684 * But if it increments the page's count, swapping out has to wait for
 685 * ksmd to come around again before it can free the page, which may take
 686 * seconds or even minutes: much too unresponsive.  So instead we use a
 687 * "keyhole reference": access to the ksm page from the stable node peeps
 688 * out through its keyhole to see if that page still holds the right key,
 689 * pointing back to this stable node.  This relies on freeing a PageAnon
 690 * page to reset its page->mapping to NULL, and relies on no other use of
 691 * a page to put something that might look like our key in page->mapping.
 692 * is on its way to being freed; but it is an anomaly to bear in mind.
 693 */
 694static struct page *get_ksm_page(struct stable_node *stable_node,
 695                                 enum get_ksm_page_flags flags)
 696{
 697        struct page *page;
 698        void *expected_mapping;
 699        unsigned long kpfn;
 700
 701        expected_mapping = (void *)((unsigned long)stable_node |
 702                                        PAGE_MAPPING_KSM);
 703again:
 704        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 705        page = pfn_to_page(kpfn);
 706        if (READ_ONCE(page->mapping) != expected_mapping)
 707                goto stale;
 708
 709        /*
 710         * We cannot do anything with the page while its refcount is 0.
 711         * Usually 0 means free, or tail of a higher-order page: in which
 712         * case this node is no longer referenced, and should be freed;
 713         * however, it might mean that the page is under page_ref_freeze().
 714         * The __remove_mapping() case is easy, again the node is now stale;
 715         * the same is in reuse_ksm_page() case; but if page is swapcache
 716         * in migrate_page_move_mapping(), it might still be our page,
 717         * in which case it's essential to keep the node.
 718         */
 719        while (!get_page_unless_zero(page)) {
 720                /*
 721                 * Another check for page->mapping != expected_mapping would
 722                 * work here too.  We have chosen the !PageSwapCache test to
 723                 * optimize the common case, when the page is or is about to
 724                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 725                 * in the ref_freeze section of __remove_mapping(); but Anon
 726                 * page->mapping reset to NULL later, in free_pages_prepare().
 727                 */
 728                if (!PageSwapCache(page))
 729                        goto stale;
 730                cpu_relax();
 731        }
 732
 733        if (READ_ONCE(page->mapping) != expected_mapping) {
 734                put_page(page);
 735                goto stale;
 736        }
 737
 738        if (flags == GET_KSM_PAGE_TRYLOCK) {
 739                if (!trylock_page(page)) {
 740                        put_page(page);
 741                        return ERR_PTR(-EBUSY);
 742                }
 743        } else if (flags == GET_KSM_PAGE_LOCK)
 744                lock_page(page);
 745
 746        if (flags != GET_KSM_PAGE_NOLOCK) {
 747                if (READ_ONCE(page->mapping) != expected_mapping) {
 748                        unlock_page(page);
 749                        put_page(page);
 750                        goto stale;
 751                }
 752        }
 753        return page;
 754
 755stale:
 756        /*
 757         * We come here from above when page->mapping or !PageSwapCache
 758         * suggests that the node is stale; but it might be under migration.
 759         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 760         * before checking whether node->kpfn has been changed.
 761         */
 762        smp_rmb();
 763        if (READ_ONCE(stable_node->kpfn) != kpfn)
 764                goto again;
 765        remove_node_from_stable_tree(stable_node);
 766        return NULL;
 767}
 768
 769/*
 770 * Removing rmap_item from stable or unstable tree.
 771 * This function will clean the information from the stable/unstable tree.
 772 */
 773static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 774{
 775        if (rmap_item->address & STABLE_FLAG) {
 776                struct stable_node *stable_node;
 777                struct page *page;
 778
 779                stable_node = rmap_item->head;
 780                page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 781                if (!page)
 782                        goto out;
 783
 784                hlist_del(&rmap_item->hlist);
 785                unlock_page(page);
 786                put_page(page);
 787
 788                if (!hlist_empty(&stable_node->hlist))
 789                        ksm_pages_sharing--;
 790                else
 791                        ksm_pages_shared--;
 792                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 793                stable_node->rmap_hlist_len--;
 794
 795                put_anon_vma(rmap_item->anon_vma);
 796                rmap_item->address &= PAGE_MASK;
 797
 798        } else if (rmap_item->address & UNSTABLE_FLAG) {
 799                unsigned char age;
 800                /*
 801                 * Usually ksmd can and must skip the rb_erase, because
 802                 * root_unstable_tree was already reset to RB_ROOT.
 803                 * But be careful when an mm is exiting: do the rb_erase
 804                 * if this rmap_item was inserted by this scan, rather
 805                 * than left over from before.
 806                 */
 807                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 808                BUG_ON(age > 1);
 809                if (!age)
 810                        rb_erase(&rmap_item->node,
 811                                 root_unstable_tree + NUMA(rmap_item->nid));
 812                ksm_pages_unshared--;
 813                rmap_item->address &= PAGE_MASK;
 814        }
 815out:
 816        cond_resched();         /* we're called from many long loops */
 817}
 818
 819static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 820                                       struct rmap_item **rmap_list)
 821{
 822        while (*rmap_list) {
 823                struct rmap_item *rmap_item = *rmap_list;
 824                *rmap_list = rmap_item->rmap_list;
 825                remove_rmap_item_from_tree(rmap_item);
 826                free_rmap_item(rmap_item);
 827        }
 828}
 829
 830/*
 831 * Though it's very tempting to unmerge rmap_items from stable tree rather
 832 * than check every pte of a given vma, the locking doesn't quite work for
 833 * that - an rmap_item is assigned to the stable tree after inserting ksm
 834 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 835 * rmap_items from parent to child at fork time (so as not to waste time
 836 * if exit comes before the next scan reaches it).
 837 *
 838 * Similarly, although we'd like to remove rmap_items (so updating counts
 839 * and freeing memory) when unmerging an area, it's easier to leave that
 840 * to the next pass of ksmd - consider, for example, how ksmd might be
 841 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 842 */
 843static int unmerge_ksm_pages(struct vm_area_struct *vma,
 844                             unsigned long start, unsigned long end)
 845{
 846        unsigned long addr;
 847        int err = 0;
 848
 849        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 850                if (ksm_test_exit(vma->vm_mm))
 851                        break;
 852                if (signal_pending(current))
 853                        err = -ERESTARTSYS;
 854                else
 855                        err = break_ksm(vma, addr);
 856        }
 857        return err;
 858}
 859
 860static inline struct stable_node *page_stable_node(struct page *page)
 861{
 862        return PageKsm(page) ? page_rmapping(page) : NULL;
 863}
 864
 865static inline void set_page_stable_node(struct page *page,
 866                                        struct stable_node *stable_node)
 867{
 868        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 869}
 870
 871#ifdef CONFIG_SYSFS
 872/*
 873 * Only called through the sysfs control interface:
 874 */
 875static int remove_stable_node(struct stable_node *stable_node)
 876{
 877        struct page *page;
 878        int err;
 879
 880        page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 881        if (!page) {
 882                /*
 883                 * get_ksm_page did remove_node_from_stable_tree itself.
 884                 */
 885                return 0;
 886        }
 887
 888        if (WARN_ON_ONCE(page_mapped(page))) {
 889                /*
 890                 * This should not happen: but if it does, just refuse to let
 891                 * merge_across_nodes be switched - there is no need to panic.
 892                 */
 893                err = -EBUSY;
 894        } else {
 895                /*
 896                 * The stable node did not yet appear stale to get_ksm_page(),
 897                 * since that allows for an unmapped ksm page to be recognized
 898                 * right up until it is freed; but the node is safe to remove.
 899                 * This page might be in a pagevec waiting to be freed,
 900                 * or it might be PageSwapCache (perhaps under writeback),
 901                 * or it might have been removed from swapcache a moment ago.
