linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45/*
  46 * online_page_callback contains pointer to current page onlining function.
  47 * Initially it is generic_online_page(). If it is required it could be
  48 * changed by calling set_online_page_callback() for callback registration
  49 * and restore_online_page_callback() for generic callback restore.
  50 */
  51
  52static void generic_online_page(struct page *page, unsigned int order);
  53
  54static online_page_callback_t online_page_callback = generic_online_page;
  55static DEFINE_MUTEX(online_page_callback_lock);
  56
  57DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  58
  59void get_online_mems(void)
  60{
  61        percpu_down_read(&mem_hotplug_lock);
  62}
  63
  64void put_online_mems(void)
  65{
  66        percpu_up_read(&mem_hotplug_lock);
  67}
  68
  69bool movable_node_enabled = false;
  70
  71#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  72bool memhp_auto_online;
  73#else
  74bool memhp_auto_online = true;
  75#endif
  76EXPORT_SYMBOL_GPL(memhp_auto_online);
  77
  78static int __init setup_memhp_default_state(char *str)
  79{
  80        if (!strcmp(str, "online"))
  81                memhp_auto_online = true;
  82        else if (!strcmp(str, "offline"))
  83                memhp_auto_online = false;
  84
  85        return 1;
  86}
  87__setup("memhp_default_state=", setup_memhp_default_state);
  88
  89void mem_hotplug_begin(void)
  90{
  91        cpus_read_lock();
  92        percpu_down_write(&mem_hotplug_lock);
  93}
  94
  95void mem_hotplug_done(void)
  96{
  97        percpu_up_write(&mem_hotplug_lock);
  98        cpus_read_unlock();
  99}
 100
 101u64 max_mem_size = U64_MAX;
 102
 103/* add this memory to iomem resource */
 104static struct resource *register_memory_resource(u64 start, u64 size)
 105{
 106        struct resource *res;
 107        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 108        char *resource_name = "System RAM";
 109
 110        if (start + size > max_mem_size)
 111                return ERR_PTR(-E2BIG);
 112
 113        /*
 114         * Request ownership of the new memory range.  This might be
 115         * a child of an existing resource that was present but
 116         * not marked as busy.
 117         */
 118        res = __request_region(&iomem_resource, start, size,
 119                               resource_name, flags);
 120
 121        if (!res) {
 122                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 123                                start, start + size);
 124                return ERR_PTR(-EEXIST);
 125        }
 126        return res;
 127}
 128
 129static void release_memory_resource(struct resource *res)
 130{
 131        if (!res)
 132                return;
 133        release_resource(res);
 134        kfree(res);
 135        return;
 136}
 137
 138#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 139void get_page_bootmem(unsigned long info,  struct page *page,
 140                      unsigned long type)
 141{
 142        page->freelist = (void *)type;
 143        SetPagePrivate(page);
 144        set_page_private(page, info);
 145        page_ref_inc(page);
 146}
 147
 148void put_page_bootmem(struct page *page)
 149{
 150        unsigned long type;
 151
 152        type = (unsigned long) page->freelist;
 153        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 154               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 155
 156        if (page_ref_dec_return(page) == 1) {
 157                page->freelist = NULL;
 158                ClearPagePrivate(page);
 159                set_page_private(page, 0);
 160                INIT_LIST_HEAD(&page->lru);
 161                free_reserved_page(page);
 162        }
 163}
 164
 165#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 166#ifndef CONFIG_SPARSEMEM_VMEMMAP
 167static void register_page_bootmem_info_section(unsigned long start_pfn)
 168{
 169        unsigned long *usemap, mapsize, section_nr, i;
 170        struct mem_section *ms;
 171        struct page *page, *memmap;
 172
 173        section_nr = pfn_to_section_nr(start_pfn);
 174        ms = __nr_to_section(section_nr);
 175
 176        /* Get section's memmap address */
 177        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 178
 179        /*
 180         * Get page for the memmap's phys address
 181         * XXX: need more consideration for sparse_vmemmap...
 182         */
 183        page = virt_to_page(memmap);
 184        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 185        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 186
 187        /* remember memmap's page */
 188        for (i = 0; i < mapsize; i++, page++)
 189                get_page_bootmem(section_nr, page, SECTION_INFO);
 190
 191        usemap = ms->pageblock_flags;
 192        page = virt_to_page(usemap);
 193
 194        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 195
 196        for (i = 0; i < mapsize; i++, page++)
 197                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 198
 199}
 200#else /* CONFIG_SPARSEMEM_VMEMMAP */
 201static void register_page_bootmem_info_section(unsigned long start_pfn)
 202{
 203        unsigned long *usemap, mapsize, section_nr, i;
 204        struct mem_section *ms;
 205        struct page *page, *memmap;
 206
 207        section_nr = pfn_to_section_nr(start_pfn);
 208        ms = __nr_to_section(section_nr);
 209
 210        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 211
 212        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 213
 214        usemap = ms->pageblock_flags;
 215        page = virt_to_page(usemap);
 216
 217        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 218
 219        for (i = 0; i < mapsize; i++, page++)
 220                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 221}
 222#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 223
 224void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
 225{
 226        unsigned long i, pfn, end_pfn, nr_pages;
 227        int node = pgdat->node_id;
 228        struct page *page;
 229
 230        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 231        page = virt_to_page(pgdat);
 232
 233        for (i = 0; i < nr_pages; i++, page++)
 234                get_page_bootmem(node, page, NODE_INFO);
 235
 236        pfn = pgdat->node_start_pfn;
 237        end_pfn = pgdat_end_pfn(pgdat);
 238
 239        /* register section info */
 240        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 241                /*
 242                 * Some platforms can assign the same pfn to multiple nodes - on
 243                 * node0 as well as nodeN.  To avoid registering a pfn against
 244                 * multiple nodes we check that this pfn does not already
 245                 * reside in some other nodes.
 246                 */
 247                if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
 248                        register_page_bootmem_info_section(pfn);
 249        }
 250}
 251#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 252
 253static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
 254                struct vmem_altmap *altmap, bool want_memblock)
 255{
 256        int ret;
 257
 258        if (pfn_valid(phys_start_pfn))
 259                return -EEXIST;
 260
 261        ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
 262        if (ret < 0)
 263                return ret;
 264
 265        if (!want_memblock)
 266                return 0;
 267
 268        return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
 269}
 270
 271/*
 272 * Reasonably generic function for adding memory.  It is
 273 * expected that archs that support memory hotplug will
 274 * call this function after deciding the zone to which to
 275 * add the new pages.
