linux/mm/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *              Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *              (Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116                                        1;
 117#else
 118                                        2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123        randomize_va_space = 0;
 124        return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139        return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148        int i;
 149
 150        for (i = 0; i < NR_MM_COUNTERS; i++) {
 151                if (current->rss_stat.count[i]) {
 152                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 153                        current->rss_stat.count[i] = 0;
 154                }
 155        }
 156        current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161        struct task_struct *task = current;
 162
 163        if (likely(task->mm == mm))
 164                task->rss_stat.count[member] += val;
 165        else
 166                add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH  (64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175        if (unlikely(task != current))
 176                return;
 177        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178                sync_mm_rss(task->mm);
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196                           unsigned long addr)
 197{
 198        pgtable_t token = pmd_pgtable(*pmd);
 199        pmd_clear(pmd);
 200        pte_free_tlb(tlb, token, addr);
 201        mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205                                unsigned long addr, unsigned long end,
 206                                unsigned long floor, unsigned long ceiling)
 207{
 208        pmd_t *pmd;
 209        unsigned long next;
 210        unsigned long start;
 211
 212        start = addr;
 213        pmd = pmd_offset(pud, addr);
 214        do {
 215                next = pmd_addr_end(addr, end);
 216                if (pmd_none_or_clear_bad(pmd))
 217                        continue;
 218                free_pte_range(tlb, pmd, addr);
 219        } while (pmd++, addr = next, addr != end);
 220
 221        start &= PUD_MASK;
 222        if (start < floor)
 223                return;
 224        if (ceiling) {
 225                ceiling &= PUD_MASK;
 226                if (!ceiling)
 227                        return;
 228        }
 229        if (end - 1 > ceiling - 1)
 230                return;
 231
 232        pmd = pmd_offset(pud, start);
 233        pud_clear(pud);
 234        pmd_free_tlb(tlb, pmd, start);
 235        mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239                                unsigned long addr, unsigned long end,
 240                                unsigned long floor, unsigned long ceiling)
 241{
 242        pud_t *pud;
 243        unsigned long next;
 244        unsigned long start;
 245
 246        start = addr;
 247        pud = pud_offset(p4d, addr);
 248        do {
 249                next = pud_addr_end(addr, end);
 250                if (pud_none_or_clear_bad(pud))
 251                        continue;
 252                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253        } while (pud++, addr = next, addr != end);
 254
 255        start &= P4D_MASK;
 256        if (start < floor)
 257                return;
 258        if (ceiling) {
 259                ceiling &= P4D_MASK;
 260                if (!ceiling)
 261                        return;
 262        }
 263        if (end - 1 > ceiling - 1)
 264                return;
 265
 266        pud = pud_offset(p4d, start);
 267        p4d_clear(p4d);
 268        pud_free_tlb(tlb, pud, start);
 269        mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273                                unsigned long addr, unsigned long end,
 274                                unsigned long floor, unsigned long ceiling)
 275{
 276        p4d_t *p4d;
 277        unsigned long next;
 278        unsigned long start;
 279
 280        start = addr;
 281        p4d = p4d_offset(pgd, addr);
 282        do {
 283                next = p4d_addr_end(addr, end);
 284                if (p4d_none_or_clear_bad(p4d))
 285                        continue;
 286                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287        } while (p4d++, addr = next, addr != end);
 288
 289        start &= PGDIR_MASK;
 290        if (start < floor)
 291                return;
 292        if (ceiling) {
 293                ceiling &= PGDIR_MASK;
 294                if (!ceiling)
 295                        return;
 296        }
 297        if (end - 1 > ceiling - 1)
 298                return;
 299
 300        p4d = p4d_offset(pgd, start);
 301        pgd_clear(pgd);
 302        p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309                        unsigned long addr, unsigned long end,
 310                        unsigned long floor, unsigned long ceiling)
 311{
 312        pgd_t *pgd;
 313        unsigned long next;
 314
 315        /*
 316         * The next few lines have given us lots of grief...
 317         *
 318         * Why are we testing PMD* at this top level?  Because often
 319         * there will be no work to do at all, and we'd prefer not to
 320         * go all the way down to the bottom just to discover that.
 321         *
 322         * Why all these "- 1"s?  Because 0 represents both the bottom
 323         * of the address space and the top of it (using -1 for the
 324         * top wouldn't help much: the masks would do the wrong thing).
 325         * The rule is that addr 0 and floor 0 refer to the bottom of
 326         * the address space, but end 0 and ceiling 0 refer to the top
 327         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328         * that end 0 case should be mythical).
 329         *
 330         * Wherever addr is brought up or ceiling brought down, we must
 331         * be careful to reject "the opposite 0" before it confuses the
 332         * subsequent tests.  But what about where end is brought down
 333         * by PMD_SIZE below? no, end can't go down to 0 there.
 334         *
 335         * Whereas we round start (addr) and ceiling down, by different
 336         * masks at different levels, in order to test whether a table
 337         * now has no other vmas using it, so can be freed, we don't
 338         * bother to round floor or end up - the tests don't need that.
 339         */
 340
 341        addr &= PMD_MASK;
 342        if (addr < floor) {
 343                addr += PMD_SIZE;
 344                if (!addr)
 345                        return;
 346        }
 347        if (ceiling) {
 348                ceiling &= PMD_MASK;
 349                if (!ceiling)
 350                        return;
 351        }
 352        if (end - 1 > ceiling - 1)
 353                end -= PMD_SIZE;
 354        if (addr > end - 1)
 355                return;
 356        /*
 357         * We add page table cache pages with PAGE_SIZE,
 358         * (see pte_free_tlb()), flush the tlb if we need
 359         */
 360        tlb_change_page_size(tlb, PAGE_SIZE);
 361        pgd = pgd_offset(tlb->mm, addr);
 362        do {
 363                next = pgd_addr_end(addr, end);
 364                if (pgd_none_or_clear_bad(pgd))
 365                        continue;
 366                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367        } while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371                unsigned long floor, unsigned long ceiling)
 372{
 373        while (vma) {
 374                struct vm_area_struct *next = vma->vm_next;
 375                unsigned long addr = vma->vm_start;
 376
 377                /*
 378                 * Hide vma from rmap and truncate_pagecache before freeing
 379                 * pgtables
 380                 */
 381                unlink_anon_vmas(vma);
 382                unlink_file_vma(vma);
 383
 384                if (is_vm_hugetlb_page(vma)) {
 385                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386                                floor, next ? next->vm_start : ceiling);
 387                } else {
 388                        /*
 389                         * Optimization: gather nearby vmas into one call down
 390                         */
 391                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392                               && !is_vm_hugetlb_page(next)) {
 393                                vma = next;
 394                                next = vma->vm_next;
 395                                unlink_anon_vmas(vma);
 396                                unlink_file_vma(vma);
 397                        }
 398                        free_pgd_range(tlb, addr, vma->vm_end,
 399                                floor, next ? next->vm_start : ceiling);
 400                }
 401                vma = next;
 402        }
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 406{
 407        spinlock_t *ptl;
 408        pgtable_t new = pte_alloc_one(mm);
 409        if (!new)
 410                return -ENOMEM;
 411
 412        /*
 413         * Ensure all pte setup (eg. pte page lock and page clearing) are
 414         * visible before the pte is made visible to other CPUs by being
 415         * put into page tables.
 416         *
 417         * The other side of the story is the pointer chasing in the page
 418         * table walking code (when walking the page table without locking;
 419         * ie. most of the time). Fortunately, these data accesses consist
 420         * of a chain of data-dependent loads, meaning most CPUs (alpha
 421         * being the notable exception) will already guarantee loads are
 422         * seen in-order. See the alpha page table accessors for the
 423         * smp_read_barrier_depends() barriers in page table walking code.
 424         */
 425        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427        ptl = pmd_lock(mm, pmd);
 428        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 429                mm_inc_nr_ptes(mm);
 430                pmd_populate(mm, pmd, new);
 431                new = NULL;
 432        }
 433        spin_unlock(ptl);
 434        if (new)
 435                pte_free(mm, new);
 436        return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441        pte_t *new = pte_alloc_one_kernel(&init_mm);
 442        if (!new)
 443                return -ENOMEM;
 444
 445        smp_wmb(); /* See comment in __pte_alloc */
 446
 447        spin_lock(&init_mm.page_table_lock);
 448        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 449                pmd_populate_kernel(&init_mm, pmd, new);
 450                new = NULL;
 451        }
 452        spin_unlock(&init_mm.page_table_lock);
 453        if (new)
 454                pte_free_kernel(&init_mm, new);
 455        return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465        int i;
 466
 467        if (current->mm == mm)
 468                sync_mm_rss(mm);
 469        for (i = 0; i < NR_MM_COUNTERS; i++)
 470                if (rss[i])
 471                        add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482                          pte_t pte, struct page *page)
 483{
 484        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485        p4d_t *p4d = p4d_offset(pgd, addr);
 486        pud_t *pud = pud_offset(p4d, addr);
 487        pmd_t *pmd = pmd_offset(pud, addr);
 488        struct address_space *mapping;
 489        pgoff_t index;
 490        static unsigned long resume;
 491        static unsigned long nr_shown;
 492        static unsigned long nr_unshown;
 493
 494        /*
 495         * Allow a burst of 60 reports, then keep quiet for that minute;
 496         * or allow a steady drip of one report per second.
 497         */
 498        if (nr_shown == 60) {
 499                if (time_before(jiffies, resume)) {
 500                        nr_unshown++;
 501                        return;
 502                }
 503                if (nr_unshown) {
 504                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505                                 nr_unshown);
 506                        nr_unshown = 0;
 507                }
 508                nr_shown = 0;
 509        }
 510        if (nr_shown++ == 0)
 511                resume = jiffies + 60 * HZ;
 512
 513        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514        index = linear_page_index(vma, addr);
 515
 516        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517                 current->comm,
 518                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 519        if (page)
 520                dump_page(page, "bad pte");
 521        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 522                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523        pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524                 vma->vm_file,
 525                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527                 mapping ? mapping->a_ops->readpage : NULL);
 528        dump_stack();
 529        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 574struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575                             pte_t pte, bool with_public_device)
 576{
 577        unsigned long pfn = pte_pfn(pte);
 578
 579        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580                if (likely(!pte_special(pte)))
 581                        goto check_pfn;
 582                if (vma->vm_ops && vma->vm_ops->find_special_page)
 583                        return vma->vm_ops->find_special_page(vma, addr);
 584                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585                        return NULL;
 586                if (is_zero_pfn(pfn))
 587                        return NULL;
 588
 589                /*
 590                 * Device public pages are special pages (they are ZONE_DEVICE
 591                 * pages but different from persistent memory). They behave
 592                 * allmost like normal pages. The difference is that they are
 593                 * not on the lru and thus should never be involve with any-
 594                 * thing that involve lru manipulation (mlock, numa balancing,
 595                 * ...).
 596                 *
 597                 * This is why we still want to return NULL for such page from
 598                 * vm_normal_page() so that we do not have to special case all
 599                 * call site of vm_normal_page().
 600                 */
 601                if (likely(pfn <= highest_memmap_pfn)) {
 602                        struct page *page = pfn_to_page(pfn);
 603
 604                        if (is_device_public_page(page)) {
 605                                if (with_public_device)
 606                                        return page;
 607                                return NULL;
 608                        }
 609                }
 610
 611                if (pte_devmap(pte))
 612                        return NULL;
 613
 614                print_bad_pte(vma, addr, pte, NULL);
 615                return NULL;
 616        }
 617
 618        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 619
 620        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 621                if (vma->vm_flags & VM_MIXEDMAP) {
 622                        if (!pfn_valid(pfn))
 623                                return NULL;
 624                        goto out;
 625                } else {
 626                        unsigned long off;
 627                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 628                        if (pfn == vma->vm_pgoff + off)
 629                                return NULL;
 630                        if (!is_cow_mapping(vma->vm_flags))
 631                                return NULL;
 632                }
 633        }
 634
 635        if (is_zero_pfn(pfn))
 636                return NULL;
 637
 638check_pfn:
 639        if (unlikely(pfn > highest_memmap_pfn)) {
 640                print_bad_pte(vma, addr, pte, NULL);
 641                return NULL;
 642        }
 643
 644        /*
 645         * NOTE! We still have PageReserved() pages in the page tables.
 646         * eg. VDSO mappings can cause them to exist.
 647         */
 648out:
 649        return pfn_to_page(pfn);
 650}
 651
 652#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 653struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 654                                pmd_t pmd)
 655{
 656        unsigned long pfn = pmd_pfn(pmd);
 657
 658        /*
 659         * There is no pmd_special() but there may be special pmds, e.g.
 660         * in a direct-access (dax) mapping, so let's just replicate the
 661         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 662         */
 663        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 664                if (vma->vm_flags & VM_MIXEDMAP) {
 665                        if (!pfn_valid(pfn))
 666                                return NULL;
 667                        goto out;
 668                } else {
 669                        unsigned long off;
 670                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 671                        if (pfn == vma->vm_pgoff + off)
 672                                return NULL;
 673                        if (!is_cow_mapping(vma->vm_flags))
 674                                return NULL;
 675                }
 676        }
 677
 678        if (pmd_devmap(pmd))
 679                return NULL;
 680        if (is_zero_pfn(pfn))
 681                return NULL;
 682        if (unlikely(pfn > highest_memmap_pfn))
 683                return NULL;
 684
 685        /*
 686         * NOTE! We still have PageReserved() pages in the page tables.
 687         * eg. VDSO mappings can cause them to exist.
 688         */
 689out:
 690        return pfn_to_page(pfn);
 691}
 692#endif
 693
 694/*
 695 * copy one vm_area from one task to the other. Assumes the page tables
 696 * already present in the new task to be cleared in the whole range
 697 * covered by this vma.
 698 */
 699
 700static inline unsigned long
 701copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 702                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 703                unsigned long addr, int *rss)
 704{
 705        unsigned long vm_flags = vma->vm_flags;
 706        pte_t pte = *src_pte;
 707        struct page *page;
 708
 709        /* pte contains position in swap or file, so copy. */
 710        if (unlikely(!pte_present(pte))) {
 711                swp_entry_t entry = pte_to_swp_entry(pte);
 712
 713                if (likely(!non_swap_entry(entry))) {
 714                        if (swap_duplicate(entry) < 0)
 715                                return entry.val;
 716
 717                        /* make sure dst_mm is on swapoff's mmlist. */
 718                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 719                                spin_lock(&mmlist_lock);
 720                                if (list_empty(&dst_mm->mmlist))
 721                                        list_add(&dst_mm->mmlist,
 722                                                        &src_mm->mmlist);
 723                                spin_unlock(&mmlist_lock);
 724                        }
 725                        rss[MM_SWAPENTS]++;
 726                } else if (is_migration_entry(entry)) {
 727                        page = migration_entry_to_page(entry);
 728
 729                        rss[mm_counter(page)]++;
 730
 731                        if (is_write_migration_entry(entry) &&
 732                                        is_cow_mapping(vm_flags)) {
 733                                /*
 734                                 * COW mappings require pages in both
 735                                 * parent and child to be set to read.
 736                                 */
 737                                make_migration_entry_read(&entry);
 738                                pte = swp_entry_to_pte(entry);
 739                                if (pte_swp_soft_dirty(*src_pte))
 740                                        pte = pte_swp_mksoft_dirty(pte);
 741                                set_pte_at(src_mm, addr, src_pte, pte);
 742                        }
 743                } else if (is_device_private_entry(entry)) {
 744                        page = device_private_entry_to_page(entry);
 745
 746                        /*
 747                         * Update rss count even for unaddressable pages, as
 748                         * they should treated just like normal pages in this
 749                         * respect.
 750                         *
 751                         * We will likely want to have some new rss counters
 752                         * for unaddressable pages, at some point. But for now
 753                         * keep things as they are.
 754                         */
 755                        get_page(page);
 756                        rss[mm_counter(page)]++;
 757                        page_dup_rmap(page, false);
 758
 759                        /*
 760                         * We do not preserve soft-dirty information, because so
 761                         * far, checkpoint/restore is the only feature that
 762                         * requires that. And checkpoint/restore does not work
 763                         * when a device driver is involved (you cannot easily
 764                         * save and restore device driver state).
