linux/mm/nommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/nommu.c
   4 *
   5 *  Replacement code for mm functions to support CPU's that don't
   6 *  have any form of memory management unit (thus no virtual memory).
   7 *
   8 *  See Documentation/nommu-mmap.txt
   9 *
  10 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  11 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  12 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  13 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  14 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/export.h>
  20#include <linux/mm.h>
  21#include <linux/sched/mm.h>
  22#include <linux/vmacache.h>
  23#include <linux/mman.h>
  24#include <linux/swap.h>
  25#include <linux/file.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/blkdev.h>
  31#include <linux/backing-dev.h>
  32#include <linux/compiler.h>
  33#include <linux/mount.h>
  34#include <linux/personality.h>
  35#include <linux/security.h>
  36#include <linux/syscalls.h>
  37#include <linux/audit.h>
  38#include <linux/printk.h>
  39
  40#include <linux/uaccess.h>
  41#include <asm/tlb.h>
  42#include <asm/tlbflush.h>
  43#include <asm/mmu_context.h>
  44#include "internal.h"
  45
  46void *high_memory;
  47EXPORT_SYMBOL(high_memory);
  48struct page *mem_map;
  49unsigned long max_mapnr;
  50EXPORT_SYMBOL(max_mapnr);
  51unsigned long highest_memmap_pfn;
  52int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  53int heap_stack_gap = 0;
  54
  55atomic_long_t mmap_pages_allocated;
  56
  57EXPORT_SYMBOL(mem_map);
  58
  59/* list of mapped, potentially shareable regions */
  60static struct kmem_cache *vm_region_jar;
  61struct rb_root nommu_region_tree = RB_ROOT;
  62DECLARE_RWSEM(nommu_region_sem);
  63
  64const struct vm_operations_struct generic_file_vm_ops = {
  65};
  66
  67/*
  68 * Return the total memory allocated for this pointer, not
  69 * just what the caller asked for.
  70 *
  71 * Doesn't have to be accurate, i.e. may have races.
  72 */
  73unsigned int kobjsize(const void *objp)
  74{
  75        struct page *page;
  76
  77        /*
  78         * If the object we have should not have ksize performed on it,
  79         * return size of 0
  80         */
  81        if (!objp || !virt_addr_valid(objp))
  82                return 0;
  83
  84        page = virt_to_head_page(objp);
  85
  86        /*
  87         * If the allocator sets PageSlab, we know the pointer came from
  88         * kmalloc().
  89         */
  90        if (PageSlab(page))
  91                return ksize(objp);
  92
  93        /*
  94         * If it's not a compound page, see if we have a matching VMA
  95         * region. This test is intentionally done in reverse order,
  96         * so if there's no VMA, we still fall through and hand back
  97         * PAGE_SIZE for 0-order pages.
  98         */
  99        if (!PageCompound(page)) {
 100                struct vm_area_struct *vma;
 101
 102                vma = find_vma(current->mm, (unsigned long)objp);
 103                if (vma)
 104                        return vma->vm_end - vma->vm_start;
 105        }
 106
 107        /*
 108         * The ksize() function is only guaranteed to work for pointers
 109         * returned by kmalloc(). So handle arbitrary pointers here.
 110         */
 111        return PAGE_SIZE << compound_order(page);
 112}
 113
 114static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 115                      unsigned long start, unsigned long nr_pages,
 116                      unsigned int foll_flags, struct page **pages,
 117                      struct vm_area_struct **vmas, int *nonblocking)
 118{
 119        struct vm_area_struct *vma;
 120        unsigned long vm_flags;
 121        int i;
 122
 123        /* calculate required read or write permissions.
 124         * If FOLL_FORCE is set, we only require the "MAY" flags.
 125         */
 126        vm_flags  = (foll_flags & FOLL_WRITE) ?
 127                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 128        vm_flags &= (foll_flags & FOLL_FORCE) ?
 129                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 130
 131        for (i = 0; i < nr_pages; i++) {
 132                vma = find_vma(mm, start);
 133                if (!vma)
 134                        goto finish_or_fault;
 135
 136                /* protect what we can, including chardevs */
 137                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 138                    !(vm_flags & vma->vm_flags))
 139                        goto finish_or_fault;
 140
 141                if (pages) {
 142                        pages[i] = virt_to_page(start);
 143                        if (pages[i])
 144                                get_page(pages[i]);
 145                }
 146                if (vmas)
 147                        vmas[i] = vma;
 148                start = (start + PAGE_SIZE) & PAGE_MASK;
 149        }
 150
 151        return i;
 152
 153finish_or_fault:
 154        return i ? : -EFAULT;
 155}
 156
 157/*
 158 * get a list of pages in an address range belonging to the specified process
 159 * and indicate the VMA that covers each page
 160 * - this is potentially dodgy as we may end incrementing the page count of a
 161 *   slab page or a secondary page from a compound page
 162 * - don't permit access to VMAs that don't support it, such as I/O mappings
 163 */
 164long get_user_pages(unsigned long start, unsigned long nr_pages,
 165                    unsigned int gup_flags, struct page **pages,
 166                    struct vm_area_struct **vmas)
 167{
 168        return __get_user_pages(current, current->mm, start, nr_pages,
 169                                gup_flags, pages, vmas, NULL);
 170}
 171EXPORT_SYMBOL(get_user_pages);
 172
 173long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 174                            unsigned int gup_flags, struct page **pages,
 175                            int *locked)
 176{
 177        return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
 178}
 179EXPORT_SYMBOL(get_user_pages_locked);
 180
 181static long __get_user_pages_unlocked(struct task_struct *tsk,
 182                        struct mm_struct *mm, unsigned long start,
 183                        unsigned long nr_pages, struct page **pages,
 184                        unsigned int gup_flags)
 185{
 186        long ret;
 187        down_read(&mm->mmap_sem);
 188        ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
 189                                NULL, NULL);
 190        up_read(&mm->mmap_sem);
 191        return ret;
 192}
 193
 194long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 195                             struct page **pages, unsigned int gup_flags)
 196{
 197        return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 198                                         pages, gup_flags);
 199}
 200EXPORT_SYMBOL(get_user_pages_unlocked);
 201
 202/**
 203 * follow_pfn - look up PFN at a user virtual address
 204 * @vma: memory mapping
 205 * @address: user virtual address
 206 * @pfn: location to store found PFN
 207 *
 208 * Only IO mappings and raw PFN mappings are allowed.
 209 *
 210 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 211 */
 212int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 213        unsigned long *pfn)
 214{
 215        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 216                return -EINVAL;
 217
 218        *pfn = address >> PAGE_SHIFT;
 219        return 0;
 220}
 221EXPORT_SYMBOL(follow_pfn);
 222
 223LIST_HEAD(vmap_area_list);
 224
 225void vfree(const void *addr)
 226{
 227        kfree(addr);
 228}
 229EXPORT_SYMBOL(vfree);
 230
 231void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 232{
 233        /*
 234         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 235         * returns only a logical address.