 276 */
 277int __ref __add_pages(int nid, unsigned long phys_start_pfn,
 278                unsigned long nr_pages, struct mhp_restrictions *restrictions)
 279{
 280        unsigned long i;
 281        int err = 0;
 282        int start_sec, end_sec;
 283        struct vmem_altmap *altmap = restrictions->altmap;
 284
 285        /* during initialize mem_map, align hot-added range to section */
 286        start_sec = pfn_to_section_nr(phys_start_pfn);
 287        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 288
 289        if (altmap) {
 290                /*
 291                 * Validate altmap is within bounds of the total request
 292                 */
 293                if (altmap->base_pfn != phys_start_pfn
 294                                || vmem_altmap_offset(altmap) > nr_pages) {
 295                        pr_warn_once("memory add fail, invalid altmap\n");
 296                        err = -EINVAL;
 297                        goto out;
 298                }
 299                altmap->alloc = 0;
 300        }
 301
 302        for (i = start_sec; i <= end_sec; i++) {
 303                err = __add_section(nid, section_nr_to_pfn(i), altmap,
 304                                restrictions->flags & MHP_MEMBLOCK_API);
 305
 306                /*
 307                 * EEXIST is finally dealt with by ioresource collision
 308                 * check. see add_memory() => register_memory_resource()
 309                 * Warning will be printed if there is collision.
 310                 */
 311                if (err && (err != -EEXIST))
 312                        break;
 313                err = 0;
 314                cond_resched();
 315        }
 316        vmemmap_populate_print_last();
 317out:
 318        return err;
 319}
 320
 321#ifdef CONFIG_MEMORY_HOTREMOVE
 322/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 323static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 324                                     unsigned long start_pfn,
 325                                     unsigned long end_pfn)
 326{
 327        struct mem_section *ms;
 328
 329        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 330                ms = __pfn_to_section(start_pfn);
 331
 332                if (unlikely(!valid_section(ms)))
 333                        continue;
 334
 335                if (unlikely(pfn_to_nid(start_pfn) != nid))
 336                        continue;
 337
 338                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 339                        continue;
 340
 341                return start_pfn;
 342        }
 343
 344        return 0;
 345}
 346
 347/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 348static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 349                                    unsigned long start_pfn,
 350                                    unsigned long end_pfn)
 351{
 352        struct mem_section *ms;
 353        unsigned long pfn;
 354
 355        /* pfn is the end pfn of a memory section. */
 356        pfn = end_pfn - 1;
 357        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 358                ms = __pfn_to_section(pfn);
 359
 360                if (unlikely(!valid_section(ms)))
 361                        continue;
 362
 363                if (unlikely(pfn_to_nid(pfn) != nid))
 364                        continue;
 365
 366                if (zone && zone != page_zone(pfn_to_page(pfn)))
 367                        continue;
 368
 369                return pfn;
 370        }
 371
 372        return 0;
 373}
 374
 375static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 376                             unsigned long end_pfn)
 377{
 378        unsigned long zone_start_pfn = zone->zone_start_pfn;
 379        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 380        unsigned long zone_end_pfn = z;
 381        unsigned long pfn;
 382        struct mem_section *ms;
 383        int nid = zone_to_nid(zone);
 384
 385        zone_span_writelock(zone);
 386        if (zone_start_pfn == start_pfn) {
 387                /*
 388                 * If the section is smallest section in the zone, it need
 389                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 390                 * In this case, we find second smallest valid mem_section
 391                 * for shrinking zone.
 392                 */
 393                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 394                                                zone_end_pfn);
 395                if (pfn) {
 396                        zone->zone_start_pfn = pfn;
 397                        zone->spanned_pages = zone_end_pfn - pfn;
 398                }
 399        } else if (zone_end_pfn == end_pfn) {
 400                /*
 401                 * If the section is biggest section in the zone, it need
 402                 * shrink zone->spanned_pages.
 403                 * In this case, we find second biggest valid mem_section for
 404                 * shrinking zone.
 405                 */
 406                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 407                                               start_pfn);
 408                if (pfn)
 409                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 410        }
 411
 412        /*
 413         * The section is not biggest or smallest mem_section in the zone, it
 414         * only creates a hole in the zone. So in this case, we need not
 415         * change the zone. But perhaps, the zone has only hole data. Thus
 416         * it check the zone has only hole or not.
 417         */
 418        pfn = zone_start_pfn;
 419        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 420                ms = __pfn_to_section(pfn);
 421
 422                if (unlikely(!valid_section(ms)))
 423                        continue;
 424
 425                if (page_zone(pfn_to_page(pfn)) != zone)
 426                        continue;
 427
 428                 /* If the section is current section, it continues the loop */
 429                if (start_pfn == pfn)
 430                        continue;
 431
 432                /* If we find valid section, we have nothing to do */
 433                zone_span_writeunlock(zone);
 434                return;
 435        }
 436
 437        /* The zone has no valid section */
 438        zone->zone_start_pfn = 0;
 439        zone->spanned_pages = 0;
 440        zone_span_writeunlock(zone);
 441}
 442
 443static void shrink_pgdat_span(struct pglist_data *pgdat,
 444                              unsigned long start_pfn, unsigned long end_pfn)
 445{
 446        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 447        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 448        unsigned long pgdat_end_pfn = p;
 449        unsigned long pfn;
 450        struct mem_section *ms;
 451        int nid = pgdat->node_id;
 452
 453        if (pgdat_start_pfn == start_pfn) {
 454                /*
 455                 * If the section is smallest section in the pgdat, it need
 456                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 457                 * In this case, we find second smallest valid mem_section
 458                 * for shrinking zone.
 459                 */
 460                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 461                                                pgdat_end_pfn);
 462                if (pfn) {
 463                        pgdat->node_start_pfn = pfn;
 464                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 465                }
 466        } else if (pgdat_end_pfn == end_pfn) {
 467                /*
 468                 * If the section is biggest section in the pgdat, it need
 469                 * shrink pgdat->node_spanned_pages.
 470                 * In this case, we find second biggest valid mem_section for
 471                 * shrinking zone.
 472                 */
 473                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 474                                               start_pfn);
 475                if (pfn)
 476                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 477        }
 478
 479        /*
 480         * If the section is not biggest or smallest mem_section in the pgdat,
 481         * it only creates a hole in the pgdat. So in this case, we need not
 482         * change the pgdat.
 483         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 484         * has only hole or not.