 902                 */
 903                set_page_stable_node(page, NULL);
 904                remove_node_from_stable_tree(stable_node);
 905                err = 0;
 906        }
 907
 908        unlock_page(page);
 909        put_page(page);
 910        return err;
 911}
 912
 913static int remove_stable_node_chain(struct stable_node *stable_node,
 914                                    struct rb_root *root)
 915{
 916        struct stable_node *dup;
 917        struct hlist_node *hlist_safe;
 918
 919        if (!is_stable_node_chain(stable_node)) {
 920                VM_BUG_ON(is_stable_node_dup(stable_node));
 921                if (remove_stable_node(stable_node))
 922                        return true;
 923                else
 924                        return false;
 925        }
 926
 927        hlist_for_each_entry_safe(dup, hlist_safe,
 928                                  &stable_node->hlist, hlist_dup) {
 929                VM_BUG_ON(!is_stable_node_dup(dup));
 930                if (remove_stable_node(dup))
 931                        return true;
 932        }
 933        BUG_ON(!hlist_empty(&stable_node->hlist));
 934        free_stable_node_chain(stable_node, root);
 935        return false;
 936}
 937
 938static int remove_all_stable_nodes(void)
 939{
 940        struct stable_node *stable_node, *next;
 941        int nid;
 942        int err = 0;
 943
 944        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 945                while (root_stable_tree[nid].rb_node) {
 946                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 947                                                struct stable_node, node);
 948                        if (remove_stable_node_chain(stable_node,
 949                                                     root_stable_tree + nid)) {
 950                                err = -EBUSY;
 951                                break;  /* proceed to next nid */
 952                        }
 953                        cond_resched();
 954                }
 955        }
 956        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 957                if (remove_stable_node(stable_node))
 958                        err = -EBUSY;
 959                cond_resched();
 960        }
 961        return err;
 962}
 963
 964static int unmerge_and_remove_all_rmap_items(void)
 965{
 966        struct mm_slot *mm_slot;
 967        struct mm_struct *mm;
 968        struct vm_area_struct *vma;
 969        int err = 0;
 970
 971        spin_lock(&ksm_mmlist_lock);
 972        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 973                                                struct mm_slot, mm_list);
 974        spin_unlock(&ksm_mmlist_lock);
 975
 976        for (mm_slot = ksm_scan.mm_slot;
 977                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 978                mm = mm_slot->mm;
 979                down_read(&mm->mmap_sem);
 980                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 981                        if (ksm_test_exit(mm))
 982                                break;
 983                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 984                                continue;
 985                        err = unmerge_ksm_pages(vma,
 986                                                vma->vm_start, vma->vm_end);
 987                        if (err)
 988                                goto error;
 989                }
 990
 991                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 992                up_read(&mm->mmap_sem);
 993
 994                spin_lock(&ksm_mmlist_lock);
 995                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 996                                                struct mm_slot, mm_list);
 997                if (ksm_test_exit(mm)) {
 998                        hash_del(&mm_slot->link);
 999                        list_del(&mm_slot->mm_list);
1000                        spin_unlock(&ksm_mmlist_lock);
1001
1002                        free_mm_slot(mm_slot);
1003                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004                        mmdrop(mm);
1005                } else
1006                        spin_unlock(&ksm_mmlist_lock);
1007        }
1008
1009        /* Clean up stable nodes, but don't worry if some are still busy */
1010        remove_all_stable_nodes();
1011        ksm_scan.seqnr = 0;
1012        return 0;
1013
1014error:
1015        up_read(&mm->mmap_sem);
1016        spin_lock(&ksm_mmlist_lock);
1017        ksm_scan.mm_slot = &ksm_mm_head;
1018        spin_unlock(&ksm_mmlist_lock);
1019        return err;
1020}
1021#endif /* CONFIG_SYSFS */
1022
1023static u32 calc_checksum(struct page *page)
1024{
1025        u32 checksum;
1026        void *addr = kmap_atomic(page);
1027        checksum = xxhash(addr, PAGE_SIZE, 0);
1028        kunmap_atomic(addr);
1029        return checksum;
1030}
1031
1032static int memcmp_pages(struct page *page1, struct page *page2)
1033{
1034        char *addr1, *addr2;
1035        int ret;
1036
1037        addr1 = kmap_atomic(page1);
1038        addr2 = kmap_atomic(page2);
1039        ret = memcmp(addr1, addr2, PAGE_SIZE);
1040        kunmap_atomic(addr2);
1041        kunmap_atomic(addr1);
1042        return ret;
1043}
1044
1045static inline int pages_identical(struct page *page1, struct page *page2)
1046{
1047        return !memcmp_pages(page1, page2);
1048}
1049
1050static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1051                              pte_t *orig_pte)
1052{
1053        struct mm_struct *mm = vma->vm_mm;
1054        struct page_vma_mapped_walk pvmw = {
1055                .page = page,
1056                .vma = vma,
1057        };
1058        int swapped;
1059        int err = -EFAULT;
1060        struct mmu_notifier_range range;
1061
1062        pvmw.address = page_address_in_vma(page, vma);
1063        if (pvmw.address == -EFAULT)
1064                goto out;
1065
1066        BUG_ON(PageTransCompound(page));
1067
1068        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1069                                pvmw.address,
1070                                pvmw.address + PAGE_SIZE);
1071        mmu_notifier_invalidate_range_start(&range);
1072
1073        if (!page_vma_mapped_walk(&pvmw))
1074                goto out_mn;
1075        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1076                goto out_unlock;
1077
1078        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1079            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1080                                                mm_tlb_flush_pending(mm)) {
1081                pte_t entry;
1082
1083                swapped = PageSwapCache(page);
1084                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1085                /*
1086                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087                 * take any lock, therefore the check that we are going to make
1088                 * with the pagecount against the mapcount is racey and
1089                 * O_DIRECT can happen right after the check.
1090                 * So we clear the pte and flush the tlb before the check
1091                 * this assure us that no O_DIRECT can happen after the check
1092                 * or in the middle of the check.
1093                 *
1094                 * No need to notify as we are downgrading page table to read
1095                 * only not changing it to point to a new page.
1096                 *
1097                 * See Documentation/vm/mmu_notifier.rst
1098                 */
1099                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1100                /*
1101                 * Check that no O_DIRECT or similar I/O is in progress on the
1102                 * page
1103                 */
1104                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1105                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1106                        goto out_unlock;
1107                }
1108                if (pte_dirty(entry))
1109                        set_page_dirty(page);
1110
1111                if (pte_protnone(entry))
1112                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1113                else
1114                        entry = pte_mkclean(pte_wrprotect(entry));
1115                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116        }
1117        *orig_pte = *pvmw.pte;
1118        err = 0;
1119
1120out_unlock:
1121        page_vma_mapped_walk_done(&pvmw);
1122out_mn:
1123        mmu_notifier_invalidate_range_end(&range);
1124out:
1125        return err;
1126}
1127
1128/**
1129 * replace_page - replace page in vma by new ksm page
1130 * @vma:      vma that holds the pte pointing to page
1131 * @page:     the page we are replacing by kpage
1132 * @kpage:    the ksm page we replace page by
1133 * @orig_pte: the original value of the pte
1134 *
1135 * Returns 0 on success, -EFAULT on failure.
1136 */
1137static int replace_page(struct vm_area_struct *vma, struct page *page,
1138                        struct page *kpage, pte_t orig_pte)
1139{
1140        struct mm_struct *mm = vma->vm_mm;
1141        pmd_t *pmd;
1142        pte_t *ptep;
1143        pte_t newpte;
1144        spinlock_t *ptl;
1145        unsigned long addr;
1146        int err = -EFAULT;
1147        struct mmu_notifier_range range;
1148
1149        addr = page_address_in_vma(page, vma);
1150        if (addr == -EFAULT)
1151                goto out;
1152
1153        pmd = mm_find_pmd(mm, addr);
1154        if (!pmd)
1155                goto out;
1156
1157        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1158                                addr + PAGE_SIZE);
1159        mmu_notifier_invalidate_range_start(&range);
1160
1161        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1162        if (!pte_same(*ptep, orig_pte)) {
1163                pte_unmap_unlock(ptep, ptl);
1164                goto out_mn;
1165        }
1166
1167        /*
1168         * No need to check ksm_use_zero_pages here: we can only have a
1169         * zero_page here if ksm_use_zero_pages was enabled alreaady.
1170         */
1171        if (!is_zero_pfn(page_to_pfn(kpage))) {
1172                get_page(kpage);
1173                page_add_anon_rmap(kpage, vma, addr, false);
1174                newpte = mk_pte(kpage, vma->vm_page_prot);
1175        } else {
1176                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1177                                               vma->vm_page_prot));
1178                /*
1179                 * We're replacing an anonymous page with a zero page, which is
1180                 * not anonymous. We need to do proper accounting otherwise we
1181                 * will get wrong values in /proc, and a BUG message in dmesg
1182                 * when tearing down the mm.
1183                 */
1184                dec_mm_counter(mm, MM_ANONPAGES);
1185        }
1186
1187        flush_cache_page(vma, addr, pte_pfn(*ptep));
1188        /*
1189         * No need to notify as we are replacing a read only page with another
1190         * read only page with the same content.
1191         *
1192         * See Documentation/vm/mmu_notifier.rst
1193         */
1194        ptep_clear_flush(vma, addr, ptep);
1195        set_pte_at_notify(mm, addr, ptep, newpte);
1196
1197        page_remove_rmap(page, false);
1198        if (!page_mapped(page))
1199                try_to_free_swap(page);
1200        put_page(page);
1201
1202        pte_unmap_unlock(ptep, ptl);
1203        err = 0;
1204out_mn:
1205        mmu_notifier_invalidate_range_end(&range);
1206out:
1207        return err;
1208}
1209
1210/*
1211 * try_to_merge_one_page - take two pages and merge them into one
1212 * @vma: the vma that holds the pte pointing to page
1213 * @page: the PageAnon page that we want to replace with kpage
1214 * @kpage: the PageKsm page that we want to map instead of page,
1215 *         or NULL the first time when we want to use page as kpage.
1216 *
1217 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1218 */
1219static int try_to_merge_one_page(struct vm_area_struct *vma,
1220                                 struct page *page, struct page *kpage)
1221{
1222        pte_t orig_pte = __pte(0);
1223        int err = -EFAULT;
1224
1225        if (page == kpage)                      /* ksm page forked */
1226                return 0;
1227
1228        if (!PageAnon(page))
1229                goto out;
1230
1231        /*
1232         * We need the page lock to read a stable PageSwapCache in
1233         * write_protect_page().  We use trylock_page() instead of
1234         * lock_page() because we don't want to wait here - we
1235         * prefer to continue scanning and merging different pages,
1236         * then come back to this page when it is unlocked.
1237         */
1238        if (!trylock_page(page))
1239                goto out;
1240
1241        if (PageTransCompound(page)) {
1242                if (split_huge_page(page))
1243                        goto out_unlock;
1244        }
1245
1246        /*
1247         * If this anonymous page is mapped only here, its pte may need
1248         * to be write-protected.  If it's mapped elsewhere, all of its
1249         * ptes are necessarily already write-protected.  But in either
1250         * case, we need to lock and check page_count is not raised.
1251         */
1252        if (write_protect_page(vma, page, &orig_pte) == 0) {
1253                if (!kpage) {
1254                        /*
1255                         * While we hold page lock, upgrade page from
1256                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1257                         * stable_tree_insert() will update stable_node.
1258                         */
1259                        set_page_stable_node(page, NULL);
1260                        mark_page_accessed(page);
1261                        /*
1262                         * Page reclaim just frees a clean page with no dirty
1263                         * ptes: make sure that the ksm page would be swapped.
1264                         */
1265                        if (!PageDirty(page))
1266                                SetPageDirty(page);
1267                        err = 0;
1268                } else if (pages_identical(page, kpage))
1269                        err = replace_page(vma, page, kpage, orig_pte);
1270        }
1271
1272        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1273                munlock_vma_page(page);
1274                if (!PageMlocked(kpage)) {
1275                        unlock_page(page);
1276                        lock_page(kpage);
1277                        mlock_vma_page(kpage);
1278                        page = kpage;           /* for final unlock */
1279                }
1280        }
1281
1282out_unlock:
1283        unlock_page(page);
1284out:
1285        return err;
1286}
1287
1288/*
1289 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1290 * but no new kernel page is allocated: kpage must already be a ksm page.
1291 *
1292 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1293 */
1294static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1295                                      struct page *page, struct page *kpage)
1296{
1297        struct mm_struct *mm = rmap_item->mm;
1298        struct vm_area_struct *vma;
1299        int err = -EFAULT;
1300
1301        down_read(&mm->mmap_sem);
1302        vma = find_mergeable_vma(mm, rmap_item->address);
1303        if (!vma)
1304                goto out;
1305
1306        err = try_to_merge_one_page(vma, page, kpage);
1307        if (err)
1308                goto out;
1309
1310        /* Unstable nid is in union with stable anon_vma: remove first */
1311        remove_rmap_item_from_tree(rmap_item);
1312
1313        /* Must get reference to anon_vma while still holding mmap_sem */
1314        rmap_item->anon_vma = vma->anon_vma;
1315        get_anon_vma(vma->anon_vma);
1316out:
1317        up_read(&mm->mmap_sem);
1318        return err;
1319}
1320
1321/*
1322 * try_to_merge_two_pages - take two identical pages and prepare them
1323 * to be merged into one page.