 236         */
 237        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 238}
 239EXPORT_SYMBOL(__vmalloc);
 240
 241void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
 242{
 243        return __vmalloc(size, flags, PAGE_KERNEL);
 244}
 245
 246void *vmalloc_user(unsigned long size)
 247{
 248        void *ret;
 249
 250        ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
 251        if (ret) {
 252                struct vm_area_struct *vma;
 253
 254                down_write(&current->mm->mmap_sem);
 255                vma = find_vma(current->mm, (unsigned long)ret);
 256                if (vma)
 257                        vma->vm_flags |= VM_USERMAP;
 258                up_write(&current->mm->mmap_sem);
 259        }
 260
 261        return ret;
 262}
 263EXPORT_SYMBOL(vmalloc_user);
 264
 265struct page *vmalloc_to_page(const void *addr)
 266{
 267        return virt_to_page(addr);
 268}
 269EXPORT_SYMBOL(vmalloc_to_page);
 270
 271unsigned long vmalloc_to_pfn(const void *addr)
 272{
 273        return page_to_pfn(virt_to_page(addr));
 274}
 275EXPORT_SYMBOL(vmalloc_to_pfn);
 276
 277long vread(char *buf, char *addr, unsigned long count)
 278{
 279        /* Don't allow overflow */
 280        if ((unsigned long) buf + count < count)
 281                count = -(unsigned long) buf;
 282
 283        memcpy(buf, addr, count);
 284        return count;
 285}
 286
 287long vwrite(char *buf, char *addr, unsigned long count)
 288{
 289        /* Don't allow overflow */
 290        if ((unsigned long) addr + count < count)
 291                count = -(unsigned long) addr;
 292
 293        memcpy(addr, buf, count);
 294        return count;
 295}
 296
 297/*
 298 *      vmalloc  -  allocate virtually contiguous memory
 299 *
 300 *      @size:          allocation size
 301 *
 302 *      Allocate enough pages to cover @size from the page level
 303 *      allocator and map them into contiguous kernel virtual space.
 304 *
 305 *      For tight control over page level allocator and protection flags
 306 *      use __vmalloc() instead.
 307 */
 308void *vmalloc(unsigned long size)
 309{
 310       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 311}
 312EXPORT_SYMBOL(vmalloc);
 313
 314/*
 315 *      vzalloc - allocate virtually contiguous memory with zero fill
 316 *
 317 *      @size:          allocation size
 318 *
 319 *      Allocate enough pages to cover @size from the page level
 320 *      allocator and map them into contiguous kernel virtual space.
 321 *      The memory allocated is set to zero.
 322 *
 323 *      For tight control over page level allocator and protection flags
 324 *      use __vmalloc() instead.
 325 */
 326void *vzalloc(unsigned long size)
 327{
 328        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 329                        PAGE_KERNEL);
 330}
 331EXPORT_SYMBOL(vzalloc);
 332
 333/**
 334 * vmalloc_node - allocate memory on a specific node
 335 * @size:       allocation size
 336 * @node:       numa node
 337 *
 338 * Allocate enough pages to cover @size from the page level
 339 * allocator and map them into contiguous kernel virtual space.
 340 *
 341 * For tight control over page level allocator and protection flags
 342 * use __vmalloc() instead.
 343 */
 344void *vmalloc_node(unsigned long size, int node)
 345{
 346        return vmalloc(size);
 347}
 348EXPORT_SYMBOL(vmalloc_node);
 349
 350/**
 351 * vzalloc_node - allocate memory on a specific node with zero fill
 352 * @size:       allocation size
 353 * @node:       numa node
 354 *
 355 * Allocate enough pages to cover @size from the page level
 356 * allocator and map them into contiguous kernel virtual space.
 357 * The memory allocated is set to zero.
 358 *
 359 * For tight control over page level allocator and protection flags
 360 * use __vmalloc() instead.
 361 */
 362void *vzalloc_node(unsigned long size, int node)
 363{
 364        return vzalloc(size);
 365}
 366EXPORT_SYMBOL(vzalloc_node);
 367
 368/**
 369 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 370 *      @size:          allocation size
 371 *
 372 *      Kernel-internal function to allocate enough pages to cover @size
 373 *      the page level allocator and map them into contiguous and
 374 *      executable kernel virtual space.
 375 *
 376 *      For tight control over page level allocator and protection flags
 377 *      use __vmalloc() instead.
 378 */
 379
 380void *vmalloc_exec(unsigned long size)
 381{
 382        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 383}
 384
 385/**
 386 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 387 *      @size:          allocation size
 388 *
 389 *      Allocate enough 32bit PA addressable pages to cover @size from the
 390 *      page level allocator and map them into contiguous kernel virtual space.
 391 */
 392void *vmalloc_32(unsigned long size)
 393{
 394        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 395}
 396EXPORT_SYMBOL(vmalloc_32);
 397
 398/**
 399 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 400 *      @size:          allocation size
 401 *
 402 * The resulting memory area is 32bit addressable and zeroed so it can be
 403 * mapped to userspace without leaking data.
 404 *
 405 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 406 * remap_vmalloc_range() are permissible.
 407 */
 408void *vmalloc_32_user(unsigned long size)
 409{
 410        /*
 411         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 412         * but for now this can simply use vmalloc_user() directly.
 413         */
 414        return vmalloc_user(size);
 415}
 416EXPORT_SYMBOL(vmalloc_32_user);
 417
 418void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 419{
 420        BUG();
 421        return NULL;
 422}
 423EXPORT_SYMBOL(vmap);
 424
 425void vunmap(const void *addr)
 426{
 427        BUG();
 428}
 429EXPORT_SYMBOL(vunmap);
 430
 431void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 432{
 433        BUG();
 434        return NULL;
 435}
 436EXPORT_SYMBOL(vm_map_ram);
 437
 438void vm_unmap_ram(const void *mem, unsigned int count)
 439{
 440        BUG();
 441}
 442EXPORT_SYMBOL(vm_unmap_ram);
 443
 444void vm_unmap_aliases(void)
 445{
 446}
 447EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 448
 449/*
 450 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 451 * have one.
 452 */
 453void __weak vmalloc_sync_all(void)
 454{
 455}
 456
 457struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 458{
 459        BUG();
 460        return NULL;
 461}
 462EXPORT_SYMBOL_GPL(alloc_vm_area);
 463
 464void free_vm_area(struct vm_struct *area)
 465{
 466        BUG();
 467}
 468EXPORT_SYMBOL_GPL(free_vm_area);
 469
 470int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 471                   struct page *page)
 472{
 473        return -EINVAL;
 474}
 475EXPORT_SYMBOL(vm_insert_page);
 476
 477int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
 478                        unsigned long num)
 479{
 480        return -EINVAL;
 481}
 482EXPORT_SYMBOL(vm_map_pages);
 483
 484int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
 485                                unsigned long num)
 486{
 487        return -EINVAL;
 488}
 489EXPORT_SYMBOL(vm_map_pages_zero);
 490
 491/*
 492 *  sys_brk() for the most part doesn't need the global kernel
 493 *  lock, except when an application is doing something nasty
 494 *  like trying to un-brk an area that has already been mapped
 495 *  to a regular file.  in this case, the unmapping will need
 496 *  to invoke file system routines that need the global lock.
 497 */
 498SYSCALL_DEFINE1(brk, unsigned long, brk)
 499{
 500        struct mm_struct *mm = current->mm;
 501
 502        if (brk < mm->start_brk || brk > mm->context.end_brk)
 503                return mm->brk;
 504
 505        if (mm->brk == brk)
 506                return mm->brk;
 507
 508        /*
 509         * Always allow shrinking brk
 510         */
 511        if (brk <= mm->brk) {
 512                mm->brk = brk;
 513                return brk;
 514        }
 515
 516        /*
 517         * Ok, looks good - let it rip.