 485         */
 486        pfn = pgdat_start_pfn;
 487        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 488                ms = __pfn_to_section(pfn);
 489
 490                if (unlikely(!valid_section(ms)))
 491                        continue;
 492
 493                if (pfn_to_nid(pfn) != nid)
 494                        continue;
 495
 496                 /* If the section is current section, it continues the loop */
 497                if (start_pfn == pfn)
 498                        continue;
 499
 500                /* If we find valid section, we have nothing to do */
 501                return;
 502        }
 503
 504        /* The pgdat has no valid section */
 505        pgdat->node_start_pfn = 0;
 506        pgdat->node_spanned_pages = 0;
 507}
 508
 509static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 510{
 511        struct pglist_data *pgdat = zone->zone_pgdat;
 512        int nr_pages = PAGES_PER_SECTION;
 513        unsigned long flags;
 514
 515        pgdat_resize_lock(zone->zone_pgdat, &flags);
 516        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 517        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 518        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 519}
 520
 521static void __remove_section(struct zone *zone, struct mem_section *ms,
 522                             unsigned long map_offset,
 523                             struct vmem_altmap *altmap)
 524{
 525        unsigned long start_pfn;
 526        int scn_nr;
 527
 528        if (WARN_ON_ONCE(!valid_section(ms)))
 529                return;
 530
 531        unregister_memory_section(ms);
 532
 533        scn_nr = __section_nr(ms);
 534        start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
 535        __remove_zone(zone, start_pfn);
 536
 537        sparse_remove_one_section(zone, ms, map_offset, altmap);
 538}
 539
 540/**
 541 * __remove_pages() - remove sections of pages from a zone
 542 * @zone: zone from which pages need to be removed
 543 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 544 * @nr_pages: number of pages to remove (must be multiple of section size)
 545 * @altmap: alternative device page map or %NULL if default memmap is used
 546 *
 547 * Generic helper function to remove section mappings and sysfs entries
 548 * for the section of the memory we are removing. Caller needs to make
 549 * sure that pages are marked reserved and zones are adjust properly by
 550 * calling offline_pages().
 551 */
 552void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 553                    unsigned long nr_pages, struct vmem_altmap *altmap)
 554{
 555        unsigned long i;
 556        unsigned long map_offset = 0;
 557        int sections_to_remove;
 558
 559        /* In the ZONE_DEVICE case device driver owns the memory region */
 560        if (is_dev_zone(zone)) {
 561                if (altmap)
 562                        map_offset = vmem_altmap_offset(altmap);
 563        }
 564
 565        clear_zone_contiguous(zone);
 566
 567        /*
 568         * We can only remove entire sections
 569         */
 570        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 571        BUG_ON(nr_pages % PAGES_PER_SECTION);
 572
 573        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 574        for (i = 0; i < sections_to_remove; i++) {
 575                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 576
 577                cond_resched();
 578                __remove_section(zone, __pfn_to_section(pfn), map_offset,
 579                                 altmap);
 580                map_offset = 0;
 581        }
 582
 583        set_zone_contiguous(zone);
 584}
 585#endif /* CONFIG_MEMORY_HOTREMOVE */
 586
 587int set_online_page_callback(online_page_callback_t callback)
 588{
 589        int rc = -EINVAL;
 590
 591        get_online_mems();
 592        mutex_lock(&online_page_callback_lock);
 593
 594        if (online_page_callback == generic_online_page) {
 595                online_page_callback = callback;
 596                rc = 0;
 597        }
 598
 599        mutex_unlock(&online_page_callback_lock);
 600        put_online_mems();
 601
 602        return rc;
 603}
 604EXPORT_SYMBOL_GPL(set_online_page_callback);
 605
 606int restore_online_page_callback(online_page_callback_t callback)
 607{
 608        int rc = -EINVAL;
 609
 610        get_online_mems();
 611        mutex_lock(&online_page_callback_lock);
 612
 613        if (online_page_callback == callback) {
 614                online_page_callback = generic_online_page;
 615                rc = 0;
 616        }
 617
 618        mutex_unlock(&online_page_callback_lock);
 619        put_online_mems();
 620
 621        return rc;
 622}
 623EXPORT_SYMBOL_GPL(restore_online_page_callback);
 624
 625void __online_page_set_limits(struct page *page)
 626{
 627}
 628EXPORT_SYMBOL_GPL(__online_page_set_limits);
 629
 630void __online_page_increment_counters(struct page *page)
 631{
 632        adjust_managed_page_count(page, 1);
 633}
 634EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 635
 636void __online_page_free(struct page *page)
 637{
 638        __free_reserved_page(page);
 639}
 640EXPORT_SYMBOL_GPL(__online_page_free);
 641
 642static void generic_online_page(struct page *page, unsigned int order)
 643{
 644        kernel_map_pages(page, 1 << order, 1);
 645        __free_pages_core(page, order);
 646        totalram_pages_add(1UL << order);
 647#ifdef CONFIG_HIGHMEM
 648        if (PageHighMem(page))
 649                totalhigh_pages_add(1UL << order);
 650#endif
 651}
 652
 653static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
 654{
 655        unsigned long end = start + nr_pages;
 656        int order, onlined_pages = 0;
 657
 658        while (start < end) {
 659                order = min(MAX_ORDER - 1,
 660                        get_order(PFN_PHYS(end) - PFN_PHYS(start)));
 661                (*online_page_callback)(pfn_to_page(start), order);
 662
 663                onlined_pages += (1UL << order);
 664                start += (1UL << order);
 665        }
 666        return onlined_pages;
 667}
 668
 669static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 670                        void *arg)
 671{
 672        unsigned long onlined_pages = *(unsigned long *)arg;
 673
 674        if (PageReserved(pfn_to_page(start_pfn)))
 675                onlined_pages += online_pages_blocks(start_pfn, nr_pages);
 676
 677        online_mem_sections(start_pfn, start_pfn + nr_pages);
 678
 679        *(unsigned long *)arg = onlined_pages;
 680        return 0;
 681}
 682
 683/* check which state of node_states will be changed when online memory */
 684static void node_states_check_changes_online(unsigned long nr_pages,
 685        struct zone *zone, struct memory_notify *arg)
 686{
 687        int nid = zone_to_nid(zone);
 688
 689        arg->status_change_nid = NUMA_NO_NODE;
 690        arg->status_change_nid_normal = NUMA_NO_NODE;
 691        arg->status_change_nid_high = NUMA_NO_NODE;
 692
 693        if (!node_state(nid, N_MEMORY))
 694                arg->status_change_nid = nid;
 695        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 696                arg->status_change_nid_normal = nid;
 697#ifdef CONFIG_HIGHMEM
 698        if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 699                arg->status_change_nid_high = nid;
 700#endif
 701}
 702
 703static void node_states_set_node(int node, struct memory_notify *arg)
 704{
 705        if (arg->status_change_nid_normal >= 0)
 706                node_set_state(node, N_NORMAL_MEMORY);
 707
 708        if (arg->status_change_nid_high >= 0)
 709                node_set_state(node, N_HIGH_MEMORY);
 710
 711        if (arg->status_change_nid >= 0)
 712                node_set_state(node, N_MEMORY);
 713}
 714
 715static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 716                unsigned long nr_pages)
 717{
 718        unsigned long old_end_pfn = zone_end_pfn(zone);
 719
 720        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 721                zone->zone_start_pfn = start_pfn;
 722
 723        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 724}
 725
 726static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 727                                     unsigned long nr_pages)
 728{
 729        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 730
 731        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 732                pgdat->node_start_pfn = start_pfn;
 733
 734        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 735}
 736
 737void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 738                unsigned long nr_pages, struct vmem_altmap *altmap)
 739{
 740        struct pglist_data *pgdat = zone->zone_pgdat;
 741        int nid = pgdat->node_id;
 742        unsigned long flags;
 743
 744        clear_zone_contiguous(zone);
 745
 746        /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
 747        pgdat_resize_lock(pgdat, &flags);
 748        zone_span_writelock(zone);
 749        if (zone_is_empty(zone))
 750                init_currently_empty_zone(zone, start_pfn, nr_pages);
 751        resize_zone_range(zone, start_pfn, nr_pages);
 752        zone_span_writeunlock(zone);
 753        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 754        pgdat_resize_unlock(pgdat, &flags);
 755
 756        /*
 757         * TODO now we have a visible range of pages which are not associated
 758         * with their zone properly. Not nice but set_pfnblock_flags_mask
 759         * expects the zone spans the pfn range. All the pages in the range
 760         * are reserved so nobody should be touching them so we should be safe
 761         */
 762        memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
 763                        MEMMAP_HOTPLUG, altmap);
 764
 765        set_zone_contiguous(zone);
 766}
 767
 768/*
 769 * Returns a default kernel memory zone for the given pfn range.
