linux/mm/page_alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/page_ext.h>
  54#include <linux/debugobjects.h>
  55#include <linux/kmemleak.h>
  56#include <linux/compaction.h>
  57#include <trace/events/kmem.h>
  58#include <trace/events/oom.h>
  59#include <linux/prefetch.h>
  60#include <linux/mm_inline.h>
  61#include <linux/migrate.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72
  73#include <asm/sections.h>
  74#include <asm/tlbflush.h>
  75#include <asm/div64.h>
  76#include "internal.h"
  77#include "shuffle.h"
  78
  79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  80static DEFINE_MUTEX(pcp_batch_high_lock);
  81#define MIN_PERCPU_PAGELIST_FRACTION    (8)
  82
  83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  84DEFINE_PER_CPU(int, numa_node);
  85EXPORT_PER_CPU_SYMBOL(numa_node);
  86#endif
  87
  88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  89
  90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  91/*
  92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  95 * defined in <linux/topology.h>.
  96 */
  97DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
  98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  99int _node_numa_mem_[MAX_NUMNODES];
 100#endif
 101
 102/* work_structs for global per-cpu drains */
 103struct pcpu_drain {
 104        struct zone *zone;
 105        struct work_struct work;
 106};
 107DEFINE_MUTEX(pcpu_drain_mutex);
 108DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 109
 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 111volatile unsigned long latent_entropy __latent_entropy;
 112EXPORT_SYMBOL(latent_entropy);
 113#endif
 114
 115/*
 116 * Array of node states.
 117 */
 118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 119        [N_POSSIBLE] = NODE_MASK_ALL,
 120        [N_ONLINE] = { { [0] = 1UL } },
 121#ifndef CONFIG_NUMA
 122        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 123#ifdef CONFIG_HIGHMEM
 124        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 125#endif
 126        [N_MEMORY] = { { [0] = 1UL } },
 127        [N_CPU] = { { [0] = 1UL } },
 128#endif  /* NUMA */
 129};
 130EXPORT_SYMBOL(node_states);
 131
 132atomic_long_t _totalram_pages __read_mostly;
 133EXPORT_SYMBOL(_totalram_pages);
 134unsigned long totalreserve_pages __read_mostly;
 135unsigned long totalcma_pages __read_mostly;
 136
 137int percpu_pagelist_fraction;
 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 139
 140/*
 141 * A cached value of the page's pageblock's migratetype, used when the page is
 142 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 143 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 144 * Also the migratetype set in the page does not necessarily match the pcplist
 145 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 146 * other index - this ensures that it will be put on the correct CMA freelist.
 147 */
 148static inline int get_pcppage_migratetype(struct page *page)
 149{
 150        return page->index;
 151}
 152
 153static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 154{
 155        page->index = migratetype;
 156}
 157
 158#ifdef CONFIG_PM_SLEEP
 159/*
 160 * The following functions are used by the suspend/hibernate code to temporarily
 161 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 162 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 163 * they should always be called with system_transition_mutex held
 164 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 165 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 166 * with that modification).
 167 */
 168
 169static gfp_t saved_gfp_mask;
 170
 171void pm_restore_gfp_mask(void)
 172{
 173        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 174        if (saved_gfp_mask) {
 175                gfp_allowed_mask = saved_gfp_mask;
 176                saved_gfp_mask = 0;
 177        }
 178}
 179
 180void pm_restrict_gfp_mask(void)
 181{
 182        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 183        WARN_ON(saved_gfp_mask);
 184        saved_gfp_mask = gfp_allowed_mask;
 185        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 186}
 187
 188bool pm_suspended_storage(void)
 189{
 190        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 191                return false;
 192        return true;
 193}
 194#endif /* CONFIG_PM_SLEEP */
 195
 196#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 197unsigned int pageblock_order __read_mostly;
 198#endif
 199
 200static void __free_pages_ok(struct page *page, unsigned int order);
 201
 202/*
 203 * results with 256, 32 in the lowmem_reserve sysctl:
 204 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 205 *      1G machine -> (16M dma, 784M normal, 224M high)
 206 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 207 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 208 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 209 *
 210 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 211 * don't need any ZONE_NORMAL reservation
 212 */
 213int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 214#ifdef CONFIG_ZONE_DMA
 215        [ZONE_DMA] = 256,
 216#endif
 217#ifdef CONFIG_ZONE_DMA32
 218        [ZONE_DMA32] = 256,
 219#endif
 220        [ZONE_NORMAL] = 32,
 221#ifdef CONFIG_HIGHMEM
 222        [ZONE_HIGHMEM] = 0,
 223#endif
 224        [ZONE_MOVABLE] = 0,
 225};
 226
 227EXPORT_SYMBOL(totalram_pages);
 228
 229static char * const zone_names[MAX_NR_ZONES] = {
 230#ifdef CONFIG_ZONE_DMA
 231         "DMA",
 232#endif
 233#ifdef CONFIG_ZONE_DMA32
 234         "DMA32",
 235#endif
 236         "Normal",
 237#ifdef CONFIG_HIGHMEM
 238         "HighMem",
 239#endif
 240         "Movable",
 241#ifdef CONFIG_ZONE_DEVICE
 242         "Device",
 243#endif
 244};
 245
 246const char * const migratetype_names[MIGRATE_TYPES] = {
 247        "Unmovable",
 248        "Movable",
 249        "Reclaimable",
 250        "HighAtomic",
 251#ifdef CONFIG_CMA
 252        "CMA",
 253#endif
 254#ifdef CONFIG_MEMORY_ISOLATION
 255        "Isolate",
 256#endif
 257};
 258
 259compound_page_dtor * const compound_page_dtors[] = {
 260        NULL,
 261        free_compound_page,
 262#ifdef CONFIG_HUGETLB_PAGE
 263        free_huge_page,
 264#endif
 265#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 266        free_transhuge_page,
 267#endif
 268};
 269
 270int min_free_kbytes = 1024;
 271int user_min_free_kbytes = -1;
 272#ifdef CONFIG_DISCONTIGMEM
 273/*
 274 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 275 * are not on separate NUMA nodes. Functionally this works but with
 276 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 277 * quite small. By default, do not boost watermarks on discontigmem as in
 278 * many cases very high-order allocations like THP are likely to be
 279 * unsupported and the premature reclaim offsets the advantage of long-term
 280 * fragmentation avoidance.
 281 */
 282int watermark_boost_factor __read_mostly;
 283#else
 284int watermark_boost_factor __read_mostly = 15000;
 285#endif
 286int watermark_scale_factor = 10;
 287
 288static unsigned long nr_kernel_pages __initdata;
 289static unsigned long nr_all_pages __initdata;
 290static unsigned long dma_reserve __initdata;
 291
 292#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 293static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 294static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 295static unsigned long required_kernelcore __initdata;
 296static unsigned long required_kernelcore_percent __initdata;
 297static unsigned long required_movablecore __initdata;
 298static unsigned long required_movablecore_percent __initdata;
 299static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 300static bool mirrored_kernelcore __meminitdata;
 301
 302/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 303int movable_zone;
 304EXPORT_SYMBOL(movable_zone);
 305#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 306
 307#if MAX_NUMNODES > 1
 308unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 309unsigned int nr_online_nodes __read_mostly = 1;
 310EXPORT_SYMBOL(nr_node_ids);
 311EXPORT_SYMBOL(nr_online_nodes);
 312#endif
 313
 314int page_group_by_mobility_disabled __read_mostly;
 315
 316#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 317/*
 318 * During boot we initialize deferred pages on-demand, as needed, but once
 319 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 320 * and we can permanently disable that path.