 765                         */
 766                        if (is_write_device_private_entry(entry) &&
 767                            is_cow_mapping(vm_flags)) {
 768                                make_device_private_entry_read(&entry);
 769                                pte = swp_entry_to_pte(entry);
 770                                set_pte_at(src_mm, addr, src_pte, pte);
 771                        }
 772                }
 773                goto out_set_pte;
 774        }
 775
 776        /*
 777         * If it's a COW mapping, write protect it both
 778         * in the parent and the child
 779         */
 780        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 781                ptep_set_wrprotect(src_mm, addr, src_pte);
 782                pte = pte_wrprotect(pte);
 783        }
 784
 785        /*
 786         * If it's a shared mapping, mark it clean in
 787         * the child
 788         */
 789        if (vm_flags & VM_SHARED)
 790                pte = pte_mkclean(pte);
 791        pte = pte_mkold(pte);
 792
 793        page = vm_normal_page(vma, addr, pte);
 794        if (page) {
 795                get_page(page);
 796                page_dup_rmap(page, false);
 797                rss[mm_counter(page)]++;
 798        } else if (pte_devmap(pte)) {
 799                page = pte_page(pte);
 800
 801                /*
 802                 * Cache coherent device memory behave like regular page and
 803                 * not like persistent memory page. For more informations see
 804                 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
 805                 */
 806                if (is_device_public_page(page)) {
 807                        get_page(page);
 808                        page_dup_rmap(page, false);
 809                        rss[mm_counter(page)]++;
 810                }
 811        }
 812
 813out_set_pte:
 814        set_pte_at(dst_mm, addr, dst_pte, pte);
 815        return 0;
 816}
 817
 818static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 819                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 820                   unsigned long addr, unsigned long end)
 821{
 822        pte_t *orig_src_pte, *orig_dst_pte;
 823        pte_t *src_pte, *dst_pte;
 824        spinlock_t *src_ptl, *dst_ptl;
 825        int progress = 0;
 826        int rss[NR_MM_COUNTERS];
 827        swp_entry_t entry = (swp_entry_t){0};
 828
 829again:
 830        init_rss_vec(rss);
 831
 832        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 833        if (!dst_pte)
 834                return -ENOMEM;
 835        src_pte = pte_offset_map(src_pmd, addr);
 836        src_ptl = pte_lockptr(src_mm, src_pmd);
 837        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 838        orig_src_pte = src_pte;
 839        orig_dst_pte = dst_pte;
 840        arch_enter_lazy_mmu_mode();
 841
 842        do {
 843                /*
 844                 * We are holding two locks at this point - either of them
 845                 * could generate latencies in another task on another CPU.
 846                 */
 847                if (progress >= 32) {
 848                        progress = 0;
 849                        if (need_resched() ||
 850                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 851                                break;
 852                }
 853                if (pte_none(*src_pte)) {
 854                        progress++;
 855                        continue;
 856                }
 857                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 858                                                        vma, addr, rss);
 859                if (entry.val)
 860                        break;
 861                progress += 8;
 862        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 863
 864        arch_leave_lazy_mmu_mode();
 865        spin_unlock(src_ptl);
 866        pte_unmap(orig_src_pte);
 867        add_mm_rss_vec(dst_mm, rss);
 868        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 869        cond_resched();
 870
 871        if (entry.val) {
 872                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 873                        return -ENOMEM;
 874                progress = 0;
 875        }
 876        if (addr != end)
 877                goto again;
 878        return 0;
 879}
 880
 881static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 883                unsigned long addr, unsigned long end)
 884{
 885        pmd_t *src_pmd, *dst_pmd;
 886        unsigned long next;
 887
 888        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 889        if (!dst_pmd)
 890                return -ENOMEM;
 891        src_pmd = pmd_offset(src_pud, addr);
 892        do {
 893                next = pmd_addr_end(addr, end);
 894                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 895                        || pmd_devmap(*src_pmd)) {
 896                        int err;
 897                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 898                        err = copy_huge_pmd(dst_mm, src_mm,
 899                                            dst_pmd, src_pmd, addr, vma);
 900                        if (err == -ENOMEM)
 901                                return -ENOMEM;
 902                        if (!err)
 903                                continue;
 904                        /* fall through */
 905                }
 906                if (pmd_none_or_clear_bad(src_pmd))
 907                        continue;
 908                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 909                                                vma, addr, next))
 910                        return -ENOMEM;
 911        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 912        return 0;
 913}
 914
 915static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 917                unsigned long addr, unsigned long end)
 918{
 919        pud_t *src_pud, *dst_pud;
 920        unsigned long next;
 921
 922        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 923        if (!dst_pud)
 924                return -ENOMEM;
 925        src_pud = pud_offset(src_p4d, addr);
 926        do {
 927                next = pud_addr_end(addr, end);
 928                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 929                        int err;
 930
 931                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 932                        err = copy_huge_pud(dst_mm, src_mm,
 933                                            dst_pud, src_pud, addr, vma);
 934                        if (err == -ENOMEM)
 935                                return -ENOMEM;
 936                        if (!err)
 937                                continue;
 938                        /* fall through */
 939                }
 940                if (pud_none_or_clear_bad(src_pud))
 941                        continue;
 942                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 943                                                vma, addr, next))
 944                        return -ENOMEM;
 945        } while (dst_pud++, src_pud++, addr = next, addr != end);
 946        return 0;
 947}
 948
 949static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 950                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 951                unsigned long addr, unsigned long end)
 952{
 953        p4d_t *src_p4d, *dst_p4d;
 954        unsigned long next;
 955
 956        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 957        if (!dst_p4d)
 958                return -ENOMEM;
 959        src_p4d = p4d_offset(src_pgd, addr);
 960        do {
 961                next = p4d_addr_end(addr, end);
 962                if (p4d_none_or_clear_bad(src_p4d))
 963                        continue;
 964                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 965                                                vma, addr, next))
 966                        return -ENOMEM;
 967        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
 968        return 0;
 969}
 970
 971int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 972                struct vm_area_struct *vma)
 973{
 974        pgd_t *src_pgd, *dst_pgd;
 975        unsigned long next;
 976        unsigned long addr = vma->vm_start;
 977        unsigned long end = vma->vm_end;
 978        struct mmu_notifier_range range;
 979        bool is_cow;
 980        int ret;
 981
 982        /*
 983         * Don't copy ptes where a page fault will fill them correctly.
 984         * Fork becomes much lighter when there are big shared or private
 985         * readonly mappings. The tradeoff is that copy_page_range is more
 986         * efficient than faulting.
 987         */
 988        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 989                        !vma->anon_vma)
 990                return 0;
 991
 992        if (is_vm_hugetlb_page(vma))
 993                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 994
 995        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 996                /*
 997                 * We do not free on error cases below as remove_vma
 998                 * gets called on error from higher level routine
 999                 */
1000                ret = track_pfn_copy(vma);
1001                if (ret)
1002                        return ret;
1003        }
1004
1005        /*
1006         * We need to invalidate the secondary MMU mappings only when
1007         * there could be a permission downgrade on the ptes of the
1008         * parent mm. And a permission downgrade will only happen if
1009         * is_cow_mapping() returns true.
1010         */
1011        is_cow = is_cow_mapping(vma->vm_flags);
1012
1013        if (is_cow) {
1014                mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015                                        0, vma, src_mm, addr, end);
1016                mmu_notifier_invalidate_range_start(&range);
1017        }
1018
1019        ret = 0;
1020        dst_pgd = pgd_offset(dst_mm, addr);
1021        src_pgd = pgd_offset(src_mm, addr);
1022        do {
1023                next = pgd_addr_end(addr, end);
1024                if (pgd_none_or_clear_bad(src_pgd))
1025                        continue;
1026                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027                                            vma, addr, next))) {
1028                        ret = -ENOMEM;
1029                        break;
1030                }
1031        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033        if (is_cow)
1034                mmu_notifier_invalidate_range_end(&range);
1035        return ret;
1036}
1037
1038static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039                                struct vm_area_struct *vma, pmd_t *pmd,
1040                                unsigned long addr, unsigned long end,
1041                                struct zap_details *details)
1042{
1043        struct mm_struct *mm = tlb->mm;
1044        int force_flush = 0;
1045        int rss[NR_MM_COUNTERS];
1046        spinlock_t *ptl;
1047        pte_t *start_pte;
1048        pte_t *pte;
1049        swp_entry_t entry;
1050
1051        tlb_change_page_size(tlb, PAGE_SIZE);
1052again:
1053        init_rss_vec(rss);
1054        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055        pte = start_pte;
1056        flush_tlb_batched_pending(mm);
1057        arch_enter_lazy_mmu_mode();
1058        do {
1059                pte_t ptent = *pte;
1060                if (pte_none(ptent))
1061                        continue;
1062
1063                if (pte_present(ptent)) {
1064                        struct page *page;
1065
1066                        page = _vm_normal_page(vma, addr, ptent, true);
1067                        if (unlikely(details) && page) {
1068                                /*
1069                                 * unmap_shared_mapping_pages() wants to
1070                                 * invalidate cache without truncating:
1071                                 * unmap shared but keep private pages.
1072                                 */
1073                                if (details->check_mapping &&
1074                                    details->check_mapping != page_rmapping(page))
1075                                        continue;
1076                        }
1077                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1078                                                        tlb->fullmm);
1079                        tlb_remove_tlb_entry(tlb, pte, addr);
1080                        if (unlikely(!page))
1081                                continue;
1082
1083                        if (!PageAnon(page)) {
1084                                if (pte_dirty(ptent)) {
1085                                        force_flush = 1;
1086                                        set_page_dirty(page);
1087                                }
1088                                if (pte_young(ptent) &&
1089                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1090                                        mark_page_accessed(page);
1091                        }
1092                        rss[mm_counter(page)]--;
1093                        page_remove_rmap(page, false);
1094                        if (unlikely(page_mapcount(page) < 0))
1095                                print_bad_pte(vma, addr, ptent, page);
1096                        if (unlikely(__tlb_remove_page(tlb, page))) {
1097                                force_flush = 1;
1098                                addr += PAGE_SIZE;
1099                                break;
1100                        }
1101                        continue;
1102                }
1103
1104                entry = pte_to_swp_entry(ptent);
1105                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106                        struct page *page = device_private_entry_to_page(entry);
1107
1108                        if (unlikely(details && details->check_mapping)) {
1109                                /*
1110                                 * unmap_shared_mapping_pages() wants to
1111                                 * invalidate cache without truncating:
1112                                 * unmap shared but keep private pages.
1113                                 */
1114                                if (details->check_mapping !=
1115                                    page_rmapping(page))
1116                                        continue;
1117                        }
1118
1119                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120                        rss[mm_counter(page)]--;
1121                        page_remove_rmap(page, false);
1122                        put_page(page);
1123                        continue;
1124                }
1125
1126                /* If details->check_mapping, we leave swap entries. */
1127                if (unlikely(details))
1128                        continue;
1129
1130                entry = pte_to_swp_entry(ptent);
1131                if (!non_swap_entry(entry))
1132                        rss[MM_SWAPENTS]--;
1133                else if (is_migration_entry(entry)) {
1134                        struct page *page;
1135
1136                        page = migration_entry_to_page(entry);
1137                        rss[mm_counter(page)]--;
1138                }
1139                if (unlikely(!free_swap_and_cache(entry)))
1140                        print_bad_pte(vma, addr, ptent, NULL);
1141                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142        } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144        add_mm_rss_vec(mm, rss);
1145        arch_leave_lazy_mmu_mode();
1146
1147        /* Do the actual TLB flush before dropping ptl */
1148        if (force_flush)
1149                tlb_flush_mmu_tlbonly(tlb);
1150        pte_unmap_unlock(start_pte, ptl);
1151
1152        /*
1153         * If we forced a TLB flush (either due to running out of
1154         * batch buffers or because we needed to flush dirty TLB
1155         * entries before releasing the ptl), free the batched
1156         * memory too. Restart if we didn't do everything.
1157         */
1158        if (force_flush) {
1159                force_flush = 0;
1160                tlb_flush_mmu(tlb);
1161                if (addr != end)
1162                        goto again;
1163        }
1164
1165        return addr;
1166}
1167
1168static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                struct vm_area_struct *vma, pud_t *pud,
1170                                unsigned long addr, unsigned long end,
1171                                struct zap_details *details)
1172{
1173        pmd_t *pmd;
1174        unsigned long next;
1175
1176        pmd = pmd_offset(pud, addr);
1177        do {
1178                next = pmd_addr_end(addr, end);
1179                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180                        if (next - addr != HPAGE_PMD_SIZE)
1181                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1182                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183                                goto next;
1184                        /* fall through */
1185                }
1186                /*
1187                 * Here there can be other concurrent MADV_DONTNEED or
1188                 * trans huge page faults running, and if the pmd is
1189                 * none or trans huge it can change under us. This is
1190                 * because MADV_DONTNEED holds the mmap_sem in read
1191                 * mode.
1192                 */
1193                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194                        goto next;
1195                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196next:
1197                cond_resched();
1198        } while (pmd++, addr = next, addr != end);
1199
1200        return addr;
1201}
1202
1203static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204                                struct vm_area_struct *vma, p4d_t *p4d,
1205                                unsigned long addr, unsigned long end,
1206                                struct zap_details *details)
1207{
1208        pud_t *pud;
1209        unsigned long next;
1210
1211        pud = pud_offset(p4d, addr);
1212        do {
1213                next = pud_addr_end(addr, end);
1214                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215                        if (next - addr != HPAGE_PUD_SIZE) {
1216                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217                                split_huge_pud(vma, pud, addr);
1218                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1219                                goto next;
1220                        /* fall through */
1221                }
1222                if (pud_none_or_clear_bad(pud))
1223                        continue;
1224                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225next:
1226                cond_resched();
1227        } while (pud++, addr = next, addr != end);
1228
1229        return addr;
1230}
1231
1232static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233                                struct vm_area_struct *vma, pgd_t *pgd,
1234                                unsigned long addr, unsigned long end,
1235                                struct zap_details *details)
1236{
1237        p4d_t *p4d;
1238        unsigned long next;
1239
1240        p4d = p4d_offset(pgd, addr);
1241        do {
1242                next = p4d_addr_end(addr, end);
1243                if (p4d_none_or_clear_bad(p4d))
1244                        continue;
1245                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246        } while (p4d++, addr = next, addr != end);
1247
1248        return addr;
1249}
1250
1251void unmap_page_range(struct mmu_gather *tlb,
1252                             struct vm_area_struct *vma,
1253                             unsigned long addr, unsigned long end,
1254                             struct zap_details *details)
1255{
1256        pgd_t *pgd;
1257        unsigned long next;
1258
1259        BUG_ON(addr >= end);
1260        tlb_start_vma(tlb, vma);
1261        pgd = pgd_offset(vma->vm_mm, addr);
1262        do {
1263                next = pgd_addr_end(addr, end);
1264                if (pgd_none_or_clear_bad(pgd))
1265                        continue;
1266                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267        } while (pgd++, addr = next, addr != end);
1268        tlb_end_vma(tlb, vma);
1269}
1270
1271
1272static void unmap_single_vma(struct mmu_gather *tlb,
1273                struct vm_area_struct *vma, unsigned long start_addr,
1274                unsigned long end_addr,
1275                struct zap_details *details)
1276{
1277        unsigned long start = max(vma->vm_start, start_addr);
1278        unsigned long end;
1279
1280        if (start >= vma->vm_end)
1281                return;
1282        end = min(vma->vm_end, end_addr);
1283        if (end <= vma->vm_start)
1284                return;
1285
1286        if (vma->vm_file)
1287                uprobe_munmap(vma, start, end);
1288
1289        if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                untrack_pfn(vma, 0, 0);
1291
1292        if (start != end) {
1293                if (unlikely(is_vm_hugetlb_page(vma))) {
1294                        /*
1295                         * It is undesirable to test vma->vm_file as it
1296                         * should be non-null for valid hugetlb area.
1297                         * However, vm_file will be NULL in the error
1298                         * cleanup path of mmap_region. When
1299                         * hugetlbfs ->mmap method fails,
1300                         * mmap_region() nullifies vma->vm_file
1301                         * before calling this function to clean up.
1302                         * Since no pte has actually been setup, it is
1303                         * safe to do nothing in this case.
1304                         */
1305                        if (vma->vm_file) {
1306                                i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                        }
1310                } else
1311                        unmap_page_range(tlb, vma, start, end, details);
1312        }
1313}
1314
1315/**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns.  So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333void unmap_vmas(struct mmu_gather *tlb,
1334                struct vm_area_struct *vma, unsigned long start_addr,
1335                unsigned long end_addr)
1336{
1337        struct mmu_notifier_range range;
1338
1339        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340                                start_addr, end_addr);
1341        mmu_notifier_invalidate_range_start(&range);
1342        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344        mmu_notifier_invalidate_range_end(&range);
1345}
1346
1347/**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1352 *
1353 * Caller must protect the VMA list
1354 */
1355void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356                unsigned long size)
1357{
1358        struct mmu_notifier_range range;
1359        struct mmu_gather tlb;
1360
1361        lru_add_drain();
1362        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363                                start, start + size);
1364        tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365        update_hiwater_rss(vma->vm_mm);
1366        mmu_notifier_invalidate_range_start(&range);
1367        for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368                unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369        mmu_notifier_invalidate_range_end(&range);
1370        tlb_finish_mmu(&tlb, start, range.end);
1371}
1372
1373/**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1379 *
1380 * The range must fit into one VMA.