 770 * If no kernel zone covers this pfn range it will automatically go
 771 * to the ZONE_NORMAL.
 772 */
 773static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 774                unsigned long nr_pages)
 775{
 776        struct pglist_data *pgdat = NODE_DATA(nid);
 777        int zid;
 778
 779        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 780                struct zone *zone = &pgdat->node_zones[zid];
 781
 782                if (zone_intersects(zone, start_pfn, nr_pages))
 783                        return zone;
 784        }
 785
 786        return &pgdat->node_zones[ZONE_NORMAL];
 787}
 788
 789static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 790                unsigned long nr_pages)
 791{
 792        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 793                        nr_pages);
 794        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 795        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 796        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 797
 798        /*
 799         * We inherit the existing zone in a simple case where zones do not
 800         * overlap in the given range
 801         */
 802        if (in_kernel ^ in_movable)
 803                return (in_kernel) ? kernel_zone : movable_zone;
 804
 805        /*
 806         * If the range doesn't belong to any zone or two zones overlap in the
 807         * given range then we use movable zone only if movable_node is
 808         * enabled because we always online to a kernel zone by default.
 809         */
 810        return movable_node_enabled ? movable_zone : kernel_zone;
 811}
 812
 813struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 814                unsigned long nr_pages)
 815{
 816        if (online_type == MMOP_ONLINE_KERNEL)
 817                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 818
 819        if (online_type == MMOP_ONLINE_MOVABLE)
 820                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 821
 822        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 823}
 824
 825/*
 826 * Associates the given pfn range with the given node and the zone appropriate
 827 * for the given online type.
 828 */
 829static struct zone * __meminit move_pfn_range(int online_type, int nid,
 830                unsigned long start_pfn, unsigned long nr_pages)
 831{
 832        struct zone *zone;
 833
 834        zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
 835        move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
 836        return zone;
 837}
 838
 839int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 840{
 841        unsigned long flags;
 842        unsigned long onlined_pages = 0;
 843        struct zone *zone;
 844        int need_zonelists_rebuild = 0;
 845        int nid;
 846        int ret;
 847        struct memory_notify arg;
 848        struct memory_block *mem;
 849
 850        mem_hotplug_begin();
 851
 852        /*
 853         * We can't use pfn_to_nid() because nid might be stored in struct page
 854         * which is not yet initialized. Instead, we find nid from memory block.
 855         */
 856        mem = find_memory_block(__pfn_to_section(pfn));
 857        nid = mem->nid;
 858        put_device(&mem->dev);
 859
 860        /* associate pfn range with the zone */
 861        zone = move_pfn_range(online_type, nid, pfn, nr_pages);
 862
 863        arg.start_pfn = pfn;
 864        arg.nr_pages = nr_pages;
 865        node_states_check_changes_online(nr_pages, zone, &arg);
 866
 867        ret = memory_notify(MEM_GOING_ONLINE, &arg);
 868        ret = notifier_to_errno(ret);
 869        if (ret)
 870                goto failed_addition;
 871
 872        /*
 873         * If this zone is not populated, then it is not in zonelist.
 874         * This means the page allocator ignores this zone.
 875         * So, zonelist must be updated after online.
 876         */
 877        if (!populated_zone(zone)) {
 878                need_zonelists_rebuild = 1;
 879                setup_zone_pageset(zone);
 880        }
 881
 882        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
 883                online_pages_range);
 884        if (ret) {
 885                if (need_zonelists_rebuild)
 886                        zone_pcp_reset(zone);
 887                goto failed_addition;
 888        }
 889
 890        zone->present_pages += onlined_pages;
 891
 892        pgdat_resize_lock(zone->zone_pgdat, &flags);
 893        zone->zone_pgdat->node_present_pages += onlined_pages;
 894        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 895
 896        shuffle_zone(zone);
 897
 898        if (onlined_pages) {
 899                node_states_set_node(nid, &arg);
 900                if (need_zonelists_rebuild)
 901                        build_all_zonelists(NULL);
 902                else
 903                        zone_pcp_update(zone);
 904        }
 905
 906        init_per_zone_wmark_min();
 907
 908        if (onlined_pages) {
 909                kswapd_run(nid);
 910                kcompactd_run(nid);
 911        }
 912
 913        vm_total_pages = nr_free_pagecache_pages();
 914
 915        writeback_set_ratelimit();
 916
 917        if (onlined_pages)
 918                memory_notify(MEM_ONLINE, &arg);
 919        mem_hotplug_done();
 920        return 0;
 921
 922failed_addition:
 923        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 924                 (unsigned long long) pfn << PAGE_SHIFT,
 925                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 926        memory_notify(MEM_CANCEL_ONLINE, &arg);
 927        mem_hotplug_done();
 928        return ret;
 929}
 930#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 931
 932static void reset_node_present_pages(pg_data_t *pgdat)
 933{
 934        struct zone *z;
 935
 936        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 937                z->present_pages = 0;
 938
 939        pgdat->node_present_pages = 0;
 940}
 941
 942/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 943static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
 944{
 945        struct pglist_data *pgdat;
 946        unsigned long start_pfn = PFN_DOWN(start);
 947
 948        pgdat = NODE_DATA(nid);
 949        if (!pgdat) {
 950                pgdat = arch_alloc_nodedata(nid);
 951                if (!pgdat)
 952                        return NULL;
 953
 954                arch_refresh_nodedata(nid, pgdat);
 955        } else {
 956                /*
 957                 * Reset the nr_zones, order and classzone_idx before reuse.
 958                 * Note that kswapd will init kswapd_classzone_idx properly
 959                 * when it starts in the near future.