 321 */
 322static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 323
 324/*
 325 * Calling kasan_free_pages() only after deferred memory initialization
 326 * has completed. Poisoning pages during deferred memory init will greatly
 327 * lengthen the process and cause problem in large memory systems as the
 328 * deferred pages initialization is done with interrupt disabled.
 329 *
 330 * Assuming that there will be no reference to those newly initialized
 331 * pages before they are ever allocated, this should have no effect on
 332 * KASAN memory tracking as the poison will be properly inserted at page
 333 * allocation time. The only corner case is when pages are allocated by
 334 * on-demand allocation and then freed again before the deferred pages
 335 * initialization is done, but this is not likely to happen.
 336 */
 337static inline void kasan_free_nondeferred_pages(struct page *page, int order)
 338{
 339        if (!static_branch_unlikely(&deferred_pages))
 340                kasan_free_pages(page, order);
 341}
 342
 343/* Returns true if the struct page for the pfn is uninitialised */
 344static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 345{
 346        int nid = early_pfn_to_nid(pfn);
 347
 348        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 349                return true;
 350
 351        return false;
 352}
 353
 354/*
 355 * Returns true when the remaining initialisation should be deferred until
 356 * later in the boot cycle when it can be parallelised.
 357 */
 358static bool __meminit
 359defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 360{
 361        static unsigned long prev_end_pfn, nr_initialised;
 362
 363        /*
 364         * prev_end_pfn static that contains the end of previous zone
 365         * No need to protect because called very early in boot before smp_init.
 366         */
 367        if (prev_end_pfn != end_pfn) {
 368                prev_end_pfn = end_pfn;
 369                nr_initialised = 0;
 370        }
 371
 372        /* Always populate low zones for address-constrained allocations */
 373        if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 374                return false;
 375
 376        /*
 377         * We start only with one section of pages, more pages are added as
 378         * needed until the rest of deferred pages are initialized.
 379         */
 380        nr_initialised++;
 381        if ((nr_initialised > PAGES_PER_SECTION) &&
 382            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 383                NODE_DATA(nid)->first_deferred_pfn = pfn;
 384                return true;
 385        }
 386        return false;
 387}
 388#else
 389#define kasan_free_nondeferred_pages(p, o)      kasan_free_pages(p, o)
 390
 391static inline bool early_page_uninitialised(unsigned long pfn)
 392{
 393        return false;
 394}
 395
 396static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 397{
 398        return false;
 399}
 400#endif
 401
 402/* Return a pointer to the bitmap storing bits affecting a block of pages */
 403static inline unsigned long *get_pageblock_bitmap(struct page *page,
 404                                                        unsigned long pfn)
 405{
 406#ifdef CONFIG_SPARSEMEM
 407        return __pfn_to_section(pfn)->pageblock_flags;
 408#else
 409        return page_zone(page)->pageblock_flags;
 410#endif /* CONFIG_SPARSEMEM */
 411}
 412
 413static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 414{
 415#ifdef CONFIG_SPARSEMEM
 416        pfn &= (PAGES_PER_SECTION-1);
 417        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 418#else
 419        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 420        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 421#endif /* CONFIG_SPARSEMEM */
 422}
 423
 424/**
 425 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 426 * @page: The page within the block of interest
 427 * @pfn: The target page frame number
 428 * @end_bitidx: The last bit of interest to retrieve
 429 * @mask: mask of bits that the caller is interested in
 430 *
 431 * Return: pageblock_bits flags
 432 */
 433static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 434                                        unsigned long pfn,
 435                                        unsigned long end_bitidx,
 436                                        unsigned long mask)
 437{
 438        unsigned long *bitmap;
 439        unsigned long bitidx, word_bitidx;
 440        unsigned long word;
 441
 442        bitmap = get_pageblock_bitmap(page, pfn);
 443        bitidx = pfn_to_bitidx(page, pfn);
 444        word_bitidx = bitidx / BITS_PER_LONG;
 445        bitidx &= (BITS_PER_LONG-1);
 446
 447        word = bitmap[word_bitidx];
 448        bitidx += end_bitidx;
 449        return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 450}
 451
 452unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 453                                        unsigned long end_bitidx,
 454                                        unsigned long mask)
 455{
 456        return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 457}
 458
 459static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 460{
 461        return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 462}
 463
 464/**
 465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 466 * @page: The page within the block of interest
 467 * @flags: The flags to set
 468 * @pfn: The target page frame number
 469 * @end_bitidx: The last bit of interest
 470 * @mask: mask of bits that the caller is interested in
 471 */
 472void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 473                                        unsigned long pfn,
 474                                        unsigned long end_bitidx,
 475                                        unsigned long mask)
 476{
 477        unsigned long *bitmap;
 478        unsigned long bitidx, word_bitidx;
 479        unsigned long old_word, word;
 480
 481        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 482        BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 483
 484        bitmap = get_pageblock_bitmap(page, pfn);
 485        bitidx = pfn_to_bitidx(page, pfn);
 486        word_bitidx = bitidx / BITS_PER_LONG;
 487        bitidx &= (BITS_PER_LONG-1);
 488
 489        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 490
 491        bitidx += end_bitidx;
 492        mask <<= (BITS_PER_LONG - bitidx - 1);
 493        flags <<= (BITS_PER_LONG - bitidx - 1);
 494
 495        word = READ_ONCE(bitmap[word_bitidx]);
 496        for (;;) {
 497                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 498                if (word == old_word)
 499                        break;
 500                word = old_word;
 501        }
 502}
 503
 504void set_pageblock_migratetype(struct page *page, int migratetype)
 505{
 506        if (unlikely(page_group_by_mobility_disabled &&
 507                     migratetype < MIGRATE_PCPTYPES))
 508                migratetype = MIGRATE_UNMOVABLE;
 509
 510        set_pageblock_flags_group(page, (unsigned long)migratetype,
 511                                        PB_migrate, PB_migrate_end);
 512}
 513
 514#ifdef CONFIG_DEBUG_VM
 515static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 516{
 517        int ret = 0;
 518        unsigned seq;
 519        unsigned long pfn = page_to_pfn(page);
 520        unsigned long sp, start_pfn;
 521
 522        do {
 523                seq = zone_span_seqbegin(zone);
 524                start_pfn = zone->zone_start_pfn;
 525                sp = zone->spanned_pages;
 526                if (!zone_spans_pfn(zone, pfn))
 527                        ret = 1;
 528        } while (zone_span_seqretry(zone, seq));
 529
 530        if (ret)
 531                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 532                        pfn, zone_to_nid(zone), zone->name,
 533                        start_pfn, start_pfn + sp);
 534
 535        return ret;
 536}
 537
 538static int page_is_consistent(struct zone *zone, struct page *page)
 539{
 540        if (!pfn_valid_within(page_to_pfn(page)))
 541                return 0;
 542        if (zone != page_zone(page))
 543                return 0;
 544
 545        return 1;
 546}
 547/*
 548 * Temporary debugging check for pages not lying within a given zone.
 549 */
 550static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 551{
 552        if (page_outside_zone_boundaries(zone, page))
 553                return 1;
 554        if (!page_is_consistent(zone, page))
 555                return 1;
 556
 557        return 0;
 558}
 559#else
 560static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 561{
 562        return 0;
 563}
 564#endif
 565
 566static void bad_page(struct page *page, const char *reason,
 567                unsigned long bad_flags)
 568{
 569        static unsigned long resume;
 570        static unsigned long nr_shown;
 571        static unsigned long nr_unshown;
 572
 573        /*
 574         * Allow a burst of 60 reports, then keep quiet for that minute;
 575         * or allow a steady drip of one report per second.