1324 *
1325 * This function returns the kpage if we successfully merged two identical
1326 * pages into one ksm page, NULL otherwise.
1327 *
1328 * Note that this function upgrades page to ksm page: if one of the pages
1329 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1330 */
1331static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1332                                           struct page *page,
1333                                           struct rmap_item *tree_rmap_item,
1334                                           struct page *tree_page)
1335{
1336        int err;
1337
1338        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1339        if (!err) {
1340                err = try_to_merge_with_ksm_page(tree_rmap_item,
1341                                                        tree_page, page);
1342                /*
1343                 * If that fails, we have a ksm page with only one pte
1344                 * pointing to it: so break it.
1345                 */
1346                if (err)
1347                        break_cow(rmap_item);
1348        }
1349        return err ? NULL : page;
1350}
1351
1352static __always_inline
1353bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1354{
1355        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1356        /*
1357         * Check that at least one mapping still exists, otherwise
1358         * there's no much point to merge and share with this
1359         * stable_node, as the underlying tree_page of the other
1360         * sharer is going to be freed soon.
1361         */
1362        return stable_node->rmap_hlist_len &&
1363                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1364}
1365
1366static __always_inline
1367bool is_page_sharing_candidate(struct stable_node *stable_node)
1368{
1369        return __is_page_sharing_candidate(stable_node, 0);
1370}
1371
1372static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1373                                    struct stable_node **_stable_node,
1374                                    struct rb_root *root,
1375                                    bool prune_stale_stable_nodes)
1376{
1377        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1378        struct hlist_node *hlist_safe;
1379        struct page *_tree_page, *tree_page = NULL;
1380        int nr = 0;
1381        int found_rmap_hlist_len;
1382
1383        if (!prune_stale_stable_nodes ||
1384            time_before(jiffies, stable_node->chain_prune_time +
1385                        msecs_to_jiffies(
1386                                ksm_stable_node_chains_prune_millisecs)))
1387                prune_stale_stable_nodes = false;
1388        else
1389                stable_node->chain_prune_time = jiffies;
1390
1391        hlist_for_each_entry_safe(dup, hlist_safe,
1392                                  &stable_node->hlist, hlist_dup) {
1393                cond_resched();
1394                /*
1395                 * We must walk all stable_node_dup to prune the stale
1396                 * stable nodes during lookup.
1397                 *
1398                 * get_ksm_page can drop the nodes from the
1399                 * stable_node->hlist if they point to freed pages
1400                 * (that's why we do a _safe walk). The "dup"
1401                 * stable_node parameter itself will be freed from
1402                 * under us if it returns NULL.
1403                 */
1404                _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1405                if (!_tree_page)
1406                        continue;
1407                nr += 1;
1408                if (is_page_sharing_candidate(dup)) {
1409                        if (!found ||
1410                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1411                                if (found)
1412                                        put_page(tree_page);
1413                                found = dup;
1414                                found_rmap_hlist_len = found->rmap_hlist_len;
1415                                tree_page = _tree_page;
1416
1417                                /* skip put_page for found dup */
1418                                if (!prune_stale_stable_nodes)
1419                                        break;
1420                                continue;
1421                        }
1422                }
1423                put_page(_tree_page);
1424        }
1425
1426        if (found) {
1427                /*
1428                 * nr is counting all dups in the chain only if
1429                 * prune_stale_stable_nodes is true, otherwise we may
1430                 * break the loop at nr == 1 even if there are
1431                 * multiple entries.
1432                 */
1433                if (prune_stale_stable_nodes && nr == 1) {
1434                        /*
1435                         * If there's not just one entry it would
1436                         * corrupt memory, better BUG_ON. In KSM
1437                         * context with no lock held it's not even
1438                         * fatal.
1439                         */
1440                        BUG_ON(stable_node->hlist.first->next);
1441
1442                        /*
1443                         * There's just one entry and it is below the
1444                         * deduplication limit so drop the chain.
1445                         */
1446                        rb_replace_node(&stable_node->node, &found->node,
1447                                        root);
1448                        free_stable_node(stable_node);
1449                        ksm_stable_node_chains--;
1450                        ksm_stable_node_dups--;
1451                        /*
1452                         * NOTE: the caller depends on the stable_node
1453                         * to be equal to stable_node_dup if the chain
1454                         * was collapsed.
1455                         */
1456                        *_stable_node = found;
1457                        /*
1458                         * Just for robustneess as stable_node is
1459                         * otherwise left as a stable pointer, the
1460                         * compiler shall optimize it away at build
1461                         * time.
1462                         */
1463                        stable_node = NULL;
1464                } else if (stable_node->hlist.first != &found->hlist_dup &&
1465                           __is_page_sharing_candidate(found, 1)) {
1466                        /*
1467                         * If the found stable_node dup can accept one
1468                         * more future merge (in addition to the one
1469                         * that is underway) and is not at the head of
1470                         * the chain, put it there so next search will
1471                         * be quicker in the !prune_stale_stable_nodes
1472                         * case.
1473                         *
1474                         * NOTE: it would be inaccurate to use nr > 1
1475                         * instead of checking the hlist.first pointer
1476                         * directly, because in the
1477                         * prune_stale_stable_nodes case "nr" isn't
1478                         * the position of the found dup in the chain,
1479                         * but the total number of dups in the chain.
1480                         */
1481                        hlist_del(&found->hlist_dup);
1482                        hlist_add_head(&found->hlist_dup,
1483                                       &stable_node->hlist);
1484                }
1485        }
1486
1487        *_stable_node_dup = found;
1488        return tree_page;
1489}
1490
1491static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1492                                               struct rb_root *root)
1493{
1494        if (!is_stable_node_chain(stable_node))
1495                return stable_node;
1496        if (hlist_empty(&stable_node->hlist)) {
1497                free_stable_node_chain(stable_node, root);
1498                return NULL;
1499        }
1500        return hlist_entry(stable_node->hlist.first,
1501                           typeof(*stable_node), hlist_dup);
1502}
1503
1504/*
1505 * Like for get_ksm_page, this function can free the *_stable_node and
1506 * *_stable_node_dup if the returned tree_page is NULL.
1507 *
1508 * It can also free and overwrite *_stable_node with the found
1509 * stable_node_dup if the chain is collapsed (in which case
1510 * *_stable_node will be equal to *_stable_node_dup like if the chain
1511 * never existed). It's up to the caller to verify tree_page is not
1512 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1513 *
1514 * *_stable_node_dup is really a second output parameter of this
1515 * function and will be overwritten in all cases, the caller doesn't
1516 * need to initialize it.
1517 */
1518static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1519                                        struct stable_node **_stable_node,
1520                                        struct rb_root *root,
1521                                        bool prune_stale_stable_nodes)
1522{
1523        struct stable_node *stable_node = *_stable_node;
1524        if (!is_stable_node_chain(stable_node)) {
1525                if (is_page_sharing_candidate(stable_node)) {
1526                        *_stable_node_dup = stable_node;
1527                        return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1528                }
1529                /*
1530                 * _stable_node_dup set to NULL means the stable_node
1531                 * reached the ksm_max_page_sharing limit.
1532                 */
1533                *_stable_node_dup = NULL;
1534                return NULL;
1535        }
1536        return stable_node_dup(_stable_node_dup, _stable_node, root,
1537                               prune_stale_stable_nodes);
1538}
1539
1540static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1541                                                struct stable_node **s_n,
1542                                                struct rb_root *root)
1543{
1544        return __stable_node_chain(s_n_d, s_n, root, true);
1545}
1546
1547static __always_inline struct page *chain(struct stable_node **s_n_d,
1548                                          struct stable_node *s_n,
1549                                          struct rb_root *root)
1550{
1551        struct stable_node *old_stable_node = s_n;
1552        struct page *tree_page;
1553
1554        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1555        /* not pruning dups so s_n cannot have changed */
1556        VM_BUG_ON(s_n != old_stable_node);
1557        return tree_page;
1558}
1559
1560/*
1561 * stable_tree_search - search for page inside the stable tree
1562 *
1563 * This function checks if there is a page inside the stable tree
1564 * with identical content to the page that we are scanning right now.
1565 *
1566 * This function returns the stable tree node of identical content if found,
1567 * NULL otherwise.
1568 */
1569static struct page *stable_tree_search(struct page *page)
1570{
1571        int nid;
1572        struct rb_root *root;
1573        struct rb_node **new;
1574        struct rb_node *parent;
1575        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1576        struct stable_node *page_node;
1577
1578        page_node = page_stable_node(page);
1579        if (page_node && page_node->head != &migrate_nodes) {
1580                /* ksm page forked */
1581                get_page(page);
1582                return page;
1583        }
1584
1585        nid = get_kpfn_nid(page_to_pfn(page));
1586        root = root_stable_tree + nid;
1587again:
1588        new = &root->rb_node;
1589        parent = NULL;
1590
1591        while (*new) {
1592                struct page *tree_page;
1593                int ret;
1594
1595                cond_resched();
1596                stable_node = rb_entry(*new, struct stable_node, node);
1597                stable_node_any = NULL;
1598                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1599                /*
1600                 * NOTE: stable_node may have been freed by
1601                 * chain_prune() if the returned stable_node_dup is
1602                 * not NULL. stable_node_dup may have been inserted in
1603                 * the rbtree instead as a regular stable_node (in
1604                 * order to collapse the stable_node chain if a single
1605                 * stable_node dup was found in it). In such case the
1606                 * stable_node is overwritten by the calleee to point
1607                 * to the stable_node_dup that was collapsed in the
1608                 * stable rbtree and stable_node will be equal to
1609                 * stable_node_dup like if the chain never existed.
1610                 */
1611                if (!stable_node_dup) {
1612                        /*
1613                         * Either all stable_node dups were full in
1614                         * this stable_node chain, or this chain was
1615                         * empty and should be rb_erased.
1616                         */
1617                        stable_node_any = stable_node_dup_any(stable_node,
1618                                                              root);
1619                        if (!stable_node_any) {
1620                                /* rb_erase just run */
1621                                goto again;
1622                        }
1623                        /*
1624                         * Take any of the stable_node dups page of
1625                         * this stable_node chain to let the tree walk
1626                         * continue. All KSM pages belonging to the
1627                         * stable_node dups in a stable_node chain
1628                         * have the same content and they're
1629                         * wrprotected at all times. Any will work
1630                         * fine to continue the walk.
1631                         */
1632                        tree_page = get_ksm_page(stable_node_any,
1633                                                 GET_KSM_PAGE_NOLOCK);
1634                }
1635                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1636                if (!tree_page) {
1637                        /*
1638                         * If we walked over a stale stable_node,
1639                         * get_ksm_page() will call rb_erase() and it
1640                         * may rebalance the tree from under us. So
1641                         * restart the search from scratch. Returning
1642                         * NULL would be safe too, but we'd generate
1643                         * false negative insertions just because some
1644                         * stable_node was stale.