 960                 */
 961                pgdat->nr_zones = 0;
 962                pgdat->kswapd_order = 0;
 963                pgdat->kswapd_classzone_idx = 0;
 964        }
 965
 966        /* we can use NODE_DATA(nid) from here */
 967
 968        pgdat->node_id = nid;
 969        pgdat->node_start_pfn = start_pfn;
 970
 971        /* init node's zones as empty zones, we don't have any present pages.*/
 972        free_area_init_core_hotplug(nid);
 973        pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
 974
 975        /*
 976         * The node we allocated has no zone fallback lists. For avoiding
 977         * to access not-initialized zonelist, build here.
 978         */
 979        build_all_zonelists(pgdat);
 980
 981        /*
 982         * When memory is hot-added, all the memory is in offline state. So
 983         * clear all zones' present_pages because they will be updated in
 984         * online_pages() and offline_pages().
 985         */
 986        reset_node_managed_pages(pgdat);
 987        reset_node_present_pages(pgdat);
 988
 989        return pgdat;
 990}
 991
 992static void rollback_node_hotadd(int nid)
 993{
 994        pg_data_t *pgdat = NODE_DATA(nid);
 995
 996        arch_refresh_nodedata(nid, NULL);
 997        free_percpu(pgdat->per_cpu_nodestats);
 998        arch_free_nodedata(pgdat);
 999        return;
1000}
1001
1002
1003/**
1004 * try_online_node - online a node if offlined
1005 * @nid: the node ID
1006 * @start: start addr of the node
1007 * @set_node_online: Whether we want to online the node
1008 * called by cpu_up() to online a node without onlined memory.
1009 *
1010 * Returns:
1011 * 1 -> a new node has been allocated
1012 * 0 -> the node is already online
1013 * -ENOMEM -> the node could not be allocated
1014 */
1015static int __try_online_node(int nid, u64 start, bool set_node_online)
1016{
1017        pg_data_t *pgdat;
1018        int ret = 1;
1019
1020        if (node_online(nid))
1021                return 0;
1022
1023        pgdat = hotadd_new_pgdat(nid, start);
1024        if (!pgdat) {
1025                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026                ret = -ENOMEM;
1027                goto out;
1028        }
1029
1030        if (set_node_online) {
1031                node_set_online(nid);
1032                ret = register_one_node(nid);
1033                BUG_ON(ret);
1034        }
1035out:
1036        return ret;
1037}
1038
1039/*
1040 * Users of this function always want to online/register the node
1041 */
1042int try_online_node(int nid)
1043{
1044        int ret;
1045
1046        mem_hotplug_begin();
1047        ret =  __try_online_node(nid, 0, true);
1048        mem_hotplug_done();
1049        return ret;
1050}
1051
1052static int check_hotplug_memory_range(u64 start, u64 size)
1053{
1054        unsigned long block_sz = memory_block_size_bytes();
1055        u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056        u64 nr_pages = size >> PAGE_SHIFT;
1057        u64 start_pfn = PFN_DOWN(start);
1058
1059        /* memory range must be block size aligned */
1060        if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061            !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063                       block_sz, start, size);
1064                return -EINVAL;
1065        }
1066
1067        return 0;
1068}
1069
1070static int online_memory_block(struct memory_block *mem, void *arg)
1071{
1072        return device_online(&mem->dev);
1073}
1074
1075/*
1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077 * and online/offline operations (triggered e.g. by sysfs).
1078 *
1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1080 */
1081int __ref add_memory_resource(int nid, struct resource *res)
1082{
1083        struct mhp_restrictions restrictions = {
1084                .flags = MHP_MEMBLOCK_API,
1085        };
1086        u64 start, size;
1087        bool new_node = false;
1088        int ret;
1089
1090        start = res->start;
1091        size = resource_size(res);
1092
1093        ret = check_hotplug_memory_range(start, size);
1094        if (ret)
1095                return ret;
1096
1097        mem_hotplug_begin();
1098
1099        /*
1100         * Add new range to memblock so that when hotadd_new_pgdat() is called
1101         * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1102         * this new range and calculate total pages correctly.  The range will
1103         * be removed at hot-remove time.
1104         */
1105        memblock_add_node(start, size, nid);
1106
1107        ret = __try_online_node(nid, start, false);
1108        if (ret < 0)
1109                goto error;
1110        new_node = ret;
1111
1112        /* call arch's memory hotadd */
1113        ret = arch_add_memory(nid, start, size, &restrictions);
1114        if (ret < 0)
1115                goto error;
1116
1117        if (new_node) {
1118                /* If sysfs file of new node can't be created, cpu on the node
1119                 * can't be hot-added. There is no rollback way now.
1120                 * So, check by BUG_ON() to catch it reluctantly..
1121                 * We online node here. We can't roll back from here.
1122                 */
1123                node_set_online(nid);
1124                ret = __register_one_node(nid);
1125                BUG_ON(ret);
1126        }
1127
1128        /* link memory sections under this node.*/
1129        ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1130        BUG_ON(ret);
1131
1132        /* create new memmap entry */
1133        firmware_map_add_hotplug(start, start + size, "System RAM");
1134
1135        /* device_online() will take the lock when calling online_pages() */
1136        mem_hotplug_done();
1137
1138        /* online pages if requested */
1139        if (memhp_auto_online)
1140                walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1141                                  NULL, online_memory_block);
1142
1143        return ret;
1144error:
1145        /* rollback pgdat allocation and others */
1146        if (new_node)
1147                rollback_node_hotadd(nid);
1148        memblock_remove(start, size);
1149        mem_hotplug_done();
1150        return ret;
1151}
1152
1153/* requires device_hotplug_lock, see add_memory_resource() */
1154int __ref __add_memory(int nid, u64 start, u64 size)
1155{
1156        struct resource *res;
1157        int ret;
1158
1159        res = register_memory_resource(start, size);
1160        if (IS_ERR(res))
1161                return PTR_ERR(res);
1162
1163        ret = add_memory_resource(nid, res);
1164        if (ret < 0)
1165                release_memory_resource(res);
1166        return ret;
1167}
1168
1169int add_memory(int nid, u64 start, u64 size)
1170{
1171        int rc;
1172
1173        lock_device_hotplug();
1174        rc = __add_memory(nid, start, size);
1175        unlock_device_hotplug();
1176
1177        return rc;
1178}
1179EXPORT_SYMBOL_GPL(add_memory);
1180
1181#ifdef CONFIG_MEMORY_HOTREMOVE
1182/*
1183 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1184 * set and the size of the free page is given by page_order(). Using this,
1185 * the function determines if the pageblock contains only free pages.