 518         */
 519        flush_icache_range(mm->brk, brk);
 520        return mm->brk = brk;
 521}
 522
 523/*
 524 * initialise the percpu counter for VM and region record slabs
 525 */
 526void __init mmap_init(void)
 527{
 528        int ret;
 529
 530        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 531        VM_BUG_ON(ret);
 532        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
 533}
 534
 535/*
 536 * validate the region tree
 537 * - the caller must hold the region lock
 538 */
 539#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 540static noinline void validate_nommu_regions(void)
 541{
 542        struct vm_region *region, *last;
 543        struct rb_node *p, *lastp;
 544
 545        lastp = rb_first(&nommu_region_tree);
 546        if (!lastp)
 547                return;
 548
 549        last = rb_entry(lastp, struct vm_region, vm_rb);
 550        BUG_ON(last->vm_end <= last->vm_start);
 551        BUG_ON(last->vm_top < last->vm_end);
 552
 553        while ((p = rb_next(lastp))) {
 554                region = rb_entry(p, struct vm_region, vm_rb);
 555                last = rb_entry(lastp, struct vm_region, vm_rb);
 556
 557                BUG_ON(region->vm_end <= region->vm_start);
 558                BUG_ON(region->vm_top < region->vm_end);
 559                BUG_ON(region->vm_start < last->vm_top);
 560
 561                lastp = p;
 562        }
 563}
 564#else
 565static void validate_nommu_regions(void)
 566{
 567}
 568#endif
 569
 570/*
 571 * add a region into the global tree
 572 */
 573static void add_nommu_region(struct vm_region *region)
 574{
 575        struct vm_region *pregion;
 576        struct rb_node **p, *parent;
 577
 578        validate_nommu_regions();
 579
 580        parent = NULL;
 581        p = &nommu_region_tree.rb_node;
 582        while (*p) {
 583                parent = *p;
 584                pregion = rb_entry(parent, struct vm_region, vm_rb);
 585                if (region->vm_start < pregion->vm_start)
 586                        p = &(*p)->rb_left;
 587                else if (region->vm_start > pregion->vm_start)
 588                        p = &(*p)->rb_right;
 589                else if (pregion == region)
 590                        return;
 591                else
 592                        BUG();
 593        }
 594
 595        rb_link_node(&region->vm_rb, parent, p);
 596        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 597
 598        validate_nommu_regions();
 599}
 600
 601/*
 602 * delete a region from the global tree
 603 */
 604static void delete_nommu_region(struct vm_region *region)
 605{
 606        BUG_ON(!nommu_region_tree.rb_node);
 607
 608        validate_nommu_regions();
 609        rb_erase(&region->vm_rb, &nommu_region_tree);
 610        validate_nommu_regions();
 611}
 612
 613/*
 614 * free a contiguous series of pages
 615 */
 616static void free_page_series(unsigned long from, unsigned long to)
 617{
 618        for (; from < to; from += PAGE_SIZE) {
 619                struct page *page = virt_to_page(from);
 620
 621                atomic_long_dec(&mmap_pages_allocated);
 622                put_page(page);
 623        }
 624}
 625
 626/*
 627 * release a reference to a region
 628 * - the caller must hold the region semaphore for writing, which this releases
 629 * - the region may not have been added to the tree yet, in which case vm_top
 630 *   will equal vm_start
 631 */
 632static void __put_nommu_region(struct vm_region *region)
 633        __releases(nommu_region_sem)
 634{
 635        BUG_ON(!nommu_region_tree.rb_node);
 636
 637        if (--region->vm_usage == 0) {
 638                if (region->vm_top > region->vm_start)
 639                        delete_nommu_region(region);
 640                up_write(&nommu_region_sem);
 641
 642                if (region->vm_file)
 643                        fput(region->vm_file);
 644
 645                /* IO memory and memory shared directly out of the pagecache
 646                 * from ramfs/tmpfs mustn't be released here */
 647                if (region->vm_flags & VM_MAPPED_COPY)
 648                        free_page_series(region->vm_start, region->vm_top);
 649                kmem_cache_free(vm_region_jar, region);
 650        } else {
 651                up_write(&nommu_region_sem);
 652        }
 653}
 654
 655/*
 656 * release a reference to a region
 657 */
 658static void put_nommu_region(struct vm_region *region)
 659{
 660        down_write(&nommu_region_sem);
 661        __put_nommu_region(region);
 662}
 663
 664/*
 665 * add a VMA into a process's mm_struct in the appropriate place in the list
 666 * and tree and add to the address space's page tree also if not an anonymous
 667 * page
 668 * - should be called with mm->mmap_sem held writelocked
 669 */
 670static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 671{
 672        struct vm_area_struct *pvma, *prev;
 673        struct address_space *mapping;
 674        struct rb_node **p, *parent, *rb_prev;
 675
 676        BUG_ON(!vma->vm_region);
 677
 678        mm->map_count++;
 679        vma->vm_mm = mm;
 680
 681        /* add the VMA to the mapping */
 682        if (vma->vm_file) {
 683                mapping = vma->vm_file->f_mapping;
 684
 685                i_mmap_lock_write(mapping);
 686                flush_dcache_mmap_lock(mapping);
 687                vma_interval_tree_insert(vma, &mapping->i_mmap);
 688                flush_dcache_mmap_unlock(mapping);
 689                i_mmap_unlock_write(mapping);
 690        }
 691
 692        /* add the VMA to the tree */
 693        parent = rb_prev = NULL;
 694        p = &mm->mm_rb.rb_node;
 695        while (*p) {
 696                parent = *p;
 697                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 698
 699                /* sort by: start addr, end addr, VMA struct addr in that order
 700                 * (the latter is necessary as we may get identical VMAs) */
 701                if (vma->vm_start < pvma->vm_start)
 702                        p = &(*p)->rb_left;
 703                else if (vma->vm_start > pvma->vm_start) {
 704                        rb_prev = parent;
 705                        p = &(*p)->rb_right;
 706                } else if (vma->vm_end < pvma->vm_end)
 707                        p = &(*p)->rb_left;
 708                else if (vma->vm_end > pvma->vm_end) {
 709                        rb_prev = parent;
 710                        p = &(*p)->rb_right;
 711                } else if (vma < pvma)
 712                        p = &(*p)->rb_left;
 713                else if (vma > pvma) {
 714                        rb_prev = parent;
 715                        p = &(*p)->rb_right;
 716                } else
 717                        BUG();
 718        }
 719
 720        rb_link_node(&vma->vm_rb, parent, p);
 721        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 722
 723        /* add VMA to the VMA list also */
 724        prev = NULL;
 725        if (rb_prev)
 726                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 727
 728        __vma_link_list(mm, vma, prev, parent);
 729}
 730
 731/*
 732 * delete a VMA from its owning mm_struct and address space
 733 */
 734static void delete_vma_from_mm(struct vm_area_struct *vma)
 735{
 736        int i;
 737        struct address_space *mapping;
 738        struct mm_struct *mm = vma->vm_mm;
 739        struct task_struct *curr = current;
 740
 741        mm->map_count--;
 742        for (i = 0; i < VMACACHE_SIZE; i++) {
 743                /* if the vma is cached, invalidate the entire cache */
 744                if (curr->vmacache.vmas[i] == vma) {
 745                        vmacache_invalidate(mm);
 746                        break;
 747                }
 748        }
 749
 750        /* remove the VMA from the mapping */
 751        if (vma->vm_file) {
 752                mapping = vma->vm_file->f_mapping;
 753
 754                i_mmap_lock_write(mapping);
 755                flush_dcache_mmap_lock(mapping);
 756                vma_interval_tree_remove(vma, &mapping->i_mmap);
 757                flush_dcache_mmap_unlock(mapping);
 758                i_mmap_unlock_write(mapping);
 759        }
 760
 761        /* remove from the MM's tree and list */
 762        rb_erase(&vma->vm_rb, &mm->mm_rb);
 763
 764        if (vma->vm_prev)
 765                vma->vm_prev->vm_next = vma->vm_next;
 766        else
 767                mm->mmap = vma->vm_next;
 768
 769        if (vma->vm_next)
 770                vma->vm_next->vm_prev = vma->vm_prev;
 771}
 772
 773/*
 774 * destroy a VMA record
 775 */
 776static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 777{
 778        if (vma->vm_ops && vma->vm_ops->close)
 779                vma->vm_ops->close(vma);
 780        if (vma->vm_file)
 781                fput(vma->vm_file);
 782        put_nommu_region(vma->vm_region);