 576         */
 577        if (nr_shown == 60) {
 578                if (time_before(jiffies, resume)) {
 579                        nr_unshown++;
 580                        goto out;
 581                }
 582                if (nr_unshown) {
 583                        pr_alert(
 584                              "BUG: Bad page state: %lu messages suppressed\n",
 585                                nr_unshown);
 586                        nr_unshown = 0;
 587                }
 588                nr_shown = 0;
 589        }
 590        if (nr_shown++ == 0)
 591                resume = jiffies + 60 * HZ;
 592
 593        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 594                current->comm, page_to_pfn(page));
 595        __dump_page(page, reason);
 596        bad_flags &= page->flags;
 597        if (bad_flags)
 598                pr_alert("bad because of flags: %#lx(%pGp)\n",
 599                                                bad_flags, &bad_flags);
 600        dump_page_owner(page);
 601
 602        print_modules();
 603        dump_stack();
 604out:
 605        /* Leave bad fields for debug, except PageBuddy could make trouble */
 606        page_mapcount_reset(page); /* remove PageBuddy */
 607        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 608}
 609
 610/*
 611 * Higher-order pages are called "compound pages".  They are structured thusly:
 612 *
 613 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 614 *
 615 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 616 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 617 *
 618 * The first tail page's ->compound_dtor holds the offset in array of compound
 619 * page destructors. See compound_page_dtors.
 620 *
 621 * The first tail page's ->compound_order holds the order of allocation.
 622 * This usage means that zero-order pages may not be compound.
 623 */
 624
 625void free_compound_page(struct page *page)
 626{
 627        __free_pages_ok(page, compound_order(page));
 628}
 629
 630void prep_compound_page(struct page *page, unsigned int order)
 631{
 632        int i;
 633        int nr_pages = 1 << order;
 634
 635        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 636        set_compound_order(page, order);
 637        __SetPageHead(page);
 638        for (i = 1; i < nr_pages; i++) {
 639                struct page *p = page + i;
 640                set_page_count(p, 0);
 641                p->mapping = TAIL_MAPPING;
 642                set_compound_head(p, page);
 643        }
 644        atomic_set(compound_mapcount_ptr(page), -1);
 645}
 646
 647#ifdef CONFIG_DEBUG_PAGEALLOC
 648unsigned int _debug_guardpage_minorder;
 649bool _debug_pagealloc_enabled __read_mostly
 650                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 651EXPORT_SYMBOL(_debug_pagealloc_enabled);
 652bool _debug_guardpage_enabled __read_mostly;
 653
 654static int __init early_debug_pagealloc(char *buf)
 655{
 656        if (!buf)
 657                return -EINVAL;
 658        return kstrtobool(buf, &_debug_pagealloc_enabled);
 659}
 660early_param("debug_pagealloc", early_debug_pagealloc);
 661
 662static bool need_debug_guardpage(void)
 663{
 664        /* If we don't use debug_pagealloc, we don't need guard page */
 665        if (!debug_pagealloc_enabled())
 666                return false;
 667
 668        if (!debug_guardpage_minorder())
 669                return false;
 670
 671        return true;
 672}
 673
 674static void init_debug_guardpage(void)
 675{
 676        if (!debug_pagealloc_enabled())
 677                return;
 678
 679        if (!debug_guardpage_minorder())
 680                return;
 681
 682        _debug_guardpage_enabled = true;
 683}
 684
 685struct page_ext_operations debug_guardpage_ops = {
 686        .need = need_debug_guardpage,
 687        .init = init_debug_guardpage,
 688};
 689
 690static int __init debug_guardpage_minorder_setup(char *buf)
 691{
 692        unsigned long res;
 693
 694        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 695                pr_err("Bad debug_guardpage_minorder value\n");
 696                return 0;
 697        }
 698        _debug_guardpage_minorder = res;
 699        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 700        return 0;
 701}
 702early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 703
 704static inline bool set_page_guard(struct zone *zone, struct page *page,
 705                                unsigned int order, int migratetype)
 706{
 707        struct page_ext *page_ext;
 708
 709        if (!debug_guardpage_enabled())
 710                return false;
 711
 712        if (order >= debug_guardpage_minorder())
 713                return false;
 714
 715        page_ext = lookup_page_ext(page);
 716        if (unlikely(!page_ext))
 717                return false;
 718
 719        __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 720
 721        INIT_LIST_HEAD(&page->lru);
 722        set_page_private(page, order);
 723        /* Guard pages are not available for any usage */
 724        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 725
 726        return true;
 727}
 728
 729static inline void clear_page_guard(struct zone *zone, struct page *page,
 730                                unsigned int order, int migratetype)
 731{
 732        struct page_ext *page_ext;
 733
 734        if (!debug_guardpage_enabled())
 735                return;
 736
 737        page_ext = lookup_page_ext(page);
 738        if (unlikely(!page_ext))
 739                return;
 740
 741        __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 742
 743        set_page_private(page, 0);
 744        if (!is_migrate_isolate(migratetype))
 745                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 746}
 747#else
 748struct page_ext_operations debug_guardpage_ops;
 749static inline bool set_page_guard(struct zone *zone, struct page *page,
 750                        unsigned int order, int migratetype) { return false; }
 751static inline void clear_page_guard(struct zone *zone, struct page *page,
 752                                unsigned int order, int migratetype) {}
 753#endif
 754
 755static inline void set_page_order(struct page *page, unsigned int order)
 756{
 757        set_page_private(page, order);
 758        __SetPageBuddy(page);
 759}
 760
 761/*
 762 * This function checks whether a page is free && is the buddy
 763 * we can coalesce a page and its buddy if
 764 * (a) the buddy is not in a hole (check before calling!) &&
 765 * (b) the buddy is in the buddy system &&
 766 * (c) a page and its buddy have the same order &&
 767 * (d) a page and its buddy are in the same zone.
 768 *
 769 * For recording whether a page is in the buddy system, we set PageBuddy.
 770 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 771 *
 772 * For recording page's order, we use page_private(page).
 773 */
 774static inline int page_is_buddy(struct page *page, struct page *buddy,
 775                                                        unsigned int order)
 776{
 777        if (page_is_guard(buddy) && page_order(buddy) == order) {
 778                if (page_zone_id(page) != page_zone_id(buddy))
 779                        return 0;
 780
 781                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 782
 783                return 1;
 784        }
 785
 786        if (PageBuddy(buddy) && page_order(buddy) == order) {
 787                /*
 788                 * zone check is done late to avoid uselessly
 789                 * calculating zone/node ids for pages that could
 790                 * never merge.
 791                 */
 792                if (page_zone_id(page) != page_zone_id(buddy))
 793                        return 0;
 794
 795                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 796
 797                return 1;
 798        }
 799        return 0;
 800}
 801
 802#ifdef CONFIG_COMPACTION
 803static inline struct capture_control *task_capc(struct zone *zone)
 804{
 805        struct capture_control *capc = current->capture_control;
 806
 807        return capc &&
 808                !(current->flags & PF_KTHREAD) &&
 809                !capc->page &&
 810                capc->cc->zone == zone &&
 811                capc->cc->direct_compaction ? capc : NULL;
 812}
 813
 814static inline bool
 815compaction_capture(struct capture_control *capc, struct page *page,
 816                   int order, int migratetype)
 817{
 818        if (!capc || order != capc->cc->order)
 819                return false;
 820
 821        /* Do not accidentally pollute CMA or isolated regions*/
 822        if (is_migrate_cma(migratetype) ||
 823            is_migrate_isolate(migratetype))
 824                return false;
 825
 826        /*
 827         * Do not let lower order allocations polluate a movable pageblock.