1645                         */
1646                        goto again;
1647                }
1648
1649                ret = memcmp_pages(page, tree_page);
1650                put_page(tree_page);
1651
1652                parent = *new;
1653                if (ret < 0)
1654                        new = &parent->rb_left;
1655                else if (ret > 0)
1656                        new = &parent->rb_right;
1657                else {
1658                        if (page_node) {
1659                                VM_BUG_ON(page_node->head != &migrate_nodes);
1660                                /*
1661                                 * Test if the migrated page should be merged
1662                                 * into a stable node dup. If the mapcount is
1663                                 * 1 we can migrate it with another KSM page
1664                                 * without adding it to the chain.
1665                                 */
1666                                if (page_mapcount(page) > 1)
1667                                        goto chain_append;
1668                        }
1669
1670                        if (!stable_node_dup) {
1671                                /*
1672                                 * If the stable_node is a chain and
1673                                 * we got a payload match in memcmp
1674                                 * but we cannot merge the scanned
1675                                 * page in any of the existing
1676                                 * stable_node dups because they're
1677                                 * all full, we need to wait the
1678                                 * scanned page to find itself a match
1679                                 * in the unstable tree to create a
1680                                 * brand new KSM page to add later to
1681                                 * the dups of this stable_node.
1682                                 */
1683                                return NULL;
1684                        }
1685
1686                        /*
1687                         * Lock and unlock the stable_node's page (which
1688                         * might already have been migrated) so that page
1689                         * migration is sure to notice its raised count.
1690                         * It would be more elegant to return stable_node
1691                         * than kpage, but that involves more changes.
1692                         */
1693                        tree_page = get_ksm_page(stable_node_dup,
1694                                                 GET_KSM_PAGE_TRYLOCK);
1695
1696                        if (PTR_ERR(tree_page) == -EBUSY)
1697                                return ERR_PTR(-EBUSY);
1698
1699                        if (unlikely(!tree_page))
1700                                /*
1701                                 * The tree may have been rebalanced,
1702                                 * so re-evaluate parent and new.
1703                                 */
1704                                goto again;
1705                        unlock_page(tree_page);
1706
1707                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1708                            NUMA(stable_node_dup->nid)) {
1709                                put_page(tree_page);
1710                                goto replace;
1711                        }
1712                        return tree_page;
1713                }
1714        }
1715
1716        if (!page_node)
1717                return NULL;
1718
1719        list_del(&page_node->list);
1720        DO_NUMA(page_node->nid = nid);
1721        rb_link_node(&page_node->node, parent, new);
1722        rb_insert_color(&page_node->node, root);
1723out:
1724        if (is_page_sharing_candidate(page_node)) {
1725                get_page(page);
1726                return page;
1727        } else
1728                return NULL;
1729
1730replace:
1731        /*
1732         * If stable_node was a chain and chain_prune collapsed it,
1733         * stable_node has been updated to be the new regular
1734         * stable_node. A collapse of the chain is indistinguishable
1735         * from the case there was no chain in the stable
1736         * rbtree. Otherwise stable_node is the chain and
1737         * stable_node_dup is the dup to replace.
1738         */
1739        if (stable_node_dup == stable_node) {
1740                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1741                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1742                /* there is no chain */
1743                if (page_node) {
1744                        VM_BUG_ON(page_node->head != &migrate_nodes);
1745                        list_del(&page_node->list);
1746                        DO_NUMA(page_node->nid = nid);
1747                        rb_replace_node(&stable_node_dup->node,
1748                                        &page_node->node,
1749                                        root);
1750                        if (is_page_sharing_candidate(page_node))
1751                                get_page(page);
1752                        else
1753                                page = NULL;
1754                } else {
1755                        rb_erase(&stable_node_dup->node, root);
1756                        page = NULL;
1757                }
1758        } else {
1759                VM_BUG_ON(!is_stable_node_chain(stable_node));
1760                __stable_node_dup_del(stable_node_dup);
1761                if (page_node) {
1762                        VM_BUG_ON(page_node->head != &migrate_nodes);
1763                        list_del(&page_node->list);
1764                        DO_NUMA(page_node->nid = nid);
1765                        stable_node_chain_add_dup(page_node, stable_node);
1766                        if (is_page_sharing_candidate(page_node))
1767                                get_page(page);
1768                        else
1769                                page = NULL;
1770                } else {
1771                        page = NULL;
1772                }
1773        }
1774        stable_node_dup->head = &migrate_nodes;
1775        list_add(&stable_node_dup->list, stable_node_dup->head);
1776        return page;
1777
1778chain_append:
1779        /* stable_node_dup could be null if it reached the limit */
1780        if (!stable_node_dup)
1781                stable_node_dup = stable_node_any;
1782        /*
1783         * If stable_node was a chain and chain_prune collapsed it,
1784         * stable_node has been updated to be the new regular
1785         * stable_node. A collapse of the chain is indistinguishable
1786         * from the case there was no chain in the stable
1787         * rbtree. Otherwise stable_node is the chain and
1788         * stable_node_dup is the dup to replace.
1789         */
1790        if (stable_node_dup == stable_node) {
1791                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1792                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1793                /* chain is missing so create it */
1794                stable_node = alloc_stable_node_chain(stable_node_dup,
1795                                                      root);
1796                if (!stable_node)
1797                        return NULL;
1798        }
1799        /*
1800         * Add this stable_node dup that was
1801         * migrated to the stable_node chain
1802         * of the current nid for this page
1803         * content.
1804         */
1805        VM_BUG_ON(!is_stable_node_chain(stable_node));
1806        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1807        VM_BUG_ON(page_node->head != &migrate_nodes);
1808        list_del(&page_node->list);
1809        DO_NUMA(page_node->nid = nid);
1810        stable_node_chain_add_dup(page_node, stable_node);
1811        goto out;
1812}
1813
1814/*
1815 * stable_tree_insert - insert stable tree node pointing to new ksm page
1816 * into the stable tree.
1817 *
1818 * This function returns the stable tree node just allocated on success,
1819 * NULL otherwise.
1820 */
1821static struct stable_node *stable_tree_insert(struct page *kpage)
1822{
1823        int nid;
1824        unsigned long kpfn;
1825        struct rb_root *root;
1826        struct rb_node **new;
1827        struct rb_node *parent;
1828        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1829        bool need_chain = false;
1830
1831        kpfn = page_to_pfn(kpage);
1832        nid = get_kpfn_nid(kpfn);
1833        root = root_stable_tree + nid;
1834again:
1835        parent = NULL;
1836        new = &root->rb_node;
1837
1838        while (*new) {
1839                struct page *tree_page;
1840                int ret;
1841
1842                cond_resched();
1843                stable_node = rb_entry(*new, struct stable_node, node);
1844                stable_node_any = NULL;
1845                tree_page = chain(&stable_node_dup, stable_node, root);
1846                if (!stable_node_dup) {
1847                        /*
1848                         * Either all stable_node dups were full in
1849                         * this stable_node chain, or this chain was
1850                         * empty and should be rb_erased.
1851                         */
1852                        stable_node_any = stable_node_dup_any(stable_node,
1853                                                              root);
1854                        if (!stable_node_any) {
1855                                /* rb_erase just run */
1856                                goto again;
1857                        }
1858                        /*
1859                         * Take any of the stable_node dups page of
1860                         * this stable_node chain to let the tree walk
1861                         * continue. All KSM pages belonging to the
1862                         * stable_node dups in a stable_node chain
1863                         * have the same content and they're
1864                         * wrprotected at all times. Any will work
1865                         * fine to continue the walk.
1866                         */
1867                        tree_page = get_ksm_page(stable_node_any,
1868                                                 GET_KSM_PAGE_NOLOCK);
1869                }
1870                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1871                if (!tree_page) {
1872                        /*
1873                         * If we walked over a stale stable_node,
1874                         * get_ksm_page() will call rb_erase() and it
1875                         * may rebalance the tree from under us. So
1876                         * restart the search from scratch. Returning
1877                         * NULL would be safe too, but we'd generate
1878                         * false negative insertions just because some
1879                         * stable_node was stale.
1880                         */
1881                        goto again;
1882                }
1883
1884                ret = memcmp_pages(kpage, tree_page);
1885                put_page(tree_page);
1886
1887                parent = *new;
1888                if (ret < 0)
1889                        new = &parent->rb_left;
1890                else if (ret > 0)
1891                        new = &parent->rb_right;
1892                else {
1893                        need_chain = true;
1894                        break;
1895                }
1896        }
1897
1898        stable_node_dup = alloc_stable_node();
1899        if (!stable_node_dup)
1900                return NULL;
1901
1902        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903        stable_node_dup->kpfn = kpfn;
1904        set_page_stable_node(kpage, stable_node_dup);
1905        stable_node_dup->rmap_hlist_len = 0;
1906        DO_NUMA(stable_node_dup->nid = nid);
1907        if (!need_chain) {
1908                rb_link_node(&stable_node_dup->node, parent, new);
1909                rb_insert_color(&stable_node_dup->node, root);
1910        } else {
1911                if (!is_stable_node_chain(stable_node)) {
1912                        struct stable_node *orig = stable_node;
1913                        /* chain is missing so create it */
1914                        stable_node = alloc_stable_node_chain(orig, root);
1915                        if (!stable_node) {
1916                                free_stable_node(stable_node_dup);
1917                                return NULL;
1918                        }
1919                }
1920                stable_node_chain_add_dup(stable_node_dup, stable_node);
1921        }
1922
1923        return stable_node_dup;
1924}
1925
1926/*
1927 * unstable_tree_search_insert - search for identical page,
1928 * else insert rmap_item into the unstable tree.
1929 *
1930 * This function searches for a page in the unstable tree identical to the
1931 * page currently being scanned; and if no identical page is found in the
1932 * tree, we insert rmap_item as a new object into the unstable tree.
1933 *
1934 * This function returns pointer to rmap_item found to be identical
1935 * to the currently scanned page, NULL otherwise.
1936 *
1937 * This function does both searching and inserting, because they share
1938 * the same walking algorithm in an rbtree.
