linux/mm/memory-failure.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.  The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include "internal.h"
  60#include "ras/ras_event.h"
  61
  62int sysctl_memory_failure_early_kill __read_mostly = 0;
  63
  64int sysctl_memory_failure_recovery __read_mostly = 1;
  65
  66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  67
  68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  69
  70u32 hwpoison_filter_enable = 0;
  71u32 hwpoison_filter_dev_major = ~0U;
  72u32 hwpoison_filter_dev_minor = ~0U;
  73u64 hwpoison_filter_flags_mask;
  74u64 hwpoison_filter_flags_value;
  75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  80
  81static int hwpoison_filter_dev(struct page *p)
  82{
  83        struct address_space *mapping;
  84        dev_t dev;
  85
  86        if (hwpoison_filter_dev_major == ~0U &&
  87            hwpoison_filter_dev_minor == ~0U)
  88                return 0;
  89
  90        /*
  91         * page_mapping() does not accept slab pages.
  92         */
  93        if (PageSlab(p))
  94                return -EINVAL;
  95
  96        mapping = page_mapping(p);
  97        if (mapping == NULL || mapping->host == NULL)
  98                return -EINVAL;
  99
 100        dev = mapping->host->i_sb->s_dev;
 101        if (hwpoison_filter_dev_major != ~0U &&
 102            hwpoison_filter_dev_major != MAJOR(dev))
 103                return -EINVAL;
 104        if (hwpoison_filter_dev_minor != ~0U &&
 105            hwpoison_filter_dev_minor != MINOR(dev))
 106                return -EINVAL;
 107
 108        return 0;
 109}
 110
 111static int hwpoison_filter_flags(struct page *p)
 112{
 113        if (!hwpoison_filter_flags_mask)
 114                return 0;
 115
 116        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 117                                    hwpoison_filter_flags_value)
 118                return 0;
 119        else
 120                return -EINVAL;
 121}
 122
 123/*
 124 * This allows stress tests to limit test scope to a collection of tasks
 125 * by putting them under some memcg. This prevents killing unrelated/important
 126 * processes such as /sbin/init. Note that the target task may share clean
 127 * pages with init (eg. libc text), which is harmless. If the target task
 128 * share _dirty_ pages with another task B, the test scheme must make sure B
 129 * is also included in the memcg. At last, due to race conditions this filter
 130 * can only guarantee that the page either belongs to the memcg tasks, or is
 131 * a freed page.
 132 */
 133#ifdef CONFIG_MEMCG
 134u64 hwpoison_filter_memcg;
 135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 136static int hwpoison_filter_task(struct page *p)
 137{
 138        if (!hwpoison_filter_memcg)
 139                return 0;
 140
 141        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 142                return -EINVAL;
 143
 144        return 0;
 145}
 146#else
 147static int hwpoison_filter_task(struct page *p) { return 0; }
 148#endif
 149
 150int hwpoison_filter(struct page *p)
 151{
 152        if (!hwpoison_filter_enable)
 153                return 0;
 154
 155        if (hwpoison_filter_dev(p))
 156                return -EINVAL;
 157
 158        if (hwpoison_filter_flags(p))
 159                return -EINVAL;
 160
 161        if (hwpoison_filter_task(p))
 162                return -EINVAL;
 163
 164        return 0;
 165}
 166#else
 167int hwpoison_filter(struct page *p)
 168{
 169        return 0;
 170}
 171#endif
 172
 173EXPORT_SYMBOL_GPL(hwpoison_filter);
 174
 175/*
 176 * Kill all processes that have a poisoned page mapped and then isolate
 177 * the page.
 178 *
 179 * General strategy:
 180 * Find all processes having the page mapped and kill them.
 181 * But we keep a page reference around so that the page is not
 182 * actually freed yet.
 183 * Then stash the page away
 184 *
 185 * There's no convenient way to get back to mapped processes
 186 * from the VMAs. So do a brute-force search over all
 187 * running processes.
 188 *
 189 * Remember that machine checks are not common (or rather
 190 * if they are common you have other problems), so this shouldn't
 191 * be a performance issue.
 192 *
 193 * Also there are some races possible while we get from the
 194 * error detection to actually handle it.
 195 */
 196
 197struct to_kill {
 198        struct list_head nd;
 199        struct task_struct *tsk;
 200        unsigned long addr;
 201        short size_shift;
 202        char addr_valid;
 203};
 204
 205/*
 206 * Send all the processes who have the page mapped a signal.
 207 * ``action optional'' if they are not immediately affected by the error
 208 * ``action required'' if error happened in current execution context
 209 */
 210static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 211{
 212        struct task_struct *t = tk->tsk;
 213        short addr_lsb = tk->size_shift;
 214        int ret;
 215
 216        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 217                pfn, t->comm, t->pid);
 218
 219        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 220                ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
 221                                       addr_lsb, current);
 222        } else {
 223                /*
 224                 * Don't use force here, it's convenient if the signal
 225                 * can be temporarily blocked.
 226                 * This could cause a loop when the user sets SIGBUS
 227                 * to SIG_IGN, but hopefully no one will do that?
 228                 */
 229                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 230                                      addr_lsb, t);  /* synchronous? */
 231        }
 232        if (ret < 0)
 233                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 234                        t->comm, t->pid, ret);
 235        return ret;
 236}
 237
 238/*
 239 * When a unknown page type is encountered drain as many buffers as possible
 240 * in the hope to turn the page into a LRU or free page, which we can handle.
 241 */
 242void shake_page(struct page *p, int access)
 243{
 244        if (PageHuge(p))
 245                return;
 246
 247        if (!PageSlab(p)) {
 248                lru_add_drain_all();
 249                if (PageLRU(p))
 250                        return;
 251                drain_all_pages(page_zone(p));
 252                if (PageLRU(p) || is_free_buddy_page(p))
 253                        return;
 254        }
 255
 256        /*
 257         * Only call shrink_node_slabs here (which would also shrink
 258         * other caches) if access is not potentially fatal.
 259         */
 260        if (access)
 261                drop_slab_node(page_to_nid(p));
 262}
 263EXPORT_SYMBOL_GPL(shake_page);
 264
 265static unsigned long dev_pagemap_mapping_shift(struct page *page,
 266                struct vm_area_struct *vma)
 267{
 268        unsigned long address = vma_address(page, vma);
 269        pgd_t *pgd;
 270        p4d_t *p4d;
 271        pud_t *pud;
 272        pmd_t *pmd;
 273        pte_t *pte;
 274
 275        pgd = pgd_offset(vma->vm_mm, address);
 276        if (!pgd_present(*pgd))
 277                return 0;
 278        p4d = p4d_offset(pgd, address);
 279        if (!p4d_present(*p4d))
 280                return 0;
 281        pud = pud_offset(p4d, address);
 282        if (!pud_present(*pud))
 283                return 0;
 284        if (pud_devmap(*pud))
 285                return PUD_SHIFT;
 286        pmd = pmd_offset(pud, address);
 287        if (!pmd_present(*pmd))
 288                return 0;
 289        if (pmd_devmap(*pmd))
 290                return PMD_SHIFT;
 291        pte = pte_offset_map(pmd, address);
 292        if (!pte_present(*pte))
 293                return 0;
 294        if (pte_devmap(*pte))
 295                return PAGE_SHIFT;
 296        return 0;
 297}
 298
 299/*
 300 * Failure handling: if we can't find or can't kill a process there's
 301 * not much we can do.  We just print a message and ignore otherwise.