1381 */
1382static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383                unsigned long size, struct zap_details *details)
1384{
1385        struct mmu_notifier_range range;
1386        struct mmu_gather tlb;
1387
1388        lru_add_drain();
1389        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390                                address, address + size);
1391        tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392        update_hiwater_rss(vma->vm_mm);
1393        mmu_notifier_invalidate_range_start(&range);
1394        unmap_single_vma(&tlb, vma, address, range.end, details);
1395        mmu_notifier_invalidate_range_end(&range);
1396        tlb_finish_mmu(&tlb, address, range.end);
1397}
1398
1399/**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
1409 */
1410void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411                unsigned long size)
1412{
1413        if (address < vma->vm_start || address + size > vma->vm_end ||
1414                        !(vma->vm_flags & VM_PFNMAP))
1415                return;
1416
1417        zap_page_range_single(vma, address, size, NULL);
1418}
1419EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422                        spinlock_t **ptl)
1423{
1424        pgd_t *pgd;
1425        p4d_t *p4d;
1426        pud_t *pud;
1427        pmd_t *pmd;
1428
1429        pgd = pgd_offset(mm, addr);
1430        p4d = p4d_alloc(mm, pgd, addr);
1431        if (!p4d)
1432                return NULL;
1433        pud = pud_alloc(mm, p4d, addr);
1434        if (!pud)
1435                return NULL;
1436        pmd = pmd_alloc(mm, pud, addr);
1437        if (!pmd)
1438                return NULL;
1439
1440        VM_BUG_ON(pmd_trans_huge(*pmd));
1441        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442}
1443
1444/*
1445 * This is the old fallback for page remapping.
1446 *
1447 * For historical reasons, it only allows reserved pages. Only
1448 * old drivers should use this, and they needed to mark their
1449 * pages reserved for the old functions anyway.
1450 */
1451static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452                        struct page *page, pgprot_t prot)
1453{
1454        struct mm_struct *mm = vma->vm_mm;
1455        int retval;
1456        pte_t *pte;
1457        spinlock_t *ptl;
1458
1459        retval = -EINVAL;
1460        if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461                goto out;
1462        retval = -ENOMEM;
1463        flush_dcache_page(page);
1464        pte = get_locked_pte(mm, addr, &ptl);
1465        if (!pte)
1466                goto out;
1467        retval = -EBUSY;
1468        if (!pte_none(*pte))
1469                goto out_unlock;
1470
1471        /* Ok, finally just insert the thing.. */
1472        get_page(page);
1473        inc_mm_counter_fast(mm, mm_counter_file(page));
1474        page_add_file_rmap(page, false);
1475        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477        retval = 0;
1478        pte_unmap_unlock(pte, ptl);
1479        return retval;
1480out_unlock:
1481        pte_unmap_unlock(pte, ptl);
1482out:
1483        return retval;
1484}
1485
1486/**
1487 * vm_insert_page - insert single page into user vma
1488 * @vma: user vma to map to
1489 * @addr: target user address of this page
1490 * @page: source kernel page
1491 *
1492 * This allows drivers to insert individual pages they've allocated
1493 * into a user vma.
1494 *
1495 * The page has to be a nice clean _individual_ kernel allocation.
1496 * If you allocate a compound page, you need to have marked it as
1497 * such (__GFP_COMP), or manually just split the page up yourself
1498 * (see split_page()).
1499 *
1500 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1501 * took an arbitrary page protection parameter. This doesn't allow
1502 * that. Your vma protection will have to be set up correctly, which
1503 * means that if you want a shared writable mapping, you'd better
1504 * ask for a shared writable mapping!
1505 *
1506 * The page does not need to be reserved.
1507 *
1508 * Usually this function is called from f_op->mmap() handler
1509 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1510 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1511 * function from other places, for example from page-fault handler.
1512 *
1513 * Return: %0 on success, negative error code otherwise.
1514 */
1515int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1516                        struct page *page)
1517{
1518        if (addr < vma->vm_start || addr >= vma->vm_end)
1519                return -EFAULT;
1520        if (!page_count(page))
1521                return -EINVAL;
1522        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1523                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1524                BUG_ON(vma->vm_flags & VM_PFNMAP);
1525                vma->vm_flags |= VM_MIXEDMAP;
1526        }
1527        return insert_page(vma, addr, page, vma->vm_page_prot);
1528}
1529EXPORT_SYMBOL(vm_insert_page);
1530
1531/*
1532 * __vm_map_pages - maps range of kernel pages into user vma
1533 * @vma: user vma to map to
1534 * @pages: pointer to array of source kernel pages
1535 * @num: number of pages in page array
1536 * @offset: user's requested vm_pgoff
1537 *
1538 * This allows drivers to map range of kernel pages into a user vma.
1539 *
1540 * Return: 0 on success and error code otherwise.
1541 */
1542static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1543                                unsigned long num, unsigned long offset)
1544{
1545        unsigned long count = vma_pages(vma);
1546        unsigned long uaddr = vma->vm_start;
1547        int ret, i;
1548
1549        /* Fail if the user requested offset is beyond the end of the object */
1550        if (offset > num)
1551                return -ENXIO;
1552
1553        /* Fail if the user requested size exceeds available object size */
1554        if (count > num - offset)
1555                return -ENXIO;
1556
1557        for (i = 0; i < count; i++) {
1558                ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1559                if (ret < 0)
1560                        return ret;
1561                uaddr += PAGE_SIZE;
1562        }
1563
1564        return 0;
1565}
1566
1567/**
1568 * vm_map_pages - maps range of kernel pages starts with non zero offset
1569 * @vma: user vma to map to
1570 * @pages: pointer to array of source kernel pages
1571 * @num: number of pages in page array
1572 *
1573 * Maps an object consisting of @num pages, catering for the user's
1574 * requested vm_pgoff
1575 *
1576 * If we fail to insert any page into the vma, the function will return
1577 * immediately leaving any previously inserted pages present.  Callers
1578 * from the mmap handler may immediately return the error as their caller
1579 * will destroy the vma, removing any successfully inserted pages. Other
1580 * callers should make their own arrangements for calling unmap_region().
1581 *
1582 * Context: Process context. Called by mmap handlers.
1583 * Return: 0 on success and error code otherwise.
1584 */
1585int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1586                                unsigned long num)
1587{
1588        return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1589}
1590EXPORT_SYMBOL(vm_map_pages);
1591
1592/**
1593 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1594 * @vma: user vma to map to
1595 * @pages: pointer to array of source kernel pages
1596 * @num: number of pages in page array
1597 *
1598 * Similar to vm_map_pages(), except that it explicitly sets the offset
1599 * to 0. This function is intended for the drivers that did not consider
1600 * vm_pgoff.
1601 *
1602 * Context: Process context. Called by mmap handlers.
1603 * Return: 0 on success and error code otherwise.
1604 */
1605int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1606                                unsigned long num)
1607{
1608        return __vm_map_pages(vma, pages, num, 0);
1609}
1610EXPORT_SYMBOL(vm_map_pages_zero);
1611
1612static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1614{
1615        struct mm_struct *mm = vma->vm_mm;
1616        pte_t *pte, entry;
1617        spinlock_t *ptl;
1618
1619        pte = get_locked_pte(mm, addr, &ptl);
1620        if (!pte)
1621                return VM_FAULT_OOM;
1622        if (!pte_none(*pte)) {
1623                if (mkwrite) {
1624                        /*
1625                         * For read faults on private mappings the PFN passed
1626                         * in may not match the PFN we have mapped if the
1627                         * mapped PFN is a writeable COW page.  In the mkwrite
1628                         * case we are creating a writable PTE for a shared
1629                         * mapping and we expect the PFNs to match. If they
1630                         * don't match, we are likely racing with block
1631                         * allocation and mapping invalidation so just skip the
1632                         * update.
1633                         */
1634                        if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1635                                WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1636                                goto out_unlock;
1637                        }
1638                        entry = pte_mkyoung(*pte);
1639                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1640                        if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1641                                update_mmu_cache(vma, addr, pte);
1642                }
1643                goto out_unlock;
1644        }
1645
1646        /* Ok, finally just insert the thing.. */
1647        if (pfn_t_devmap(pfn))
1648                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1649        else
1650                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1651
1652        if (mkwrite) {
1653                entry = pte_mkyoung(entry);
1654                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1655        }
1656
1657        set_pte_at(mm, addr, pte, entry);
1658        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1659
1660out_unlock:
1661        pte_unmap_unlock(pte, ptl);
1662        return VM_FAULT_NOPAGE;
1663}
1664
1665/**
1666 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1667 * @vma: user vma to map to
1668 * @addr: target user address of this page
1669 * @pfn: source kernel pfn
1670 * @pgprot: pgprot flags for the inserted page
1671 *
1672 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1673 * to override pgprot on a per-page basis.
1674 *
1675 * This only makes sense for IO mappings, and it makes no sense for
1676 * COW mappings.  In general, using multiple vmas is preferable;
1677 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1678 * impractical.
1679 *
1680 * Context: Process context.  May allocate using %GFP_KERNEL.
1681 * Return: vm_fault_t value.
1682 */
1683vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1684                        unsigned long pfn, pgprot_t pgprot)
1685{
1686        /*
1687         * Technically, architectures with pte_special can avoid all these
1688         * restrictions (same for remap_pfn_range).  However we would like
1689         * consistency in testing and feature parity among all, so we should
1690         * try to keep these invariants in place for everybody.
1691         */
1692        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1693        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1694                                                (VM_PFNMAP|VM_MIXEDMAP));
1695        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1696        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1697
1698        if (addr < vma->vm_start || addr >= vma->vm_end)
1699                return VM_FAULT_SIGBUS;
1700
1701        if (!pfn_modify_allowed(pfn, pgprot))
1702                return VM_FAULT_SIGBUS;
1703
1704        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1705
1706        return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1707                        false);
1708}
1709EXPORT_SYMBOL(vmf_insert_pfn_prot);
1710
1711/**
1712 * vmf_insert_pfn - insert single pfn into user vma
1713 * @vma: user vma to map to
1714 * @addr: target user address of this page
1715 * @pfn: source kernel pfn
1716 *
1717 * Similar to vm_insert_page, this allows drivers to insert individual pages
1718 * they've allocated into a user vma. Same comments apply.
1719 *
1720 * This function should only be called from a vm_ops->fault handler, and
1721 * in that case the handler should return the result of this function.
1722 *
1723 * vma cannot be a COW mapping.
1724 *
1725 * As this is called only for pages that do not currently exist, we
1726 * do not need to flush old virtual caches or the TLB.
1727 *
1728 * Context: Process context.  May allocate using %GFP_KERNEL.
1729 * Return: vm_fault_t value.
1730 */
1731vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1732                        unsigned long pfn)
1733{
1734        return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1735}
1736EXPORT_SYMBOL(vmf_insert_pfn);
1737
1738static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1739{
1740        /* these checks mirror the abort conditions in vm_normal_page */
1741        if (vma->vm_flags & VM_MIXEDMAP)
1742                return true;
1743        if (pfn_t_devmap(pfn))
1744                return true;
1745        if (pfn_t_special(pfn))
1746                return true;
1747        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1748                return true;
1749        return false;
1750}
1751
1752static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1753                unsigned long addr, pfn_t pfn, bool mkwrite)
1754{
1755        pgprot_t pgprot = vma->vm_page_prot;
1756        int err;
1757
1758        BUG_ON(!vm_mixed_ok(vma, pfn));
1759
1760        if (addr < vma->vm_start || addr >= vma->vm_end)
1761                return VM_FAULT_SIGBUS;
1762
1763        track_pfn_insert(vma, &pgprot, pfn);
1764
1765        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1766                return VM_FAULT_SIGBUS;
1767
1768        /*
1769         * If we don't have pte special, then we have to use the pfn_valid()
1770         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1771         * refcount the page if pfn_valid is true (hence insert_page rather
1772         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1773         * without pte special, it would there be refcounted as a normal page.
1774         */
1775        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1776            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1777                struct page *page;
1778
1779                /*
1780                 * At this point we are committed to insert_page()
1781                 * regardless of whether the caller specified flags that
1782                 * result in pfn_t_has_page() == false.
1783                 */
1784                page = pfn_to_page(pfn_t_to_pfn(pfn));
1785                err = insert_page(vma, addr, page, pgprot);
1786        } else {
1787                return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1788        }
1789
1790        if (err == -ENOMEM)
1791                return VM_FAULT_OOM;
1792        if (err < 0 && err != -EBUSY)
1793                return VM_FAULT_SIGBUS;
1794
1795        return VM_FAULT_NOPAGE;
1796}
1797
1798vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1799                pfn_t pfn)
1800{
1801        return __vm_insert_mixed(vma, addr, pfn, false);
1802}
1803EXPORT_SYMBOL(vmf_insert_mixed);
1804
1805/*
1806 *  If the insertion of PTE failed because someone else already added a
1807 *  different entry in the mean time, we treat that as success as we assume
1808 *  the same entry was actually inserted.
1809 */
1810vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1811                unsigned long addr, pfn_t pfn)
1812{
1813        return __vm_insert_mixed(vma, addr, pfn, true);
1814}
1815EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1816
1817/*
1818 * maps a range of physical memory into the requested pages. the old
1819 * mappings are removed. any references to nonexistent pages results
1820 * in null mappings (currently treated as "copy-on-access")
1821 */
1822static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823                        unsigned long addr, unsigned long end,
1824                        unsigned long pfn, pgprot_t prot)
1825{
1826        pte_t *pte;
1827        spinlock_t *ptl;
1828        int err = 0;
1829
1830        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1831        if (!pte)
1832                return -ENOMEM;
1833        arch_enter_lazy_mmu_mode();
1834        do {
1835                BUG_ON(!pte_none(*pte));
1836                if (!pfn_modify_allowed(pfn, prot)) {
1837                        err = -EACCES;
1838                        break;
1839                }
1840                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1841                pfn++;
1842        } while (pte++, addr += PAGE_SIZE, addr != end);
1843        arch_leave_lazy_mmu_mode();
1844        pte_unmap_unlock(pte - 1, ptl);
1845        return err;
1846}
1847
1848static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1849                        unsigned long addr, unsigned long end,
1850                        unsigned long pfn, pgprot_t prot)
1851{
1852        pmd_t *pmd;
1853        unsigned long next;
1854        int err;
1855
1856        pfn -= addr >> PAGE_SHIFT;
1857        pmd = pmd_alloc(mm, pud, addr);
1858        if (!pmd)
1859                return -ENOMEM;
1860        VM_BUG_ON(pmd_trans_huge(*pmd));
1861        do {
1862                next = pmd_addr_end(addr, end);
1863                err = remap_pte_range(mm, pmd, addr, next,
1864                                pfn + (addr >> PAGE_SHIFT), prot);
1865                if (err)
1866                        return err;
1867        } while (pmd++, addr = next, addr != end);
1868        return 0;
1869}
1870
1871static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1872                        unsigned long addr, unsigned long end,
1873                        unsigned long pfn, pgprot_t prot)
1874{
1875        pud_t *pud;
1876        unsigned long next;
1877        int err;
1878
1879        pfn -= addr >> PAGE_SHIFT;
1880        pud = pud_alloc(mm, p4d, addr);
1881        if (!pud)
1882                return -ENOMEM;
1883        do {
1884                next = pud_addr_end(addr, end);
1885                err = remap_pmd_range(mm, pud, addr, next,
1886                                pfn + (addr >> PAGE_SHIFT), prot);
1887                if (err)
1888                        return err;
1889        } while (pud++, addr = next, addr != end);
1890        return 0;
1891}
1892
1893static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1894                        unsigned long addr, unsigned long end,
1895                        unsigned long pfn, pgprot_t prot)
1896{
1897        p4d_t *p4d;
1898        unsigned long next;
1899        int err;
1900
1901        pfn -= addr >> PAGE_SHIFT;
1902        p4d = p4d_alloc(mm, pgd, addr);
1903        if (!p4d)
1904                return -ENOMEM;
1905        do {
1906                next = p4d_addr_end(addr, end);
1907                err = remap_pud_range(mm, p4d, addr, next,
1908                                pfn + (addr >> PAGE_SHIFT), prot);
1909                if (err)
1910                        return err;
1911        } while (p4d++, addr = next, addr != end);
1912        return 0;
1913}
1914
1915/**
1916 * remap_pfn_range - remap kernel memory to userspace
1917 * @vma: user vma to map to
1918 * @addr: target user address to start at
1919 * @pfn: physical address of kernel memory
1920 * @size: size of map area
1921 * @prot: page protection flags for this mapping
1922 *
1923 * Note: this is only safe if the mm semaphore is held when called.
1924 *
1925 * Return: %0 on success, negative error code otherwise.
1926 */
1927int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1928                    unsigned long pfn, unsigned long size, pgprot_t prot)
1929{
1930        pgd_t *pgd;
1931        unsigned long next;
1932        unsigned long end = addr + PAGE_ALIGN(size);
1933        struct mm_struct *mm = vma->vm_mm;
1934        unsigned long remap_pfn = pfn;
1935        int err;
1936
1937        /*
1938         * Physically remapped pages are special. Tell the
1939         * rest of the world about it:
1940         *   VM_IO tells people not to look at these pages
1941         *      (accesses can have side effects).