1939 */
1940static
1941struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1942                                              struct page *page,
1943                                              struct page **tree_pagep)
1944{
1945        struct rb_node **new;
1946        struct rb_root *root;
1947        struct rb_node *parent = NULL;
1948        int nid;
1949
1950        nid = get_kpfn_nid(page_to_pfn(page));
1951        root = root_unstable_tree + nid;
1952        new = &root->rb_node;
1953
1954        while (*new) {
1955                struct rmap_item *tree_rmap_item;
1956                struct page *tree_page;
1957                int ret;
1958
1959                cond_resched();
1960                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1961                tree_page = get_mergeable_page(tree_rmap_item);
1962                if (!tree_page)
1963                        return NULL;
1964
1965                /*
1966                 * Don't substitute a ksm page for a forked page.
1967                 */
1968                if (page == tree_page) {
1969                        put_page(tree_page);
1970                        return NULL;
1971                }
1972
1973                ret = memcmp_pages(page, tree_page);
1974
1975                parent = *new;
1976                if (ret < 0) {
1977                        put_page(tree_page);
1978                        new = &parent->rb_left;
1979                } else if (ret > 0) {
1980                        put_page(tree_page);
1981                        new = &parent->rb_right;
1982                } else if (!ksm_merge_across_nodes &&
1983                           page_to_nid(tree_page) != nid) {
1984                        /*
1985                         * If tree_page has been migrated to another NUMA node,
1986                         * it will be flushed out and put in the right unstable
1987                         * tree next time: only merge with it when across_nodes.
1988                         */
1989                        put_page(tree_page);
1990                        return NULL;
1991                } else {
1992                        *tree_pagep = tree_page;
1993                        return tree_rmap_item;
1994                }
1995        }
1996
1997        rmap_item->address |= UNSTABLE_FLAG;
1998        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1999        DO_NUMA(rmap_item->nid = nid);
2000        rb_link_node(&rmap_item->node, parent, new);
2001        rb_insert_color(&rmap_item->node, root);
2002
2003        ksm_pages_unshared++;
2004        return NULL;
2005}
2006
2007/*
2008 * stable_tree_append - add another rmap_item to the linked list of
2009 * rmap_items hanging off a given node of the stable tree, all sharing
2010 * the same ksm page.
2011 */
2012static void stable_tree_append(struct rmap_item *rmap_item,
2013                               struct stable_node *stable_node,
2014                               bool max_page_sharing_bypass)
2015{
2016        /*
2017         * rmap won't find this mapping if we don't insert the
2018         * rmap_item in the right stable_node
2019         * duplicate. page_migration could break later if rmap breaks,
2020         * so we can as well crash here. We really need to check for
2021         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022         * for other negative values as an undeflow if detected here
2023         * for the first time (and not when decreasing rmap_hlist_len)
2024         * would be sign of memory corruption in the stable_node.
2025         */
2026        BUG_ON(stable_node->rmap_hlist_len < 0);
2027
2028        stable_node->rmap_hlist_len++;
2029        if (!max_page_sharing_bypass)
2030                /* possibly non fatal but unexpected overflow, only warn */
2031                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032                             ksm_max_page_sharing);
2033
2034        rmap_item->head = stable_node;
2035        rmap_item->address |= STABLE_FLAG;
2036        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2037
2038        if (rmap_item->hlist.next)
2039                ksm_pages_sharing++;
2040        else
2041                ksm_pages_shared++;
2042}
2043
2044/*
2045 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2046 * if not, compare checksum to previous and if it's the same, see if page can
2047 * be inserted into the unstable tree, or merged with a page already there and
2048 * both transferred to the stable tree.
2049 *
2050 * @page: the page that we are searching identical page to.
2051 * @rmap_item: the reverse mapping into the virtual address of this page
2052 */
2053static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2054{
2055        struct mm_struct *mm = rmap_item->mm;
2056        struct rmap_item *tree_rmap_item;
2057        struct page *tree_page = NULL;
2058        struct stable_node *stable_node;
2059        struct page *kpage;
2060        unsigned int checksum;
2061        int err;
2062        bool max_page_sharing_bypass = false;
2063
2064        stable_node = page_stable_node(page);
2065        if (stable_node) {
2066                if (stable_node->head != &migrate_nodes &&
2067                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2068                    NUMA(stable_node->nid)) {
2069                        stable_node_dup_del(stable_node);
2070                        stable_node->head = &migrate_nodes;
2071                        list_add(&stable_node->list, stable_node->head);
2072                }
2073                if (stable_node->head != &migrate_nodes &&
2074                    rmap_item->head == stable_node)
2075                        return;
2076                /*
2077                 * If it's a KSM fork, allow it to go over the sharing limit
2078                 * without warnings.
2079                 */
2080                if (!is_page_sharing_candidate(stable_node))
2081                        max_page_sharing_bypass = true;
2082        }
2083
2084        /* We first start with searching the page inside the stable tree */
2085        kpage = stable_tree_search(page);
2086        if (kpage == page && rmap_item->head == stable_node) {
2087                put_page(kpage);
2088                return;
2089        }
2090
2091        remove_rmap_item_from_tree(rmap_item);
2092
2093        if (kpage) {
2094                if (PTR_ERR(kpage) == -EBUSY)
2095                        return;
2096
2097                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2098                if (!err) {
2099                        /*
2100                         * The page was successfully merged:
2101                         * add its rmap_item to the stable tree.
2102                         */
2103                        lock_page(kpage);
2104                        stable_tree_append(rmap_item, page_stable_node(kpage),
2105                                           max_page_sharing_bypass);
2106                        unlock_page(kpage);
2107                }
2108                put_page(kpage);
2109                return;
2110        }
2111
2112        /*
2113         * If the hash value of the page has changed from the last time
2114         * we calculated it, this page is changing frequently: therefore we
2115         * don't want to insert it in the unstable tree, and we don't want
2116         * to waste our time searching for something identical to it there.
2117         */
2118        checksum = calc_checksum(page);
2119        if (rmap_item->oldchecksum != checksum) {
2120                rmap_item->oldchecksum = checksum;
2121                return;
2122        }
2123
2124        /*
2125         * Same checksum as an empty page. We attempt to merge it with the
2126         * appropriate zero page if the user enabled this via sysfs.
2127         */
2128        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2129                struct vm_area_struct *vma;
2130
2131                down_read(&mm->mmap_sem);
2132                vma = find_mergeable_vma(mm, rmap_item->address);
2133                err = try_to_merge_one_page(vma, page,
2134                                            ZERO_PAGE(rmap_item->address));
2135                up_read(&mm->mmap_sem);
2136                /*
2137                 * In case of failure, the page was not really empty, so we
2138                 * need to continue. Otherwise we're done.
2139                 */
2140                if (!err)
2141                        return;
2142        }
2143        tree_rmap_item =
2144                unstable_tree_search_insert(rmap_item, page, &tree_page);
2145        if (tree_rmap_item) {
2146                bool split;
2147
2148                kpage = try_to_merge_two_pages(rmap_item, page,
2149                                                tree_rmap_item, tree_page);
2150                /*
2151                 * If both pages we tried to merge belong to the same compound
2152                 * page, then we actually ended up increasing the reference
2153                 * count of the same compound page twice, and split_huge_page
2154                 * failed.
2155                 * Here we set a flag if that happened, and we use it later to
2156                 * try split_huge_page again. Since we call put_page right
2157                 * afterwards, the reference count will be correct and
2158                 * split_huge_page should succeed.
2159                 */
2160                split = PageTransCompound(page)
2161                        && compound_head(page) == compound_head(tree_page);
2162                put_page(tree_page);
2163                if (kpage) {
2164                        /*
2165                         * The pages were successfully merged: insert new
2166                         * node in the stable tree and add both rmap_items.
2167                         */
2168                        lock_page(kpage);
2169                        stable_node = stable_tree_insert(kpage);
2170                        if (stable_node) {
2171                                stable_tree_append(tree_rmap_item, stable_node,
2172                                                   false);
2173                                stable_tree_append(rmap_item, stable_node,
2174                                                   false);
2175                        }
2176                        unlock_page(kpage);
2177
2178                        /*
2179                         * If we fail to insert the page into the stable tree,
2180                         * we will have 2 virtual addresses that are pointing
2181                         * to a ksm page left outside the stable tree,
2182                         * in which case we need to break_cow on both.
2183                         */
2184                        if (!stable_node) {
2185                                break_cow(tree_rmap_item);
2186                                break_cow(rmap_item);
2187                        }
2188                } else if (split) {
2189                        /*
2190                         * We are here if we tried to merge two pages and
2191                         * failed because they both belonged to the same
2192                         * compound page. We will split the page now, but no
2193                         * merging will take place.
2194                         * We do not want to add the cost of a full lock; if
2195                         * the page is locked, it is better to skip it and
2196                         * perhaps try again later.
2197                         */
2198                        if (!trylock_page(page))
2199                                return;
2200                        split_huge_page(page);
2201                        unlock_page(page);
2202                }
2203        }
2204}
2205
2206static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2207                                            struct rmap_item **rmap_list,
2208                                            unsigned long addr)
2209{
2210        struct rmap_item *rmap_item;
2211
2212        while (*rmap_list) {
2213                rmap_item = *rmap_list;
2214                if ((rmap_item->address & PAGE_MASK) == addr)
2215                        return rmap_item;
2216                if (rmap_item->address > addr)
2217                        break;
2218                *rmap_list = rmap_item->rmap_list;
2219                remove_rmap_item_from_tree(rmap_item);
2220                free_rmap_item(rmap_item);
2221        }
2222
2223        rmap_item = alloc_rmap_item();
2224        if (rmap_item) {
2225                /* It has already been zeroed */
2226                rmap_item->mm = mm_slot->mm;
2227                rmap_item->address = addr;
2228                rmap_item->rmap_list = *rmap_list;
2229                *rmap_list = rmap_item;
2230        }
2231        return rmap_item;
2232}
2233
2234static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2235{
2236        struct mm_struct *mm;
2237        struct mm_slot *slot;
2238        struct vm_area_struct *vma;
2239        struct rmap_item *rmap_item;
2240        int nid;
2241
2242        if (list_empty(&ksm_mm_head.mm_list))
2243                return NULL;
2244
2245        slot = ksm_scan.mm_slot;
2246        if (slot == &ksm_mm_head) {
2247                /*
2248                 * A number of pages can hang around indefinitely on per-cpu
2249                 * pagevecs, raised page count preventing write_protect_page
2250                 * from merging them.  Though it doesn't really matter much,
2251                 * it is puzzling to see some stuck in pages_volatile until
2252                 * other activity jostles them out, and they also prevented
2253                 * LTP's KSM test from succeeding deterministically; so drain
2254                 * them here (here rather than on entry to ksm_do_scan(),
2255                 * so we don't IPI too often when pages_to_scan is set low).
2256                 */
2257                lru_add_drain_all();
2258
2259                /*
2260                 * Whereas stale stable_nodes on the stable_tree itself
2261                 * get pruned in the regular course of stable_tree_search(),
2262                 * those moved out to the migrate_nodes list can accumulate:
2263                 * so prune them once before each full scan.