 302 */
 303
 304/*
 305 * Schedule a process for later kill.
 306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 307 * TBD would GFP_NOIO be enough?
 308 */
 309static void add_to_kill(struct task_struct *tsk, struct page *p,
 310                       struct vm_area_struct *vma,
 311                       struct list_head *to_kill,
 312                       struct to_kill **tkc)
 313{
 314        struct to_kill *tk;
 315
 316        if (*tkc) {
 317                tk = *tkc;
 318                *tkc = NULL;
 319        } else {
 320                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 321                if (!tk) {
 322                        pr_err("Memory failure: Out of memory while machine check handling\n");
 323                        return;
 324                }
 325        }
 326        tk->addr = page_address_in_vma(p, vma);
 327        tk->addr_valid = 1;
 328        if (is_zone_device_page(p))
 329                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 330        else
 331                tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
 332
 333        /*
 334         * In theory we don't have to kill when the page was
 335         * munmaped. But it could be also a mremap. Since that's
 336         * likely very rare kill anyways just out of paranoia, but use
 337         * a SIGKILL because the error is not contained anymore.
 338         */
 339        if (tk->addr == -EFAULT || tk->size_shift == 0) {
 340                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 341                        page_to_pfn(p), tsk->comm);
 342                tk->addr_valid = 0;
 343        }
 344        get_task_struct(tsk);
 345        tk->tsk = tsk;
 346        list_add_tail(&tk->nd, to_kill);
 347}
 348
 349/*
 350 * Kill the processes that have been collected earlier.
 351 *
 352 * Only do anything when DOIT is set, otherwise just free the list
 353 * (this is used for clean pages which do not need killing)
 354 * Also when FAIL is set do a force kill because something went
 355 * wrong earlier.
 356 */
 357static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 358                unsigned long pfn, int flags)
 359{
 360        struct to_kill *tk, *next;
 361
 362        list_for_each_entry_safe (tk, next, to_kill, nd) {
 363                if (forcekill) {
 364                        /*
 365                         * In case something went wrong with munmapping
 366                         * make sure the process doesn't catch the
 367                         * signal and then access the memory. Just kill it.
 368                         */
 369                        if (fail || tk->addr_valid == 0) {
 370                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 371                                       pfn, tk->tsk->comm, tk->tsk->pid);
 372                                do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 373                                                 tk->tsk, PIDTYPE_PID);
 374                        }
 375
 376                        /*
 377                         * In theory the process could have mapped
 378                         * something else on the address in-between. We could
 379                         * check for that, but we need to tell the
 380                         * process anyways.
 381                         */
 382                        else if (kill_proc(tk, pfn, flags) < 0)
 383                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 384                                       pfn, tk->tsk->comm, tk->tsk->pid);
 385                }
 386                put_task_struct(tk->tsk);
 387                kfree(tk);
 388        }
 389}
 390
 391/*
 392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 393 * on behalf of the thread group. Return task_struct of the (first found)
 394 * dedicated thread if found, and return NULL otherwise.
 395 *
 396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 397 * have to call rcu_read_lock/unlock() in this function.
 398 */
 399static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 400{
 401        struct task_struct *t;
 402
 403        for_each_thread(tsk, t)
 404                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 405                        return t;
 406        return NULL;
 407}
 408
 409/*
 410 * Determine whether a given process is "early kill" process which expects
 411 * to be signaled when some page under the process is hwpoisoned.
 412 * Return task_struct of the dedicated thread (main thread unless explicitly
 413 * specified) if the process is "early kill," and otherwise returns NULL.
 414 */
 415static struct task_struct *task_early_kill(struct task_struct *tsk,
 416                                           int force_early)
 417{
 418        struct task_struct *t;
 419        if (!tsk->mm)
 420                return NULL;
 421        if (force_early)
 422                return tsk;
 423        t = find_early_kill_thread(tsk);
 424        if (t)
 425                return t;
 426        if (sysctl_memory_failure_early_kill)
 427                return tsk;
 428        return NULL;
 429}
 430
 431/*
 432 * Collect processes when the error hit an anonymous page.
 433 */
 434static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 435                              struct to_kill **tkc, int force_early)
 436{
 437        struct vm_area_struct *vma;
 438        struct task_struct *tsk;
 439        struct anon_vma *av;
 440        pgoff_t pgoff;
 441
 442        av = page_lock_anon_vma_read(page);
 443        if (av == NULL) /* Not actually mapped anymore */
 444                return;
 445
 446        pgoff = page_to_pgoff(page);
 447        read_lock(&tasklist_lock);
 448        for_each_process (tsk) {
 449                struct anon_vma_chain *vmac;
 450                struct task_struct *t = task_early_kill(tsk, force_early);
 451
 452                if (!t)
 453                        continue;
 454                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 455                                               pgoff, pgoff) {
 456                        vma = vmac->vma;
 457                        if (!page_mapped_in_vma(page, vma))
 458                                continue;
 459                        if (vma->vm_mm == t->mm)
 460                                add_to_kill(t, page, vma, to_kill, tkc);
 461                }
 462        }
 463        read_unlock(&tasklist_lock);
 464        page_unlock_anon_vma_read(av);
 465}
 466
 467/*
 468 * Collect processes when the error hit a file mapped page.
 469 */
 470static void collect_procs_file(struct page *page, struct list_head *to_kill,
 471                              struct to_kill **tkc, int force_early)
 472{
 473        struct vm_area_struct *vma;
 474        struct task_struct *tsk;
 475        struct address_space *mapping = page->mapping;
 476
 477        i_mmap_lock_read(mapping);
 478        read_lock(&tasklist_lock);
 479        for_each_process(tsk) {
 480                pgoff_t pgoff = page_to_pgoff(page);
 481                struct task_struct *t = task_early_kill(tsk, force_early);
 482
 483                if (!t)
 484                        continue;
 485                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 486                                      pgoff) {
 487                        /*
 488                         * Send early kill signal to tasks where a vma covers
 489                         * the page but the corrupted page is not necessarily
 490                         * mapped it in its pte.
 491                         * Assume applications who requested early kill want
 492                         * to be informed of all such data corruptions.
 493                         */
 494                        if (vma->vm_mm == t->mm)
 495                                add_to_kill(t, page, vma, to_kill, tkc);
 496                }
 497        }
 498        read_unlock(&tasklist_lock);
 499        i_mmap_unlock_read(mapping);
 500}
 501
 502/*
 503 * Collect the processes who have the corrupted page mapped to kill.
 504 * This is done in two steps for locking reasons.
 505 * First preallocate one tokill structure outside the spin locks,
 506 * so that we can kill at least one process reasonably reliable.