1186 * Due to buddy contraints, a free page at least the size of a pageblock will
1187 * be located at the start of the pageblock
1188 */
1189static inline int pageblock_free(struct page *page)
1190{
1191        return PageBuddy(page) && page_order(page) >= pageblock_order;
1192}
1193
1194/* Return the pfn of the start of the next active pageblock after a given pfn */
1195static unsigned long next_active_pageblock(unsigned long pfn)
1196{
1197        struct page *page = pfn_to_page(pfn);
1198
1199        /* Ensure the starting page is pageblock-aligned */
1200        BUG_ON(pfn & (pageblock_nr_pages - 1));
1201
1202        /* If the entire pageblock is free, move to the end of free page */
1203        if (pageblock_free(page)) {
1204                int order;
1205                /* be careful. we don't have locks, page_order can be changed.*/
1206                order = page_order(page);
1207                if ((order < MAX_ORDER) && (order >= pageblock_order))
1208                        return pfn + (1 << order);
1209        }
1210
1211        return pfn + pageblock_nr_pages;
1212}
1213
1214static bool is_pageblock_removable_nolock(unsigned long pfn)
1215{
1216        struct page *page = pfn_to_page(pfn);
1217        struct zone *zone;
1218
1219        /*
1220         * We have to be careful here because we are iterating over memory
1221         * sections which are not zone aware so we might end up outside of
1222         * the zone but still within the section.
1223         * We have to take care about the node as well. If the node is offline
1224         * its NODE_DATA will be NULL - see page_zone.
1225         */
1226        if (!node_online(page_to_nid(page)))
1227                return false;
1228
1229        zone = page_zone(page);
1230        pfn = page_to_pfn(page);
1231        if (!zone_spans_pfn(zone, pfn))
1232                return false;
1233
1234        return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1235}
1236
1237/* Checks if this range of memory is likely to be hot-removable. */
1238bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1239{
1240        unsigned long end_pfn, pfn;
1241
1242        end_pfn = min(start_pfn + nr_pages,
1243                        zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1244
1245        /* Check the starting page of each pageblock within the range */
1246        for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1247                if (!is_pageblock_removable_nolock(pfn))
1248                        return false;
1249                cond_resched();
1250        }
1251
1252        /* All pageblocks in the memory block are likely to be hot-removable */
1253        return true;
1254}
1255
1256/*
1257 * Confirm all pages in a range [start, end) belong to the same zone.
1258 * When true, return its valid [start, end).
1259 */
1260int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1261                         unsigned long *valid_start, unsigned long *valid_end)
1262{
1263        unsigned long pfn, sec_end_pfn;
1264        unsigned long start, end;
1265        struct zone *zone = NULL;
1266        struct page *page;
1267        int i;
1268        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1269             pfn < end_pfn;
1270             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1271                /* Make sure the memory section is present first */
1272                if (!present_section_nr(pfn_to_section_nr(pfn)))
1273                        continue;
1274                for (; pfn < sec_end_pfn && pfn < end_pfn;
1275                     pfn += MAX_ORDER_NR_PAGES) {
1276                        i = 0;
1277                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1278                        while ((i < MAX_ORDER_NR_PAGES) &&
1279                                !pfn_valid_within(pfn + i))
1280                                i++;
1281                        if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1282                                continue;
1283                        /* Check if we got outside of the zone */
1284                        if (zone && !zone_spans_pfn(zone, pfn + i))
1285                                return 0;
1286                        page = pfn_to_page(pfn + i);
1287                        if (zone && page_zone(page) != zone)
1288                                return 0;
1289                        if (!zone)
1290                                start = pfn + i;
1291                        zone = page_zone(page);
1292                        end = pfn + MAX_ORDER_NR_PAGES;
1293                }
1294        }
1295
1296        if (zone) {
1297                *valid_start = start;
1298                *valid_end = min(end, end_pfn);
1299                return 1;
1300        } else {
1301                return 0;
1302        }
1303}
1304
1305/*
1306 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1307 * non-lru movable pages and hugepages). We scan pfn because it's much
1308 * easier than scanning over linked list. This function returns the pfn
1309 * of the first found movable page if it's found, otherwise 0.
1310 */
1311static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1312{
1313        unsigned long pfn;
1314
1315        for (pfn = start; pfn < end; pfn++) {
1316                struct page *page, *head;
1317                unsigned long skip;
1318
1319                if (!pfn_valid(pfn))
1320                        continue;
1321                page = pfn_to_page(pfn);
1322                if (PageLRU(page))
1323                        return pfn;
1324                if (__PageMovable(page))
1325                        return pfn;
1326
1327                if (!PageHuge(page))
1328                        continue;
1329                head = compound_head(page);
1330                if (page_huge_active(head))
1331                        return pfn;
1332                skip = (1 << compound_order(head)) - (page - head);
1333                pfn += skip - 1;
1334        }
1335        return 0;
1336}
1337
1338static struct page *new_node_page(struct page *page, unsigned long private)
1339{
1340        int nid = page_to_nid(page);
1341        nodemask_t nmask = node_states[N_MEMORY];
1342
1343        /*
1344         * try to allocate from a different node but reuse this node if there
1345         * are no other online nodes to be used (e.g. we are offlining a part
1346         * of the only existing node)
1347         */
1348        node_clear(nid, nmask);
1349        if (nodes_empty(nmask))
1350                node_set(nid, nmask);
1351
1352        return new_page_nodemask(page, nid, &nmask);
1353}
1354
1355static int
1356do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1357{
1358        unsigned long pfn;
1359        struct page *page;
1360        int ret = 0;
1361        LIST_HEAD(source);
1362
1363        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1364                if (!pfn_valid(pfn))
1365                        continue;
1366                page = pfn_to_page(pfn);
1367
1368                if (PageHuge(page)) {
1369                        struct page *head = compound_head(page);
1370                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1371                        isolate_huge_page(head, &source);
1372                        continue;
1373                } else if (PageTransHuge(page))
1374                        pfn = page_to_pfn(compound_head(page))
1375                                + hpage_nr_pages(page) - 1;
1376
1377                /*
1378                 * HWPoison pages have elevated reference counts so the migration would
1379                 * fail on them. It also doesn't make any sense to migrate them in the
1380                 * first place. Still try to unmap such a page in case it is still mapped
1381                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1382                 * the unmap as the catch all safety net).
1383                 */
1384                if (PageHWPoison(page)) {
1385                        if (WARN_ON(PageLRU(page)))
1386                                isolate_lru_page(page);
1387                        if (page_mapped(page))
1388                                try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1389                        continue;
1390                }
1391
1392                if (!get_page_unless_zero(page))
1393                        continue;
1394                /*
1395                 * We can skip free pages. And we can deal with pages on
1396                 * LRU and non-lru movable pages.
1397                 */
1398                if (PageLRU(page))
1399                        ret = isolate_lru_page(page);
1400                else
1401                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1402                if (!ret) { /* Success */
1403                        list_add_tail(&page->lru, &source);
1404                        if (!__PageMovable(page))
1405                                inc_node_page_state(page, NR_ISOLATED_ANON +
1406                                                    page_is_file_cache(page));
1407
1408                } else {
1409                        pr_warn("failed to isolate pfn %lx\n", pfn);
1410                        dump_page(page, "isolation failed");
1411                }
1412                put_page(page);
1413        }
1414        if (!list_empty(&source)) {
1415                /* Allocate a new page from the nearest neighbor node */
1416                ret = migrate_pages(&source, new_node_page, NULL, 0,
1417                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1418                if (ret) {
1419                        list_for_each_entry(page, &source, lru) {
1420                                pr_warn("migrating pfn %lx failed ret:%d ",
1421                                       page_to_pfn(page), ret);
1422                                dump_page(page, "migration failure");
1423                        }
1424                        putback_movable_pages(&source);
1425                }
1426        }
1427
1428        return ret;
1429}
1430
1431/*
1432 * remove from free_area[] and mark all as Reserved.