 828         * This might let an unmovable request use a reclaimable pageblock
 829         * and vice-versa but no more than normal fallback logic which can
 830         * have trouble finding a high-order free page.
 831         */
 832        if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 833                return false;
 834
 835        capc->page = page;
 836        return true;
 837}
 838
 839#else
 840static inline struct capture_control *task_capc(struct zone *zone)
 841{
 842        return NULL;
 843}
 844
 845static inline bool
 846compaction_capture(struct capture_control *capc, struct page *page,
 847                   int order, int migratetype)
 848{
 849        return false;
 850}
 851#endif /* CONFIG_COMPACTION */
 852
 853/*
 854 * Freeing function for a buddy system allocator.
 855 *
 856 * The concept of a buddy system is to maintain direct-mapped table
 857 * (containing bit values) for memory blocks of various "orders".
 858 * The bottom level table contains the map for the smallest allocatable
 859 * units of memory (here, pages), and each level above it describes
 860 * pairs of units from the levels below, hence, "buddies".
 861 * At a high level, all that happens here is marking the table entry
 862 * at the bottom level available, and propagating the changes upward
 863 * as necessary, plus some accounting needed to play nicely with other
 864 * parts of the VM system.
 865 * At each level, we keep a list of pages, which are heads of continuous
 866 * free pages of length of (1 << order) and marked with PageBuddy.
 867 * Page's order is recorded in page_private(page) field.
 868 * So when we are allocating or freeing one, we can derive the state of the
 869 * other.  That is, if we allocate a small block, and both were
 870 * free, the remainder of the region must be split into blocks.
 871 * If a block is freed, and its buddy is also free, then this
 872 * triggers coalescing into a block of larger size.
 873 *
 874 * -- nyc
 875 */
 876
 877static inline void __free_one_page(struct page *page,
 878                unsigned long pfn,
 879                struct zone *zone, unsigned int order,
 880                int migratetype)
 881{
 882        unsigned long combined_pfn;
 883        unsigned long uninitialized_var(buddy_pfn);
 884        struct page *buddy;
 885        unsigned int max_order;
 886        struct capture_control *capc = task_capc(zone);
 887
 888        max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 889
 890        VM_BUG_ON(!zone_is_initialized(zone));
 891        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 892
 893        VM_BUG_ON(migratetype == -1);
 894        if (likely(!is_migrate_isolate(migratetype)))
 895                __mod_zone_freepage_state(zone, 1 << order, migratetype);
 896
 897        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 898        VM_BUG_ON_PAGE(bad_range(zone, page), page);
 899
 900continue_merging:
 901        while (order < max_order - 1) {
 902                if (compaction_capture(capc, page, order, migratetype)) {
 903                        __mod_zone_freepage_state(zone, -(1 << order),
 904                                                                migratetype);
 905                        return;
 906                }
 907                buddy_pfn = __find_buddy_pfn(pfn, order);
 908                buddy = page + (buddy_pfn - pfn);
 909
 910                if (!pfn_valid_within(buddy_pfn))
 911                        goto done_merging;
 912                if (!page_is_buddy(page, buddy, order))
 913                        goto done_merging;
 914                /*
 915                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 916                 * merge with it and move up one order.
 917                 */
 918                if (page_is_guard(buddy))
 919                        clear_page_guard(zone, buddy, order, migratetype);
 920                else
 921                        del_page_from_free_area(buddy, &zone->free_area[order]);
 922                combined_pfn = buddy_pfn & pfn;
 923                page = page + (combined_pfn - pfn);
 924                pfn = combined_pfn;
 925                order++;
 926        }
 927        if (max_order < MAX_ORDER) {
 928                /* If we are here, it means order is >= pageblock_order.
 929                 * We want to prevent merge between freepages on isolate
 930                 * pageblock and normal pageblock. Without this, pageblock
 931                 * isolation could cause incorrect freepage or CMA accounting.
 932                 *
 933                 * We don't want to hit this code for the more frequent
 934                 * low-order merging.
 935                 */
 936                if (unlikely(has_isolate_pageblock(zone))) {
 937                        int buddy_mt;
 938
 939                        buddy_pfn = __find_buddy_pfn(pfn, order);
 940                        buddy = page + (buddy_pfn - pfn);
 941                        buddy_mt = get_pageblock_migratetype(buddy);
 942
 943                        if (migratetype != buddy_mt
 944                                        && (is_migrate_isolate(migratetype) ||
 945                                                is_migrate_isolate(buddy_mt)))
 946                                goto done_merging;
 947                }
 948                max_order++;
 949                goto continue_merging;
 950        }
 951
 952done_merging:
 953        set_page_order(page, order);
 954
 955        /*
 956         * If this is not the largest possible page, check if the buddy
 957         * of the next-highest order is free. If it is, it's possible
 958         * that pages are being freed that will coalesce soon. In case,
 959         * that is happening, add the free page to the tail of the list
 960         * so it's less likely to be used soon and more likely to be merged
 961         * as a higher order page
 962         */
 963        if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
 964                        && !is_shuffle_order(order)) {
 965                struct page *higher_page, *higher_buddy;
 966                combined_pfn = buddy_pfn & pfn;
 967                higher_page = page + (combined_pfn - pfn);
 968                buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 969                higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 970                if (pfn_valid_within(buddy_pfn) &&
 971                    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 972                        add_to_free_area_tail(page, &zone->free_area[order],
 973                                              migratetype);
 974                        return;
 975                }
 976        }
 977
 978        if (is_shuffle_order(order))
 979                add_to_free_area_random(page, &zone->free_area[order],
 980                                migratetype);
 981        else
 982                add_to_free_area(page, &zone->free_area[order], migratetype);
 983
 984}
 985
 986/*
 987 * A bad page could be due to a number of fields. Instead of multiple branches,
 988 * try and check multiple fields with one check. The caller must do a detailed
 989 * check if necessary.
 990 */
 991static inline bool page_expected_state(struct page *page,
 992                                        unsigned long check_flags)
 993{
 994        if (unlikely(atomic_read(&page->_mapcount) != -1))
 995                return false;
 996
 997        if (unlikely((unsigned long)page->mapping |
 998                        page_ref_count(page) |
 999#ifdef CONFIG_MEMCG
1000                        (unsigned long)page->mem_cgroup |
1001#endif
1002                        (page->flags & check_flags)))
1003                return false;
1004
1005        return true;
1006}
1007
1008static void free_pages_check_bad(struct page *page)
1009{
1010        const char *bad_reason;
1011        unsigned long bad_flags;
1012
1013        bad_reason = NULL;
1014        bad_flags = 0;
1015
1016        if (unlikely(atomic_read(&page->_mapcount) != -1))
1017                bad_reason = "nonzero mapcount";
1018        if (unlikely(page->mapping != NULL))
1019                bad_reason = "non-NULL mapping";
1020        if (unlikely(page_ref_count(page) != 0))
1021                bad_reason = "nonzero _refcount";
1022        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023                bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024                bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1025        }
1026#ifdef CONFIG_MEMCG
1027        if (unlikely(page->mem_cgroup))
1028                bad_reason = "page still charged to cgroup";
1029#endif
1030        bad_page(page, bad_reason, bad_flags);
1031}
1032
1033static inline int free_pages_check(struct page *page)
1034{
1035        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1036                return 0;
1037
1038        /* Something has gone sideways, find it */
1039        free_pages_check_bad(page);
1040        return 1;
1041}
1042
1043static int free_tail_pages_check(struct page *head_page, struct page *page)
1044{
1045        int ret = 1;
1046
1047        /*
1048         * We rely page->lru.next never has bit 0 set, unless the page
1049         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1050         */
1051        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1052
1053        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054                ret = 0;
1055                goto out;
1056        }
1057        switch (page - head_page) {
1058        case 1:
1059                /* the first tail page: ->mapping may be compound_mapcount() */
1060                if (unlikely(compound_mapcount(page))) {
1061                        bad_page(page, "nonzero compound_mapcount", 0);
1062                        goto out;
1063                }
1064                break;
1065        case 2:
1066                /*
1067                 * the second tail page: ->mapping is
1068                 * deferred_list.next -- ignore value.