 507 */
 508static void collect_procs(struct page *page, struct list_head *tokill,
 509                                int force_early)
 510{
 511        struct to_kill *tk;
 512
 513        if (!page->mapping)
 514                return;
 515
 516        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 517        if (!tk)
 518                return;
 519        if (PageAnon(page))
 520                collect_procs_anon(page, tokill, &tk, force_early);
 521        else
 522                collect_procs_file(page, tokill, &tk, force_early);
 523        kfree(tk);
 524}
 525
 526static const char *action_name[] = {
 527        [MF_IGNORED] = "Ignored",
 528        [MF_FAILED] = "Failed",
 529        [MF_DELAYED] = "Delayed",
 530        [MF_RECOVERED] = "Recovered",
 531};
 532
 533static const char * const action_page_types[] = {
 534        [MF_MSG_KERNEL]                 = "reserved kernel page",
 535        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 536        [MF_MSG_SLAB]                   = "kernel slab page",
 537        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 538        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 539        [MF_MSG_HUGE]                   = "huge page",
 540        [MF_MSG_FREE_HUGE]              = "free huge page",
 541        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 542        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 543        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 544        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 545        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 546        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 547        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 548        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 549        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 550        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 551        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 552        [MF_MSG_BUDDY]                  = "free buddy page",
 553        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 554        [MF_MSG_DAX]                    = "dax page",
 555        [MF_MSG_UNKNOWN]                = "unknown page",
 556};
 557
 558/*
 559 * XXX: It is possible that a page is isolated from LRU cache,
 560 * and then kept in swap cache or failed to remove from page cache.
 561 * The page count will stop it from being freed by unpoison.
 562 * Stress tests should be aware of this memory leak problem.
 563 */
 564static int delete_from_lru_cache(struct page *p)
 565{
 566        if (!isolate_lru_page(p)) {
 567                /*
 568                 * Clear sensible page flags, so that the buddy system won't
 569                 * complain when the page is unpoison-and-freed.
 570                 */
 571                ClearPageActive(p);
 572                ClearPageUnevictable(p);
 573
 574                /*
 575                 * Poisoned page might never drop its ref count to 0 so we have
 576                 * to uncharge it manually from its memcg.
 577                 */
 578                mem_cgroup_uncharge(p);
 579
 580                /*
 581                 * drop the page count elevated by isolate_lru_page()
 582                 */
 583                put_page(p);
 584                return 0;
 585        }
 586        return -EIO;
 587}
 588
 589static int truncate_error_page(struct page *p, unsigned long pfn,
 590                                struct address_space *mapping)
 591{
 592        int ret = MF_FAILED;
 593
 594        if (mapping->a_ops->error_remove_page) {
 595                int err = mapping->a_ops->error_remove_page(mapping, p);
 596
 597                if (err != 0) {
 598                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 599                                pfn, err);
 600                } else if (page_has_private(p) &&
 601                           !try_to_release_page(p, GFP_NOIO)) {
 602                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 603                                pfn);
 604                } else {
 605                        ret = MF_RECOVERED;
 606                }
 607        } else {
 608                /*
 609                 * If the file system doesn't support it just invalidate
 610                 * This fails on dirty or anything with private pages
 611                 */
 612                if (invalidate_inode_page(p))
 613                        ret = MF_RECOVERED;
 614                else
 615                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 616                                pfn);
 617        }
 618
 619        return ret;
 620}
 621
 622/*
 623 * Error hit kernel page.
 624 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 625 * could be more sophisticated.
 626 */
 627static int me_kernel(struct page *p, unsigned long pfn)
 628{
 629        return MF_IGNORED;
 630}
 631
 632/*
 633 * Page in unknown state. Do nothing.
 634 */
 635static int me_unknown(struct page *p, unsigned long pfn)
 636{
 637        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 638        return MF_FAILED;
 639}
 640
 641/*
 642 * Clean (or cleaned) page cache page.
 643 */
 644static int me_pagecache_clean(struct page *p, unsigned long pfn)
 645{
 646        struct address_space *mapping;
 647
 648        delete_from_lru_cache(p);
 649
 650        /*
 651         * For anonymous pages we're done the only reference left
 652         * should be the one m_f() holds.
 653         */
 654        if (PageAnon(p))
 655                return MF_RECOVERED;
 656
 657        /*
 658         * Now truncate the page in the page cache. This is really
 659         * more like a "temporary hole punch"
 660         * Don't do this for block devices when someone else
 661         * has a reference, because it could be file system metadata
 662         * and that's not safe to truncate.
 663         */
 664        mapping = page_mapping(p);
 665        if (!mapping) {
 666                /*
 667                 * Page has been teared down in the meanwhile
 668                 */
 669                return MF_FAILED;
 670        }
 671
 672        /*
 673         * Truncation is a bit tricky. Enable it per file system for now.
 674         *
 675         * Open: to take i_mutex or not for this? Right now we don't.
 676         */
 677        return truncate_error_page(p, pfn, mapping);
 678}
 679
 680/*
 681 * Dirty pagecache page
 682 * Issues: when the error hit a hole page the error is not properly
 683 * propagated.
 684 */
 685static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 686{
 687        struct address_space *mapping = page_mapping(p);
 688
 689        SetPageError(p);
 690        /* TBD: print more information about the file. */
 691        if (mapping) {
 692                /*
 693                 * IO error will be reported by write(), fsync(), etc.
 694                 * who check the mapping.
 695                 * This way the application knows that something went
 696                 * wrong with its dirty file data.
 697                 *
 698                 * There's one open issue:
 699                 *
 700                 * The EIO will be only reported on the next IO
 701                 * operation and then cleared through the IO map.
 702                 * Normally Linux has two mechanisms to pass IO error
 703                 * first through the AS_EIO flag in the address space
 704                 * and then through the PageError flag in the page.
 705                 * Since we drop pages on memory failure handling the
 706                 * only mechanism open to use is through AS_AIO.
 707                 *
 708                 * This has the disadvantage that it gets cleared on
 709                 * the first operation that returns an error, while
 710                 * the PageError bit is more sticky and only cleared
 711                 * when the page is reread or dropped.  If an
 712                 * application assumes it will always get error on
 713                 * fsync, but does other operations on the fd before
 714                 * and the page is dropped between then the error
 715                 * will not be properly reported.
 716                 *
 717                 * This can already happen even without hwpoisoned
 718                 * pages: first on metadata IO errors (which only
 719                 * report through AS_EIO) or when the page is dropped
 720                 * at the wrong time.
 721                 *
 722                 * So right now we assume that the application DTRT on
 723                 * the first EIO, but we're not worse than other parts
 724                 * of the kernel.
 725                 */
 726                mapping_set_error(mapping, -EIO);
 727        }
 728
 729        return me_pagecache_clean(p, pfn);
 730}
 731
 732/*
 733 * Clean and dirty swap cache.