2264                 */
2265                if (!ksm_merge_across_nodes) {
2266                        struct stable_node *stable_node, *next;
2267                        struct page *page;
2268
2269                        list_for_each_entry_safe(stable_node, next,
2270                                                 &migrate_nodes, list) {
2271                                page = get_ksm_page(stable_node,
2272                                                    GET_KSM_PAGE_NOLOCK);
2273                                if (page)
2274                                        put_page(page);
2275                                cond_resched();
2276                        }
2277                }
2278
2279                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2280                        root_unstable_tree[nid] = RB_ROOT;
2281
2282                spin_lock(&ksm_mmlist_lock);
2283                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2284                ksm_scan.mm_slot = slot;
2285                spin_unlock(&ksm_mmlist_lock);
2286                /*
2287                 * Although we tested list_empty() above, a racing __ksm_exit
2288                 * of the last mm on the list may have removed it since then.
2289                 */
2290                if (slot == &ksm_mm_head)
2291                        return NULL;
2292next_mm:
2293                ksm_scan.address = 0;
2294                ksm_scan.rmap_list = &slot->rmap_list;
2295        }
2296
2297        mm = slot->mm;
2298        down_read(&mm->mmap_sem);
2299        if (ksm_test_exit(mm))
2300                vma = NULL;
2301        else
2302                vma = find_vma(mm, ksm_scan.address);
2303
2304        for (; vma; vma = vma->vm_next) {
2305                if (!(vma->vm_flags & VM_MERGEABLE))
2306                        continue;
2307                if (ksm_scan.address < vma->vm_start)
2308                        ksm_scan.address = vma->vm_start;
2309                if (!vma->anon_vma)
2310                        ksm_scan.address = vma->vm_end;
2311
2312                while (ksm_scan.address < vma->vm_end) {
2313                        if (ksm_test_exit(mm))
2314                                break;
2315                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2316                        if (IS_ERR_OR_NULL(*page)) {
2317                                ksm_scan.address += PAGE_SIZE;
2318                                cond_resched();
2319                                continue;
2320                        }
2321                        if (PageAnon(*page)) {
2322                                flush_anon_page(vma, *page, ksm_scan.address);
2323                                flush_dcache_page(*page);
2324                                rmap_item = get_next_rmap_item(slot,
2325                                        ksm_scan.rmap_list, ksm_scan.address);
2326                                if (rmap_item) {
2327                                        ksm_scan.rmap_list =
2328                                                        &rmap_item->rmap_list;
2329                                        ksm_scan.address += PAGE_SIZE;
2330                                } else
2331                                        put_page(*page);
2332                                up_read(&mm->mmap_sem);
2333                                return rmap_item;
2334                        }
2335                        put_page(*page);
2336                        ksm_scan.address += PAGE_SIZE;
2337                        cond_resched();
2338                }
2339        }
2340
2341        if (ksm_test_exit(mm)) {
2342                ksm_scan.address = 0;
2343                ksm_scan.rmap_list = &slot->rmap_list;
2344        }
2345        /*
2346         * Nuke all the rmap_items that are above this current rmap:
2347         * because there were no VM_MERGEABLE vmas with such addresses.
2348         */
2349        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2350
2351        spin_lock(&ksm_mmlist_lock);
2352        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2353                                                struct mm_slot, mm_list);
2354        if (ksm_scan.address == 0) {
2355                /*
2356                 * We've completed a full scan of all vmas, holding mmap_sem
2357                 * throughout, and found no VM_MERGEABLE: so do the same as
2358                 * __ksm_exit does to remove this mm from all our lists now.
2359                 * This applies either when cleaning up after __ksm_exit
2360                 * (but beware: we can reach here even before __ksm_exit),
2361                 * or when all VM_MERGEABLE areas have been unmapped (and
2362                 * mmap_sem then protects against race with MADV_MERGEABLE).
2363                 */
2364                hash_del(&slot->link);
2365                list_del(&slot->mm_list);
2366                spin_unlock(&ksm_mmlist_lock);
2367
2368                free_mm_slot(slot);
2369                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2370                up_read(&mm->mmap_sem);
2371                mmdrop(mm);
2372        } else {
2373                up_read(&mm->mmap_sem);
2374                /*
2375                 * up_read(&mm->mmap_sem) first because after
2376                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2377                 * already have been freed under us by __ksm_exit()
2378                 * because the "mm_slot" is still hashed and
2379                 * ksm_scan.mm_slot doesn't point to it anymore.
2380                 */
2381                spin_unlock(&ksm_mmlist_lock);
2382        }
2383
2384        /* Repeat until we've completed scanning the whole list */
2385        slot = ksm_scan.mm_slot;
2386        if (slot != &ksm_mm_head)
2387                goto next_mm;
2388
2389        ksm_scan.seqnr++;
2390        return NULL;
2391}
2392
2393/**
2394 * ksm_do_scan  - the ksm scanner main worker function.
2395 * @scan_npages:  number of pages we want to scan before we return.
2396 */
2397static void ksm_do_scan(unsigned int scan_npages)
2398{
2399        struct rmap_item *rmap_item;
2400        struct page *uninitialized_var(page);
2401
2402        while (scan_npages-- && likely(!freezing(current))) {
2403                cond_resched();
2404                rmap_item = scan_get_next_rmap_item(&page);
2405                if (!rmap_item)
2406                        return;
2407                cmp_and_merge_page(page, rmap_item);
2408                put_page(page);
2409        }
2410}
2411
2412static int ksmd_should_run(void)
2413{
2414        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2415}
2416
2417static int ksm_scan_thread(void *nothing)
2418{
2419        unsigned int sleep_ms;
2420
2421        set_freezable();
2422        set_user_nice(current, 5);
2423
2424        while (!kthread_should_stop()) {
2425                mutex_lock(&ksm_thread_mutex);
2426                wait_while_offlining();
2427                if (ksmd_should_run())
2428                        ksm_do_scan(ksm_thread_pages_to_scan);
2429                mutex_unlock(&ksm_thread_mutex);
2430
2431                try_to_freeze();
2432
2433                if (ksmd_should_run()) {
2434                        sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2435                        wait_event_interruptible_timeout(ksm_iter_wait,
2436                                sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2437                                msecs_to_jiffies(sleep_ms));
2438                } else {
2439                        wait_event_freezable(ksm_thread_wait,
2440                                ksmd_should_run() || kthread_should_stop());
2441                }
2442        }
2443        return 0;
2444}
2445
2446int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2447                unsigned long end, int advice, unsigned long *vm_flags)
2448{
2449        struct mm_struct *mm = vma->vm_mm;
2450        int err;
2451
2452        switch (advice) {
2453        case MADV_MERGEABLE:
2454                /*
2455                 * Be somewhat over-protective for now!
2456                 */
2457                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2458                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2459                                 VM_HUGETLB | VM_MIXEDMAP))
2460                        return 0;               /* just ignore the advice */
2461
2462                if (vma_is_dax(vma))
2463                        return 0;
2464
2465#ifdef VM_SAO
2466                if (*vm_flags & VM_SAO)
2467                        return 0;
2468#endif
2469#ifdef VM_SPARC_ADI
2470                if (*vm_flags & VM_SPARC_ADI)
2471                        return 0;
2472#endif
2473
2474                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2475                        err = __ksm_enter(mm);
2476                        if (err)
2477                                return err;
2478                }
2479
2480                *vm_flags |= VM_MERGEABLE;
2481                break;
2482
2483        case MADV_UNMERGEABLE:
2484                if (!(*vm_flags & VM_MERGEABLE))
2485                        return 0;               /* just ignore the advice */
2486
2487                if (vma->anon_vma) {
2488                        err = unmerge_ksm_pages(vma, start, end);
2489                        if (err)
2490                                return err;
2491                }
2492
2493                *vm_flags &= ~VM_MERGEABLE;
2494                break;
2495        }
2496
2497        return 0;
2498}
2499
2500int __ksm_enter(struct mm_struct *mm)
2501{
2502        struct mm_slot *mm_slot;
2503        int needs_wakeup;
2504
2505        mm_slot = alloc_mm_slot();
2506        if (!mm_slot)
2507                return -ENOMEM;
2508
2509        /* Check ksm_run too?  Would need tighter locking */
2510        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2511
2512        spin_lock(&ksm_mmlist_lock);
2513        insert_to_mm_slots_hash(mm, mm_slot);
2514        /*
2515         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2516         * insert just behind the scanning cursor, to let the area settle
2517         * down a little; when fork is followed by immediate exec, we don't
2518         * want ksmd to waste time setting up and tearing down an rmap_list.
2519         *
2520         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2521         * scanning cursor, otherwise KSM pages in newly forked mms will be
2522         * missed: then we might as well insert at the end of the list.
2523         */
2524        if (ksm_run & KSM_RUN_UNMERGE)
2525                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2526        else
2527                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2528        spin_unlock(&ksm_mmlist_lock);
2529
2530        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2531        mmgrab(mm);
2532
2533        if (needs_wakeup)
2534                wake_up_interruptible(&ksm_thread_wait);
2535
2536        return 0;
2537}
2538
2539void __ksm_exit(struct mm_struct *mm)
2540{
2541        struct mm_slot *mm_slot;
2542        int easy_to_free = 0;
2543
2544        /*
2545         * This process is exiting: if it's straightforward (as is the
2546         * case when ksmd was never running), free mm_slot immediately.
2547         * But if it's at the cursor or has rmap_items linked to it, use
2548         * mmap_sem to synchronize with any break_cows before pagetables
2549         * are freed, and leave the mm_slot on the list for ksmd to free.
2550         * Beware: ksm may already have noticed it exiting and freed the slot.