1942         *   VM_PFNMAP tells the core MM that the base pages are just
1943         *      raw PFN mappings, and do not have a "struct page" associated
1944         *      with them.
1945         *   VM_DONTEXPAND
1946         *      Disable vma merging and expanding with mremap().
1947         *   VM_DONTDUMP
1948         *      Omit vma from core dump, even when VM_IO turned off.
1949         *
1950         * There's a horrible special case to handle copy-on-write
1951         * behaviour that some programs depend on. We mark the "original"
1952         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1953         * See vm_normal_page() for details.
1954         */
1955        if (is_cow_mapping(vma->vm_flags)) {
1956                if (addr != vma->vm_start || end != vma->vm_end)
1957                        return -EINVAL;
1958                vma->vm_pgoff = pfn;
1959        }
1960
1961        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1962        if (err)
1963                return -EINVAL;
1964
1965        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1966
1967        BUG_ON(addr >= end);
1968        pfn -= addr >> PAGE_SHIFT;
1969        pgd = pgd_offset(mm, addr);
1970        flush_cache_range(vma, addr, end);
1971        do {
1972                next = pgd_addr_end(addr, end);
1973                err = remap_p4d_range(mm, pgd, addr, next,
1974                                pfn + (addr >> PAGE_SHIFT), prot);
1975                if (err)
1976                        break;
1977        } while (pgd++, addr = next, addr != end);
1978
1979        if (err)
1980                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1981
1982        return err;
1983}
1984EXPORT_SYMBOL(remap_pfn_range);
1985
1986/**
1987 * vm_iomap_memory - remap memory to userspace
1988 * @vma: user vma to map to
1989 * @start: start of area
1990 * @len: size of area
1991 *
1992 * This is a simplified io_remap_pfn_range() for common driver use. The
1993 * driver just needs to give us the physical memory range to be mapped,
1994 * we'll figure out the rest from the vma information.
1995 *
1996 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1997 * whatever write-combining details or similar.
1998 *
1999 * Return: %0 on success, negative error code otherwise.
2000 */
2001int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2002{
2003        unsigned long vm_len, pfn, pages;
2004
2005        /* Check that the physical memory area passed in looks valid */
2006        if (start + len < start)
2007                return -EINVAL;
2008        /*
2009         * You *really* shouldn't map things that aren't page-aligned,
2010         * but we've historically allowed it because IO memory might
2011         * just have smaller alignment.
2012         */
2013        len += start & ~PAGE_MASK;
2014        pfn = start >> PAGE_SHIFT;
2015        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2016        if (pfn + pages < pfn)
2017                return -EINVAL;
2018
2019        /* We start the mapping 'vm_pgoff' pages into the area */
2020        if (vma->vm_pgoff > pages)
2021                return -EINVAL;
2022        pfn += vma->vm_pgoff;
2023        pages -= vma->vm_pgoff;
2024
2025        /* Can we fit all of the mapping? */
2026        vm_len = vma->vm_end - vma->vm_start;
2027        if (vm_len >> PAGE_SHIFT > pages)
2028                return -EINVAL;
2029
2030        /* Ok, let it rip */
2031        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2032}
2033EXPORT_SYMBOL(vm_iomap_memory);
2034
2035static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2036                                     unsigned long addr, unsigned long end,
2037                                     pte_fn_t fn, void *data)
2038{
2039        pte_t *pte;
2040        int err;
2041        pgtable_t token;
2042        spinlock_t *uninitialized_var(ptl);
2043
2044        pte = (mm == &init_mm) ?
2045                pte_alloc_kernel(pmd, addr) :
2046                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2047        if (!pte)
2048                return -ENOMEM;
2049
2050        BUG_ON(pmd_huge(*pmd));
2051
2052        arch_enter_lazy_mmu_mode();
2053
2054        token = pmd_pgtable(*pmd);
2055
2056        do {
2057                err = fn(pte++, token, addr, data);
2058                if (err)
2059                        break;
2060        } while (addr += PAGE_SIZE, addr != end);
2061
2062        arch_leave_lazy_mmu_mode();
2063
2064        if (mm != &init_mm)
2065                pte_unmap_unlock(pte-1, ptl);
2066        return err;
2067}
2068
2069static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2070                                     unsigned long addr, unsigned long end,
2071                                     pte_fn_t fn, void *data)
2072{
2073        pmd_t *pmd;
2074        unsigned long next;
2075        int err;
2076
2077        BUG_ON(pud_huge(*pud));
2078
2079        pmd = pmd_alloc(mm, pud, addr);
2080        if (!pmd)
2081                return -ENOMEM;
2082        do {
2083                next = pmd_addr_end(addr, end);
2084                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2085                if (err)
2086                        break;
2087        } while (pmd++, addr = next, addr != end);
2088        return err;
2089}
2090
2091static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2092                                     unsigned long addr, unsigned long end,
2093                                     pte_fn_t fn, void *data)
2094{
2095        pud_t *pud;
2096        unsigned long next;
2097        int err;
2098
2099        pud = pud_alloc(mm, p4d, addr);
2100        if (!pud)
2101                return -ENOMEM;
2102        do {
2103                next = pud_addr_end(addr, end);
2104                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2105                if (err)
2106                        break;
2107        } while (pud++, addr = next, addr != end);
2108        return err;
2109}
2110
2111static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2112                                     unsigned long addr, unsigned long end,
2113                                     pte_fn_t fn, void *data)
2114{
2115        p4d_t *p4d;
2116        unsigned long next;
2117        int err;
2118
2119        p4d = p4d_alloc(mm, pgd, addr);
2120        if (!p4d)
2121                return -ENOMEM;
2122        do {
2123                next = p4d_addr_end(addr, end);
2124                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2125                if (err)
2126                        break;
2127        } while (p4d++, addr = next, addr != end);
2128        return err;
2129}
2130
2131/*
2132 * Scan a region of virtual memory, filling in page tables as necessary
2133 * and calling a provided function on each leaf page table.
2134 */
2135int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2136                        unsigned long size, pte_fn_t fn, void *data)
2137{
2138        pgd_t *pgd;
2139        unsigned long next;
2140        unsigned long end = addr + size;
2141        int err;
2142
2143        if (WARN_ON(addr >= end))
2144                return -EINVAL;
2145
2146        pgd = pgd_offset(mm, addr);
2147        do {
2148                next = pgd_addr_end(addr, end);
2149                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2150                if (err)
2151                        break;
2152        } while (pgd++, addr = next, addr != end);
2153
2154        return err;
2155}
2156EXPORT_SYMBOL_GPL(apply_to_page_range);
2157
2158/*
2159 * handle_pte_fault chooses page fault handler according to an entry which was
2160 * read non-atomically.  Before making any commitment, on those architectures
2161 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2162 * parts, do_swap_page must check under lock before unmapping the pte and
2163 * proceeding (but do_wp_page is only called after already making such a check;
2164 * and do_anonymous_page can safely check later on).
2165 */
2166static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2167                                pte_t *page_table, pte_t orig_pte)
2168{
2169        int same = 1;
2170#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2171        if (sizeof(pte_t) > sizeof(unsigned long)) {
2172                spinlock_t *ptl = pte_lockptr(mm, pmd);
2173                spin_lock(ptl);
2174                same = pte_same(*page_table, orig_pte);
2175                spin_unlock(ptl);
2176        }
2177#endif
2178        pte_unmap(page_table);
2179        return same;
2180}
2181
2182static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2183{
2184        debug_dma_assert_idle(src);
2185
2186        /*
2187         * If the source page was a PFN mapping, we don't have
2188         * a "struct page" for it. We do a best-effort copy by
2189         * just copying from the original user address. If that
2190         * fails, we just zero-fill it. Live with it.
2191         */
2192        if (unlikely(!src)) {
2193                void *kaddr = kmap_atomic(dst);
2194                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2195
2196                /*
2197                 * This really shouldn't fail, because the page is there
2198                 * in the page tables. But it might just be unreadable,
2199                 * in which case we just give up and fill the result with
2200                 * zeroes.
2201                 */
2202                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2203                        clear_page(kaddr);
2204                kunmap_atomic(kaddr);
2205                flush_dcache_page(dst);
2206        } else
2207                copy_user_highpage(dst, src, va, vma);
2208}
2209
2210static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2211{
2212        struct file *vm_file = vma->vm_file;
2213
2214        if (vm_file)
2215                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2216
2217        /*
2218         * Special mappings (e.g. VDSO) do not have any file so fake
2219         * a default GFP_KERNEL for them.
2220         */
2221        return GFP_KERNEL;
2222}
2223
2224/*
2225 * Notify the address space that the page is about to become writable so that
2226 * it can prohibit this or wait for the page to get into an appropriate state.
2227 *
2228 * We do this without the lock held, so that it can sleep if it needs to.
2229 */
2230static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2231{
2232        vm_fault_t ret;
2233        struct page *page = vmf->page;
2234        unsigned int old_flags = vmf->flags;
2235
2236        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2237
2238        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2239        /* Restore original flags so that caller is not surprised */
2240        vmf->flags = old_flags;
2241        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2242                return ret;
2243        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2244                lock_page(page);
2245                if (!page->mapping) {
2246                        unlock_page(page);
2247                        return 0; /* retry */
2248                }
2249                ret |= VM_FAULT_LOCKED;
2250        } else
2251                VM_BUG_ON_PAGE(!PageLocked(page), page);
2252        return ret;
2253}
2254
2255/*
2256 * Handle dirtying of a page in shared file mapping on a write fault.
2257 *
2258 * The function expects the page to be locked and unlocks it.
2259 */
2260static void fault_dirty_shared_page(struct vm_area_struct *vma,
2261                                    struct page *page)
2262{
2263        struct address_space *mapping;
2264        bool dirtied;
2265        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2266
2267        dirtied = set_page_dirty(page);
2268        VM_BUG_ON_PAGE(PageAnon(page), page);
2269        /*
2270         * Take a local copy of the address_space - page.mapping may be zeroed
2271         * by truncate after unlock_page().   The address_space itself remains
2272         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2273         * release semantics to prevent the compiler from undoing this copying.
2274         */
2275        mapping = page_rmapping(page);
2276        unlock_page(page);
2277
2278        if ((dirtied || page_mkwrite) && mapping) {
2279                /*
2280                 * Some device drivers do not set page.mapping
2281                 * but still dirty their pages
2282                 */
2283                balance_dirty_pages_ratelimited(mapping);
2284        }
2285
2286        if (!page_mkwrite)
2287                file_update_time(vma->vm_file);
2288}
2289
2290/*
2291 * Handle write page faults for pages that can be reused in the current vma
2292 *
2293 * This can happen either due to the mapping being with the VM_SHARED flag,
2294 * or due to us being the last reference standing to the page. In either
2295 * case, all we need to do here is to mark the page as writable and update
2296 * any related book-keeping.
2297 */
2298static inline void wp_page_reuse(struct vm_fault *vmf)
2299        __releases(vmf->ptl)
2300{
2301        struct vm_area_struct *vma = vmf->vma;
2302        struct page *page = vmf->page;
2303        pte_t entry;
2304        /*
2305         * Clear the pages cpupid information as the existing
2306         * information potentially belongs to a now completely
2307         * unrelated process.
2308         */
2309        if (page)
2310                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2311
2312        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2313        entry = pte_mkyoung(vmf->orig_pte);
2314        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2315        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2316                update_mmu_cache(vma, vmf->address, vmf->pte);
2317        pte_unmap_unlock(vmf->pte, vmf->ptl);
2318}
2319
2320/*
2321 * Handle the case of a page which we actually need to copy to a new page.
2322 *
2323 * Called with mmap_sem locked and the old page referenced, but
2324 * without the ptl held.
2325 *
2326 * High level logic flow:
2327 *
2328 * - Allocate a page, copy the content of the old page to the new one.
2329 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2330 * - Take the PTL. If the pte changed, bail out and release the allocated page
2331 * - If the pte is still the way we remember it, update the page table and all
2332 *   relevant references. This includes dropping the reference the page-table
2333 *   held to the old page, as well as updating the rmap.
2334 * - In any case, unlock the PTL and drop the reference we took to the old page.
2335 */
2336static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2337{
2338        struct vm_area_struct *vma = vmf->vma;
2339        struct mm_struct *mm = vma->vm_mm;
2340        struct page *old_page = vmf->page;
2341        struct page *new_page = NULL;
2342        pte_t entry;
2343        int page_copied = 0;
2344        struct mem_cgroup *memcg;
2345        struct mmu_notifier_range range;
2346
2347        if (unlikely(anon_vma_prepare(vma)))
2348                goto oom;
2349
2350        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2351                new_page = alloc_zeroed_user_highpage_movable(vma,
2352                                                              vmf->address);
2353                if (!new_page)
2354                        goto oom;
2355        } else {
2356                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2357                                vmf->address);
2358                if (!new_page)
2359                        goto oom;
2360                cow_user_page(new_page, old_page, vmf->address, vma);
2361        }
2362
2363        if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2364                goto oom_free_new;
2365
2366        __SetPageUptodate(new_page);
2367
2368        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2369                                vmf->address & PAGE_MASK,
2370                                (vmf->address & PAGE_MASK) + PAGE_SIZE);
2371        mmu_notifier_invalidate_range_start(&range);
2372
2373        /*
2374         * Re-check the pte - we dropped the lock
2375         */
2376        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2377        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2378                if (old_page) {
2379                        if (!PageAnon(old_page)) {
2380                                dec_mm_counter_fast(mm,
2381                                                mm_counter_file(old_page));
2382                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2383                        }
2384                } else {
2385                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2386                }
2387                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2388                entry = mk_pte(new_page, vma->vm_page_prot);
2389                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2390                /*
2391                 * Clear the pte entry and flush it first, before updating the
2392                 * pte with the new entry. This will avoid a race condition
2393                 * seen in the presence of one thread doing SMC and another
2394                 * thread doing COW.
2395                 */
2396                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2397                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2398                mem_cgroup_commit_charge(new_page, memcg, false, false);
2399                lru_cache_add_active_or_unevictable(new_page, vma);
2400                /*
2401                 * We call the notify macro here because, when using secondary
2402                 * mmu page tables (such as kvm shadow page tables), we want the
2403                 * new page to be mapped directly into the secondary page table.
2404                 */
2405                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2406                update_mmu_cache(vma, vmf->address, vmf->pte);
2407                if (old_page) {
2408                        /*
2409                         * Only after switching the pte to the new page may
2410                         * we remove the mapcount here. Otherwise another
2411                         * process may come and find the rmap count decremented
2412                         * before the pte is switched to the new page, and
2413                         * "reuse" the old page writing into it while our pte
2414                         * here still points into it and can be read by other
2415                         * threads.
2416                         *
2417                         * The critical issue is to order this
2418                         * page_remove_rmap with the ptp_clear_flush above.
2419                         * Those stores are ordered by (if nothing else,)
2420                         * the barrier present in the atomic_add_negative
2421                         * in page_remove_rmap.
2422                         *
2423                         * Then the TLB flush in ptep_clear_flush ensures that
2424                         * no process can access the old page before the
2425                         * decremented mapcount is visible. And the old page
2426                         * cannot be reused until after the decremented
2427                         * mapcount is visible. So transitively, TLBs to
2428                         * old page will be flushed before it can be reused.
2429                         */
2430                        page_remove_rmap(old_page, false);
2431                }
2432
2433                /* Free the old page.. */
2434                new_page = old_page;
2435                page_copied = 1;
2436        } else {
2437                mem_cgroup_cancel_charge(new_page, memcg, false);
2438        }
2439
2440        if (new_page)
2441                put_page(new_page);
2442
2443        pte_unmap_unlock(vmf->pte, vmf->ptl);
2444        /*
2445         * No need to double call mmu_notifier->invalidate_range() callback as
2446         * the above ptep_clear_flush_notify() did already call it.
2447         */
2448        mmu_notifier_invalidate_range_only_end(&range);
2449        if (old_page) {
2450                /*
2451                 * Don't let another task, with possibly unlocked vma,
2452                 * keep the mlocked page.
2453                 */
2454                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2455                        lock_page(old_page);    /* LRU manipulation */
2456                        if (PageMlocked(old_page))
2457                                munlock_vma_page(old_page);
2458                        unlock_page(old_page);
2459                }
2460                put_page(old_page);
2461        }
2462        return page_copied ? VM_FAULT_WRITE : 0;
2463oom_free_new:
2464        put_page(new_page);
2465oom:
2466        if (old_page)
2467                put_page(old_page);
2468        return VM_FAULT_OOM;
2469}
2470
2471/**
2472 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2473 *                        writeable once the page is prepared
2474 *
2475 * @vmf: structure describing the fault
2476 *
2477 * This function handles all that is needed to finish a write page fault in a
2478 * shared mapping due to PTE being read-only once the mapped page is prepared.
2479 * It handles locking of PTE and modifying it.
2480 *
2481 * The function expects the page to be locked or other protection against
2482 * concurrent faults / writeback (such as DAX radix tree locks).