 734 *
 735 * Dirty swap cache page is tricky to handle. The page could live both in page
 736 * cache and swap cache(ie. page is freshly swapped in). So it could be
 737 * referenced concurrently by 2 types of PTEs:
 738 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 739 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 740 * and then
 741 *      - clear dirty bit to prevent IO
 742 *      - remove from LRU
 743 *      - but keep in the swap cache, so that when we return to it on
 744 *        a later page fault, we know the application is accessing
 745 *        corrupted data and shall be killed (we installed simple
 746 *        interception code in do_swap_page to catch it).
 747 *
 748 * Clean swap cache pages can be directly isolated. A later page fault will
 749 * bring in the known good data from disk.
 750 */
 751static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 752{
 753        ClearPageDirty(p);
 754        /* Trigger EIO in shmem: */
 755        ClearPageUptodate(p);
 756
 757        if (!delete_from_lru_cache(p))
 758                return MF_DELAYED;
 759        else
 760                return MF_FAILED;
 761}
 762
 763static int me_swapcache_clean(struct page *p, unsigned long pfn)
 764{
 765        delete_from_swap_cache(p);
 766
 767        if (!delete_from_lru_cache(p))
 768                return MF_RECOVERED;
 769        else
 770                return MF_FAILED;
 771}
 772
 773/*
 774 * Huge pages. Needs work.
 775 * Issues:
 776 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 777 *   To narrow down kill region to one page, we need to break up pmd.
 778 */
 779static int me_huge_page(struct page *p, unsigned long pfn)
 780{
 781        int res = 0;
 782        struct page *hpage = compound_head(p);
 783        struct address_space *mapping;
 784
 785        if (!PageHuge(hpage))
 786                return MF_DELAYED;
 787
 788        mapping = page_mapping(hpage);
 789        if (mapping) {
 790                res = truncate_error_page(hpage, pfn, mapping);
 791        } else {
 792                unlock_page(hpage);
 793                /*
 794                 * migration entry prevents later access on error anonymous
 795                 * hugepage, so we can free and dissolve it into buddy to
 796                 * save healthy subpages.
 797                 */
 798                if (PageAnon(hpage))
 799                        put_page(hpage);
 800                dissolve_free_huge_page(p);
 801                res = MF_RECOVERED;
 802                lock_page(hpage);
 803        }
 804
 805        return res;
 806}
 807
 808/*
 809 * Various page states we can handle.
 810 *
 811 * A page state is defined by its current page->flags bits.
 812 * The table matches them in order and calls the right handler.
 813 *
 814 * This is quite tricky because we can access page at any time
 815 * in its live cycle, so all accesses have to be extremely careful.
 816 *
 817 * This is not complete. More states could be added.
 818 * For any missing state don't attempt recovery.
 819 */
 820
 821#define dirty           (1UL << PG_dirty)
 822#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 823#define unevict         (1UL << PG_unevictable)
 824#define mlock           (1UL << PG_mlocked)
 825#define writeback       (1UL << PG_writeback)
 826#define lru             (1UL << PG_lru)
 827#define head            (1UL << PG_head)
 828#define slab            (1UL << PG_slab)
 829#define reserved        (1UL << PG_reserved)
 830
 831static struct page_state {
 832        unsigned long mask;
 833        unsigned long res;
 834        enum mf_action_page_type type;
 835        int (*action)(struct page *p, unsigned long pfn);
 836} error_states[] = {
 837        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 838        /*
 839         * free pages are specially detected outside this table:
 840         * PG_buddy pages only make a small fraction of all free pages.
 841         */
 842
 843        /*
 844         * Could in theory check if slab page is free or if we can drop
 845         * currently unused objects without touching them. But just
 846         * treat it as standard kernel for now.
 847         */
 848        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 849
 850        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 851
 852        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 853        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 854
 855        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 856        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 857
 858        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 859        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 860
 861        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 862        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 863
 864        /*
 865         * Catchall entry: must be at end.
 866         */
 867        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 868};
 869
 870#undef dirty
 871#undef sc
 872#undef unevict
 873#undef mlock
 874#undef writeback
 875#undef lru
 876#undef head
 877#undef slab
 878#undef reserved
 879
 880/*
 881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 883 */
 884static void action_result(unsigned long pfn, enum mf_action_page_type type,
 885                          enum mf_result result)
 886{
 887        trace_memory_failure_event(pfn, type, result);
 888
 889        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 890                pfn, action_page_types[type], action_name[result]);
 891}
 892
 893static int page_action(struct page_state *ps, struct page *p,
 894                        unsigned long pfn)
 895{
 896        int result;
 897        int count;
 898
 899        result = ps->action(p, pfn);
 900
 901        count = page_count(p) - 1;
 902        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 903                count--;
 904        if (count > 0) {
 905                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 906                       pfn, action_page_types[ps->type], count);
 907                result = MF_FAILED;
 908        }
 909        action_result(pfn, ps->type, result);
 910
 911        /* Could do more checks here if page looks ok */
 912        /*
 913         * Could adjust zone counters here to correct for the missing page.
 914         */
 915
 916        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 917}
 918
 919/**
 920 * get_hwpoison_page() - Get refcount for memory error handling:
 921 * @page:       raw error page (hit by memory error)
 922 *
 923 * Return: return 0 if failed to grab the refcount, otherwise true (some
 924 * non-zero value.)
 925 */
 926int get_hwpoison_page(struct page *page)
 927{
 928        struct page *head = compound_head(page);
 929
 930        if (!PageHuge(head) && PageTransHuge(head)) {
 931                /*
 932                 * Non anonymous thp exists only in allocation/free time. We
 933                 * can't handle such a case correctly, so let's give it up.
 934                 * This should be better than triggering BUG_ON when kernel
 935                 * tries to touch the "partially handled" page.
 936                 */
 937                if (!PageAnon(head)) {
 938                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 939                                page_to_pfn(page));
 940                        return 0;
 941                }
 942        }
 943
 944        if (get_page_unless_zero(head)) {
 945                if (head == compound_head(page))
 946                        return 1;
 947
 948                pr_info("Memory failure: %#lx cannot catch tail\n",
 949                        page_to_pfn(page));
 950                put_page(head);
 951        }
 952
 953        return 0;
 954}
 955EXPORT_SYMBOL_GPL(get_hwpoison_page);
 956
 957/*
 958 * Do all that is necessary to remove user space mappings. Unmap
 959 * the pages and send SIGBUS to the processes if the data was dirty.
 960 */
 961static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 962                                  int flags, struct page **hpagep)
 963{
 964        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 965        struct address_space *mapping;
 966        LIST_HEAD(tokill);
 967        bool unmap_success;
 968        int kill = 1, forcekill;
 969        struct page *hpage = *hpagep;
 970        bool mlocked = PageMlocked(hpage);
 971
 972        /*
 973         * Here we are interested only in user-mapped pages, so skip any
 974         * other types of pages.
 975         */
 976        if (PageReserved(p) || PageSlab(p))
 977                return true;
 978        if (!(PageLRU(hpage) || PageHuge(p)))
 979                return true;
 980
 981        /*
 982         * This check implies we don't kill processes if their pages
 983         * are in the swap cache early. Those are always late kills.