 783        vm_area_free(vma);
 784}
 785
 786/*
 787 * look up the first VMA in which addr resides, NULL if none
 788 * - should be called with mm->mmap_sem at least held readlocked
 789 */
 790struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 791{
 792        struct vm_area_struct *vma;
 793
 794        /* check the cache first */
 795        vma = vmacache_find(mm, addr);
 796        if (likely(vma))
 797                return vma;
 798
 799        /* trawl the list (there may be multiple mappings in which addr
 800         * resides) */
 801        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 802                if (vma->vm_start > addr)
 803                        return NULL;
 804                if (vma->vm_end > addr) {
 805                        vmacache_update(addr, vma);
 806                        return vma;
 807                }
 808        }
 809
 810        return NULL;
 811}
 812EXPORT_SYMBOL(find_vma);
 813
 814/*
 815 * find a VMA
 816 * - we don't extend stack VMAs under NOMMU conditions
 817 */
 818struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 819{
 820        return find_vma(mm, addr);
 821}
 822
 823/*
 824 * expand a stack to a given address
 825 * - not supported under NOMMU conditions
 826 */
 827int expand_stack(struct vm_area_struct *vma, unsigned long address)
 828{
 829        return -ENOMEM;
 830}
 831
 832/*
 833 * look up the first VMA exactly that exactly matches addr
 834 * - should be called with mm->mmap_sem at least held readlocked
 835 */
 836static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 837                                             unsigned long addr,
 838                                             unsigned long len)
 839{
 840        struct vm_area_struct *vma;
 841        unsigned long end = addr + len;
 842
 843        /* check the cache first */
 844        vma = vmacache_find_exact(mm, addr, end);
 845        if (vma)
 846                return vma;
 847
 848        /* trawl the list (there may be multiple mappings in which addr
 849         * resides) */
 850        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 851                if (vma->vm_start < addr)
 852                        continue;
 853                if (vma->vm_start > addr)
 854                        return NULL;
 855                if (vma->vm_end == end) {
 856                        vmacache_update(addr, vma);
 857                        return vma;
 858                }
 859        }
 860
 861        return NULL;
 862}
 863
 864/*
 865 * determine whether a mapping should be permitted and, if so, what sort of
 866 * mapping we're capable of supporting
 867 */
 868static int validate_mmap_request(struct file *file,
 869                                 unsigned long addr,
 870                                 unsigned long len,
 871                                 unsigned long prot,
 872                                 unsigned long flags,
 873                                 unsigned long pgoff,
 874                                 unsigned long *_capabilities)
 875{
 876        unsigned long capabilities, rlen;
 877        int ret;
 878
 879        /* do the simple checks first */
 880        if (flags & MAP_FIXED)
 881                return -EINVAL;
 882
 883        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 884            (flags & MAP_TYPE) != MAP_SHARED)
 885                return -EINVAL;
 886
 887        if (!len)
 888                return -EINVAL;
 889
 890        /* Careful about overflows.. */
 891        rlen = PAGE_ALIGN(len);
 892        if (!rlen || rlen > TASK_SIZE)
 893                return -ENOMEM;
 894
 895        /* offset overflow? */
 896        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 897                return -EOVERFLOW;
 898
 899        if (file) {
 900                /* files must support mmap */
 901                if (!file->f_op->mmap)
 902                        return -ENODEV;
 903
 904                /* work out if what we've got could possibly be shared
 905                 * - we support chardevs that provide their own "memory"
 906                 * - we support files/blockdevs that are memory backed
 907                 */
 908                if (file->f_op->mmap_capabilities) {
 909                        capabilities = file->f_op->mmap_capabilities(file);
 910                } else {
 911                        /* no explicit capabilities set, so assume some
 912                         * defaults */
 913                        switch (file_inode(file)->i_mode & S_IFMT) {
 914                        case S_IFREG:
 915                        case S_IFBLK:
 916                                capabilities = NOMMU_MAP_COPY;
 917                                break;
 918
 919                        case S_IFCHR:
 920                                capabilities =
 921                                        NOMMU_MAP_DIRECT |
 922                                        NOMMU_MAP_READ |
 923                                        NOMMU_MAP_WRITE;
 924                                break;
 925
 926                        default:
 927                                return -EINVAL;
 928                        }
 929                }
 930
 931                /* eliminate any capabilities that we can't support on this
 932                 * device */
 933                if (!file->f_op->get_unmapped_area)
 934                        capabilities &= ~NOMMU_MAP_DIRECT;
 935                if (!(file->f_mode & FMODE_CAN_READ))
 936                        capabilities &= ~NOMMU_MAP_COPY;
 937
 938                /* The file shall have been opened with read permission. */
 939                if (!(file->f_mode & FMODE_READ))
 940                        return -EACCES;
 941
 942                if (flags & MAP_SHARED) {
 943                        /* do checks for writing, appending and locking */
 944                        if ((prot & PROT_WRITE) &&
 945                            !(file->f_mode & FMODE_WRITE))
 946                                return -EACCES;
 947
 948                        if (IS_APPEND(file_inode(file)) &&
 949                            (file->f_mode & FMODE_WRITE))
 950                                return -EACCES;
 951
 952                        if (locks_verify_locked(file))
 953                                return -EAGAIN;
 954
 955                        if (!(capabilities & NOMMU_MAP_DIRECT))
 956                                return -ENODEV;
 957
 958                        /* we mustn't privatise shared mappings */
 959                        capabilities &= ~NOMMU_MAP_COPY;
 960                } else {
 961                        /* we're going to read the file into private memory we
 962                         * allocate */
 963                        if (!(capabilities & NOMMU_MAP_COPY))
 964                                return -ENODEV;
 965
 966                        /* we don't permit a private writable mapping to be
 967                         * shared with the backing device */
 968                        if (prot & PROT_WRITE)
 969                                capabilities &= ~NOMMU_MAP_DIRECT;
 970                }
 971
 972                if (capabilities & NOMMU_MAP_DIRECT) {
 973                        if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
 974                            ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
 975                            ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
 976                            ) {
 977                                capabilities &= ~NOMMU_MAP_DIRECT;
 978                                if (flags & MAP_SHARED) {
 979                                        pr_warn("MAP_SHARED not completely supported on !MMU\n");
 980                                        return -EINVAL;
 981                                }
 982                        }
 983                }
 984
 985                /* handle executable mappings and implied executable
 986                 * mappings */
 987                if (path_noexec(&file->f_path)) {
 988                        if (prot & PROT_EXEC)
 989                                return -EPERM;
 990                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
 991                        /* handle implication of PROT_EXEC by PROT_READ */
 992                        if (current->personality & READ_IMPLIES_EXEC) {
 993                                if (capabilities & NOMMU_MAP_EXEC)
 994                                        prot |= PROT_EXEC;
 995                        }
 996                } else if ((prot & PROT_READ) &&
 997                         (prot & PROT_EXEC) &&
 998                         !(capabilities & NOMMU_MAP_EXEC)
 999                         ) {
1000                        /* backing file is not executable, try to copy */
1001                        capabilities &= ~NOMMU_MAP_DIRECT;