2483 *
2484 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2485 * we acquired PTE lock.
2486 */
2487vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2488{
2489        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2490        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2491                                       &vmf->ptl);
2492        /*
2493         * We might have raced with another page fault while we released the
2494         * pte_offset_map_lock.
2495         */
2496        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2497                pte_unmap_unlock(vmf->pte, vmf->ptl);
2498                return VM_FAULT_NOPAGE;
2499        }
2500        wp_page_reuse(vmf);
2501        return 0;
2502}
2503
2504/*
2505 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2506 * mapping
2507 */
2508static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2509{
2510        struct vm_area_struct *vma = vmf->vma;
2511
2512        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2513                vm_fault_t ret;
2514
2515                pte_unmap_unlock(vmf->pte, vmf->ptl);
2516                vmf->flags |= FAULT_FLAG_MKWRITE;
2517                ret = vma->vm_ops->pfn_mkwrite(vmf);
2518                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2519                        return ret;
2520                return finish_mkwrite_fault(vmf);
2521        }
2522        wp_page_reuse(vmf);
2523        return VM_FAULT_WRITE;
2524}
2525
2526static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2527        __releases(vmf->ptl)
2528{
2529        struct vm_area_struct *vma = vmf->vma;
2530
2531        get_page(vmf->page);
2532
2533        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2534                vm_fault_t tmp;
2535
2536                pte_unmap_unlock(vmf->pte, vmf->ptl);
2537                tmp = do_page_mkwrite(vmf);
2538                if (unlikely(!tmp || (tmp &
2539                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2540                        put_page(vmf->page);
2541                        return tmp;
2542                }
2543                tmp = finish_mkwrite_fault(vmf);
2544                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2545                        unlock_page(vmf->page);
2546                        put_page(vmf->page);
2547                        return tmp;
2548                }
2549        } else {
2550                wp_page_reuse(vmf);
2551                lock_page(vmf->page);
2552        }
2553        fault_dirty_shared_page(vma, vmf->page);
2554        put_page(vmf->page);
2555
2556        return VM_FAULT_WRITE;
2557}
2558
2559/*
2560 * This routine handles present pages, when users try to write
2561 * to a shared page. It is done by copying the page to a new address
2562 * and decrementing the shared-page counter for the old page.
2563 *
2564 * Note that this routine assumes that the protection checks have been
2565 * done by the caller (the low-level page fault routine in most cases).
2566 * Thus we can safely just mark it writable once we've done any necessary
2567 * COW.
2568 *
2569 * We also mark the page dirty at this point even though the page will
2570 * change only once the write actually happens. This avoids a few races,
2571 * and potentially makes it more efficient.
2572 *
2573 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2574 * but allow concurrent faults), with pte both mapped and locked.
2575 * We return with mmap_sem still held, but pte unmapped and unlocked.
2576 */
2577static vm_fault_t do_wp_page(struct vm_fault *vmf)
2578        __releases(vmf->ptl)
2579{
2580        struct vm_area_struct *vma = vmf->vma;
2581
2582        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2583        if (!vmf->page) {
2584                /*
2585                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2586                 * VM_PFNMAP VMA.
2587                 *
2588                 * We should not cow pages in a shared writeable mapping.
2589                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2590                 */
2591                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2592                                     (VM_WRITE|VM_SHARED))
2593                        return wp_pfn_shared(vmf);
2594
2595                pte_unmap_unlock(vmf->pte, vmf->ptl);
2596                return wp_page_copy(vmf);
2597        }
2598
2599        /*
2600         * Take out anonymous pages first, anonymous shared vmas are
2601         * not dirty accountable.
2602         */
2603        if (PageAnon(vmf->page)) {
2604                int total_map_swapcount;
2605                if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2606                                           page_count(vmf->page) != 1))
2607                        goto copy;
2608                if (!trylock_page(vmf->page)) {
2609                        get_page(vmf->page);
2610                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2611                        lock_page(vmf->page);
2612                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2613                                        vmf->address, &vmf->ptl);
2614                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2615                                unlock_page(vmf->page);
2616                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2617                                put_page(vmf->page);
2618                                return 0;
2619                        }
2620                        put_page(vmf->page);
2621                }
2622                if (PageKsm(vmf->page)) {
2623                        bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2624                                                     vmf->address);
2625                        unlock_page(vmf->page);
2626                        if (!reused)
2627                                goto copy;
2628                        wp_page_reuse(vmf);
2629                        return VM_FAULT_WRITE;
2630                }
2631                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2632                        if (total_map_swapcount == 1) {
2633                                /*
2634                                 * The page is all ours. Move it to
2635                                 * our anon_vma so the rmap code will
2636                                 * not search our parent or siblings.
2637                                 * Protected against the rmap code by
2638                                 * the page lock.
2639                                 */
2640                                page_move_anon_rmap(vmf->page, vma);
2641                        }
2642                        unlock_page(vmf->page);
2643                        wp_page_reuse(vmf);
2644                        return VM_FAULT_WRITE;
2645                }
2646                unlock_page(vmf->page);
2647        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2648                                        (VM_WRITE|VM_SHARED))) {
2649                return wp_page_shared(vmf);
2650        }
2651copy:
2652        /*
2653         * Ok, we need to copy. Oh, well..
2654         */
2655        get_page(vmf->page);
2656
2657        pte_unmap_unlock(vmf->pte, vmf->ptl);
2658        return wp_page_copy(vmf);
2659}
2660
2661static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2662                unsigned long start_addr, unsigned long end_addr,
2663                struct zap_details *details)
2664{
2665        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2666}
2667
2668static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2669                                            struct zap_details *details)
2670{
2671        struct vm_area_struct *vma;
2672        pgoff_t vba, vea, zba, zea;
2673
2674        vma_interval_tree_foreach(vma, root,
2675                        details->first_index, details->last_index) {
2676
2677                vba = vma->vm_pgoff;
2678                vea = vba + vma_pages(vma) - 1;
2679                zba = details->first_index;
2680                if (zba < vba)
2681                        zba = vba;
2682                zea = details->last_index;
2683                if (zea > vea)
2684                        zea = vea;
2685
2686                unmap_mapping_range_vma(vma,
2687                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2688                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2689                                details);
2690        }
2691}
2692
2693/**
2694 * unmap_mapping_pages() - Unmap pages from processes.
2695 * @mapping: The address space containing pages to be unmapped.
2696 * @start: Index of first page to be unmapped.
2697 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2698 * @even_cows: Whether to unmap even private COWed pages.
2699 *
2700 * Unmap the pages in this address space from any userspace process which
2701 * has them mmaped.  Generally, you want to remove COWed pages as well when
2702 * a file is being truncated, but not when invalidating pages from the page
2703 * cache.
2704 */
2705void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2706                pgoff_t nr, bool even_cows)
2707{
2708        struct zap_details details = { };
2709
2710        details.check_mapping = even_cows ? NULL : mapping;
2711        details.first_index = start;
2712        details.last_index = start + nr - 1;
2713        if (details.last_index < details.first_index)
2714                details.last_index = ULONG_MAX;
2715
2716        i_mmap_lock_write(mapping);
2717        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2718                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2719        i_mmap_unlock_write(mapping);
2720}
2721
2722/**
2723 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2724 * address_space corresponding to the specified byte range in the underlying
2725 * file.
2726 *
2727 * @mapping: the address space containing mmaps to be unmapped.
2728 * @holebegin: byte in first page to unmap, relative to the start of
2729 * the underlying file.  This will be rounded down to a PAGE_SIZE
2730 * boundary.  Note that this is different from truncate_pagecache(), which
2731 * must keep the partial page.  In contrast, we must get rid of
2732 * partial pages.
2733 * @holelen: size of prospective hole in bytes.  This will be rounded
2734 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2735 * end of the file.
2736 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2737 * but 0 when invalidating pagecache, don't throw away private data.
2738 */
2739void unmap_mapping_range(struct address_space *mapping,
2740                loff_t const holebegin, loff_t const holelen, int even_cows)
2741{
2742        pgoff_t hba = holebegin >> PAGE_SHIFT;
2743        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2744
2745        /* Check for overflow. */
2746        if (sizeof(holelen) > sizeof(hlen)) {
2747                long long holeend =
2748                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2749                if (holeend & ~(long long)ULONG_MAX)
2750                        hlen = ULONG_MAX - hba + 1;
2751        }
2752
2753        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2754}
2755EXPORT_SYMBOL(unmap_mapping_range);
2756
2757/*
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with pte unmapped and unlocked.
2761 *
2762 * We return with the mmap_sem locked or unlocked in the same cases
2763 * as does filemap_fault().
2764 */
2765vm_fault_t do_swap_page(struct vm_fault *vmf)
2766{
2767        struct vm_area_struct *vma = vmf->vma;
2768        struct page *page = NULL, *swapcache;
2769        struct mem_cgroup *memcg;
2770        swp_entry_t entry;
2771        pte_t pte;
2772        int locked;
2773        int exclusive = 0;
2774        vm_fault_t ret = 0;
2775
2776        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2777                goto out;
2778
2779        entry = pte_to_swp_entry(vmf->orig_pte);
2780        if (unlikely(non_swap_entry(entry))) {
2781                if (is_migration_entry(entry)) {
2782                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2783                                             vmf->address);
2784                } else if (is_device_private_entry(entry)) {
2785                        /*
2786                         * For un-addressable device memory we call the pgmap
2787                         * fault handler callback. The callback must migrate
2788                         * the page back to some CPU accessible page.
2789                         */
2790                        ret = device_private_entry_fault(vma, vmf->address, entry,
2791                                                 vmf->flags, vmf->pmd);
2792                } else if (is_hwpoison_entry(entry)) {
2793                        ret = VM_FAULT_HWPOISON;
2794                } else {
2795                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2796                        ret = VM_FAULT_SIGBUS;
2797                }
2798                goto out;
2799        }
2800
2801
2802        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2803        page = lookup_swap_cache(entry, vma, vmf->address);
2804        swapcache = page;
2805
2806        if (!page) {
2807                struct swap_info_struct *si = swp_swap_info(entry);
2808
2809                if (si->flags & SWP_SYNCHRONOUS_IO &&
2810                                __swap_count(si, entry) == 1) {
2811                        /* skip swapcache */
2812                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2813                                                        vmf->address);
2814                        if (page) {
2815                                __SetPageLocked(page);
2816                                __SetPageSwapBacked(page);
2817                                set_page_private(page, entry.val);
2818                                lru_cache_add_anon(page);
2819                                swap_readpage(page, true);
2820                        }
2821                } else {
2822                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2823                                                vmf);
2824                        swapcache = page;
2825                }
2826
2827                if (!page) {
2828                        /*
2829                         * Back out if somebody else faulted in this pte
2830                         * while we released the pte lock.
2831                         */
2832                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2833                                        vmf->address, &vmf->ptl);
2834                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2835                                ret = VM_FAULT_OOM;
2836                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2837                        goto unlock;
2838                }
2839
2840                /* Had to read the page from swap area: Major fault */
2841                ret = VM_FAULT_MAJOR;
2842                count_vm_event(PGMAJFAULT);
2843                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2844        } else if (PageHWPoison(page)) {
2845                /*
2846                 * hwpoisoned dirty swapcache pages are kept for killing
2847                 * owner processes (which may be unknown at hwpoison time)
2848                 */
2849                ret = VM_FAULT_HWPOISON;
2850                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2851                goto out_release;
2852        }
2853
2854        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2855
2856        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2857        if (!locked) {
2858                ret |= VM_FAULT_RETRY;
2859                goto out_release;
2860        }
2861
2862        /*
2863         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2864         * release the swapcache from under us.  The page pin, and pte_same
2865         * test below, are not enough to exclude that.  Even if it is still
2866         * swapcache, we need to check that the page's swap has not changed.
2867         */
2868        if (unlikely((!PageSwapCache(page) ||
2869                        page_private(page) != entry.val)) && swapcache)
2870                goto out_page;
2871
2872        page = ksm_might_need_to_copy(page, vma, vmf->address);
2873        if (unlikely(!page)) {
2874                ret = VM_FAULT_OOM;
2875                page = swapcache;
2876                goto out_page;
2877        }
2878
2879        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2880                                        &memcg, false)) {
2881                ret = VM_FAULT_OOM;
2882                goto out_page;
2883        }
2884
2885        /*
2886         * Back out if somebody else already faulted in this pte.
2887         */
2888        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2889                        &vmf->ptl);
2890        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2891                goto out_nomap;
2892
2893        if (unlikely(!PageUptodate(page))) {
2894                ret = VM_FAULT_SIGBUS;
2895                goto out_nomap;
2896        }
2897
2898        /*
2899         * The page isn't present yet, go ahead with the fault.
2900         *
2901         * Be careful about the sequence of operations here.
2902         * To get its accounting right, reuse_swap_page() must be called
2903         * while the page is counted on swap but not yet in mapcount i.e.
2904         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2905         * must be called after the swap_free(), or it will never succeed.
2906         */
2907
2908        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2909        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2910        pte = mk_pte(page, vma->vm_page_prot);
2911        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2912                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2913                vmf->flags &= ~FAULT_FLAG_WRITE;
2914                ret |= VM_FAULT_WRITE;
2915                exclusive = RMAP_EXCLUSIVE;
2916        }
2917        flush_icache_page(vma, page);
2918        if (pte_swp_soft_dirty(vmf->orig_pte))
2919                pte = pte_mksoft_dirty(pte);
2920        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2921        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2922        vmf->orig_pte = pte;
2923
2924        /* ksm created a completely new copy */
2925        if (unlikely(page != swapcache && swapcache)) {
2926                page_add_new_anon_rmap(page, vma, vmf->address, false);
2927                mem_cgroup_commit_charge(page, memcg, false, false);
2928                lru_cache_add_active_or_unevictable(page, vma);
2929        } else {
2930                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2931                mem_cgroup_commit_charge(page, memcg, true, false);
2932                activate_page(page);
2933        }
2934
2935        swap_free(entry);
2936        if (mem_cgroup_swap_full(page) ||
2937            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2938                try_to_free_swap(page);
2939        unlock_page(page);
2940        if (page != swapcache && swapcache) {
2941                /*
2942                 * Hold the lock to avoid the swap entry to be reused
2943                 * until we take the PT lock for the pte_same() check
2944                 * (to avoid false positives from pte_same). For
2945                 * further safety release the lock after the swap_free
2946                 * so that the swap count won't change under a
2947                 * parallel locked swapcache.
2948                 */
2949                unlock_page(swapcache);
2950                put_page(swapcache);
2951        }
2952
2953        if (vmf->flags & FAULT_FLAG_WRITE) {
2954                ret |= do_wp_page(vmf);
2955                if (ret & VM_FAULT_ERROR)
2956                        ret &= VM_FAULT_ERROR;
2957                goto out;
2958        }
2959
2960        /* No need to invalidate - it was non-present before */
2961        update_mmu_cache(vma, vmf->address, vmf->pte);
2962unlock:
2963        pte_unmap_unlock(vmf->pte, vmf->ptl);
2964out:
2965        return ret;
2966out_nomap:
2967        mem_cgroup_cancel_charge(page, memcg, false);
2968        pte_unmap_unlock(vmf->pte, vmf->ptl);
2969out_page:
2970        unlock_page(page);
2971out_release:
2972        put_page(page);
2973        if (page != swapcache && swapcache) {
2974                unlock_page(swapcache);
2975                put_page(swapcache);
2976        }
2977        return ret;
2978}
2979
2980/*
2981 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2982 * but allow concurrent faults), and pte mapped but not yet locked.
2983 * We return with mmap_sem still held, but pte unmapped and unlocked.
2984 */
2985static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2986{
2987        struct vm_area_struct *vma = vmf->vma;
2988        struct mem_cgroup *memcg;
2989        struct page *page;
2990        vm_fault_t ret = 0;
2991        pte_t entry;
2992
2993        /* File mapping without ->vm_ops ? */
2994        if (vma->vm_flags & VM_SHARED)
2995                return VM_FAULT_SIGBUS;
2996
2997        /*
2998         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2999         * pte_offset_map() on pmds where a huge pmd might be created
3000         * from a different thread.
3001         *
3002         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3003         * parallel threads are excluded by other means.
3004         *
3005         * Here we only have down_read(mmap_sem).
3006         */
3007        if (pte_alloc(vma->vm_mm, vmf->pmd))
3008                return VM_FAULT_OOM;
3009
3010        /* See the comment in pte_alloc_one_map() */
3011        if (unlikely(pmd_trans_unstable(vmf->pmd)))
3012                return 0;
3013
3014        /* Use the zero-page for reads */
3015        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3016                        !mm_forbids_zeropage(vma->vm_mm)) {
3017                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3018                                                vma->vm_page_prot));
3019                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3020                                vmf->address, &vmf->ptl);
3021                if (!pte_none(*vmf->pte))
3022                        goto unlock;
3023                ret = check_stable_address_space(vma->vm_mm);
3024                if (ret)
3025                        goto unlock;
3026                /* Deliver the page fault to userland, check inside PT lock */
3027                if (userfaultfd_missing(vma)) {
3028                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3029                        return handle_userfault(vmf, VM_UFFD_MISSING);
3030                }
3031                goto setpte;
3032        }
3033
3034        /* Allocate our own private page. */
3035        if (unlikely(anon_vma_prepare(vma)))
3036                goto oom;
3037        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3038        if (!page)
3039                goto oom;
3040
3041        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3042                                        false))
3043                goto oom_free_page;
3044
3045        /*
3046         * The memory barrier inside __SetPageUptodate makes sure that
3047         * preceeding stores to the page contents become visible before
3048         * the set_pte_at() write.