 984         */
 985        if (!page_mapped(hpage))
 986                return true;
 987
 988        if (PageKsm(p)) {
 989                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 990                return false;
 991        }
 992
 993        if (PageSwapCache(p)) {
 994                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 995                        pfn);
 996                ttu |= TTU_IGNORE_HWPOISON;
 997        }
 998
 999        /*
1000         * Propagate the dirty bit from PTEs to struct page first, because we
1001         * need this to decide if we should kill or just drop the page.
1002         * XXX: the dirty test could be racy: set_page_dirty() may not always
1003         * be called inside page lock (it's recommended but not enforced).
1004         */
1005        mapping = page_mapping(hpage);
1006        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1007            mapping_cap_writeback_dirty(mapping)) {
1008                if (page_mkclean(hpage)) {
1009                        SetPageDirty(hpage);
1010                } else {
1011                        kill = 0;
1012                        ttu |= TTU_IGNORE_HWPOISON;
1013                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1014                                pfn);
1015                }
1016        }
1017
1018        /*
1019         * First collect all the processes that have the page
1020         * mapped in dirty form.  This has to be done before try_to_unmap,
1021         * because ttu takes the rmap data structures down.
1022         *
1023         * Error handling: We ignore errors here because
1024         * there's nothing that can be done.
1025         */
1026        if (kill)
1027                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1028
1029        unmap_success = try_to_unmap(hpage, ttu);
1030        if (!unmap_success)
1031                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1032                       pfn, page_mapcount(hpage));
1033
1034        /*
1035         * try_to_unmap() might put mlocked page in lru cache, so call
1036         * shake_page() again to ensure that it's flushed.
1037         */
1038        if (mlocked)
1039                shake_page(hpage, 0);
1040
1041        /*
1042         * Now that the dirty bit has been propagated to the
1043         * struct page and all unmaps done we can decide if
1044         * killing is needed or not.  Only kill when the page
1045         * was dirty or the process is not restartable,
1046         * otherwise the tokill list is merely
1047         * freed.  When there was a problem unmapping earlier
1048         * use a more force-full uncatchable kill to prevent
1049         * any accesses to the poisoned memory.
1050         */
1051        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1052        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1053
1054        return unmap_success;
1055}
1056
1057static int identify_page_state(unsigned long pfn, struct page *p,
1058                                unsigned long page_flags)
1059{
1060        struct page_state *ps;
1061
1062        /*
1063         * The first check uses the current page flags which may not have any
1064         * relevant information. The second check with the saved page flags is
1065         * carried out only if the first check can't determine the page status.
1066         */
1067        for (ps = error_states;; ps++)
1068                if ((p->flags & ps->mask) == ps->res)
1069                        break;
1070
1071        page_flags |= (p->flags & (1UL << PG_dirty));
1072
1073        if (!ps->mask)
1074                for (ps = error_states;; ps++)
1075                        if ((page_flags & ps->mask) == ps->res)
1076                                break;
1077        return page_action(ps, p, pfn);
1078}
1079
1080static int memory_failure_hugetlb(unsigned long pfn, int flags)
1081{
1082        struct page *p = pfn_to_page(pfn);
1083        struct page *head = compound_head(p);
1084        int res;
1085        unsigned long page_flags;
1086
1087        if (TestSetPageHWPoison(head)) {
1088                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1089                       pfn);
1090                return 0;
1091        }
1092
1093        num_poisoned_pages_inc();
1094
1095        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1096                /*
1097                 * Check "filter hit" and "race with other subpage."
1098                 */
1099                lock_page(head);
1100                if (PageHWPoison(head)) {
1101                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1102                            || (p != head && TestSetPageHWPoison(head))) {
1103                                num_poisoned_pages_dec();
1104                                unlock_page(head);
1105                                return 0;
1106                        }
1107                }
1108                unlock_page(head);
1109                dissolve_free_huge_page(p);
1110                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1111                return 0;
1112        }
1113
1114        lock_page(head);
1115        page_flags = head->flags;
1116
1117        if (!PageHWPoison(head)) {
1118                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1119                num_poisoned_pages_dec();
1120                unlock_page(head);
1121                put_hwpoison_page(head);
1122                return 0;
1123        }
1124
1125        /*
1126         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1127         * simply disable it. In order to make it work properly, we need
1128         * make sure that:
1129         *  - conversion of a pud that maps an error hugetlb into hwpoison
1130         *    entry properly works, and
1131         *  - other mm code walking over page table is aware of pud-aligned
1132         *    hwpoison entries.
1133         */
1134        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1135                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1136                res = -EBUSY;
1137                goto out;
1138        }
1139
1140        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1141                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1142                res = -EBUSY;
1143                goto out;
1144        }
1145
1146        res = identify_page_state(pfn, p, page_flags);
1147out:
1148        unlock_page(head);
1149        return res;
1150}
1151
1152static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1153                struct dev_pagemap *pgmap)
1154{
1155        struct page *page = pfn_to_page(pfn);
1156        const bool unmap_success = true;
1157        unsigned long size = 0;
1158        struct to_kill *tk;
1159        LIST_HEAD(tokill);
1160        int rc = -EBUSY;
1161        loff_t start;
1162        dax_entry_t cookie;
1163
1164        /*
1165         * Prevent the inode from being freed while we are interrogating
1166         * the address_space, typically this would be handled by
1167         * lock_page(), but dax pages do not use the page lock. This
1168         * also prevents changes to the mapping of this pfn until
1169         * poison signaling is complete.
1170         */
1171        cookie = dax_lock_page(page);
1172        if (!cookie)
1173                goto out;
1174
1175        if (hwpoison_filter(page)) {
1176                rc = 0;
1177                goto unlock;
1178        }
1179
1180        switch (pgmap->type) {
1181        case MEMORY_DEVICE_PRIVATE:
1182        case MEMORY_DEVICE_PUBLIC:
1183                /*
1184                 * TODO: Handle HMM pages which may need coordination
1185                 * with device-side memory.
1186                 */
1187                goto unlock;
1188        default:
1189                break;
1190        }
1191
1192        /*
1193         * Use this flag as an indication that the dax page has been
1194         * remapped UC to prevent speculative consumption of poison.
1195         */
1196        SetPageHWPoison(page);
1197
1198        /*
1199         * Unlike System-RAM there is no possibility to swap in a
1200         * different physical page at a given virtual address, so all
1201         * userspace consumption of ZONE_DEVICE memory necessitates
1202         * SIGBUS (i.e. MF_MUST_KILL)
1203         */
1204        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206
1207        list_for_each_entry(tk, &tokill, nd)
1208                if (tk->size_shift)
1209                        size = max(size, 1UL << tk->size_shift);
1210        if (size) {
1211                /*
1212                 * Unmap the largest mapping to avoid breaking up
1213                 * device-dax mappings which are constant size. The
1214                 * actual size of the mapping being torn down is
1215                 * communicated in siginfo, see kill_proc()
1216                 */
1217                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218                unmap_mapping_range(page->mapping, start, start + size, 0);
1219        }
1220        kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221        rc = 0;
1222unlock:
1223        dax_unlock_page(page, cookie);
1224out:
1225        /* drop pgmap ref acquired in caller */
1226        put_dev_pagemap(pgmap);
1227        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228        return rc;
1229}
1230
1231/**
1232 * memory_failure - Handle memory failure of a page.