1002                }
1003        } else {
1004                /* anonymous mappings are always memory backed and can be
1005                 * privately mapped
1006                 */
1007                capabilities = NOMMU_MAP_COPY;
1008
1009                /* handle PROT_EXEC implication by PROT_READ */
1010                if ((prot & PROT_READ) &&
1011                    (current->personality & READ_IMPLIES_EXEC))
1012                        prot |= PROT_EXEC;
1013        }
1014
1015        /* allow the security API to have its say */
1016        ret = security_mmap_addr(addr);
1017        if (ret < 0)
1018                return ret;
1019
1020        /* looks okay */
1021        *_capabilities = capabilities;
1022        return 0;
1023}
1024
1025/*
1026 * we've determined that we can make the mapping, now translate what we
1027 * now know into VMA flags
1028 */
1029static unsigned long determine_vm_flags(struct file *file,
1030                                        unsigned long prot,
1031                                        unsigned long flags,
1032                                        unsigned long capabilities)
1033{
1034        unsigned long vm_flags;
1035
1036        vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1037        /* vm_flags |= mm->def_flags; */
1038
1039        if (!(capabilities & NOMMU_MAP_DIRECT)) {
1040                /* attempt to share read-only copies of mapped file chunks */
1041                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1042                if (file && !(prot & PROT_WRITE))
1043                        vm_flags |= VM_MAYSHARE;
1044        } else {
1045                /* overlay a shareable mapping on the backing device or inode
1046                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1047                 * romfs/cramfs */
1048                vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1049                if (flags & MAP_SHARED)
1050                        vm_flags |= VM_SHARED;
1051        }
1052
1053        /* refuse to let anyone share private mappings with this process if
1054         * it's being traced - otherwise breakpoints set in it may interfere
1055         * with another untraced process
1056         */
1057        if ((flags & MAP_PRIVATE) && current->ptrace)
1058                vm_flags &= ~VM_MAYSHARE;
1059
1060        return vm_flags;
1061}
1062
1063/*
1064 * set up a shared mapping on a file (the driver or filesystem provides and
1065 * pins the storage)
1066 */
1067static int do_mmap_shared_file(struct vm_area_struct *vma)
1068{
1069        int ret;
1070
1071        ret = call_mmap(vma->vm_file, vma);
1072        if (ret == 0) {
1073                vma->vm_region->vm_top = vma->vm_region->vm_end;
1074                return 0;
1075        }
1076        if (ret != -ENOSYS)
1077                return ret;
1078
1079        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1080         * opposed to tried but failed) so we can only give a suitable error as
1081         * it's not possible to make a private copy if MAP_SHARED was given */
1082        return -ENODEV;
1083}
1084
1085/*
1086 * set up a private mapping or an anonymous shared mapping
1087 */
1088static int do_mmap_private(struct vm_area_struct *vma,
1089                           struct vm_region *region,
1090                           unsigned long len,
1091                           unsigned long capabilities)
1092{
1093        unsigned long total, point;
1094        void *base;
1095        int ret, order;
1096
1097        /* invoke the file's mapping function so that it can keep track of
1098         * shared mappings on devices or memory
1099         * - VM_MAYSHARE will be set if it may attempt to share
1100         */
1101        if (capabilities & NOMMU_MAP_DIRECT) {
1102                ret = call_mmap(vma->vm_file, vma);
1103                if (ret == 0) {
1104                        /* shouldn't return success if we're not sharing */
1105                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1106                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1107                        return 0;
1108                }
1109                if (ret != -ENOSYS)
1110                        return ret;
1111
1112                /* getting an ENOSYS error indicates that direct mmap isn't
1113                 * possible (as opposed to tried but failed) so we'll try to
1114                 * make a private copy of the data and map that instead */
1115        }
1116
1117
1118        /* allocate some memory to hold the mapping
1119         * - note that this may not return a page-aligned address if the object
1120         *   we're allocating is smaller than a page
1121         */
1122        order = get_order(len);
1123        total = 1 << order;
1124        point = len >> PAGE_SHIFT;
1125
1126        /* we don't want to allocate a power-of-2 sized page set */
1127        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1128                total = point;
1129
1130        base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1131        if (!base)
1132                goto enomem;
1133
1134        atomic_long_add(total, &mmap_pages_allocated);
1135
1136        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1137        region->vm_start = (unsigned long) base;
1138        region->vm_end   = region->vm_start + len;
1139        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1140
1141        vma->vm_start = region->vm_start;
1142        vma->vm_end   = region->vm_start + len;
1143
1144        if (vma->vm_file) {
1145                /* read the contents of a file into the copy */
1146                loff_t fpos;
1147
1148                fpos = vma->vm_pgoff;
1149                fpos <<= PAGE_SHIFT;
1150
1151                ret = kernel_read(vma->vm_file, base, len, &fpos);
1152                if (ret < 0)
1153                        goto error_free;
1154
1155                /* clear the last little bit */
1156                if (ret < len)
1157                        memset(base + ret, 0, len - ret);
1158
1159        } else {
1160                vma_set_anonymous(vma);
1161        }
1162
1163        return 0;
1164
1165error_free:
1166        free_page_series(region->vm_start, region->vm_top);
1167        region->vm_start = vma->vm_start = 0;
1168        region->vm_end   = vma->vm_end = 0;
1169        region->vm_top   = 0;
1170        return ret;
1171
1172enomem:
1173        pr_err("Allocation of length %lu from process %d (%s) failed\n",
1174               len, current->pid, current->comm);
1175        show_free_areas(0, NULL);
1176        return -ENOMEM;
1177}
1178
1179/*
1180 * handle mapping creation for uClinux
1181 */
1182unsigned long do_mmap(struct file *file,
1183                        unsigned long addr,
1184                        unsigned long len,
1185                        unsigned long prot,
1186                        unsigned long flags,
1187                        vm_flags_t vm_flags,
1188                        unsigned long pgoff,
1189                        unsigned long *populate,
1190                        struct list_head *uf)
1191{
1192        struct vm_area_struct *vma;
1193        struct vm_region *region;
1194        struct rb_node *rb;
1195        unsigned long capabilities, result;
1196        int ret;
1197
1198        *populate = 0;
1199
1200        /* decide whether we should attempt the mapping, and if so what sort of
1201         * mapping */
1202        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1203                                    &capabilities);
1204        if (ret < 0)
1205                return ret;
1206
1207        /* we ignore the address hint */
1208        addr = 0;
1209        len = PAGE_ALIGN(len);
1210
1211        /* we've determined that we can make the mapping, now translate what we
1212         * now know into VMA flags */
1213        vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1214
1215        /* we're going to need to record the mapping */
1216        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1217        if (!region)
1218                goto error_getting_region;
1219
1220        vma = vm_area_alloc(current->mm);
1221        if (!vma)
1222                goto error_getting_vma;
1223
1224        region->vm_usage = 1;
1225        region->vm_flags = vm_flags;
1226        region->vm_pgoff = pgoff;
1227
1228        vma->vm_flags = vm_flags;
1229        vma->vm_pgoff = pgoff;
1230
1231        if (file) {
1232                region->vm_file = get_file(file);
1233                vma->vm_file = get_file(file);
1234        }
1235
1236        down_write(&nommu_region_sem);
1237
1238        /* if we want to share, we need to check for regions created by other
1239         * mmap() calls that overlap with our proposed mapping
1240         * - we can only share with a superset match on most regular files