3049         */
3050        __SetPageUptodate(page);
3051
3052        entry = mk_pte(page, vma->vm_page_prot);
3053        if (vma->vm_flags & VM_WRITE)
3054                entry = pte_mkwrite(pte_mkdirty(entry));
3055
3056        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057                        &vmf->ptl);
3058        if (!pte_none(*vmf->pte))
3059                goto release;
3060
3061        ret = check_stable_address_space(vma->vm_mm);
3062        if (ret)
3063                goto release;
3064
3065        /* Deliver the page fault to userland, check inside PT lock */
3066        if (userfaultfd_missing(vma)) {
3067                pte_unmap_unlock(vmf->pte, vmf->ptl);
3068                mem_cgroup_cancel_charge(page, memcg, false);
3069                put_page(page);
3070                return handle_userfault(vmf, VM_UFFD_MISSING);
3071        }
3072
3073        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3074        page_add_new_anon_rmap(page, vma, vmf->address, false);
3075        mem_cgroup_commit_charge(page, memcg, false, false);
3076        lru_cache_add_active_or_unevictable(page, vma);
3077setpte:
3078        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3079
3080        /* No need to invalidate - it was non-present before */
3081        update_mmu_cache(vma, vmf->address, vmf->pte);
3082unlock:
3083        pte_unmap_unlock(vmf->pte, vmf->ptl);
3084        return ret;
3085release:
3086        mem_cgroup_cancel_charge(page, memcg, false);
3087        put_page(page);
3088        goto unlock;
3089oom_free_page:
3090        put_page(page);
3091oom:
3092        return VM_FAULT_OOM;
3093}
3094
3095/*
3096 * The mmap_sem must have been held on entry, and may have been
3097 * released depending on flags and vma->vm_ops->fault() return value.
3098 * See filemap_fault() and __lock_page_retry().
3099 */
3100static vm_fault_t __do_fault(struct vm_fault *vmf)
3101{
3102        struct vm_area_struct *vma = vmf->vma;
3103        vm_fault_t ret;
3104
3105        /*
3106         * Preallocate pte before we take page_lock because this might lead to
3107         * deadlocks for memcg reclaim which waits for pages under writeback:
3108         *                              lock_page(A)
3109         *                              SetPageWriteback(A)
3110         *                              unlock_page(A)
3111         * lock_page(B)
3112         *                              lock_page(B)
3113         * pte_alloc_pne
3114         *   shrink_page_list
3115         *     wait_on_page_writeback(A)
3116         *                              SetPageWriteback(B)
3117         *                              unlock_page(B)
3118         *                              # flush A, B to clear the writeback
3119         */
3120        if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3121                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3122                if (!vmf->prealloc_pte)
3123                        return VM_FAULT_OOM;
3124                smp_wmb(); /* See comment in __pte_alloc() */
3125        }
3126
3127        ret = vma->vm_ops->fault(vmf);
3128        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3129                            VM_FAULT_DONE_COW)))
3130                return ret;
3131
3132        if (unlikely(PageHWPoison(vmf->page))) {
3133                if (ret & VM_FAULT_LOCKED)
3134                        unlock_page(vmf->page);
3135                put_page(vmf->page);
3136                vmf->page = NULL;
3137                return VM_FAULT_HWPOISON;
3138        }
3139
3140        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3141                lock_page(vmf->page);
3142        else
3143                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3144
3145        return ret;
3146}
3147
3148/*
3149 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3150 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3151 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3152 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3153 */
3154static int pmd_devmap_trans_unstable(pmd_t *pmd)
3155{
3156        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3157}
3158
3159static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3160{
3161        struct vm_area_struct *vma = vmf->vma;
3162
3163        if (!pmd_none(*vmf->pmd))
3164                goto map_pte;
3165        if (vmf->prealloc_pte) {
3166                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3167                if (unlikely(!pmd_none(*vmf->pmd))) {
3168                        spin_unlock(vmf->ptl);
3169                        goto map_pte;
3170                }
3171
3172                mm_inc_nr_ptes(vma->vm_mm);
3173                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3174                spin_unlock(vmf->ptl);
3175                vmf->prealloc_pte = NULL;
3176        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3177                return VM_FAULT_OOM;
3178        }
3179map_pte:
3180        /*
3181         * If a huge pmd materialized under us just retry later.  Use
3182         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3183         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3184         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3185         * running immediately after a huge pmd fault in a different thread of
3186         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3187         * All we have to ensure is that it is a regular pmd that we can walk
3188         * with pte_offset_map() and we can do that through an atomic read in
3189         * C, which is what pmd_trans_unstable() provides.
3190         */
3191        if (pmd_devmap_trans_unstable(vmf->pmd))
3192                return VM_FAULT_NOPAGE;
3193
3194        /*
3195         * At this point we know that our vmf->pmd points to a page of ptes
3196         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3197         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3198         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3199         * be valid and we will re-check to make sure the vmf->pte isn't
3200         * pte_none() under vmf->ptl protection when we return to
3201         * alloc_set_pte().
3202         */
3203        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3204                        &vmf->ptl);
3205        return 0;
3206}
3207
3208#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3209
3210#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3211static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3212                unsigned long haddr)
3213{
3214        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3215                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3216                return false;
3217        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3218                return false;
3219        return true;
3220}
3221
3222static void deposit_prealloc_pte(struct vm_fault *vmf)
3223{
3224        struct vm_area_struct *vma = vmf->vma;
3225
3226        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3227        /*
3228         * We are going to consume the prealloc table,
3229         * count that as nr_ptes.
3230         */
3231        mm_inc_nr_ptes(vma->vm_mm);
3232        vmf->prealloc_pte = NULL;
3233}
3234
3235static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3236{
3237        struct vm_area_struct *vma = vmf->vma;
3238        bool write = vmf->flags & FAULT_FLAG_WRITE;
3239        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3240        pmd_t entry;
3241        int i;
3242        vm_fault_t ret;
3243
3244        if (!transhuge_vma_suitable(vma, haddr))
3245                return VM_FAULT_FALLBACK;
3246
3247        ret = VM_FAULT_FALLBACK;
3248        page = compound_head(page);
3249
3250        /*
3251         * Archs like ppc64 need additonal space to store information
3252         * related to pte entry. Use the preallocated table for that.
3253         */
3254        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3255                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3256                if (!vmf->prealloc_pte)
3257                        return VM_FAULT_OOM;
3258                smp_wmb(); /* See comment in __pte_alloc() */
3259        }
3260
3261        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262        if (unlikely(!pmd_none(*vmf->pmd)))
3263                goto out;
3264
3265        for (i = 0; i < HPAGE_PMD_NR; i++)
3266                flush_icache_page(vma, page + i);
3267
3268        entry = mk_huge_pmd(page, vma->vm_page_prot);
3269        if (write)
3270                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3271
3272        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3273        page_add_file_rmap(page, true);
3274        /*
3275         * deposit and withdraw with pmd lock held
3276         */
3277        if (arch_needs_pgtable_deposit())
3278                deposit_prealloc_pte(vmf);
3279
3280        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3281
3282        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3283
3284        /* fault is handled */
3285        ret = 0;
3286        count_vm_event(THP_FILE_MAPPED);
3287out:
3288        spin_unlock(vmf->ptl);
3289        return ret;
3290}
3291#else
3292static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3293{
3294        BUILD_BUG();
3295        return 0;
3296}
3297#endif
3298
3299/**
3300 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3301 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3302 *
3303 * @vmf: fault environment
3304 * @memcg: memcg to charge page (only for private mappings)
3305 * @page: page to map
3306 *
3307 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3308 * return.
3309 *
3310 * Target users are page handler itself and implementations of
3311 * vm_ops->map_pages.
3312 *
3313 * Return: %0 on success, %VM_FAULT_ code in case of error.
3314 */
3315vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3316                struct page *page)
3317{
3318        struct vm_area_struct *vma = vmf->vma;
3319        bool write = vmf->flags & FAULT_FLAG_WRITE;
3320        pte_t entry;
3321        vm_fault_t ret;
3322
3323        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3324                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3325                /* THP on COW? */
3326                VM_BUG_ON_PAGE(memcg, page);
3327
3328                ret = do_set_pmd(vmf, page);
3329                if (ret != VM_FAULT_FALLBACK)
3330                        return ret;
3331        }
3332
3333        if (!vmf->pte) {
3334                ret = pte_alloc_one_map(vmf);
3335                if (ret)
3336                        return ret;
3337        }
3338
3339        /* Re-check under ptl */
3340        if (unlikely(!pte_none(*vmf->pte)))
3341                return VM_FAULT_NOPAGE;
3342
3343        flush_icache_page(vma, page);
3344        entry = mk_pte(page, vma->vm_page_prot);
3345        if (write)
3346                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3347        /* copy-on-write page */
3348        if (write && !(vma->vm_flags & VM_SHARED)) {
3349                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3350                page_add_new_anon_rmap(page, vma, vmf->address, false);
3351                mem_cgroup_commit_charge(page, memcg, false, false);
3352                lru_cache_add_active_or_unevictable(page, vma);
3353        } else {
3354                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3355                page_add_file_rmap(page, false);
3356        }
3357        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3358
3359        /* no need to invalidate: a not-present page won't be cached */
3360        update_mmu_cache(vma, vmf->address, vmf->pte);
3361
3362        return 0;
3363}
3364
3365
3366/**
3367 * finish_fault - finish page fault once we have prepared the page to fault
3368 *
3369 * @vmf: structure describing the fault
3370 *
3371 * This function handles all that is needed to finish a page fault once the
3372 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3373 * given page, adds reverse page mapping, handles memcg charges and LRU
3374 * addition.
3375 *
3376 * The function expects the page to be locked and on success it consumes a
3377 * reference of a page being mapped (for the PTE which maps it).
3378 *
3379 * Return: %0 on success, %VM_FAULT_ code in case of error.
3380 */
3381vm_fault_t finish_fault(struct vm_fault *vmf)
3382{
3383        struct page *page;
3384        vm_fault_t ret = 0;
3385
3386        /* Did we COW the page? */
3387        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3388            !(vmf->vma->vm_flags & VM_SHARED))
3389                page = vmf->cow_page;
3390        else
3391                page = vmf->page;
3392
3393        /*
3394         * check even for read faults because we might have lost our CoWed
3395         * page
3396         */
3397        if (!(vmf->vma->vm_flags & VM_SHARED))
3398                ret = check_stable_address_space(vmf->vma->vm_mm);
3399        if (!ret)
3400                ret = alloc_set_pte(vmf, vmf->memcg, page);
3401        if (vmf->pte)
3402                pte_unmap_unlock(vmf->pte, vmf->ptl);
3403        return ret;
3404}
3405
3406static unsigned long fault_around_bytes __read_mostly =
3407        rounddown_pow_of_two(65536);
3408
3409#ifdef CONFIG_DEBUG_FS
3410static int fault_around_bytes_get(void *data, u64 *val)
3411{
3412        *val = fault_around_bytes;
3413        return 0;
3414}
3415
3416/*
3417 * fault_around_bytes must be rounded down to the nearest page order as it's
3418 * what do_fault_around() expects to see.
3419 */
3420static int fault_around_bytes_set(void *data, u64 val)
3421{
3422        if (val / PAGE_SIZE > PTRS_PER_PTE)
3423                return -EINVAL;
3424        if (val > PAGE_SIZE)
3425                fault_around_bytes = rounddown_pow_of_two(val);
3426        else
3427                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3428        return 0;
3429}
3430DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3431                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3432
3433static int __init fault_around_debugfs(void)
3434{
3435        debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3436                                   &fault_around_bytes_fops);
3437        return 0;
3438}
3439late_initcall(fault_around_debugfs);
3440#endif
3441
3442/*
3443 * do_fault_around() tries to map few pages around the fault address. The hope
3444 * is that the pages will be needed soon and this will lower the number of
3445 * faults to handle.
3446 *
3447 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3448 * not ready to be mapped: not up-to-date, locked, etc.
3449 *
3450 * This function is called with the page table lock taken. In the split ptlock
3451 * case the page table lock only protects only those entries which belong to
3452 * the page table corresponding to the fault address.
3453 *
3454 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3455 * only once.
3456 *
3457 * fault_around_bytes defines how many bytes we'll try to map.
3458 * do_fault_around() expects it to be set to a power of two less than or equal
3459 * to PTRS_PER_PTE.
3460 *
3461 * The virtual address of the area that we map is naturally aligned to
3462 * fault_around_bytes rounded down to the machine page size
3463 * (and therefore to page order).  This way it's easier to guarantee
3464 * that we don't cross page table boundaries.
3465 */
3466static vm_fault_t do_fault_around(struct vm_fault *vmf)
3467{
3468        unsigned long address = vmf->address, nr_pages, mask;
3469        pgoff_t start_pgoff = vmf->pgoff;
3470        pgoff_t end_pgoff;
3471        int off;
3472        vm_fault_t ret = 0;
3473
3474        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3475        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3476
3477        vmf->address = max(address & mask, vmf->vma->vm_start);
3478        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3479        start_pgoff -= off;
3480
3481        /*
3482         *  end_pgoff is either the end of the page table, the end of
3483         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3484         */
3485        end_pgoff = start_pgoff -
3486                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3487                PTRS_PER_PTE - 1;
3488        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3489                        start_pgoff + nr_pages - 1);
3490
3491        if (pmd_none(*vmf->pmd)) {
3492                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3493                if (!vmf->prealloc_pte)
3494                        goto out;
3495                smp_wmb(); /* See comment in __pte_alloc() */
3496        }
3497
3498        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3499
3500        /* Huge page is mapped? Page fault is solved */
3501        if (pmd_trans_huge(*vmf->pmd)) {
3502                ret = VM_FAULT_NOPAGE;
3503                goto out;
3504        }
3505
3506        /* ->map_pages() haven't done anything useful. Cold page cache? */
3507        if (!vmf->pte)
3508                goto out;
3509
3510        /* check if the page fault is solved */
3511        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3512        if (!pte_none(*vmf->pte))
3513                ret = VM_FAULT_NOPAGE;
3514        pte_unmap_unlock(vmf->pte, vmf->ptl);
3515out:
3516        vmf->address = address;
3517        vmf->pte = NULL;
3518        return ret;
3519}
3520
3521static vm_fault_t do_read_fault(struct vm_fault *vmf)
3522{
3523        struct vm_area_struct *vma = vmf->vma;
3524        vm_fault_t ret = 0;
3525
3526        /*
3527         * Let's call ->map_pages() first and use ->fault() as fallback
3528         * if page by the offset is not ready to be mapped (cold cache or
3529         * something).
3530         */
3531        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3532                ret = do_fault_around(vmf);
3533                if (ret)
3534                        return ret;
3535        }
3536
3537        ret = __do_fault(vmf);
3538        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539                return ret;
3540
3541        ret |= finish_fault(vmf);
3542        unlock_page(vmf->page);
3543        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3544                put_page(vmf->page);
3545        return ret;
3546}
3547
3548static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3549{
3550        struct vm_area_struct *vma = vmf->vma;
3551        vm_fault_t ret;
3552
3553        if (unlikely(anon_vma_prepare(vma)))
3554                return VM_FAULT_OOM;
3555
3556        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3557        if (!vmf->cow_page)
3558                return VM_FAULT_OOM;
3559
3560        if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3561                                &vmf->memcg, false)) {
3562                put_page(vmf->cow_page);
3563                return VM_FAULT_OOM;
3564        }
3565
3566        ret = __do_fault(vmf);
3567        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3568                goto uncharge_out;
3569        if (ret & VM_FAULT_DONE_COW)
3570                return ret;
3571
3572        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3573        __SetPageUptodate(vmf->cow_page);
3574
3575        ret |= finish_fault(vmf);
3576        unlock_page(vmf->page);
3577        put_page(vmf->page);
3578        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3579                goto uncharge_out;
3580        return ret;
3581uncharge_out:
3582        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3583        put_page(vmf->cow_page);
3584        return ret;
3585}
3586
3587static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3588{
3589        struct vm_area_struct *vma = vmf->vma;
3590        vm_fault_t ret, tmp;
3591
3592        ret = __do_fault(vmf);
3593        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3594                return ret;
3595
3596        /*
3597         * Check if the backing address space wants to know that the page is
3598         * about to become writable
3599         */
3600        if (vma->vm_ops->page_mkwrite) {
3601                unlock_page(vmf->page);
3602                tmp = do_page_mkwrite(vmf);
3603                if (unlikely(!tmp ||
3604                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3605                        put_page(vmf->page);
3606                        return tmp;
3607                }
3608        }
3609
3610        ret |= finish_fault(vmf);
3611        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3612                                        VM_FAULT_RETRY))) {
3613                unlock_page(vmf->page);
3614                put_page(vmf->page);
3615                return ret;
3616        }
3617
3618        fault_dirty_shared_page(vma, vmf->page);
3619        return ret;
3620}
3621
3622/*
3623 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3624 * but allow concurrent faults).