1233 * @pfn: Page Number of the corrupted page
1234 * @flags: fine tune action taken
1235 *
1236 * This function is called by the low level machine check code
1237 * of an architecture when it detects hardware memory corruption
1238 * of a page. It tries its best to recover, which includes
1239 * dropping pages, killing processes etc.
1240 *
1241 * The function is primarily of use for corruptions that
1242 * happen outside the current execution context (e.g. when
1243 * detected by a background scrubber)
1244 *
1245 * Must run in process context (e.g. a work queue) with interrupts
1246 * enabled and no spinlocks hold.
1247 */
1248int memory_failure(unsigned long pfn, int flags)
1249{
1250        struct page *p;
1251        struct page *hpage;
1252        struct page *orig_head;
1253        struct dev_pagemap *pgmap;
1254        int res;
1255        unsigned long page_flags;
1256
1257        if (!sysctl_memory_failure_recovery)
1258                panic("Memory failure on page %lx", pfn);
1259
1260        if (!pfn_valid(pfn)) {
1261                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1262                        pfn);
1263                return -ENXIO;
1264        }
1265
1266        pgmap = get_dev_pagemap(pfn, NULL);
1267        if (pgmap)
1268                return memory_failure_dev_pagemap(pfn, flags, pgmap);
1269
1270        p = pfn_to_page(pfn);
1271        if (PageHuge(p))
1272                return memory_failure_hugetlb(pfn, flags);
1273        if (TestSetPageHWPoison(p)) {
1274                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1275                        pfn);
1276                return 0;
1277        }
1278
1279        orig_head = hpage = compound_head(p);
1280        num_poisoned_pages_inc();
1281
1282        /*
1283         * We need/can do nothing about count=0 pages.
1284         * 1) it's a free page, and therefore in safe hand:
1285         *    prep_new_page() will be the gate keeper.
1286         * 2) it's part of a non-compound high order page.
1287         *    Implies some kernel user: cannot stop them from
1288         *    R/W the page; let's pray that the page has been
1289         *    used and will be freed some time later.
1290         * In fact it's dangerous to directly bump up page count from 0,
1291         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1292         */
1293        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1294                if (is_free_buddy_page(p)) {
1295                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1296                        return 0;
1297                } else {
1298                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1299                        return -EBUSY;
1300                }
1301        }
1302
1303        if (PageTransHuge(hpage)) {
1304                lock_page(p);
1305                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1306                        unlock_page(p);
1307                        if (!PageAnon(p))
1308                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1309                                        pfn);
1310                        else
1311                                pr_err("Memory failure: %#lx: thp split failed\n",
1312                                        pfn);
1313                        if (TestClearPageHWPoison(p))
1314                                num_poisoned_pages_dec();
1315                        put_hwpoison_page(p);
1316                        return -EBUSY;
1317                }
1318                unlock_page(p);
1319                VM_BUG_ON_PAGE(!page_count(p), p);
1320                hpage = compound_head(p);
1321        }
1322
1323        /*
1324         * We ignore non-LRU pages for good reasons.
1325         * - PG_locked is only well defined for LRU pages and a few others
1326         * - to avoid races with __SetPageLocked()
1327         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1328         * The check (unnecessarily) ignores LRU pages being isolated and
1329         * walked by the page reclaim code, however that's not a big loss.
1330         */
1331        shake_page(p, 0);
1332        /* shake_page could have turned it free. */
1333        if (!PageLRU(p) && is_free_buddy_page(p)) {
1334                if (flags & MF_COUNT_INCREASED)
1335                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1336                else
1337                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1338                return 0;
1339        }
1340
1341        lock_page(p);
1342
1343        /*
1344         * The page could have changed compound pages during the locking.
1345         * If this happens just bail out.
1346         */
1347        if (PageCompound(p) && compound_head(p) != orig_head) {
1348                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1349                res = -EBUSY;
1350                goto out;
1351        }
1352
1353        /*
1354         * We use page flags to determine what action should be taken, but
1355         * the flags can be modified by the error containment action.  One
1356         * example is an mlocked page, where PG_mlocked is cleared by
1357         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1358         * correctly, we save a copy of the page flags at this time.
1359         */
1360        if (PageHuge(p))
1361                page_flags = hpage->flags;
1362        else
1363                page_flags = p->flags;
1364
1365        /*
1366         * unpoison always clear PG_hwpoison inside page lock
1367         */
1368        if (!PageHWPoison(p)) {
1369                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1370                num_poisoned_pages_dec();
1371                unlock_page(p);
1372                put_hwpoison_page(p);
1373                return 0;
1374        }
1375        if (hwpoison_filter(p)) {
1376                if (TestClearPageHWPoison(p))
1377                        num_poisoned_pages_dec();
1378                unlock_page(p);
1379                put_hwpoison_page(p);
1380                return 0;
1381        }
1382
1383        if (!PageTransTail(p) && !PageLRU(p))
1384                goto identify_page_state;
1385
1386        /*
1387         * It's very difficult to mess with pages currently under IO
1388         * and in many cases impossible, so we just avoid it here.
1389         */
1390        wait_on_page_writeback(p);
1391
1392        /*
1393         * Now take care of user space mappings.
1394         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1395         *
1396         * When the raw error page is thp tail page, hpage points to the raw
1397         * page after thp split.
1398         */
1399        if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1400                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1401                res = -EBUSY;
1402                goto out;
1403        }
1404
1405        /*
1406         * Torn down by someone else?
1407         */
1408        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1409                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1410                res = -EBUSY;
1411                goto out;
1412        }
1413
1414identify_page_state:
1415        res = identify_page_state(pfn, p, page_flags);
1416out:
1417        unlock_page(p);
1418        return res;
1419}
1420EXPORT_SYMBOL_GPL(memory_failure);
1421
1422#define MEMORY_FAILURE_FIFO_ORDER       4
1423#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1424
1425struct memory_failure_entry {
1426        unsigned long pfn;
1427        int flags;
1428};
1429
1430struct memory_failure_cpu {
1431        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1432                      MEMORY_FAILURE_FIFO_SIZE);
1433        spinlock_t lock;
1434        struct work_struct work;
1435};
1436
1437static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1438
1439/**
1440 * memory_failure_queue - Schedule handling memory failure of a page.
1441 * @pfn: Page Number of the corrupted page
1442 * @flags: Flags for memory failure handling
1443 *
1444 * This function is called by the low level hardware error handler
1445 * when it detects hardware memory corruption of a page. It schedules
1446 * the recovering of error page, including dropping pages, killing
1447 * processes etc.
1448 *
1449 * The function is primarily of use for corruptions that
1450 * happen outside the current execution context (e.g. when
1451 * detected by a background scrubber)
1452 *
1453 * Can run in IRQ context.