1069                 */
1070                break;
1071        default:
1072                if (page->mapping != TAIL_MAPPING) {
1073                        bad_page(page, "corrupted mapping in tail page", 0);
1074                        goto out;
1075                }
1076                break;
1077        }
1078        if (unlikely(!PageTail(page))) {
1079                bad_page(page, "PageTail not set", 0);
1080                goto out;
1081        }
1082        if (unlikely(compound_head(page) != head_page)) {
1083                bad_page(page, "compound_head not consistent", 0);
1084                goto out;
1085        }
1086        ret = 0;
1087out:
1088        page->mapping = NULL;
1089        clear_compound_head(page);
1090        return ret;
1091}
1092
1093static __always_inline bool free_pages_prepare(struct page *page,
1094                                        unsigned int order, bool check_free)
1095{
1096        int bad = 0;
1097
1098        VM_BUG_ON_PAGE(PageTail(page), page);
1099
1100        trace_mm_page_free(page, order);
1101
1102        /*
1103         * Check tail pages before head page information is cleared to
1104         * avoid checking PageCompound for order-0 pages.
1105         */
1106        if (unlikely(order)) {
1107                bool compound = PageCompound(page);
1108                int i;
1109
1110                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111
1112                if (compound)
1113                        ClearPageDoubleMap(page);
1114                for (i = 1; i < (1 << order); i++) {
1115                        if (compound)
1116                                bad += free_tail_pages_check(page, page + i);
1117                        if (unlikely(free_pages_check(page + i))) {
1118                                bad++;
1119                                continue;
1120                        }
1121                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122                }
1123        }
1124        if (PageMappingFlags(page))
1125                page->mapping = NULL;
1126        if (memcg_kmem_enabled() && PageKmemcg(page))
1127                __memcg_kmem_uncharge(page, order);
1128        if (check_free)
1129                bad += free_pages_check(page);
1130        if (bad)
1131                return false;
1132
1133        page_cpupid_reset_last(page);
1134        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135        reset_page_owner(page, order);
1136
1137        if (!PageHighMem(page)) {
1138                debug_check_no_locks_freed(page_address(page),
1139                                           PAGE_SIZE << order);
1140                debug_check_no_obj_freed(page_address(page),
1141                                           PAGE_SIZE << order);
1142        }
1143        arch_free_page(page, order);
1144        kernel_poison_pages(page, 1 << order, 0);
1145        if (debug_pagealloc_enabled())
1146                kernel_map_pages(page, 1 << order, 0);
1147
1148        kasan_free_nondeferred_pages(page, order);
1149
1150        return true;
1151}
1152
1153#ifdef CONFIG_DEBUG_VM
1154static inline bool free_pcp_prepare(struct page *page)
1155{
1156        return free_pages_prepare(page, 0, true);
1157}
1158
1159static inline bool bulkfree_pcp_prepare(struct page *page)
1160{
1161        return false;
1162}
1163#else
1164static bool free_pcp_prepare(struct page *page)
1165{
1166        return free_pages_prepare(page, 0, false);
1167}
1168
1169static bool bulkfree_pcp_prepare(struct page *page)
1170{
1171        return free_pages_check(page);
1172}
1173#endif /* CONFIG_DEBUG_VM */
1174
1175static inline void prefetch_buddy(struct page *page)
1176{
1177        unsigned long pfn = page_to_pfn(page);
1178        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179        struct page *buddy = page + (buddy_pfn - pfn);
1180
1181        prefetch(buddy);
1182}
1183
1184/*
1185 * Frees a number of pages from the PCP lists
1186 * Assumes all pages on list are in same zone, and of same order.
1187 * count is the number of pages to free.
1188 *
1189 * If the zone was previously in an "all pages pinned" state then look to
1190 * see if this freeing clears that state.
1191 *
1192 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193 * pinned" detection logic.
1194 */
1195static void free_pcppages_bulk(struct zone *zone, int count,
1196                                        struct per_cpu_pages *pcp)
1197{
1198        int migratetype = 0;
1199        int batch_free = 0;
1200        int prefetch_nr = 0;
1201        bool isolated_pageblocks;
1202        struct page *page, *tmp;
1203        LIST_HEAD(head);
1204
1205        while (count) {
1206                struct list_head *list;
1207
1208                /*
1209                 * Remove pages from lists in a round-robin fashion. A
1210                 * batch_free count is maintained that is incremented when an
1211                 * empty list is encountered.  This is so more pages are freed
1212                 * off fuller lists instead of spinning excessively around empty
1213                 * lists
1214                 */
1215                do {
1216                        batch_free++;
1217                        if (++migratetype == MIGRATE_PCPTYPES)
1218                                migratetype = 0;
1219                        list = &pcp->lists[migratetype];
1220                } while (list_empty(list));
1221
1222                /* This is the only non-empty list. Free them all. */
1223                if (batch_free == MIGRATE_PCPTYPES)
1224                        batch_free = count;
1225
1226                do {
1227                        page = list_last_entry(list, struct page, lru);
1228                        /* must delete to avoid corrupting pcp list */
1229                        list_del(&page->lru);
1230                        pcp->count--;
1231
1232                        if (bulkfree_pcp_prepare(page))
1233                                continue;
1234
1235                        list_add_tail(&page->lru, &head);
1236
1237                        /*
1238                         * We are going to put the page back to the global
1239                         * pool, prefetch its buddy to speed up later access
1240                         * under zone->lock. It is believed the overhead of
1241                         * an additional test and calculating buddy_pfn here
1242                         * can be offset by reduced memory latency later. To
1243                         * avoid excessive prefetching due to large count, only
1244                         * prefetch buddy for the first pcp->batch nr of pages.
1245                         */
1246                        if (prefetch_nr++ < pcp->batch)
1247                                prefetch_buddy(page);
1248                } while (--count && --batch_free && !list_empty(list));
1249        }
1250
1251        spin_lock(&zone->lock);
1252        isolated_pageblocks = has_isolate_pageblock(zone);
1253
1254        /*
1255         * Use safe version since after __free_one_page(),
1256         * page->lru.next will not point to original list.