2551         */
2552
2553        spin_lock(&ksm_mmlist_lock);
2554        mm_slot = get_mm_slot(mm);
2555        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2556                if (!mm_slot->rmap_list) {
2557                        hash_del(&mm_slot->link);
2558                        list_del(&mm_slot->mm_list);
2559                        easy_to_free = 1;
2560                } else {
2561                        list_move(&mm_slot->mm_list,
2562                                  &ksm_scan.mm_slot->mm_list);
2563                }
2564        }
2565        spin_unlock(&ksm_mmlist_lock);
2566
2567        if (easy_to_free) {
2568                free_mm_slot(mm_slot);
2569                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2570                mmdrop(mm);
2571        } else if (mm_slot) {
2572                down_write(&mm->mmap_sem);
2573                up_write(&mm->mmap_sem);
2574        }
2575}
2576
2577struct page *ksm_might_need_to_copy(struct page *page,
2578                        struct vm_area_struct *vma, unsigned long address)
2579{
2580        struct anon_vma *anon_vma = page_anon_vma(page);
2581        struct page *new_page;
2582
2583        if (PageKsm(page)) {
2584                if (page_stable_node(page) &&
2585                    !(ksm_run & KSM_RUN_UNMERGE))
2586                        return page;    /* no need to copy it */
2587        } else if (!anon_vma) {
2588                return page;            /* no need to copy it */
2589        } else if (anon_vma->root == vma->anon_vma->root &&
2590                 page->index == linear_page_index(vma, address)) {
2591                return page;            /* still no need to copy it */
2592        }
2593        if (!PageUptodate(page))
2594                return page;            /* let do_swap_page report the error */
2595
2596        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2597        if (new_page) {
2598                copy_user_highpage(new_page, page, address, vma);
2599
2600                SetPageDirty(new_page);
2601                __SetPageUptodate(new_page);
2602                __SetPageLocked(new_page);
2603        }
2604
2605        return new_page;
2606}
2607
2608void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2609{
2610        struct stable_node *stable_node;
2611        struct rmap_item *rmap_item;
2612        int search_new_forks = 0;
2613
2614        VM_BUG_ON_PAGE(!PageKsm(page), page);
2615
2616        /*
2617         * Rely on the page lock to protect against concurrent modifications
2618         * to that page's node of the stable tree.
2619         */
2620        VM_BUG_ON_PAGE(!PageLocked(page), page);
2621
2622        stable_node = page_stable_node(page);
2623        if (!stable_node)
2624                return;
2625again:
2626        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2627                struct anon_vma *anon_vma = rmap_item->anon_vma;
2628                struct anon_vma_chain *vmac;
2629                struct vm_area_struct *vma;
2630
2631                cond_resched();
2632                anon_vma_lock_read(anon_vma);
2633                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2634                                               0, ULONG_MAX) {
2635                        unsigned long addr;
2636
2637                        cond_resched();
2638                        vma = vmac->vma;
2639
2640                        /* Ignore the stable/unstable/sqnr flags */
2641                        addr = rmap_item->address & ~KSM_FLAG_MASK;
2642
2643                        if (addr < vma->vm_start || addr >= vma->vm_end)
2644                                continue;
2645                        /*
2646                         * Initially we examine only the vma which covers this
2647                         * rmap_item; but later, if there is still work to do,
2648                         * we examine covering vmas in other mms: in case they
2649                         * were forked from the original since ksmd passed.
2650                         */
2651                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2652                                continue;
2653
2654                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2655                                continue;
2656
2657                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2658                                anon_vma_unlock_read(anon_vma);
2659                                return;
2660                        }
2661                        if (rwc->done && rwc->done(page)) {
2662                                anon_vma_unlock_read(anon_vma);
2663                                return;
2664                        }
2665                }
2666                anon_vma_unlock_read(anon_vma);
2667        }
2668        if (!search_new_forks++)
2669                goto again;
2670}
2671
2672bool reuse_ksm_page(struct page *page,
2673                    struct vm_area_struct *vma,
2674                    unsigned long address)
2675{
2676#ifdef CONFIG_DEBUG_VM
2677        if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2678                        WARN_ON(!page_mapped(page)) ||
2679                        WARN_ON(!PageLocked(page))) {
2680                dump_page(page, "reuse_ksm_page");
2681                return false;
2682        }
2683#endif
2684
2685        if (PageSwapCache(page) || !page_stable_node(page))
2686                return false;
2687        /* Prohibit parallel get_ksm_page() */
2688        if (!page_ref_freeze(page, 1))
2689                return false;
2690
2691        page_move_anon_rmap(page, vma);
2692        page->index = linear_page_index(vma, address);
2693        page_ref_unfreeze(page, 1);
2694
2695        return true;
2696}
2697#ifdef CONFIG_MIGRATION
2698void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2699{
2700        struct stable_node *stable_node;
2701
2702        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2703        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2704        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2705
2706        stable_node = page_stable_node(newpage);
2707        if (stable_node) {
2708                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2709                stable_node->kpfn = page_to_pfn(newpage);
2710                /*
2711                 * newpage->mapping was set in advance; now we need smp_wmb()
2712                 * to make sure that the new stable_node->kpfn is visible
2713                 * to get_ksm_page() before it can see that oldpage->mapping
2714                 * has gone stale (or that PageSwapCache has been cleared).
2715                 */
2716                smp_wmb();
2717                set_page_stable_node(oldpage, NULL);
2718        }
2719}
2720#endif /* CONFIG_MIGRATION */
2721
2722#ifdef CONFIG_MEMORY_HOTREMOVE
2723static void wait_while_offlining(void)
2724{
2725        while (ksm_run & KSM_RUN_OFFLINE) {
2726                mutex_unlock(&ksm_thread_mutex);
2727                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2728                            TASK_UNINTERRUPTIBLE);
2729                mutex_lock(&ksm_thread_mutex);
2730        }
2731}
2732
2733static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2734                                         unsigned long start_pfn,
2735                                         unsigned long end_pfn)
2736{
2737        if (stable_node->kpfn >= start_pfn &&
2738            stable_node->kpfn < end_pfn) {
2739                /*
2740                 * Don't get_ksm_page, page has already gone:
2741                 * which is why we keep kpfn instead of page*
2742                 */
2743                remove_node_from_stable_tree(stable_node);
2744                return true;
2745        }
2746        return false;
2747}
2748
2749static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2750                                           unsigned long start_pfn,
2751                                           unsigned long end_pfn,
2752                                           struct rb_root *root)
2753{
2754        struct stable_node *dup;
2755        struct hlist_node *hlist_safe;
2756
2757        if (!is_stable_node_chain(stable_node)) {
2758                VM_BUG_ON(is_stable_node_dup(stable_node));
2759                return stable_node_dup_remove_range(stable_node, start_pfn,
2760                                                    end_pfn);
2761        }
2762
2763        hlist_for_each_entry_safe(dup, hlist_safe,
2764                                  &stable_node->hlist, hlist_dup) {
2765                VM_BUG_ON(!is_stable_node_dup(dup));
2766                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2767        }
2768        if (hlist_empty(&stable_node->hlist)) {
2769                free_stable_node_chain(stable_node, root);
2770                return true; /* notify caller that tree was rebalanced */
2771        } else
2772                return false;
2773}
2774
2775static void ksm_check_stable_tree(unsigned long start_pfn,
2776                                  unsigned long end_pfn)
2777{
2778        struct stable_node *stable_node, *next;
2779        struct rb_node *node;
2780        int nid;
2781
2782        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2783                node = rb_first(root_stable_tree + nid);
2784                while (node) {
2785                        stable_node = rb_entry(node, struct stable_node, node);
2786                        if (stable_node_chain_remove_range(stable_node,
2787                                                           start_pfn, end_pfn,
2788                                                           root_stable_tree +
2789                                                           nid))
2790                                node = rb_first(root_stable_tree + nid);
2791                        else
2792                                node = rb_next(node);
2793                        cond_resched();
2794                }
2795        }
2796        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2797                if (stable_node->kpfn >= start_pfn &&
2798                    stable_node->kpfn < end_pfn)
2799                        remove_node_from_stable_tree(stable_node);
2800                cond_resched();
2801        }
2802}
2803
2804static int ksm_memory_callback(struct notifier_block *self,
2805                               unsigned long action, void *arg)
2806{
2807        struct memory_notify *mn = arg;
2808
2809        switch (action) {
2810        case MEM_GOING_OFFLINE:
2811                /*
2812                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2813                 * and remove_all_stable_nodes() while memory is going offline:
2814                 * it is unsafe for them to touch the stable tree at this time.
2815                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2816                 * which do not need the ksm_thread_mutex are all safe.
2817                 */
2818                mutex_lock(&ksm_thread_mutex);
2819                ksm_run |= KSM_RUN_OFFLINE;
2820                mutex_unlock(&ksm_thread_mutex);
2821                break;
2822
2823        case MEM_OFFLINE:
2824                /*
2825                 * Most of the work is done by page migration; but there might
2826                 * be a few stable_nodes left over, still pointing to struct
2827                 * pages which have been offlined: prune those from the tree,
2828                 * otherwise get_ksm_page() might later try to access a
2829                 * non-existent struct page.
2830                 */
2831                ksm_check_stable_tree(mn->start_pfn,
2832                                      mn->start_pfn + mn->nr_pages);
2833                /* fallthrough */
2834
2835        case MEM_CANCEL_OFFLINE:
2836                mutex_lock(&ksm_thread_mutex);
2837                ksm_run &= ~KSM_RUN_OFFLINE;
2838                mutex_unlock(&ksm_thread_mutex);
2839
2840                smp_mb();       /* wake_up_bit advises this */
2841                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2842                break;
2843        }
2844        return NOTIFY_OK;
2845}
2846#else
2847static void wait_while_offlining(void)
2848{
2849}
2850#endif /* CONFIG_MEMORY_HOTREMOVE */
2851
2852#ifdef CONFIG_SYSFS
2853/*
2854 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2855 */
2856
2857#define KSM_ATTR_RO(_name) \
2858        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2859#define KSM_ATTR(_name) \
2860        static struct kobj_attribute _name##_attr = \
2861                __ATTR(_name, 0644, _name##_show, _name##_store)
2862
2863static ssize_t sleep_millisecs_show(struct kobject *kobj,
2864                                    struct kobj_attribute *attr, char *buf)
2865{
2866        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2867}
2868
2869static ssize_t sleep_millisecs_store(struct kobject *kobj,
2870                                     struct kobj_attribute *attr,
2871                                     const char *buf, size_t count)
2872{
2873        unsigned long msecs;
2874        int err;
2875
2876        err = kstrtoul(buf, 10, &msecs);
2877        if (err || msecs > UINT_MAX)
2878                return -EINVAL;
2879
2880        ksm_thread_sleep_millisecs = msecs;
2881        wake_up_interruptible(&ksm_iter_wait);
2882
2883        return count;
2884}
2885KSM_ATTR(sleep_millisecs);
2886
2887static ssize_t pages_to_scan_show(struct kobject *kobj,
2888                                  struct kobj_attribute *attr, char *buf)
2889{
2890        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2891}
2892
2893static ssize_t pages_to_scan_store(struct kobject *kobj,
2894                                   struct kobj_attribute *attr,
2895                                   const char *buf, size_t count)
2896{
2897        int err;
2898        unsigned long nr_pages;
2899
2900        err = kstrtoul(buf, 10, &nr_pages);
2901        if (err || nr_pages > UINT_MAX)
2902                return -EINVAL;
2903
2904        ksm_thread_pages_to_scan = nr_pages;
2905
2906        return count;
2907}
2908KSM_ATTR(pages_to_scan);
2909
2910static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2911                        char *buf)
2912{
2913        return sprintf(buf, "%lu\n", ksm_run);
2914}
2915
2916static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2917                         const char *buf, size_t count)
2918{
2919        int err;
2920        unsigned long flags;
2921
2922        err = kstrtoul(buf, 10, &flags);
2923        if (err || flags > UINT_MAX)
2924                return -EINVAL;
2925        if (flags > KSM_RUN_UNMERGE)
2926                return -EINVAL;
2927
2928        /*
2929         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2930         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2931         * breaking COW to free the pages_shared (but leaves mm_slots
2932         * on the list for when ksmd may be set running again).