1241         * - shared mappings on character devices and memory backed files are
1242         *   permitted to overlap inexactly as far as we are concerned for in
1243         *   these cases, sharing is handled in the driver or filesystem rather
1244         *   than here
1245         */
1246        if (vm_flags & VM_MAYSHARE) {
1247                struct vm_region *pregion;
1248                unsigned long pglen, rpglen, pgend, rpgend, start;
1249
1250                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251                pgend = pgoff + pglen;
1252
1253                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1255
1256                        if (!(pregion->vm_flags & VM_MAYSHARE))
1257                                continue;
1258
1259                        /* search for overlapping mappings on the same file */
1260                        if (file_inode(pregion->vm_file) !=
1261                            file_inode(file))
1262                                continue;
1263
1264                        if (pregion->vm_pgoff >= pgend)
1265                                continue;
1266
1267                        rpglen = pregion->vm_end - pregion->vm_start;
1268                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269                        rpgend = pregion->vm_pgoff + rpglen;
1270                        if (pgoff >= rpgend)
1271                                continue;
1272
1273                        /* handle inexactly overlapping matches between
1274                         * mappings */
1275                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277                                /* new mapping is not a subset of the region */
1278                                if (!(capabilities & NOMMU_MAP_DIRECT))
1279                                        goto sharing_violation;
1280                                continue;
1281                        }
1282
1283                        /* we've found a region we can share */
1284                        pregion->vm_usage++;
1285                        vma->vm_region = pregion;
1286                        start = pregion->vm_start;
1287                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288                        vma->vm_start = start;
1289                        vma->vm_end = start + len;
1290
1291                        if (pregion->vm_flags & VM_MAPPED_COPY)
1292                                vma->vm_flags |= VM_MAPPED_COPY;
1293                        else {
1294                                ret = do_mmap_shared_file(vma);
1295                                if (ret < 0) {
1296                                        vma->vm_region = NULL;
1297                                        vma->vm_start = 0;
1298                                        vma->vm_end = 0;
1299                                        pregion->vm_usage--;
1300                                        pregion = NULL;
1301                                        goto error_just_free;
1302                                }
1303                        }
1304                        fput(region->vm_file);
1305                        kmem_cache_free(vm_region_jar, region);
1306                        region = pregion;
1307                        result = start;
1308                        goto share;
1309                }
1310
1311                /* obtain the address at which to make a shared mapping
1312                 * - this is the hook for quasi-memory character devices to
1313                 *   tell us the location of a shared mapping
1314                 */
1315                if (capabilities & NOMMU_MAP_DIRECT) {
1316                        addr = file->f_op->get_unmapped_area(file, addr, len,
1317                                                             pgoff, flags);
1318                        if (IS_ERR_VALUE(addr)) {
1319                                ret = addr;
1320                                if (ret != -ENOSYS)
1321                                        goto error_just_free;
1322
1323                                /* the driver refused to tell us where to site
1324                                 * the mapping so we'll have to attempt to copy
1325                                 * it */
1326                                ret = -ENODEV;
1327                                if (!(capabilities & NOMMU_MAP_COPY))
1328                                        goto error_just_free;
1329
1330                                capabilities &= ~NOMMU_MAP_DIRECT;
1331                        } else {
1332                                vma->vm_start = region->vm_start = addr;
1333                                vma->vm_end = region->vm_end = addr + len;
1334                        }
1335                }
1336        }
1337
1338        vma->vm_region = region;
1339
1340        /* set up the mapping
1341         * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342         */
1343        if (file && vma->vm_flags & VM_SHARED)
1344                ret = do_mmap_shared_file(vma);
1345        else
1346                ret = do_mmap_private(vma, region, len, capabilities);
1347        if (ret < 0)
1348                goto error_just_free;
1349        add_nommu_region(region);
1350
1351        /* clear anonymous mappings that don't ask for uninitialized data */
1352        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353                memset((void *)region->vm_start, 0,
1354                       region->vm_end - region->vm_start);
1355
1356        /* okay... we have a mapping; now we have to register it */
1357        result = vma->vm_start;
1358
1359        current->mm->total_vm += len >> PAGE_SHIFT;
1360
1361share:
1362        add_vma_to_mm(current->mm, vma);
1363
1364        /* we flush the region from the icache only when the first executable
1365         * mapping of it is made  */
1366        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367                flush_icache_range(region->vm_start, region->vm_end);
1368                region->vm_icache_flushed = true;
1369        }
1370
1371        up_write(&nommu_region_sem);
1372
1373        return result;
1374
1375error_just_free:
1376        up_write(&nommu_region_sem);
1377error:
1378        if (region->vm_file)
1379                fput(region->vm_file);
1380        kmem_cache_free(vm_region_jar, region);
1381        if (vma->vm_file)
1382                fput(vma->vm_file);
1383        vm_area_free(vma);
1384        return ret;
1385
1386sharing_violation:
1387        up_write(&nommu_region_sem);
1388        pr_warn("Attempt to share mismatched mappings\n");
1389        ret = -EINVAL;
1390        goto error;
1391
1392error_getting_vma:
1393        kmem_cache_free(vm_region_jar, region);
1394        pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395                        len, current->pid);
1396        show_free_areas(0, NULL);
1397        return -ENOMEM;
1398
1399error_getting_region:
1400        pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401                        len, current->pid);
1402        show_free_areas(0, NULL);
1403        return -ENOMEM;
1404}
1405
1406unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407                              unsigned long prot, unsigned long flags,
1408                              unsigned long fd, unsigned long pgoff)
1409{
1410        struct file *file = NULL;
1411        unsigned long retval = -EBADF;
1412
1413        audit_mmap_fd(fd, flags);
1414        if (!(flags & MAP_ANONYMOUS)) {
1415                file = fget(fd);
1416                if (!file)
1417                        goto out;
1418        }
1419
1420        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423
1424        if (file)
1425                fput(file);
1426out:
1427        return retval;
1428}
1429
1430SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431                unsigned long, prot, unsigned long, flags,
1432                unsigned long, fd, unsigned long, pgoff)
1433{
1434        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435}
1436
1437#ifdef __ARCH_WANT_SYS_OLD_MMAP
1438struct mmap_arg_struct {
1439        unsigned long addr;
1440        unsigned long len;
1441        unsigned long prot;
1442        unsigned long flags;
1443        unsigned long fd;
1444        unsigned long offset;
1445};
1446
1447SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448{
1449        struct mmap_arg_struct a;
1450
1451        if (copy_from_user(&a, arg, sizeof(a)))
1452                return -EFAULT;
1453        if (offset_in_page(a.offset))
1454                return -EINVAL;
1455
1456        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457                               a.offset >> PAGE_SHIFT);
1458}
1459#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460
1461/*
1462 * split a vma into two pieces at address 'addr', a new vma is allocated either
1463 * for the first part or the tail.