1257         */
1258        list_for_each_entry_safe(page, tmp, &head, lru) {
1259                int mt = get_pcppage_migratetype(page);
1260                /* MIGRATE_ISOLATE page should not go to pcplists */
1261                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262                /* Pageblock could have been isolated meanwhile */
1263                if (unlikely(isolated_pageblocks))
1264                        mt = get_pageblock_migratetype(page);
1265
1266                __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267                trace_mm_page_pcpu_drain(page, 0, mt);
1268        }
1269        spin_unlock(&zone->lock);
1270}
1271
1272static void free_one_page(struct zone *zone,
1273                                struct page *page, unsigned long pfn,
1274                                unsigned int order,
1275                                int migratetype)
1276{
1277        spin_lock(&zone->lock);
1278        if (unlikely(has_isolate_pageblock(zone) ||
1279                is_migrate_isolate(migratetype))) {
1280                migratetype = get_pfnblock_migratetype(page, pfn);
1281        }
1282        __free_one_page(page, pfn, zone, order, migratetype);
1283        spin_unlock(&zone->lock);
1284}
1285
1286static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287                                unsigned long zone, int nid)
1288{
1289        mm_zero_struct_page(page);
1290        set_page_links(page, zone, nid, pfn);
1291        init_page_count(page);
1292        page_mapcount_reset(page);
1293        page_cpupid_reset_last(page);
1294        page_kasan_tag_reset(page);
1295
1296        INIT_LIST_HEAD(&page->lru);
1297#ifdef WANT_PAGE_VIRTUAL
1298        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299        if (!is_highmem_idx(zone))
1300                set_page_address(page, __va(pfn << PAGE_SHIFT));
1301#endif
1302}
1303
1304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305static void __meminit init_reserved_page(unsigned long pfn)
1306{
1307        pg_data_t *pgdat;
1308        int nid, zid;
1309
1310        if (!early_page_uninitialised(pfn))
1311                return;
1312
1313        nid = early_pfn_to_nid(pfn);
1314        pgdat = NODE_DATA(nid);
1315
1316        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317                struct zone *zone = &pgdat->node_zones[zid];
1318
1319                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320                        break;
1321        }
1322        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323}
1324#else
1325static inline void init_reserved_page(unsigned long pfn)
1326{
1327}
1328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329
1330/*
1331 * Initialised pages do not have PageReserved set. This function is
1332 * called for each range allocated by the bootmem allocator and
1333 * marks the pages PageReserved. The remaining valid pages are later
1334 * sent to the buddy page allocator.
1335 */
1336void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337{
1338        unsigned long start_pfn = PFN_DOWN(start);
1339        unsigned long end_pfn = PFN_UP(end);
1340
1341        for (; start_pfn < end_pfn; start_pfn++) {
1342                if (pfn_valid(start_pfn)) {
1343                        struct page *page = pfn_to_page(start_pfn);
1344
1345                        init_reserved_page(start_pfn);
1346
1347                        /* Avoid false-positive PageTail() */
1348                        INIT_LIST_HEAD(&page->lru);
1349
1350                        /*
1351                         * no need for atomic set_bit because the struct
1352                         * page is not visible yet so nobody should
1353                         * access it yet.
1354                         */
1355                        __SetPageReserved(page);
1356                }
1357        }
1358}
1359
1360static void __free_pages_ok(struct page *page, unsigned int order)
1361{
1362        unsigned long flags;
1363        int migratetype;
1364        unsigned long pfn = page_to_pfn(page);
1365
1366        if (!free_pages_prepare(page, order, true))
1367                return;
1368
1369        migratetype = get_pfnblock_migratetype(page, pfn);
1370        local_irq_save(flags);
1371        __count_vm_events(PGFREE, 1 << order);
1372        free_one_page(page_zone(page), page, pfn, order, migratetype);
1373        local_irq_restore(flags);
1374}
1375
1376void __free_pages_core(struct page *page, unsigned int order)
1377{
1378        unsigned int nr_pages = 1 << order;
1379        struct page *p = page;
1380        unsigned int loop;
1381
1382        prefetchw(p);
1383        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384                prefetchw(p + 1);
1385                __ClearPageReserved(p);
1386                set_page_count(p, 0);
1387        }
1388        __ClearPageReserved(p);
1389        set_page_count(p, 0);
1390
1391        atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392        set_page_refcounted(page);
1393        __free_pages(page, order);
1394}
1395
1396#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397        defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398
1399static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1400
1401int __meminit early_pfn_to_nid(unsigned long pfn)
1402{
1403        static DEFINE_SPINLOCK(early_pfn_lock);
1404        int nid;
1405
1406        spin_lock(&early_pfn_lock);
1407        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408        if (nid < 0)
1409                nid = first_online_node;
1410        spin_unlock(&early_pfn_lock);
1411
1412        return nid;
1413}
1414#endif
1415
1416#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417/* Only safe to use early in boot when initialisation is single-threaded */
1418static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1419{
1420        int nid;
1421
1422        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1423        if (nid >= 0 && nid != node)
1424                return false;
1425        return true;
1426}
1427
1428#else
1429static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430{
1431        return true;
1432}
1433#endif
1434
1435
1436void __init memblock_free_pages(struct page *page, unsigned long pfn,
1437                                                        unsigned int order)
1438{
1439        if (early_page_uninitialised(pfn))
1440                return;
1441        __free_pages_core(page, order);
1442}
1443
1444/*
1445 * Check that the whole (or subset of) a pageblock given by the interval of
1446 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447 * with the migration of free compaction scanner. The scanners then need to
1448 * use only pfn_valid_within() check for arches that allow holes within
1449 * pageblocks.
1450 *
1451 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1452 *
1453 * It's possible on some configurations to have a setup like node0 node1 node0
1454 * i.e. it's possible that all pages within a zones range of pages do not
1455 * belong to a single zone. We assume that a border between node0 and node1
1456 * can occur within a single pageblock, but not a node0 node1 node0
1457 * interleaving within a single pageblock. It is therefore sufficient to check
1458 * the first and last page of a pageblock and avoid checking each individual
1459 * page in a pageblock.
1460 */
1461struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462                                     unsigned long end_pfn, struct zone *zone)
1463{
1464        struct page *start_page;
1465        struct page *end_page;
1466
1467        /* end_pfn is one past the range we are checking */
1468        end_pfn--;
1469
1470        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471                return NULL;
1472
1473        start_page = pfn_to_online_page(start_pfn);
1474        if (!start_page)
1475                return NULL;
1476
1477        if (page_zone(start_page) != zone)
1478                return NULL;
1479
1480        end_page = pfn_to_page(end_pfn);
1481
1482        /* This gives a shorter code than deriving page_zone(end_page) */
1483        if (page_zone_id(start_page) != page_zone_id(end_page))
1484                return NULL;
1485
1486        return start_page;
1487}
1488
1489void set_zone_contiguous(struct zone *zone)
1490{
1491        unsigned long block_start_pfn = zone->zone_start_pfn;
1492        unsigned long block_end_pfn;
1493
1494        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495        for (; block_start_pfn < zone_end_pfn(zone);
1496                        block_start_pfn = block_end_pfn,
1497                         block_end_pfn += pageblock_nr_pages) {
1498
1499                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1500
1501                if (!__pageblock_pfn_to_page(block_start_pfn,
1502                                             block_end_pfn, zone))
1503                        return;
1504        }
1505
1506        /* We confirm that there is no hole */
1507        zone->contiguous = true;
1508}
1509
1510void clear_zone_contiguous(struct zone *zone)
1511{
1512        zone->contiguous = false;
1513}
1514
1515#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1516static void __init deferred_free_range(unsigned long pfn,
1517                                       unsigned long nr_pages)
1518{
1519        struct page *page;
1520        unsigned long i;
1521
1522        if (!nr_pages)
1523                return;
1524
1525        page = pfn_to_page(pfn);
1526
1527        /* Free a large naturally-aligned chunk if possible */
1528        if (nr_pages == pageblock_nr_pages &&
1529            (pfn & (pageblock_nr_pages - 1)) == 0) {
1530                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1531                __free_pages_core(page, pageblock_order);
1532                return;
1533        }
1534
1535        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1538                __free_pages_core(page, 0);
1539        }
1540}
1541
1542/* Completion tracking for deferred_init_memmap() threads */
1543static atomic_t pgdat_init_n_undone __initdata;
1544static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1545
1546static inline void __init pgdat_init_report_one_done(void)
1547{
1548        if (atomic_dec_and_test(&pgdat_init_n_undone))
1549                complete(&pgdat_init_all_done_comp);
1550}
1551
1552/*
1553 * Returns true if page needs to be initialized or freed to buddy allocator.