3625 * The mmap_sem may have been released depending on flags and our
3626 * return value.  See filemap_fault() and __lock_page_or_retry().
3627 * If mmap_sem is released, vma may become invalid (for example
3628 * by other thread calling munmap()).
3629 */
3630static vm_fault_t do_fault(struct vm_fault *vmf)
3631{
3632        struct vm_area_struct *vma = vmf->vma;
3633        struct mm_struct *vm_mm = vma->vm_mm;
3634        vm_fault_t ret;
3635
3636        /*
3637         * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3638         */
3639        if (!vma->vm_ops->fault) {
3640                /*
3641                 * If we find a migration pmd entry or a none pmd entry, which
3642                 * should never happen, return SIGBUS
3643                 */
3644                if (unlikely(!pmd_present(*vmf->pmd)))
3645                        ret = VM_FAULT_SIGBUS;
3646                else {
3647                        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3648                                                       vmf->pmd,
3649                                                       vmf->address,
3650                                                       &vmf->ptl);
3651                        /*
3652                         * Make sure this is not a temporary clearing of pte
3653                         * by holding ptl and checking again. A R/M/W update
3654                         * of pte involves: take ptl, clearing the pte so that
3655                         * we don't have concurrent modification by hardware
3656                         * followed by an update.
3657                         */
3658                        if (unlikely(pte_none(*vmf->pte)))
3659                                ret = VM_FAULT_SIGBUS;
3660                        else
3661                                ret = VM_FAULT_NOPAGE;
3662
3663                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3664                }
3665        } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3666                ret = do_read_fault(vmf);
3667        else if (!(vma->vm_flags & VM_SHARED))
3668                ret = do_cow_fault(vmf);
3669        else
3670                ret = do_shared_fault(vmf);
3671
3672        /* preallocated pagetable is unused: free it */
3673        if (vmf->prealloc_pte) {
3674                pte_free(vm_mm, vmf->prealloc_pte);
3675                vmf->prealloc_pte = NULL;
3676        }
3677        return ret;
3678}
3679
3680static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3681                                unsigned long addr, int page_nid,
3682                                int *flags)
3683{
3684        get_page(page);
3685
3686        count_vm_numa_event(NUMA_HINT_FAULTS);
3687        if (page_nid == numa_node_id()) {
3688                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3689                *flags |= TNF_FAULT_LOCAL;
3690        }
3691
3692        return mpol_misplaced(page, vma, addr);
3693}
3694
3695static vm_fault_t do_numa_page(struct vm_fault *vmf)
3696{
3697        struct vm_area_struct *vma = vmf->vma;
3698        struct page *page = NULL;
3699        int page_nid = NUMA_NO_NODE;
3700        int last_cpupid;
3701        int target_nid;
3702        bool migrated = false;
3703        pte_t pte, old_pte;
3704        bool was_writable = pte_savedwrite(vmf->orig_pte);
3705        int flags = 0;
3706
3707        /*
3708         * The "pte" at this point cannot be used safely without
3709         * validation through pte_unmap_same(). It's of NUMA type but
3710         * the pfn may be screwed if the read is non atomic.
3711         */
3712        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3713        spin_lock(vmf->ptl);
3714        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3715                pte_unmap_unlock(vmf->pte, vmf->ptl);
3716                goto out;
3717        }
3718
3719        /*
3720         * Make it present again, Depending on how arch implementes non
3721         * accessible ptes, some can allow access by kernel mode.
3722         */
3723        old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3724        pte = pte_modify(old_pte, vma->vm_page_prot);
3725        pte = pte_mkyoung(pte);
3726        if (was_writable)
3727                pte = pte_mkwrite(pte);
3728        ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3729        update_mmu_cache(vma, vmf->address, vmf->pte);
3730
3731        page = vm_normal_page(vma, vmf->address, pte);
3732        if (!page) {
3733                pte_unmap_unlock(vmf->pte, vmf->ptl);
3734                return 0;
3735        }
3736
3737        /* TODO: handle PTE-mapped THP */
3738        if (PageCompound(page)) {
3739                pte_unmap_unlock(vmf->pte, vmf->ptl);
3740                return 0;
3741        }
3742
3743        /*
3744         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3745         * much anyway since they can be in shared cache state. This misses
3746         * the case where a mapping is writable but the process never writes
3747         * to it but pte_write gets cleared during protection updates and
3748         * pte_dirty has unpredictable behaviour between PTE scan updates,
3749         * background writeback, dirty balancing and application behaviour.
3750         */
3751        if (!pte_write(pte))
3752                flags |= TNF_NO_GROUP;
3753
3754        /*
3755         * Flag if the page is shared between multiple address spaces. This
3756         * is later used when determining whether to group tasks together
3757         */
3758        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3759                flags |= TNF_SHARED;
3760
3761        last_cpupid = page_cpupid_last(page);
3762        page_nid = page_to_nid(page);
3763        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3764                        &flags);
3765        pte_unmap_unlock(vmf->pte, vmf->ptl);
3766        if (target_nid == NUMA_NO_NODE) {
3767                put_page(page);
3768                goto out;
3769        }
3770
3771        /* Migrate to the requested node */
3772        migrated = migrate_misplaced_page(page, vma, target_nid);
3773        if (migrated) {
3774                page_nid = target_nid;
3775                flags |= TNF_MIGRATED;
3776        } else
3777                flags |= TNF_MIGRATE_FAIL;
3778
3779out:
3780        if (page_nid != NUMA_NO_NODE)
3781                task_numa_fault(last_cpupid, page_nid, 1, flags);
3782        return 0;
3783}
3784
3785static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3786{
3787        if (vma_is_anonymous(vmf->vma))
3788                return do_huge_pmd_anonymous_page(vmf);
3789        if (vmf->vma->vm_ops->huge_fault)
3790                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3791        return VM_FAULT_FALLBACK;
3792}
3793
3794/* `inline' is required to avoid gcc 4.1.2 build error */
3795static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3796{
3797        if (vma_is_anonymous(vmf->vma))
3798                return do_huge_pmd_wp_page(vmf, orig_pmd);
3799        if (vmf->vma->vm_ops->huge_fault)
3800                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3801
3802        /* COW handled on pte level: split pmd */
3803        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3804        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3805
3806        return VM_FAULT_FALLBACK;
3807}
3808
3809static inline bool vma_is_accessible(struct vm_area_struct *vma)
3810{
3811        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3812}
3813
3814static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3815{
3816#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3817        /* No support for anonymous transparent PUD pages yet */
3818        if (vma_is_anonymous(vmf->vma))
3819                return VM_FAULT_FALLBACK;
3820        if (vmf->vma->vm_ops->huge_fault)
3821                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3822#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3823        return VM_FAULT_FALLBACK;
3824}
3825
3826static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3827{
3828#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3829        /* No support for anonymous transparent PUD pages yet */
3830        if (vma_is_anonymous(vmf->vma))
3831                return VM_FAULT_FALLBACK;
3832        if (vmf->vma->vm_ops->huge_fault)
3833                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3834#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3835        return VM_FAULT_FALLBACK;
3836}
3837
3838/*
3839 * These routines also need to handle stuff like marking pages dirty
3840 * and/or accessed for architectures that don't do it in hardware (most
3841 * RISC architectures).  The early dirtying is also good on the i386.
3842 *
3843 * There is also a hook called "update_mmu_cache()" that architectures
3844 * with external mmu caches can use to update those (ie the Sparc or
3845 * PowerPC hashed page tables that act as extended TLBs).
3846 *
3847 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3848 * concurrent faults).
3849 *
3850 * The mmap_sem may have been released depending on flags and our return value.
3851 * See filemap_fault() and __lock_page_or_retry().
3852 */
3853static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3854{
3855        pte_t entry;
3856
3857        if (unlikely(pmd_none(*vmf->pmd))) {
3858                /*
3859                 * Leave __pte_alloc() until later: because vm_ops->fault may
3860                 * want to allocate huge page, and if we expose page table
3861                 * for an instant, it will be difficult to retract from
3862                 * concurrent faults and from rmap lookups.
3863                 */
3864                vmf->pte = NULL;
3865        } else {
3866                /* See comment in pte_alloc_one_map() */
3867                if (pmd_devmap_trans_unstable(vmf->pmd))
3868                        return 0;
3869                /*
3870                 * A regular pmd is established and it can't morph into a huge
3871                 * pmd from under us anymore at this point because we hold the
3872                 * mmap_sem read mode and khugepaged takes it in write mode.
3873                 * So now it's safe to run pte_offset_map().
3874                 */
3875                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3876                vmf->orig_pte = *vmf->pte;
3877
3878                /*
3879                 * some architectures can have larger ptes than wordsize,
3880                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3881                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3882                 * accesses.  The code below just needs a consistent view
3883                 * for the ifs and we later double check anyway with the
3884                 * ptl lock held. So here a barrier will do.
3885                 */
3886                barrier();
3887                if (pte_none(vmf->orig_pte)) {
3888                        pte_unmap(vmf->pte);
3889                        vmf->pte = NULL;
3890                }
3891        }
3892
3893        if (!vmf->pte) {
3894                if (vma_is_anonymous(vmf->vma))
3895                        return do_anonymous_page(vmf);
3896                else
3897                        return do_fault(vmf);
3898        }
3899
3900        if (!pte_present(vmf->orig_pte))
3901                return do_swap_page(vmf);
3902
3903        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3904                return do_numa_page(vmf);
3905
3906        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3907        spin_lock(vmf->ptl);
3908        entry = vmf->orig_pte;
3909        if (unlikely(!pte_same(*vmf->pte, entry)))
3910                goto unlock;
3911        if (vmf->flags & FAULT_FLAG_WRITE) {
3912                if (!pte_write(entry))
3913                        return do_wp_page(vmf);
3914                entry = pte_mkdirty(entry);
3915        }
3916        entry = pte_mkyoung(entry);
3917        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3918                                vmf->flags & FAULT_FLAG_WRITE)) {
3919                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3920        } else {
3921                /*
3922                 * This is needed only for protection faults but the arch code
3923                 * is not yet telling us if this is a protection fault or not.
3924                 * This still avoids useless tlb flushes for .text page faults
3925                 * with threads.
3926                 */
3927                if (vmf->flags & FAULT_FLAG_WRITE)
3928                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3929        }
3930unlock:
3931        pte_unmap_unlock(vmf->pte, vmf->ptl);
3932        return 0;
3933}
3934
3935/*
3936 * By the time we get here, we already hold the mm semaphore
3937 *
3938 * The mmap_sem may have been released depending on flags and our
3939 * return value.  See filemap_fault() and __lock_page_or_retry().
3940 */
3941static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3942                unsigned long address, unsigned int flags)
3943{
3944        struct vm_fault vmf = {
3945                .vma = vma,
3946                .address = address & PAGE_MASK,
3947                .flags = flags,
3948                .pgoff = linear_page_index(vma, address),
3949                .gfp_mask = __get_fault_gfp_mask(vma),
3950        };
3951        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3952        struct mm_struct *mm = vma->vm_mm;
3953        pgd_t *pgd;
3954        p4d_t *p4d;
3955        vm_fault_t ret;
3956
3957        pgd = pgd_offset(mm, address);
3958        p4d = p4d_alloc(mm, pgd, address);
3959        if (!p4d)
3960                return VM_FAULT_OOM;
3961
3962        vmf.pud = pud_alloc(mm, p4d, address);
3963        if (!vmf.pud)
3964                return VM_FAULT_OOM;
3965        if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3966                ret = create_huge_pud(&vmf);
3967                if (!(ret & VM_FAULT_FALLBACK))
3968                        return ret;
3969        } else {
3970                pud_t orig_pud = *vmf.pud;
3971
3972                barrier();
3973                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3974
3975                        /* NUMA case for anonymous PUDs would go here */
3976
3977                        if (dirty && !pud_write(orig_pud)) {
3978                                ret = wp_huge_pud(&vmf, orig_pud);
3979                                if (!(ret & VM_FAULT_FALLBACK))
3980                                        return ret;
3981                        } else {
3982                                huge_pud_set_accessed(&vmf, orig_pud);
3983                                return 0;
3984                        }
3985                }
3986        }
3987
3988        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3989        if (!vmf.pmd)
3990                return VM_FAULT_OOM;
3991        if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3992                ret = create_huge_pmd(&vmf);
3993                if (!(ret & VM_FAULT_FALLBACK))
3994                        return ret;
3995        } else {
3996                pmd_t orig_pmd = *vmf.pmd;
3997
3998                barrier();
3999                if (unlikely(is_swap_pmd(orig_pmd))) {
4000                        VM_BUG_ON(thp_migration_supported() &&
4001                                          !is_pmd_migration_entry(orig_pmd));
4002                        if (is_pmd_migration_entry(orig_pmd))
4003                                pmd_migration_entry_wait(mm, vmf.pmd);
4004                        return 0;
4005                }
4006                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4007                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4008                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
4009
4010                        if (dirty && !pmd_write(orig_pmd)) {
4011                                ret = wp_huge_pmd(&vmf, orig_pmd);
4012                                if (!(ret & VM_FAULT_FALLBACK))
4013                                        return ret;
4014                        } else {
4015                                huge_pmd_set_accessed(&vmf, orig_pmd);
4016                                return 0;
4017                        }
4018                }
4019        }
4020
4021        return handle_pte_fault(&vmf);
4022}
4023
4024/*
4025 * By the time we get here, we already hold the mm semaphore
4026 *
4027 * The mmap_sem may have been released depending on flags and our
4028 * return value.  See filemap_fault() and __lock_page_or_retry().
4029 */
4030vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4031                unsigned int flags)
4032{
4033        vm_fault_t ret;
4034
4035        __set_current_state(TASK_RUNNING);
4036
4037        count_vm_event(PGFAULT);
4038        count_memcg_event_mm(vma->vm_mm, PGFAULT);
4039
4040        /* do counter updates before entering really critical section. */
4041        check_sync_rss_stat(current);
4042
4043        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4044                                            flags & FAULT_FLAG_INSTRUCTION,
4045                                            flags & FAULT_FLAG_REMOTE))
4046                return VM_FAULT_SIGSEGV;
4047
4048        /*
4049         * Enable the memcg OOM handling for faults triggered in user
4050         * space.  Kernel faults are handled more gracefully.
4051         */
4052        if (flags & FAULT_FLAG_USER)
4053                mem_cgroup_enter_user_fault();
4054
4055        if (unlikely(is_vm_hugetlb_page(vma)))
4056                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4057        else
4058                ret = __handle_mm_fault(vma, address, flags);
4059
4060        if (flags & FAULT_FLAG_USER) {
4061                mem_cgroup_exit_user_fault();
4062                /*
4063                 * The task may have entered a memcg OOM situation but
4064                 * if the allocation error was handled gracefully (no
4065                 * VM_FAULT_OOM), there is no need to kill anything.
4066                 * Just clean up the OOM state peacefully.
4067                 */
4068                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4069                        mem_cgroup_oom_synchronize(false);
4070        }
4071
4072        return ret;
4073}
4074EXPORT_SYMBOL_GPL(handle_mm_fault);
4075
4076#ifndef __PAGETABLE_P4D_FOLDED
4077/*
4078 * Allocate p4d page table.
4079 * We've already handled the fast-path in-line.
4080 */
4081int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4082{
4083        p4d_t *new = p4d_alloc_one(mm, address);
4084        if (!new)
4085                return -ENOMEM;
4086
4087        smp_wmb(); /* See comment in __pte_alloc */
4088
4089        spin_lock(&mm->page_table_lock);
4090        if (pgd_present(*pgd))          /* Another has populated it */
4091                p4d_free(mm, new);
4092        else
4093                pgd_populate(mm, pgd, new);
4094        spin_unlock(&mm->page_table_lock);
4095        return 0;
4096}
4097#endif /* __PAGETABLE_P4D_FOLDED */
4098
4099#ifndef __PAGETABLE_PUD_FOLDED
4100/*
4101 * Allocate page upper directory.
4102 * We've already handled the fast-path in-line.