1454 */
1455void memory_failure_queue(unsigned long pfn, int flags)
1456{
1457        struct memory_failure_cpu *mf_cpu;
1458        unsigned long proc_flags;
1459        struct memory_failure_entry entry = {
1460                .pfn =          pfn,
1461                .flags =        flags,
1462        };
1463
1464        mf_cpu = &get_cpu_var(memory_failure_cpu);
1465        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1466        if (kfifo_put(&mf_cpu->fifo, entry))
1467                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1468        else
1469                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1470                       pfn);
1471        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1472        put_cpu_var(memory_failure_cpu);
1473}
1474EXPORT_SYMBOL_GPL(memory_failure_queue);
1475
1476static void memory_failure_work_func(struct work_struct *work)
1477{
1478        struct memory_failure_cpu *mf_cpu;
1479        struct memory_failure_entry entry = { 0, };
1480        unsigned long proc_flags;
1481        int gotten;
1482
1483        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1484        for (;;) {
1485                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1486                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1487                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488                if (!gotten)
1489                        break;
1490                if (entry.flags & MF_SOFT_OFFLINE)
1491                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1492                else
1493                        memory_failure(entry.pfn, entry.flags);
1494        }
1495}
1496
1497static int __init memory_failure_init(void)
1498{
1499        struct memory_failure_cpu *mf_cpu;
1500        int cpu;
1501
1502        for_each_possible_cpu(cpu) {
1503                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1504                spin_lock_init(&mf_cpu->lock);
1505                INIT_KFIFO(mf_cpu->fifo);
1506                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1507        }
1508
1509        return 0;
1510}
1511core_initcall(memory_failure_init);
1512
1513#define unpoison_pr_info(fmt, pfn, rs)                  \
1514({                                                      \
1515        if (__ratelimit(rs))                            \
1516                pr_info(fmt, pfn);                      \
1517})
1518
1519/**
1520 * unpoison_memory - Unpoison a previously poisoned page
1521 * @pfn: Page number of the to be unpoisoned page
1522 *
1523 * Software-unpoison a page that has been poisoned by
1524 * memory_failure() earlier.
1525 *
1526 * This is only done on the software-level, so it only works
1527 * for linux injected failures, not real hardware failures
1528 *
1529 * Returns 0 for success, otherwise -errno.
1530 */
1531int unpoison_memory(unsigned long pfn)
1532{
1533        struct page *page;
1534        struct page *p;
1535        int freeit = 0;
1536        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1537                                        DEFAULT_RATELIMIT_BURST);
1538
1539        if (!pfn_valid(pfn))
1540                return -ENXIO;
1541
1542        p = pfn_to_page(pfn);
1543        page = compound_head(p);
1544
1545        if (!PageHWPoison(p)) {
1546                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1547                                 pfn, &unpoison_rs);
1548                return 0;
1549        }
1550
1551        if (page_count(page) > 1) {
1552                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1553                                 pfn, &unpoison_rs);
1554                return 0;
1555        }
1556
1557        if (page_mapped(page)) {
1558                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1559                                 pfn, &unpoison_rs);
1560                return 0;
1561        }
1562
1563        if (page_mapping(page)) {
1564                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1565                                 pfn, &unpoison_rs);
1566                return 0;
1567        }
1568
1569        /*
1570         * unpoison_memory() can encounter thp only when the thp is being
1571         * worked by memory_failure() and the page lock is not held yet.
1572         * In such case, we yield to memory_failure() and make unpoison fail.
1573         */
1574        if (!PageHuge(page) && PageTransHuge(page)) {
1575                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1576                                 pfn, &unpoison_rs);
1577                return 0;
1578        }
1579
1580        if (!get_hwpoison_page(p)) {
1581                if (TestClearPageHWPoison(p))
1582                        num_poisoned_pages_dec();
1583                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1584                                 pfn, &unpoison_rs);
1585                return 0;
1586        }
1587
1588        lock_page(page);
1589        /*
1590         * This test is racy because PG_hwpoison is set outside of page lock.
1591         * That's acceptable because that won't trigger kernel panic. Instead,
1592         * the PG_hwpoison page will be caught and isolated on the entrance to
1593         * the free buddy page pool.
1594         */
1595        if (TestClearPageHWPoison(page)) {
1596                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1597                                 pfn, &unpoison_rs);
1598                num_poisoned_pages_dec();
1599                freeit = 1;
1600        }
1601        unlock_page(page);
1602
1603        put_hwpoison_page(page);
1604        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1605                put_hwpoison_page(page);
1606
1607        return 0;
1608}
1609EXPORT_SYMBOL(unpoison_memory);
1610
1611static struct page *new_page(struct page *p, unsigned long private)
1612{
1613        int nid = page_to_nid(p);
1614
1615        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1616}
1617
1618/*
1619 * Safely get reference count of an arbitrary page.
1620 * Returns 0 for a free page, -EIO for a zero refcount page
1621 * that is not free, and 1 for any other page type.
1622 * For 1 the page is returned with increased page count, otherwise not.
1623 */
1624static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1625{
1626        int ret;
1627
1628        if (flags & MF_COUNT_INCREASED)
1629                return 1;
1630
1631        /*
1632         * When the target page is a free hugepage, just remove it
1633         * from free hugepage list.
1634         */
1635        if (!get_hwpoison_page(p)) {
1636                if (PageHuge(p)) {
1637                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1638                        ret = 0;
1639                } else if (is_free_buddy_page(p)) {
1640                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1641                        ret = 0;
1642                } else {
1643                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1644                                __func__, pfn, p->flags);
1645                        ret = -EIO;
1646                }
1647        } else {
1648                /* Not a free page */
1649                ret = 1;
1650        }
1651        return ret;
1652}
1653
1654static int get_any_page(struct page *page, unsigned long pfn, int flags)
1655{
1656        int ret = __get_any_page(page, pfn, flags);
1657
1658        if (ret == 1 && !PageHuge(page) &&
1659            !PageLRU(page) && !__PageMovable(page)) {
1660                /*
1661                 * Try to free it.
1662                 */
1663                put_hwpoison_page(page);
1664                shake_page(page, 1);
1665
1666                /*
1667                 * Did it turn free?
1668                 */
1669                ret = __get_any_page(page, pfn, 0);
1670                if (ret == 1 && !PageLRU(page)) {
1671                        /* Drop page reference which is from __get_any_page() */
1672                        put_hwpoison_page(page);
1673                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1674                                pfn, page->flags, &page->flags);
1675                        return -EIO;
1676                }
1677        }
1678        return ret;
1679}
1680
1681static int soft_offline_huge_page(struct page *page, int flags)
1682{
1683        int ret;
1684        unsigned long pfn = page_to_pfn(page);
1685        struct page *hpage = compound_head(page);
1686        LIST_HEAD(pagelist);
1687
1688        /*
1689         * This double-check of PageHWPoison is to avoid the race with
1690         * memory_failure(). See also comment in __soft_offline_page().