1554 *
1555 * First we check if pfn is valid on architectures where it is possible to have
1556 * holes within pageblock_nr_pages. On systems where it is not possible, this
1557 * function is optimized out.
1558 *
1559 * Then, we check if a current large page is valid by only checking the validity
1560 * of the head pfn.
1561 */
1562static inline bool __init deferred_pfn_valid(unsigned long pfn)
1563{
1564        if (!pfn_valid_within(pfn))
1565                return false;
1566        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567                return false;
1568        return true;
1569}
1570
1571/*
1572 * Free pages to buddy allocator. Try to free aligned pages in
1573 * pageblock_nr_pages sizes.
1574 */
1575static void __init deferred_free_pages(unsigned long pfn,
1576                                       unsigned long end_pfn)
1577{
1578        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579        unsigned long nr_free = 0;
1580
1581        for (; pfn < end_pfn; pfn++) {
1582                if (!deferred_pfn_valid(pfn)) {
1583                        deferred_free_range(pfn - nr_free, nr_free);
1584                        nr_free = 0;
1585                } else if (!(pfn & nr_pgmask)) {
1586                        deferred_free_range(pfn - nr_free, nr_free);
1587                        nr_free = 1;
1588                        touch_nmi_watchdog();
1589                } else {
1590                        nr_free++;
1591                }
1592        }
1593        /* Free the last block of pages to allocator */
1594        deferred_free_range(pfn - nr_free, nr_free);
1595}
1596
1597/*
1598 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1599 * by performing it only once every pageblock_nr_pages.
1600 * Return number of pages initialized.
1601 */
1602static unsigned long  __init deferred_init_pages(struct zone *zone,
1603                                                 unsigned long pfn,
1604                                                 unsigned long end_pfn)
1605{
1606        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1607        int nid = zone_to_nid(zone);
1608        unsigned long nr_pages = 0;
1609        int zid = zone_idx(zone);
1610        struct page *page = NULL;
1611
1612        for (; pfn < end_pfn; pfn++) {
1613                if (!deferred_pfn_valid(pfn)) {
1614                        page = NULL;
1615                        continue;
1616                } else if (!page || !(pfn & nr_pgmask)) {
1617                        page = pfn_to_page(pfn);
1618                        touch_nmi_watchdog();
1619                } else {
1620                        page++;
1621                }
1622                __init_single_page(page, pfn, zid, nid);
1623                nr_pages++;
1624        }
1625        return (nr_pages);
1626}
1627
1628/*
1629 * This function is meant to pre-load the iterator for the zone init.
1630 * Specifically it walks through the ranges until we are caught up to the
1631 * first_init_pfn value and exits there. If we never encounter the value we
1632 * return false indicating there are no valid ranges left.
1633 */
1634static bool __init
1635deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636                                    unsigned long *spfn, unsigned long *epfn,
1637                                    unsigned long first_init_pfn)
1638{
1639        u64 j;
1640
1641        /*
1642         * Start out by walking through the ranges in this zone that have
1643         * already been initialized. We don't need to do anything with them
1644         * so we just need to flush them out of the system.
1645         */
1646        for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647                if (*epfn <= first_init_pfn)
1648                        continue;
1649                if (*spfn < first_init_pfn)
1650                        *spfn = first_init_pfn;
1651                *i = j;
1652                return true;
1653        }
1654
1655        return false;
1656}
1657
1658/*
1659 * Initialize and free pages. We do it in two loops: first we initialize
1660 * struct page, then free to buddy allocator, because while we are
1661 * freeing pages we can access pages that are ahead (computing buddy
1662 * page in __free_one_page()).
1663 *
1664 * In order to try and keep some memory in the cache we have the loop
1665 * broken along max page order boundaries. This way we will not cause
1666 * any issues with the buddy page computation.
1667 */
1668static unsigned long __init
1669deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670                       unsigned long *end_pfn)
1671{
1672        unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673        unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674        unsigned long nr_pages = 0;
1675        u64 j = *i;
1676
1677        /* First we loop through and initialize the page values */
1678        for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679                unsigned long t;
1680
1681                if (mo_pfn <= *start_pfn)
1682                        break;
1683
1684                t = min(mo_pfn, *end_pfn);
1685                nr_pages += deferred_init_pages(zone, *start_pfn, t);
1686
1687                if (mo_pfn < *end_pfn) {
1688                        *start_pfn = mo_pfn;
1689                        break;
1690                }
1691        }
1692
1693        /* Reset values and now loop through freeing pages as needed */
1694        swap(j, *i);
1695
1696        for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697                unsigned long t;
1698
1699                if (mo_pfn <= spfn)
1700                        break;
1701
1702                t = min(mo_pfn, epfn);
1703                deferred_free_pages(spfn, t);
1704
1705                if (mo_pfn <= epfn)
1706                        break;
1707        }
1708
1709        return nr_pages;
1710}
1711
1712/* Initialise remaining memory on a node */
1713static int __init deferred_init_memmap(void *data)
1714{
1715        pg_data_t *pgdat = data;
1716        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717        unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718        unsigned long first_init_pfn, flags;
1719        unsigned long start = jiffies;
1720        struct zone *zone;
1721        int zid;
1722        u64 i;
1723
1724        /* Bind memory initialisation thread to a local node if possible */
1725        if (!cpumask_empty(cpumask))
1726                set_cpus_allowed_ptr(current, cpumask);
1727
1728        pgdat_resize_lock(pgdat, &flags);
1729        first_init_pfn = pgdat->first_deferred_pfn;
1730        if (first_init_pfn == ULONG_MAX) {
1731                pgdat_resize_unlock(pgdat, &flags);
1732                pgdat_init_report_one_done();
1733                return 0;
1734        }
1735
1736        /* Sanity check boundaries */
1737        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739        pgdat->first_deferred_pfn = ULONG_MAX;
1740
1741        /* Only the highest zone is deferred so find it */
1742        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743                zone = pgdat->node_zones + zid;
1744                if (first_init_pfn < zone_end_pfn(zone))
1745                        break;
1746        }
1747
1748        /* If the zone is empty somebody else may have cleared out the zone */
1749        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750                                                 first_init_pfn))
1751                goto zone_empty;
1752
1753        /*
1754         * Initialize and free pages in MAX_ORDER sized increments so
1755         * that we can avoid introducing any issues with the buddy
1756         * allocator.
1757         */
1758        while (spfn < epfn)
1759                nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760zone_empty:
1761        pgdat_resize_unlock(pgdat, &flags);
1762
1763        /* Sanity check that the next zone really is unpopulated */
1764        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1765
1766        pr_info("node %d initialised, %lu pages in %ums\n",
1767                pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1768
1769        pgdat_init_report_one_done();
1770        return 0;
1771}
1772
1773/*
1774 * If this zone has deferred pages, try to grow it by initializing enough
1775 * deferred pages to satisfy the allocation specified by order, rounded up to
1776 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1777 * of SECTION_SIZE bytes by initializing struct pages in increments of
1778 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1779 *
1780 * Return true when zone was grown, otherwise return false. We return true even
1781 * when we grow less than requested, to let the caller decide if there are
1782 * enough pages to satisfy the allocation.