4103 */
4104int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4105{
4106        pud_t *new = pud_alloc_one(mm, address);
4107        if (!new)
4108                return -ENOMEM;
4109
4110        smp_wmb(); /* See comment in __pte_alloc */
4111
4112        spin_lock(&mm->page_table_lock);
4113#ifndef __ARCH_HAS_5LEVEL_HACK
4114        if (!p4d_present(*p4d)) {
4115                mm_inc_nr_puds(mm);
4116                p4d_populate(mm, p4d, new);
4117        } else  /* Another has populated it */
4118                pud_free(mm, new);
4119#else
4120        if (!pgd_present(*p4d)) {
4121                mm_inc_nr_puds(mm);
4122                pgd_populate(mm, p4d, new);
4123        } else  /* Another has populated it */
4124                pud_free(mm, new);
4125#endif /* __ARCH_HAS_5LEVEL_HACK */
4126        spin_unlock(&mm->page_table_lock);
4127        return 0;
4128}
4129#endif /* __PAGETABLE_PUD_FOLDED */
4130
4131#ifndef __PAGETABLE_PMD_FOLDED
4132/*
4133 * Allocate page middle directory.
4134 * We've already handled the fast-path in-line.
4135 */
4136int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4137{
4138        spinlock_t *ptl;
4139        pmd_t *new = pmd_alloc_one(mm, address);
4140        if (!new)
4141                return -ENOMEM;
4142
4143        smp_wmb(); /* See comment in __pte_alloc */
4144
4145        ptl = pud_lock(mm, pud);
4146#ifndef __ARCH_HAS_4LEVEL_HACK
4147        if (!pud_present(*pud)) {
4148                mm_inc_nr_pmds(mm);
4149                pud_populate(mm, pud, new);
4150        } else  /* Another has populated it */
4151                pmd_free(mm, new);
4152#else
4153        if (!pgd_present(*pud)) {
4154                mm_inc_nr_pmds(mm);
4155                pgd_populate(mm, pud, new);
4156        } else /* Another has populated it */
4157                pmd_free(mm, new);
4158#endif /* __ARCH_HAS_4LEVEL_HACK */
4159        spin_unlock(ptl);
4160        return 0;
4161}
4162#endif /* __PAGETABLE_PMD_FOLDED */
4163
4164static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4165                            struct mmu_notifier_range *range,
4166                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4167{
4168        pgd_t *pgd;
4169        p4d_t *p4d;
4170        pud_t *pud;
4171        pmd_t *pmd;
4172        pte_t *ptep;
4173
4174        pgd = pgd_offset(mm, address);
4175        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4176                goto out;
4177
4178        p4d = p4d_offset(pgd, address);
4179        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4180                goto out;
4181
4182        pud = pud_offset(p4d, address);
4183        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4184                goto out;
4185
4186        pmd = pmd_offset(pud, address);
4187        VM_BUG_ON(pmd_trans_huge(*pmd));
4188
4189        if (pmd_huge(*pmd)) {
4190                if (!pmdpp)
4191                        goto out;
4192
4193                if (range) {
4194                        mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4195                                                NULL, mm, address & PMD_MASK,
4196                                                (address & PMD_MASK) + PMD_SIZE);
4197                        mmu_notifier_invalidate_range_start(range);
4198                }
4199                *ptlp = pmd_lock(mm, pmd);
4200                if (pmd_huge(*pmd)) {
4201                        *pmdpp = pmd;
4202                        return 0;
4203                }
4204                spin_unlock(*ptlp);
4205                if (range)
4206                        mmu_notifier_invalidate_range_end(range);
4207        }
4208
4209        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4210                goto out;
4211
4212        if (range) {
4213                mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4214                                        address & PAGE_MASK,
4215                                        (address & PAGE_MASK) + PAGE_SIZE);
4216                mmu_notifier_invalidate_range_start(range);
4217        }
4218        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4219        if (!pte_present(*ptep))
4220                goto unlock;
4221        *ptepp = ptep;
4222        return 0;
4223unlock:
4224        pte_unmap_unlock(ptep, *ptlp);
4225        if (range)
4226                mmu_notifier_invalidate_range_end(range);
4227out:
4228        return -EINVAL;
4229}
4230
4231static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4232                             pte_t **ptepp, spinlock_t **ptlp)
4233{
4234        int res;
4235
4236        /* (void) is needed to make gcc happy */
4237        (void) __cond_lock(*ptlp,
4238                           !(res = __follow_pte_pmd(mm, address, NULL,
4239                                                    ptepp, NULL, ptlp)));
4240        return res;
4241}
4242
4243int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4244                   struct mmu_notifier_range *range,
4245                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4246{
4247        int res;
4248
4249        /* (void) is needed to make gcc happy */
4250        (void) __cond_lock(*ptlp,
4251                           !(res = __follow_pte_pmd(mm, address, range,
4252                                                    ptepp, pmdpp, ptlp)));
4253        return res;
4254}
4255EXPORT_SYMBOL(follow_pte_pmd);
4256
4257/**
4258 * follow_pfn - look up PFN at a user virtual address
4259 * @vma: memory mapping
4260 * @address: user virtual address
4261 * @pfn: location to store found PFN
4262 *
4263 * Only IO mappings and raw PFN mappings are allowed.
4264 *
4265 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4266 */
4267int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4268        unsigned long *pfn)
4269{
4270        int ret = -EINVAL;
4271        spinlock_t *ptl;
4272        pte_t *ptep;
4273
4274        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4275                return ret;
4276
4277        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4278        if (ret)
4279                return ret;
4280        *pfn = pte_pfn(*ptep);
4281        pte_unmap_unlock(ptep, ptl);
4282        return 0;
4283}
4284EXPORT_SYMBOL(follow_pfn);
4285
4286#ifdef CONFIG_HAVE_IOREMAP_PROT
4287int follow_phys(struct vm_area_struct *vma,
4288                unsigned long address, unsigned int flags,
4289                unsigned long *prot, resource_size_t *phys)
4290{
4291        int ret = -EINVAL;
4292        pte_t *ptep, pte;
4293        spinlock_t *ptl;
4294
4295        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4296                goto out;
4297
4298        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4299                goto out;
4300        pte = *ptep;
4301
4302        if ((flags & FOLL_WRITE) && !pte_write(pte))
4303                goto unlock;
4304
4305        *prot = pgprot_val(pte_pgprot(pte));
4306        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4307
4308        ret = 0;
4309unlock:
4310        pte_unmap_unlock(ptep, ptl);
4311out:
4312        return ret;
4313}
4314
4315int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4316                        void *buf, int len, int write)
4317{
4318        resource_size_t phys_addr;
4319        unsigned long prot = 0;
4320        void __iomem *maddr;
4321        int offset = addr & (PAGE_SIZE-1);
4322
4323        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4324                return -EINVAL;
4325
4326        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4327        if (!maddr)
4328                return -ENOMEM;
4329
4330        if (write)
4331                memcpy_toio(maddr + offset, buf, len);
4332        else
4333                memcpy_fromio(buf, maddr + offset, len);
4334        iounmap(maddr);
4335
4336        return len;
4337}
4338EXPORT_SYMBOL_GPL(generic_access_phys);
4339#endif
4340
4341/*
4342 * Access another process' address space as given in mm.  If non-NULL, use the
4343 * given task for page fault accounting.
4344 */
4345int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4346                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4347{
4348        struct vm_area_struct *vma;
4349        void *old_buf = buf;
4350        int write = gup_flags & FOLL_WRITE;
4351
4352        down_read(&mm->mmap_sem);
4353        /* ignore errors, just check how much was successfully transferred */
4354        while (len) {
4355                int bytes, ret, offset;
4356                void *maddr;
4357                struct page *page = NULL;
4358
4359                ret = get_user_pages_remote(tsk, mm, addr, 1,
4360                                gup_flags, &page, &vma, NULL);
4361                if (ret <= 0) {
4362#ifndef CONFIG_HAVE_IOREMAP_PROT
4363                        break;
4364#else
4365                        /*
4366                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4367                         * we can access using slightly different code.
4368                         */
4369                        vma = find_vma(mm, addr);
4370                        if (!vma || vma->vm_start > addr)
4371                                break;
4372                        if (vma->vm_ops && vma->vm_ops->access)
4373                                ret = vma->vm_ops->access(vma, addr, buf,
4374                                                          len, write);
4375                        if (ret <= 0)
4376                                break;
4377                        bytes = ret;
4378#endif
4379                } else {
4380                        bytes = len;
4381                        offset = addr & (PAGE_SIZE-1);
4382                        if (bytes > PAGE_SIZE-offset)
4383                                bytes = PAGE_SIZE-offset;
4384
4385                        maddr = kmap(page);
4386                        if (write) {
4387                                copy_to_user_page(vma, page, addr,
4388                                                  maddr + offset, buf, bytes);
4389                                set_page_dirty_lock(page);
4390                        } else {
4391                                copy_from_user_page(vma, page, addr,
4392                                                    buf, maddr + offset, bytes);
4393                        }
4394                        kunmap(page);
4395                        put_page(page);
4396                }
4397                len -= bytes;
4398                buf += bytes;
4399                addr += bytes;
4400        }
4401        up_read(&mm->mmap_sem);
4402
4403        return buf - old_buf;
4404}
4405
4406/**
4407 * access_remote_vm - access another process' address space
4408 * @mm:         the mm_struct of the target address space
4409 * @addr:       start address to access
4410 * @buf:        source or destination buffer
4411 * @len:        number of bytes to transfer
4412 * @gup_flags:  flags modifying lookup behaviour
4413 *
4414 * The caller must hold a reference on @mm.
4415 *
4416 * Return: number of bytes copied from source to destination.
4417 */
4418int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4419                void *buf, int len, unsigned int gup_flags)
4420{
4421        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4422}
4423
4424/*
4425 * Access another process' address space.
4426 * Source/target buffer must be kernel space,
4427 * Do not walk the page table directly, use get_user_pages
4428 */
4429int access_process_vm(struct task_struct *tsk, unsigned long addr,
4430                void *buf, int len, unsigned int gup_flags)
4431{
4432        struct mm_struct *mm;
4433        int ret;
4434
4435        mm = get_task_mm(tsk);
4436        if (!mm)
4437                return 0;
4438
4439        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4440
4441        mmput(mm);
4442
4443        return ret;
4444}
4445EXPORT_SYMBOL_GPL(access_process_vm);
4446
4447/*
4448 * Print the name of a VMA.
4449 */
4450void print_vma_addr(char *prefix, unsigned long ip)
4451{
4452        struct mm_struct *mm = current->mm;
4453        struct vm_area_struct *vma;
4454
4455        /*
4456         * we might be running from an atomic context so we cannot sleep
4457         */
4458        if (!down_read_trylock(&mm->mmap_sem))
4459                return;
4460
4461        vma = find_vma(mm, ip);
4462        if (vma && vma->vm_file) {
4463                struct file *f = vma->vm_file;
4464                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4465                if (buf) {
4466                        char *p;
4467
4468                        p = file_path(f, buf, PAGE_SIZE);
4469                        if (IS_ERR(p))
4470                                p = "?";
4471                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4472                                        vma->vm_start,
4473                                        vma->vm_end - vma->vm_start);
4474                        free_page((unsigned long)buf);
4475                }
4476        }
4477        up_read(&mm->mmap_sem);
4478}
4479
4480#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4481void __might_fault(const char *file, int line)
4482{
4483        /*
4484         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4485         * holding the mmap_sem, this is safe because kernel memory doesn't
4486         * get paged out, therefore we'll never actually fault, and the
4487         * below annotations will generate false positives.
4488         */
4489        if (uaccess_kernel())
4490                return;
4491        if (pagefault_disabled())
4492                return;
4493        __might_sleep(file, line, 0);
4494#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4495        if (current->mm)
4496                might_lock_read(&current->mm->mmap_sem);
4497#endif
4498}
4499EXPORT_SYMBOL(__might_fault);
4500#endif
4501
4502#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4503/*
4504 * Process all subpages of the specified huge page with the specified
4505 * operation.  The target subpage will be processed last to keep its
4506 * cache lines hot.
4507 */
4508static inline void process_huge_page(
4509        unsigned long addr_hint, unsigned int pages_per_huge_page,
4510        void (*process_subpage)(unsigned long addr, int idx, void *arg),
4511        void *arg)
4512{
4513        int i, n, base, l;
4514        unsigned long addr = addr_hint &
4515                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4516
4517        /* Process target subpage last to keep its cache lines hot */
4518        might_sleep();
4519        n = (addr_hint - addr) / PAGE_SIZE;
4520        if (2 * n <= pages_per_huge_page) {
4521                /* If target subpage in first half of huge page */
4522                base = 0;
4523                l = n;
4524                /* Process subpages at the end of huge page */
4525                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4526                        cond_resched();
4527                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4528                }
4529        } else {
4530                /* If target subpage in second half of huge page */
4531                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4532                l = pages_per_huge_page - n;
4533                /* Process subpages at the begin of huge page */
4534                for (i = 0; i < base; i++) {
4535                        cond_resched();
4536                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4537                }
4538        }
4539        /*
4540         * Process remaining subpages in left-right-left-right pattern
4541         * towards the target subpage
4542         */
4543        for (i = 0; i < l; i++) {
4544                int left_idx = base + i;
4545                int right_idx = base + 2 * l - 1 - i;
4546
4547                cond_resched();
4548                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4549                cond_resched();
4550                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4551        }
4552}
4553
4554static void clear_gigantic_page(struct page *page,
4555                                unsigned long addr,
4556                                unsigned int pages_per_huge_page)
4557{
4558        int i;
4559        struct page *p = page;
4560
4561        might_sleep();
4562        for (i = 0; i < pages_per_huge_page;
4563             i++, p = mem_map_next(p, page, i)) {
4564                cond_resched();
4565                clear_user_highpage(p, addr + i * PAGE_SIZE);
4566        }
4567}
4568
4569static void clear_subpage(unsigned long addr, int idx, void *arg)
4570{
4571        struct page *page = arg;
4572
4573        clear_user_highpage(page + idx, addr);
4574}
4575
4576void clear_huge_page(struct page *page,
4577                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4578{
4579        unsigned long addr = addr_hint &
4580                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4581
4582        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4583                clear_gigantic_page(page, addr, pages_per_huge_page);
4584                return;
4585        }
4586
4587        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4588}
4589
4590static void copy_user_gigantic_page(struct page *dst, struct page *src,
4591                                    unsigned long addr,
4592                                    struct vm_area_struct *vma,
4593                                    unsigned int pages_per_huge_page)
4594{
4595        int i;
4596        struct page *dst_base = dst;
4597        struct page *src_base = src;
4598
4599        for (i = 0; i < pages_per_huge_page; ) {
4600                cond_resched();
4601                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4602
4603                i++;
4604                dst = mem_map_next(dst, dst_base, i);
4605                src = mem_map_next(src, src_base, i);
4606        }
4607}
4608
4609struct copy_subpage_arg {
4610        struct page *dst;
4611        struct page *src;
4612        struct vm_area_struct *vma;
4613};
4614
4615static void copy_subpage(unsigned long addr, int idx, void *arg)
4616{
4617        struct copy_subpage_arg *copy_arg = arg;
4618
4619        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4620                           addr, copy_arg->vma);
4621}
4622
4623void copy_user_huge_page(struct page *dst, struct page *src,
4624                         unsigned long addr_hint, struct vm_area_struct *vma,
4625                         unsigned int pages_per_huge_page)
4626{
4627        unsigned long addr = addr_hint &
4628                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4629        struct copy_subpage_arg arg = {
4630                .dst = dst,
4631                .src = src,
4632                .vma = vma,
4633        };
4634
4635        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4636                copy_user_gigantic_page(dst, src, addr, vma,
4637                                        pages_per_huge_page);
4638                return;
4639        }
4640
4641        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4642}
4643
4644long copy_huge_page_from_user(struct page *dst_page,
4645                                const void __user *usr_src,
4646                                unsigned int pages_per_huge_page,
4647                                bool allow_pagefault)
4648{
4649        void *src = (void *)usr_src;
4650        void *page_kaddr;
4651        unsigned long i, rc = 0;
4652        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4653
4654        for (i = 0; i < pages_per_huge_page; i++) {
4655                if (allow_pagefault)
4656                        page_kaddr = kmap(dst_page + i);
4657                else
4658                        page_kaddr = kmap_atomic(dst_page + i);
4659                rc = copy_from_user(page_kaddr,
4660                                (const void __user *)(src + i * PAGE_SIZE),
4661                                PAGE_SIZE);
4662                if (allow_pagefault)
4663                        kunmap(dst_page + i);
4664                else
4665                        kunmap_atomic(page_kaddr);
4666
4667                ret_val -= (PAGE_SIZE - rc);
4668                if (rc)
4669                        break;
4670
4671                cond_resched();
4672        }
4673        return ret_val;
4674}
4675#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4676
4677#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4678
4679static struct kmem_cache *page_ptl_cachep;
4680
4681void __init ptlock_cache_init(void)
4682{
4683        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4684                        SLAB_PANIC, NULL);
4685}
4686
4687bool ptlock_alloc(struct page *page)
4688{
4689        spinlock_t *ptl;
4690
4691        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4692        if (!ptl)
4693                return false;
4694        page->ptl = ptl;
4695        return true;
4696}
4697
4698void ptlock_free(struct page *page)
4699{
4700        kmem_cache_free(page_ptl_cachep, page->ptl);
4701}
4702#endif
4703