1691         */
1692        lock_page(hpage);
1693        if (PageHWPoison(hpage)) {
1694                unlock_page(hpage);
1695                put_hwpoison_page(hpage);
1696                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1697                return -EBUSY;
1698        }
1699        unlock_page(hpage);
1700
1701        ret = isolate_huge_page(hpage, &pagelist);
1702        /*
1703         * get_any_page() and isolate_huge_page() takes a refcount each,
1704         * so need to drop one here.
1705         */
1706        put_hwpoison_page(hpage);
1707        if (!ret) {
1708                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1709                return -EBUSY;
1710        }
1711
1712        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1713                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1714        if (ret) {
1715                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1716                        pfn, ret, page->flags, &page->flags);
1717                if (!list_empty(&pagelist))
1718                        putback_movable_pages(&pagelist);
1719                if (ret > 0)
1720                        ret = -EIO;
1721        } else {
1722                /*
1723                 * We set PG_hwpoison only when the migration source hugepage
1724                 * was successfully dissolved, because otherwise hwpoisoned
1725                 * hugepage remains on free hugepage list, then userspace will
1726                 * find it as SIGBUS by allocation failure. That's not expected
1727                 * in soft-offlining.
1728                 */
1729                ret = dissolve_free_huge_page(page);
1730                if (!ret) {
1731                        if (set_hwpoison_free_buddy_page(page))
1732                                num_poisoned_pages_inc();
1733                        else
1734                                ret = -EBUSY;
1735                }
1736        }
1737        return ret;
1738}
1739
1740static int __soft_offline_page(struct page *page, int flags)
1741{
1742        int ret;
1743        unsigned long pfn = page_to_pfn(page);
1744
1745        /*
1746         * Check PageHWPoison again inside page lock because PageHWPoison
1747         * is set by memory_failure() outside page lock. Note that
1748         * memory_failure() also double-checks PageHWPoison inside page lock,
1749         * so there's no race between soft_offline_page() and memory_failure().
1750         */
1751        lock_page(page);
1752        wait_on_page_writeback(page);
1753        if (PageHWPoison(page)) {
1754                unlock_page(page);
1755                put_hwpoison_page(page);
1756                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1757                return -EBUSY;
1758        }
1759        /*
1760         * Try to invalidate first. This should work for
1761         * non dirty unmapped page cache pages.
1762         */
1763        ret = invalidate_inode_page(page);
1764        unlock_page(page);
1765        /*
1766         * RED-PEN would be better to keep it isolated here, but we
1767         * would need to fix isolation locking first.
1768         */
1769        if (ret == 1) {
1770                put_hwpoison_page(page);
1771                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1772                SetPageHWPoison(page);
1773                num_poisoned_pages_inc();
1774                return 0;
1775        }
1776
1777        /*
1778         * Simple invalidation didn't work.
1779         * Try to migrate to a new page instead. migrate.c
1780         * handles a large number of cases for us.
1781         */
1782        if (PageLRU(page))
1783                ret = isolate_lru_page(page);
1784        else
1785                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1786        /*
1787         * Drop page reference which is came from get_any_page()
1788         * successful isolate_lru_page() already took another one.
1789         */
1790        put_hwpoison_page(page);
1791        if (!ret) {
1792                LIST_HEAD(pagelist);
1793                /*
1794                 * After isolated lru page, the PageLRU will be cleared,
1795                 * so use !__PageMovable instead for LRU page's mapping
1796                 * cannot have PAGE_MAPPING_MOVABLE.
1797                 */
1798                if (!__PageMovable(page))
1799                        inc_node_page_state(page, NR_ISOLATED_ANON +
1800                                                page_is_file_cache(page));
1801                list_add(&page->lru, &pagelist);
1802                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1803                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1804                if (ret) {
1805                        if (!list_empty(&pagelist))
1806                                putback_movable_pages(&pagelist);
1807
1808                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1809                                pfn, ret, page->flags, &page->flags);
1810                        if (ret > 0)
1811                                ret = -EIO;
1812                }
1813        } else {
1814                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1815                        pfn, ret, page_count(page), page->flags, &page->flags);
1816        }
1817        return ret;
1818}
1819
1820static int soft_offline_in_use_page(struct page *page, int flags)
1821{
1822        int ret;
1823        int mt;
1824        struct page *hpage = compound_head(page);
1825
1826        if (!PageHuge(page) && PageTransHuge(hpage)) {
1827                lock_page(page);
1828                if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1829                        unlock_page(page);
1830                        if (!PageAnon(page))
1831                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1832                        else
1833                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1834                        put_hwpoison_page(page);
1835                        return -EBUSY;
1836                }
1837                unlock_page(page);
1838        }
1839
1840        /*
1841         * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1842         * to free list immediately (not via pcplist) when released after
1843         * successful page migration. Otherwise we can't guarantee that the
1844         * page is really free after put_page() returns, so
1845         * set_hwpoison_free_buddy_page() highly likely fails.
1846         */
1847        mt = get_pageblock_migratetype(page);
1848        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1849        if (PageHuge(page))
1850                ret = soft_offline_huge_page(page, flags);
1851        else
1852                ret = __soft_offline_page(page, flags);
1853        set_pageblock_migratetype(page, mt);
1854        return ret;
1855}
1856
1857static int soft_offline_free_page(struct page *page)
1858{
1859        int rc = dissolve_free_huge_page(page);
1860
1861        if (!rc) {
1862                if (set_hwpoison_free_buddy_page(page))
1863                        num_poisoned_pages_inc();
1864                else
1865                        rc = -EBUSY;
1866        }
1867        return rc;
1868}
1869
1870/**
1871 * soft_offline_page - Soft offline a page.
1872 * @page: page to offline
1873 * @flags: flags. Same as memory_failure().
1874 *
1875 * Returns 0 on success, otherwise negated errno.
1876 *
1877 * Soft offline a page, by migration or invalidation,
1878 * without killing anything. This is for the case when
1879 * a page is not corrupted yet (so it's still valid to access),
1880 * but has had a number of corrected errors and is better taken
1881 * out.
1882 *
1883 * The actual policy on when to do that is maintained by
1884 * user space.
1885 *
1886 * This should never impact any application or cause data loss,
1887 * however it might take some time.
1888 *
1889 * This is not a 100% solution for all memory, but tries to be
1890 * ``good enough'' for the majority of memory.
1891 */
1892int soft_offline_page(struct page *page, int flags)
1893{
1894        int ret;
1895        unsigned long pfn = page_to_pfn(page);
1896
1897        if (is_zone_device_page(page)) {
1898                pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1899                                pfn);
1900                if (flags & MF_COUNT_INCREASED)
1901                        put_page(page);
1902                return -EIO;
1903        }
1904
1905        if (PageHWPoison(page)) {
1906                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1907                if (flags & MF_COUNT_INCREASED)
1908                        put_hwpoison_page(page);
1909                return -EBUSY;
1910        }
1911
1912        get_online_mems();
1913        ret = get_any_page(page, pfn, flags);
1914        put_online_mems();
1915
1916        if (ret > 0)
1917                ret = soft_offline_in_use_page(page, flags);
1918        else if (ret == 0)
1919                ret = soft_offline_free_page(page);
1920
1921        return ret;
1922}
1923