1433 */
1434static int
1435offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1436                        void *data)
1437{
1438        unsigned long *offlined_pages = (unsigned long *)data;
1439
1440        *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1441        return 0;
1442}
1443
1444/*
1445 * Check all pages in range, recoreded as memory resource, are isolated.
1446 */
1447static int
1448check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1449                        void *data)
1450{
1451        return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1452}
1453
1454static int __init cmdline_parse_movable_node(char *p)
1455{
1456#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1457        movable_node_enabled = true;
1458#else
1459        pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1460#endif
1461        return 0;
1462}
1463early_param("movable_node", cmdline_parse_movable_node);
1464
1465/* check which state of node_states will be changed when offline memory */
1466static void node_states_check_changes_offline(unsigned long nr_pages,
1467                struct zone *zone, struct memory_notify *arg)
1468{
1469        struct pglist_data *pgdat = zone->zone_pgdat;
1470        unsigned long present_pages = 0;
1471        enum zone_type zt;
1472
1473        arg->status_change_nid = NUMA_NO_NODE;
1474        arg->status_change_nid_normal = NUMA_NO_NODE;
1475        arg->status_change_nid_high = NUMA_NO_NODE;
1476
1477        /*
1478         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1479         * If the memory to be offline is within the range
1480         * [0..ZONE_NORMAL], and it is the last present memory there,
1481         * the zones in that range will become empty after the offlining,
1482         * thus we can determine that we need to clear the node from
1483         * node_states[N_NORMAL_MEMORY].
1484         */
1485        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1486                present_pages += pgdat->node_zones[zt].present_pages;
1487        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1488                arg->status_change_nid_normal = zone_to_nid(zone);
1489
1490#ifdef CONFIG_HIGHMEM
1491        /*
1492         * node_states[N_HIGH_MEMORY] contains nodes which
1493         * have normal memory or high memory.
1494         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1495         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1496         * we determine that the zones in that range become empty,
1497         * we need to clear the node for N_HIGH_MEMORY.
1498         */
1499        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1500        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1501                arg->status_change_nid_high = zone_to_nid(zone);
1502#endif
1503
1504        /*
1505         * We have accounted the pages from [0..ZONE_NORMAL), and
1506         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1507         * as well.
1508         * Here we count the possible pages from ZONE_MOVABLE.
1509         * If after having accounted all the pages, we see that the nr_pages
1510         * to be offlined is over or equal to the accounted pages,
1511         * we know that the node will become empty, and so, we can clear
1512         * it for N_MEMORY as well.
1513         */
1514        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1515
1516        if (nr_pages >= present_pages)
1517                arg->status_change_nid = zone_to_nid(zone);
1518}
1519
1520static void node_states_clear_node(int node, struct memory_notify *arg)
1521{
1522        if (arg->status_change_nid_normal >= 0)
1523                node_clear_state(node, N_NORMAL_MEMORY);
1524
1525        if (arg->status_change_nid_high >= 0)
1526                node_clear_state(node, N_HIGH_MEMORY);
1527
1528        if (arg->status_change_nid >= 0)
1529                node_clear_state(node, N_MEMORY);
1530}
1531
1532static int __ref __offline_pages(unsigned long start_pfn,
1533                  unsigned long end_pfn)
1534{
1535        unsigned long pfn, nr_pages;
1536        unsigned long offlined_pages = 0;
1537        int ret, node, nr_isolate_pageblock;
1538        unsigned long flags;
1539        unsigned long valid_start, valid_end;
1540        struct zone *zone;
1541        struct memory_notify arg;
1542        char *reason;
1543
1544        mem_hotplug_begin();
1545
1546        /* This makes hotplug much easier...and readable.
1547           we assume this for now. .*/
1548        if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1549                                  &valid_end)) {
1550                ret = -EINVAL;
1551                reason = "multizone range";
1552                goto failed_removal;
1553        }
1554
1555        zone = page_zone(pfn_to_page(valid_start));
1556        node = zone_to_nid(zone);
1557        nr_pages = end_pfn - start_pfn;
1558
1559        /* set above range as isolated */
1560        ret = start_isolate_page_range(start_pfn, end_pfn,
1561                                       MIGRATE_MOVABLE,
1562                                       SKIP_HWPOISON | REPORT_FAILURE);
1563        if (ret < 0) {
1564                reason = "failure to isolate range";
1565                goto failed_removal;
1566        }
1567        nr_isolate_pageblock = ret;
1568
1569        arg.start_pfn = start_pfn;
1570        arg.nr_pages = nr_pages;
1571        node_states_check_changes_offline(nr_pages, zone, &arg);
1572
1573        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1574        ret = notifier_to_errno(ret);
1575        if (ret) {
1576                reason = "notifier failure";
1577                goto failed_removal_isolated;
1578        }
1579
1580        do {
1581                for (pfn = start_pfn; pfn;) {
1582                        if (signal_pending(current)) {
1583                                ret = -EINTR;
1584                                reason = "signal backoff";
1585                                goto failed_removal_isolated;
1586                        }
1587
1588                        cond_resched();
1589                        lru_add_drain_all();
1590
1591                        pfn = scan_movable_pages(pfn, end_pfn);
1592                        if (pfn) {
1593                                /*
1594                                 * TODO: fatal migration failures should bail
1595                                 * out
1596                                 */
1597                                do_migrate_range(pfn, end_pfn);
1598                        }
1599                }
1600
1601                /*
1602                 * Dissolve free hugepages in the memory block before doing
1603                 * offlining actually in order to make hugetlbfs's object
1604                 * counting consistent.
1605                 */
1606                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1607                if (ret) {
1608                        reason = "failure to dissolve huge pages";
1609                        goto failed_removal_isolated;
1610                }
1611                /* check again */
1612                ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1613                                            NULL, check_pages_isolated_cb);
1614        } while (ret);
1615
1616        /* Ok, all of our target is isolated.
1617           We cannot do rollback at this point. */
1618        walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1619                              &offlined_pages, offline_isolated_pages_cb);
1620        pr_info("Offlined Pages %ld\n", offlined_pages);
1621        /*
1622         * Onlining will reset pagetype flags and makes migrate type
1623         * MOVABLE, so just need to decrease the number of isolated
1624         * pageblocks zone counter here.