2933         */
2934
2935        mutex_lock(&ksm_thread_mutex);
2936        wait_while_offlining();
2937        if (ksm_run != flags) {
2938                ksm_run = flags;
2939                if (flags & KSM_RUN_UNMERGE) {
2940                        set_current_oom_origin();
2941                        err = unmerge_and_remove_all_rmap_items();
2942                        clear_current_oom_origin();
2943                        if (err) {
2944                                ksm_run = KSM_RUN_STOP;
2945                                count = err;
2946                        }
2947                }
2948        }
2949        mutex_unlock(&ksm_thread_mutex);
2950
2951        if (flags & KSM_RUN_MERGE)
2952                wake_up_interruptible(&ksm_thread_wait);
2953
2954        return count;
2955}
2956KSM_ATTR(run);
2957
2958#ifdef CONFIG_NUMA
2959static ssize_t merge_across_nodes_show(struct kobject *kobj,
2960                                struct kobj_attribute *attr, char *buf)
2961{
2962        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2963}
2964
2965static ssize_t merge_across_nodes_store(struct kobject *kobj,
2966                                   struct kobj_attribute *attr,
2967                                   const char *buf, size_t count)
2968{
2969        int err;
2970        unsigned long knob;
2971
2972        err = kstrtoul(buf, 10, &knob);
2973        if (err)
2974                return err;
2975        if (knob > 1)
2976                return -EINVAL;
2977
2978        mutex_lock(&ksm_thread_mutex);
2979        wait_while_offlining();
2980        if (ksm_merge_across_nodes != knob) {
2981                if (ksm_pages_shared || remove_all_stable_nodes())
2982                        err = -EBUSY;
2983                else if (root_stable_tree == one_stable_tree) {
2984                        struct rb_root *buf;
2985                        /*
2986                         * This is the first time that we switch away from the
2987                         * default of merging across nodes: must now allocate
2988                         * a buffer to hold as many roots as may be needed.
2989                         * Allocate stable and unstable together:
2990                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2991                         */
2992                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2993                                      GFP_KERNEL);
2994                        /* Let us assume that RB_ROOT is NULL is zero */
2995                        if (!buf)
2996                                err = -ENOMEM;
2997                        else {
2998                                root_stable_tree = buf;
2999                                root_unstable_tree = buf + nr_node_ids;
3000                                /* Stable tree is empty but not the unstable */
3001                                root_unstable_tree[0] = one_unstable_tree[0];
3002                        }
3003                }
3004                if (!err) {
3005                        ksm_merge_across_nodes = knob;
3006                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3007                }
3008        }
3009        mutex_unlock(&ksm_thread_mutex);
3010
3011        return err ? err : count;
3012}
3013KSM_ATTR(merge_across_nodes);
3014#endif
3015
3016static ssize_t use_zero_pages_show(struct kobject *kobj,
3017                                struct kobj_attribute *attr, char *buf)
3018{
3019        return sprintf(buf, "%u\n", ksm_use_zero_pages);
3020}
3021static ssize_t use_zero_pages_store(struct kobject *kobj,
3022                                   struct kobj_attribute *attr,
3023                                   const char *buf, size_t count)
3024{
3025        int err;
3026        bool value;
3027
3028        err = kstrtobool(buf, &value);
3029        if (err)
3030                return -EINVAL;
3031
3032        ksm_use_zero_pages = value;
3033
3034        return count;
3035}
3036KSM_ATTR(use_zero_pages);
3037
3038static ssize_t max_page_sharing_show(struct kobject *kobj,
3039                                     struct kobj_attribute *attr, char *buf)
3040{
3041        return sprintf(buf, "%u\n", ksm_max_page_sharing);
3042}
3043
3044static ssize_t max_page_sharing_store(struct kobject *kobj,
3045                                      struct kobj_attribute *attr,
3046                                      const char *buf, size_t count)
3047{
3048        int err;
3049        int knob;
3050
3051        err = kstrtoint(buf, 10, &knob);
3052        if (err)
3053                return err;
3054        /*
3055         * When a KSM page is created it is shared by 2 mappings. This
3056         * being a signed comparison, it implicitly verifies it's not
3057         * negative.
3058         */
3059        if (knob < 2)
3060                return -EINVAL;
3061
3062        if (READ_ONCE(ksm_max_page_sharing) == knob)
3063                return count;
3064
3065        mutex_lock(&ksm_thread_mutex);
3066        wait_while_offlining();
3067        if (ksm_max_page_sharing != knob) {
3068                if (ksm_pages_shared || remove_all_stable_nodes())
3069                        err = -EBUSY;
3070                else
3071                        ksm_max_page_sharing = knob;
3072        }
3073        mutex_unlock(&ksm_thread_mutex);
3074
3075        return err ? err : count;
3076}
3077KSM_ATTR(max_page_sharing);
3078
3079static ssize_t pages_shared_show(struct kobject *kobj,
3080                                 struct kobj_attribute *attr, char *buf)
3081{
3082        return sprintf(buf, "%lu\n", ksm_pages_shared);
3083}
3084KSM_ATTR_RO(pages_shared);
3085
3086static ssize_t pages_sharing_show(struct kobject *kobj,
3087                                  struct kobj_attribute *attr, char *buf)
3088{
3089        return sprintf(buf, "%lu\n", ksm_pages_sharing);
3090}
3091KSM_ATTR_RO(pages_sharing);
3092
3093static ssize_t pages_unshared_show(struct kobject *kobj,
3094                                   struct kobj_attribute *attr, char *buf)
3095{
3096        return sprintf(buf, "%lu\n", ksm_pages_unshared);
3097}
3098KSM_ATTR_RO(pages_unshared);
3099
3100static ssize_t pages_volatile_show(struct kobject *kobj,
3101                                   struct kobj_attribute *attr, char *buf)
3102{
3103        long ksm_pages_volatile;
3104
3105        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3106                                - ksm_pages_sharing - ksm_pages_unshared;
3107        /*
3108         * It was not worth any locking to calculate that statistic,
3109         * but it might therefore sometimes be negative: conceal that.
3110         */
3111        if (ksm_pages_volatile < 0)
3112                ksm_pages_volatile = 0;
3113        return sprintf(buf, "%ld\n", ksm_pages_volatile);
3114}
3115KSM_ATTR_RO(pages_volatile);
3116
3117static ssize_t stable_node_dups_show(struct kobject *kobj,
3118                                     struct kobj_attribute *attr, char *buf)
3119{
3120        return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3121}
3122KSM_ATTR_RO(stable_node_dups);
3123
3124static ssize_t stable_node_chains_show(struct kobject *kobj,
3125                                       struct kobj_attribute *attr, char *buf)
3126{
3127        return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3128}
3129KSM_ATTR_RO(stable_node_chains);
3130
3131static ssize_t
3132stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3133                                        struct kobj_attribute *attr,
3134                                        char *buf)
3135{
3136        return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3137}
3138
3139static ssize_t
3140stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3141                                         struct kobj_attribute *attr,
3142                                         const char *buf, size_t count)
3143{
3144        unsigned long msecs;
3145        int err;
3146
3147        err = kstrtoul(buf, 10, &msecs);
3148        if (err || msecs > UINT_MAX)
3149                return -EINVAL;
3150
3151        ksm_stable_node_chains_prune_millisecs = msecs;
3152
3153        return count;
3154}
3155KSM_ATTR(stable_node_chains_prune_millisecs);
3156
3157static ssize_t full_scans_show(struct kobject *kobj,
3158                               struct kobj_attribute *attr, char *buf)
3159{
3160        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3161}
3162KSM_ATTR_RO(full_scans);
3163
3164static struct attribute *ksm_attrs[] = {
3165        &sleep_millisecs_attr.attr,
3166        &pages_to_scan_attr.attr,
3167        &run_attr.attr,
3168        &pages_shared_attr.attr,
3169        &pages_sharing_attr.attr,
3170        &pages_unshared_attr.attr,
3171        &pages_volatile_attr.attr,
3172        &full_scans_attr.attr,
3173#ifdef CONFIG_NUMA
3174        &merge_across_nodes_attr.attr,
3175#endif
3176        &max_page_sharing_attr.attr,
3177        &stable_node_chains_attr.attr,
3178        &stable_node_dups_attr.attr,
3179        &stable_node_chains_prune_millisecs_attr.attr,
3180        &use_zero_pages_attr.attr,
3181        NULL,
3182};
3183
3184static const struct attribute_group ksm_attr_group = {
3185        .attrs = ksm_attrs,
3186        .name = "ksm",
3187};
3188#endif /* CONFIG_SYSFS */
3189
3190static int __init ksm_init(void)
3191{
3192        struct task_struct *ksm_thread;
3193        int err;
3194
3195        /* The correct value depends on page size and endianness */
3196        zero_checksum = calc_checksum(ZERO_PAGE(0));
3197        /* Default to false for backwards compatibility */
3198        ksm_use_zero_pages = false;
3199
3200        err = ksm_slab_init();
3201        if (err)
3202                goto out;
3203
3204        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3205        if (IS_ERR(ksm_thread)) {
3206                pr_err("ksm: creating kthread failed\n");
3207                err = PTR_ERR(ksm_thread);
3208                goto out_free;
3209        }
3210
3211#ifdef CONFIG_SYSFS
3212        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3213        if (err) {
3214                pr_err("ksm: register sysfs failed\n");
3215                kthread_stop(ksm_thread);
3216                goto out_free;
3217        }
3218#else
3219        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3220
3221#endif /* CONFIG_SYSFS */
3222
3223#ifdef CONFIG_MEMORY_HOTREMOVE
3224        /* There is no significance to this priority 100 */
3225        hotplug_memory_notifier(ksm_memory_callback, 100);
3226#endif
3227        return 0;
3228
3229out_free:
3230        ksm_slab_free();
3231out:
3232        return err;
3233}
3234subsys_initcall(ksm_init);
3235