1464 */
1465int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466              unsigned long addr, int new_below)
1467{
1468        struct vm_area_struct *new;
1469        struct vm_region *region;
1470        unsigned long npages;
1471
1472        /* we're only permitted to split anonymous regions (these should have
1473         * only a single usage on the region) */
1474        if (vma->vm_file)
1475                return -ENOMEM;
1476
1477        if (mm->map_count >= sysctl_max_map_count)
1478                return -ENOMEM;
1479
1480        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481        if (!region)
1482                return -ENOMEM;
1483
1484        new = vm_area_dup(vma);
1485        if (!new) {
1486                kmem_cache_free(vm_region_jar, region);
1487                return -ENOMEM;
1488        }
1489
1490        /* most fields are the same, copy all, and then fixup */
1491        *region = *vma->vm_region;
1492        new->vm_region = region;
1493
1494        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1495
1496        if (new_below) {
1497                region->vm_top = region->vm_end = new->vm_end = addr;
1498        } else {
1499                region->vm_start = new->vm_start = addr;
1500                region->vm_pgoff = new->vm_pgoff += npages;
1501        }
1502
1503        if (new->vm_ops && new->vm_ops->open)
1504                new->vm_ops->open(new);
1505
1506        delete_vma_from_mm(vma);
1507        down_write(&nommu_region_sem);
1508        delete_nommu_region(vma->vm_region);
1509        if (new_below) {
1510                vma->vm_region->vm_start = vma->vm_start = addr;
1511                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1512        } else {
1513                vma->vm_region->vm_end = vma->vm_end = addr;
1514                vma->vm_region->vm_top = addr;
1515        }
1516        add_nommu_region(vma->vm_region);
1517        add_nommu_region(new->vm_region);
1518        up_write(&nommu_region_sem);
1519        add_vma_to_mm(mm, vma);
1520        add_vma_to_mm(mm, new);
1521        return 0;
1522}
1523
1524/*
1525 * shrink a VMA by removing the specified chunk from either the beginning or
1526 * the end
1527 */
1528static int shrink_vma(struct mm_struct *mm,
1529                      struct vm_area_struct *vma,
1530                      unsigned long from, unsigned long to)
1531{
1532        struct vm_region *region;
1533
1534        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1535         * and list */
1536        delete_vma_from_mm(vma);
1537        if (from > vma->vm_start)
1538                vma->vm_end = from;
1539        else
1540                vma->vm_start = to;
1541        add_vma_to_mm(mm, vma);
1542
1543        /* cut the backing region down to size */
1544        region = vma->vm_region;
1545        BUG_ON(region->vm_usage != 1);
1546
1547        down_write(&nommu_region_sem);
1548        delete_nommu_region(region);
1549        if (from > region->vm_start) {
1550                to = region->vm_top;
1551                region->vm_top = region->vm_end = from;
1552        } else {
1553                region->vm_start = to;
1554        }
1555        add_nommu_region(region);
1556        up_write(&nommu_region_sem);
1557
1558        free_page_series(from, to);
1559        return 0;
1560}
1561
1562/*
1563 * release a mapping
1564 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1565 *   VMA, though it need not cover the whole VMA
1566 */
1567int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1568{
1569        struct vm_area_struct *vma;
1570        unsigned long end;
1571        int ret;
1572
1573        len = PAGE_ALIGN(len);
1574        if (len == 0)
1575                return -EINVAL;
1576
1577        end = start + len;
1578
1579        /* find the first potentially overlapping VMA */
1580        vma = find_vma(mm, start);
1581        if (!vma) {
1582                static int limit;
1583                if (limit < 5) {
1584                        pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1585                                        current->pid, current->comm,
1586                                        start, start + len - 1);
1587                        limit++;
1588                }
1589                return -EINVAL;
1590        }
1591
1592        /* we're allowed to split an anonymous VMA but not a file-backed one */
1593        if (vma->vm_file) {
1594                do {
1595                        if (start > vma->vm_start)
1596                                return -EINVAL;
1597                        if (end == vma->vm_end)
1598                                goto erase_whole_vma;
1599                        vma = vma->vm_next;
1600                } while (vma);
1601                return -EINVAL;
1602        } else {
1603                /* the chunk must be a subset of the VMA found */
1604                if (start == vma->vm_start && end == vma->vm_end)
1605                        goto erase_whole_vma;
1606                if (start < vma->vm_start || end > vma->vm_end)
1607                        return -EINVAL;
1608                if (offset_in_page(start))
1609                        return -EINVAL;
1610                if (end != vma->vm_end && offset_in_page(end))
1611                        return -EINVAL;
1612                if (start != vma->vm_start && end != vma->vm_end) {
1613                        ret = split_vma(mm, vma, start, 1);
1614                        if (ret < 0)
1615                                return ret;
1616                }
1617                return shrink_vma(mm, vma, start, end);
1618        }
1619
1620erase_whole_vma:
1621        delete_vma_from_mm(vma);
1622        delete_vma(mm, vma);
1623        return 0;
1624}
1625EXPORT_SYMBOL(do_munmap);
1626
1627int vm_munmap(unsigned long addr, size_t len)
1628{
1629        struct mm_struct *mm = current->mm;
1630        int ret;
1631
1632        down_write(&mm->mmap_sem);
1633        ret = do_munmap(mm, addr, len, NULL);
1634        up_write(&mm->mmap_sem);
1635        return ret;
1636}
1637EXPORT_SYMBOL(vm_munmap);
1638
1639SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1640{
1641        return vm_munmap(addr, len);
1642}
1643
1644/*
1645 * release all the mappings made in a process's VM space
1646 */
1647void exit_mmap(struct mm_struct *mm)
1648{
1649        struct vm_area_struct *vma;
1650
1651        if (!mm)
1652                return;
1653
1654        mm->total_vm = 0;
1655
1656        while ((vma = mm->mmap)) {
1657                mm->mmap = vma->vm_next;
1658                delete_vma_from_mm(vma);
1659                delete_vma(mm, vma);
1660                cond_resched();
1661        }
1662}
1663
1664int vm_brk(unsigned long addr, unsigned long len)
1665{
1666        return -ENOMEM;
1667}
1668
1669/*
1670 * expand (or shrink) an existing mapping, potentially moving it at the same
1671 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1672 *
1673 * under NOMMU conditions, we only permit changing a mapping's size, and only
1674 * as long as it stays within the region allocated by do_mmap_private() and the
1675 * block is not shareable
1676 *
1677 * MREMAP_FIXED is not supported under NOMMU conditions
1678 */
1679static unsigned long do_mremap(unsigned long addr,
1680                        unsigned long old_len, unsigned long new_len,
1681                        unsigned long flags, unsigned long new_addr)
1682{
1683        struct vm_area_struct *vma;
1684
1685        /* insanity checks first */
1686        old_len = PAGE_ALIGN(old_len);
1687        new_len = PAGE_ALIGN(new_len);
1688        if (old_len == 0 || new_len == 0)
1689                return (unsigned long) -EINVAL;
1690
1691        if (offset_in_page(addr))
1692                return -EINVAL;
1693
1694        if (flags & MREMAP_FIXED && new_addr != addr)
1695                return (unsigned long) -EINVAL;
1696
1697        vma = find_vma_exact(current->mm, addr, old_len);
1698        if (!vma)
1699                return (unsigned long) -EINVAL;
1700
1701        if (vma->vm_end != vma->vm_start + old_len)
1702                return (unsigned long) -EFAULT;
1703
1704        if (vma->vm_flags & VM_MAYSHARE)
1705                return (unsigned long) -EPERM;
1706
1707        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1708                return (unsigned long) -ENOMEM;
1709
1710        /* all checks complete - do it */
1711        vma->vm_end = vma->vm_start + new_len;
1712        return vma->vm_start;