1625         */
1626        spin_lock_irqsave(&zone->lock, flags);
1627        zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1628        spin_unlock_irqrestore(&zone->lock, flags);
1629
1630        /* removal success */
1631        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1632        zone->present_pages -= offlined_pages;
1633
1634        pgdat_resize_lock(zone->zone_pgdat, &flags);
1635        zone->zone_pgdat->node_present_pages -= offlined_pages;
1636        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1637
1638        init_per_zone_wmark_min();
1639
1640        if (!populated_zone(zone)) {
1641                zone_pcp_reset(zone);
1642                build_all_zonelists(NULL);
1643        } else
1644                zone_pcp_update(zone);
1645
1646        node_states_clear_node(node, &arg);
1647        if (arg.status_change_nid >= 0) {
1648                kswapd_stop(node);
1649                kcompactd_stop(node);
1650        }
1651
1652        vm_total_pages = nr_free_pagecache_pages();
1653        writeback_set_ratelimit();
1654
1655        memory_notify(MEM_OFFLINE, &arg);
1656        mem_hotplug_done();
1657        return 0;
1658
1659failed_removal_isolated:
1660        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1661        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1662failed_removal:
1663        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1664                 (unsigned long long) start_pfn << PAGE_SHIFT,
1665                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1666                 reason);
1667        /* pushback to free area */
1668        mem_hotplug_done();
1669        return ret;
1670}
1671
1672int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1673{
1674        return __offline_pages(start_pfn, start_pfn + nr_pages);
1675}
1676#endif /* CONFIG_MEMORY_HOTREMOVE */
1677
1678/**
1679 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1680 * @start_pfn: start pfn of the memory range
1681 * @end_pfn: end pfn of the memory range
1682 * @arg: argument passed to func
1683 * @func: callback for each memory section walked
1684 *
1685 * This function walks through all present mem sections in range
1686 * [start_pfn, end_pfn) and call func on each mem section.
1687 *
1688 * Returns the return value of func.
1689 */
1690int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1691                void *arg, int (*func)(struct memory_block *, void *))
1692{
1693        struct memory_block *mem = NULL;
1694        struct mem_section *section;
1695        unsigned long pfn, section_nr;
1696        int ret;
1697
1698        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1699                section_nr = pfn_to_section_nr(pfn);
1700                if (!present_section_nr(section_nr))
1701                        continue;
1702
1703                section = __nr_to_section(section_nr);
1704                /* same memblock? */
1705                if (mem)
1706                        if ((section_nr >= mem->start_section_nr) &&
1707                            (section_nr <= mem->end_section_nr))
1708                                continue;
1709
1710                mem = find_memory_block_hinted(section, mem);
1711                if (!mem)
1712                        continue;
1713
1714                ret = func(mem, arg);
1715                if (ret) {
1716                        kobject_put(&mem->dev.kobj);
1717                        return ret;
1718                }
1719        }
1720
1721        if (mem)
1722                kobject_put(&mem->dev.kobj);
1723
1724        return 0;
1725}
1726
1727#ifdef CONFIG_MEMORY_HOTREMOVE
1728static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1729{
1730        int ret = !is_memblock_offlined(mem);
1731
1732        if (unlikely(ret)) {
1733                phys_addr_t beginpa, endpa;
1734
1735                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1736                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1737                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1738                        &beginpa, &endpa);
1739        }
1740
1741        return ret;
1742}
1743
1744static int check_cpu_on_node(pg_data_t *pgdat)
1745{
1746        int cpu;
1747
1748        for_each_present_cpu(cpu) {
1749                if (cpu_to_node(cpu) == pgdat->node_id)
1750                        /*
1751                         * the cpu on this node isn't removed, and we can't
1752                         * offline this node.
1753                         */
1754                        return -EBUSY;
1755        }
1756
1757        return 0;
1758}
1759
1760/**
1761 * try_offline_node
1762 * @nid: the node ID
1763 *
1764 * Offline a node if all memory sections and cpus of the node are removed.
1765 *
1766 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1767 * and online/offline operations before this call.
1768 */
1769void try_offline_node(int nid)
1770{
1771        pg_data_t *pgdat = NODE_DATA(nid);
1772        unsigned long start_pfn = pgdat->node_start_pfn;
1773        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1774        unsigned long pfn;
1775
1776        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1777                unsigned long section_nr = pfn_to_section_nr(pfn);
1778
1779                if (!present_section_nr(section_nr))
1780                        continue;
1781
1782                if (pfn_to_nid(pfn) != nid)
1783                        continue;
1784
1785                /*
1786                 * some memory sections of this node are not removed, and we
1787                 * can't offline node now.
1788                 */
1789                return;
1790        }
1791
1792        if (check_cpu_on_node(pgdat))
1793                return;
1794
1795        /*
1796         * all memory/cpu of this node are removed, we can offline this
1797         * node now.
1798         */
1799        node_set_offline(nid);
1800        unregister_one_node(nid);
1801}
1802EXPORT_SYMBOL(try_offline_node);
1803
1804static void __release_memory_resource(resource_size_t start,
1805                                      resource_size_t size)
1806{
1807        int ret;
1808
1809        /*
1810         * When removing memory in the same granularity as it was added,
1811         * this function never fails. It might only fail if resources
1812         * have to be adjusted or split. We'll ignore the error, as
1813         * removing of memory cannot fail.
1814         */
1815        ret = release_mem_region_adjustable(&iomem_resource, start, size);
1816        if (ret) {
1817                resource_size_t endres = start + size - 1;
1818
1819                pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1820                        &start, &endres, ret);
1821        }
1822}
1823
1824/**
1825 * remove_memory
1826 * @nid: the node ID
1827 * @start: physical address of the region to remove
1828 * @size: size of the region to remove
1829 *
1830 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1831 * and online/offline operations before this call, as required by
1832 * try_offline_node().
1833 */
1834void __ref __remove_memory(int nid, u64 start, u64 size)
1835{
1836        int ret;
1837
1838        BUG_ON(check_hotplug_memory_range(start, size));
1839
1840        mem_hotplug_begin();
1841
1842        /*
1843         * All memory blocks must be offlined before removing memory.  Check
1844         * whether all memory blocks in question are offline and trigger a BUG()
1845         * if this is not the case.
1846         */
1847        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1848                                check_memblock_offlined_cb);
1849        if (ret)
1850                BUG();
1851
1852        /* remove memmap entry */
1853        firmware_map_remove(start, start + size, "System RAM");
1854        memblock_free(start, size);
1855        memblock_remove(start, size);
1856
1857        arch_remove_memory(nid, start, size, NULL);
1858        __release_memory_resource(start, size);
1859
1860        try_offline_node(nid);
1861
1862        mem_hotplug_done();
1863}
1864
1865void remove_memory(int nid, u64 start, u64 size)
1866{
1867        lock_device_hotplug();
1868        __remove_memory(nid, start, size);
1869        unlock_device_hotplug();
1870}
1871EXPORT_SYMBOL_GPL(remove_memory);
1872#endif /* CONFIG_MEMORY_HOTREMOVE */
1873