1713}
1714
1715SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1716                unsigned long, new_len, unsigned long, flags,
1717                unsigned long, new_addr)
1718{
1719        unsigned long ret;
1720
1721        down_write(&current->mm->mmap_sem);
1722        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1723        up_write(&current->mm->mmap_sem);
1724        return ret;
1725}
1726
1727struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1728                         unsigned int foll_flags)
1729{
1730        return NULL;
1731}
1732
1733int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1734                unsigned long pfn, unsigned long size, pgprot_t prot)
1735{
1736        if (addr != (pfn << PAGE_SHIFT))
1737                return -EINVAL;
1738
1739        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1740        return 0;
1741}
1742EXPORT_SYMBOL(remap_pfn_range);
1743
1744int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1745{
1746        unsigned long pfn = start >> PAGE_SHIFT;
1747        unsigned long vm_len = vma->vm_end - vma->vm_start;
1748
1749        pfn += vma->vm_pgoff;
1750        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1751}
1752EXPORT_SYMBOL(vm_iomap_memory);
1753
1754int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1755                        unsigned long pgoff)
1756{
1757        unsigned int size = vma->vm_end - vma->vm_start;
1758
1759        if (!(vma->vm_flags & VM_USERMAP))
1760                return -EINVAL;
1761
1762        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1763        vma->vm_end = vma->vm_start + size;
1764
1765        return 0;
1766}
1767EXPORT_SYMBOL(remap_vmalloc_range);
1768
1769unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1770        unsigned long len, unsigned long pgoff, unsigned long flags)
1771{
1772        return -ENOMEM;
1773}
1774
1775vm_fault_t filemap_fault(struct vm_fault *vmf)
1776{
1777        BUG();
1778        return 0;
1779}
1780EXPORT_SYMBOL(filemap_fault);
1781
1782void filemap_map_pages(struct vm_fault *vmf,
1783                pgoff_t start_pgoff, pgoff_t end_pgoff)
1784{
1785        BUG();
1786}
1787EXPORT_SYMBOL(filemap_map_pages);
1788
1789int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1790                unsigned long addr, void *buf, int len, unsigned int gup_flags)
1791{
1792        struct vm_area_struct *vma;
1793        int write = gup_flags & FOLL_WRITE;
1794
1795        down_read(&mm->mmap_sem);
1796
1797        /* the access must start within one of the target process's mappings */
1798        vma = find_vma(mm, addr);
1799        if (vma) {
1800                /* don't overrun this mapping */
1801                if (addr + len >= vma->vm_end)
1802                        len = vma->vm_end - addr;
1803
1804                /* only read or write mappings where it is permitted */
1805                if (write && vma->vm_flags & VM_MAYWRITE)
1806                        copy_to_user_page(vma, NULL, addr,
1807                                         (void *) addr, buf, len);
1808                else if (!write && vma->vm_flags & VM_MAYREAD)
1809                        copy_from_user_page(vma, NULL, addr,
1810                                            buf, (void *) addr, len);
1811                else
1812                        len = 0;
1813        } else {
1814                len = 0;
1815        }
1816
1817        up_read(&mm->mmap_sem);
1818
1819        return len;
1820}
1821
1822/**
1823 * access_remote_vm - access another process' address space
1824 * @mm:         the mm_struct of the target address space
1825 * @addr:       start address to access
1826 * @buf:        source or destination buffer
1827 * @len:        number of bytes to transfer
1828 * @gup_flags:  flags modifying lookup behaviour
1829 *
1830 * The caller must hold a reference on @mm.
1831 */
1832int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1833                void *buf, int len, unsigned int gup_flags)
1834{
1835        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1836}
1837
1838/*
1839 * Access another process' address space.
1840 * - source/target buffer must be kernel space
1841 */
1842int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1843                unsigned int gup_flags)
1844{
1845        struct mm_struct *mm;
1846
1847        if (addr + len < addr)
1848                return 0;
1849
1850        mm = get_task_mm(tsk);
1851        if (!mm)
1852                return 0;
1853
1854        len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1855
1856        mmput(mm);
1857        return len;
1858}
1859EXPORT_SYMBOL_GPL(access_process_vm);
1860
1861/**
1862 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1863 * @inode: The inode to check
1864 * @size: The current filesize of the inode
1865 * @newsize: The proposed filesize of the inode
1866 *
1867 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1868 * make sure that that any outstanding VMAs aren't broken and then shrink the
1869 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1870 * automatically grant mappings that are too large.
1871 */
1872int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1873                                size_t newsize)
1874{
1875        struct vm_area_struct *vma;
1876        struct vm_region *region;
1877        pgoff_t low, high;
1878        size_t r_size, r_top;
1879
1880        low = newsize >> PAGE_SHIFT;
1881        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1882
1883        down_write(&nommu_region_sem);
1884        i_mmap_lock_read(inode->i_mapping);
1885
1886        /* search for VMAs that fall within the dead zone */
1887        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1888                /* found one - only interested if it's shared out of the page
1889                 * cache */
1890                if (vma->vm_flags & VM_SHARED) {
1891                        i_mmap_unlock_read(inode->i_mapping);
1892                        up_write(&nommu_region_sem);
1893                        return -ETXTBSY; /* not quite true, but near enough */
1894                }
1895        }
1896
1897        /* reduce any regions that overlap the dead zone - if in existence,
1898         * these will be pointed to by VMAs that don't overlap the dead zone
1899         *
1900         * we don't check for any regions that start beyond the EOF as there
1901         * shouldn't be any
1902         */
1903        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1904                if (!(vma->vm_flags & VM_SHARED))
1905                        continue;
1906
1907                region = vma->vm_region;
1908                r_size = region->vm_top - region->vm_start;
1909                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1910
1911                if (r_top > newsize) {
1912                        region->vm_top -= r_top - newsize;
1913                        if (region->vm_end > region->vm_top)
1914                                region->vm_end = region->vm_top;
1915                }
1916        }
1917
1918        i_mmap_unlock_read(inode->i_mapping);
1919        up_write(&nommu_region_sem);
1920        return 0;
1921}
1922
1923/*
1924 * Initialise sysctl_user_reserve_kbytes.
1925 *
1926 * This is intended to prevent a user from starting a single memory hogging
1927 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1928 * mode.
1929 *
1930 * The default value is min(3% of free memory, 128MB)
1931 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1932 */
1933static int __meminit init_user_reserve(void)
1934{
1935        unsigned long free_kbytes;
1936
1937        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1938
1939        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1940        return 0;
1941}
1942subsys_initcall(init_user_reserve);
1943
1944/*
1945 * Initialise sysctl_admin_reserve_kbytes.
1946 *
1947 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1948 * to log in and kill a memory hogging process.
1949 *
1950 * Systems with more than 256MB will reserve 8MB, enough to recover
1951 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1952 * only reserve 3% of free pages by default.
1953 */
1954static int __meminit init_admin_reserve(void)
1955{
1956        unsigned long free_kbytes;
1957
1958        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1959
1960        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1961        return 0;
1962}
1963subsys_initcall(init_admin_reserve);
1964