1783 *
1784 * Note: We use noinline because this function is needed only during boot, and
1785 * it is called from a __ref function _deferred_grow_zone. This way we are
1786 * making sure that it is not inlined into permanent text section.
1787 */
1788static noinline bool __init
1789deferred_grow_zone(struct zone *zone, unsigned int order)
1790{
1791        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1792        pg_data_t *pgdat = zone->zone_pgdat;
1793        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1794        unsigned long spfn, epfn, flags;
1795        unsigned long nr_pages = 0;
1796        u64 i;
1797
1798        /* Only the last zone may have deferred pages */
1799        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800                return false;
1801
1802        pgdat_resize_lock(pgdat, &flags);
1803
1804        /*
1805         * If deferred pages have been initialized while we were waiting for
1806         * the lock, return true, as the zone was grown.  The caller will retry
1807         * this zone.  We won't return to this function since the caller also
1808         * has this static branch.
1809         */
1810        if (!static_branch_unlikely(&deferred_pages)) {
1811                pgdat_resize_unlock(pgdat, &flags);
1812                return true;
1813        }
1814
1815        /*
1816         * If someone grew this zone while we were waiting for spinlock, return
1817         * true, as there might be enough pages already.
1818         */
1819        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820                pgdat_resize_unlock(pgdat, &flags);
1821                return true;
1822        }
1823
1824        /* If the zone is empty somebody else may have cleared out the zone */
1825        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826                                                 first_deferred_pfn)) {
1827                pgdat->first_deferred_pfn = ULONG_MAX;
1828                pgdat_resize_unlock(pgdat, &flags);
1829                /* Retry only once. */
1830                return first_deferred_pfn != ULONG_MAX;
1831        }
1832
1833        /*
1834         * Initialize and free pages in MAX_ORDER sized increments so
1835         * that we can avoid introducing any issues with the buddy
1836         * allocator.
1837         */
1838        while (spfn < epfn) {
1839                /* update our first deferred PFN for this section */
1840                first_deferred_pfn = spfn;
1841
1842                nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1843
1844                /* We should only stop along section boundaries */
1845                if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1846                        continue;
1847
1848                /* If our quota has been met we can stop here */
1849                if (nr_pages >= nr_pages_needed)
1850                        break;
1851        }
1852
1853        pgdat->first_deferred_pfn = spfn;
1854        pgdat_resize_unlock(pgdat, &flags);
1855
1856        return nr_pages > 0;
1857}
1858
1859/*
1860 * deferred_grow_zone() is __init, but it is called from
1861 * get_page_from_freelist() during early boot until deferred_pages permanently
1862 * disables this call. This is why we have refdata wrapper to avoid warning,
1863 * and to ensure that the function body gets unloaded.
1864 */
1865static bool __ref
1866_deferred_grow_zone(struct zone *zone, unsigned int order)
1867{
1868        return deferred_grow_zone(zone, order);
1869}
1870
1871#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1872
1873void __init page_alloc_init_late(void)
1874{
1875        struct zone *zone;
1876        int nid;
1877
1878#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1879
1880        /* There will be num_node_state(N_MEMORY) threads */
1881        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1882        for_each_node_state(nid, N_MEMORY) {
1883                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1884        }
1885
1886        /* Block until all are initialised */
1887        wait_for_completion(&pgdat_init_all_done_comp);
1888
1889        /*
1890         * We initialized the rest of the deferred pages.  Permanently disable
1891         * on-demand struct page initialization.
1892         */
1893        static_branch_disable(&deferred_pages);
1894
1895        /* Reinit limits that are based on free pages after the kernel is up */
1896        files_maxfiles_init();
1897#endif
1898
1899        /* Discard memblock private memory */
1900        memblock_discard();
1901
1902        for_each_node_state(nid, N_MEMORY)
1903                shuffle_free_memory(NODE_DATA(nid));
1904
1905        for_each_populated_zone(zone)
1906                set_zone_contiguous(zone);
1907}
1908
1909#ifdef CONFIG_CMA
1910/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1911void __init init_cma_reserved_pageblock(struct page *page)
1912{
1913        unsigned i = pageblock_nr_pages;
1914        struct page *p = page;
1915
1916        do {
1917                __ClearPageReserved(p);
1918                set_page_count(p, 0);
1919        } while (++p, --i);
1920
1921        set_pageblock_migratetype(page, MIGRATE_CMA);
1922
1923        if (pageblock_order >= MAX_ORDER) {
1924                i = pageblock_nr_pages;
1925                p = page;
1926                do {
1927                        set_page_refcounted(p);
1928                        __free_pages(p, MAX_ORDER - 1);
1929                        p += MAX_ORDER_NR_PAGES;
1930                } while (i -= MAX_ORDER_NR_PAGES);
1931        } else {
1932                set_page_refcounted(page);
1933                __free_pages(page, pageblock_order);
1934        }
1935
1936        adjust_managed_page_count(page, pageblock_nr_pages);
1937}
1938#endif
1939
1940/*
1941 * The order of subdivision here is critical for the IO subsystem.
1942 * Please do not alter this order without good reasons and regression
1943 * testing. Specifically, as large blocks of memory are subdivided,
1944 * the order in which smaller blocks are delivered depends on the order
1945 * they're subdivided in this function. This is the primary factor
1946 * influencing the order in which pages are delivered to the IO
1947 * subsystem according to empirical testing, and this is also justified
1948 * by considering the behavior of a buddy system containing a single
1949 * large block of memory acted on by a series of small allocations.
1950 * This behavior is a critical factor in sglist merging's success.
1951 *
1952 * -- nyc
1953 */
1954static inline void expand(struct zone *zone, struct page *page,
1955        int low, int high, struct free_area *area,
1956        int migratetype)
1957{
1958        unsigned long size = 1 << high;
1959
1960        while (high > low) {
1961                area--;
1962                high--;
1963                size >>= 1;
1964                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1965
1966                /*
1967                 * Mark as guard pages (or page), that will allow to
1968                 * merge back to allocator when buddy will be freed.
1969                 * Corresponding page table entries will not be touched,
1970                 * pages will stay not present in virtual address space
1971                 */
1972                if (set_page_guard(zone, &page[size], high, migratetype))
1973                        continue;
1974
1975                add_to_free_area(&page[size], area, migratetype);
1976                set_page_order(&page[size], high);
1977        }
1978}
1979
1980static void check_new_page_bad(struct page *page)
1981{
1982        const char *bad_reason = NULL;
1983        unsigned long bad_flags = 0;
1984
1985        if (unlikely(atomic_read(&page->_mapcount) != -1))
1986                bad_reason = "nonzero mapcount";
1987        if (unlikely(page->mapping != NULL))
1988                bad_reason = "non-NULL mapping";
1989        if (unlikely(page_ref_count(page) != 0))
1990                bad_reason = "nonzero _refcount";
1991        if (unlikely(page->flags & __PG_HWPOISON)) {
1992                bad_reason = "HWPoisoned (hardware-corrupted)";
1993                bad_flags = __PG_HWPOISON;
1994                /* Don't complain about hwpoisoned pages */
1995                page_mapcount_reset(page); /* remove PageBuddy */
1996                return;
1997        }
1998        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1999                bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2000                bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2001        }
2002#ifdef CONFIG_MEMCG
2003        if (unlikely(page->mem_cgroup))
2004                bad_reason = "page still charged to cgroup";
2005#endif
2006        bad_page(page, bad_reason, bad_flags);
2007}
2008
2009/*
2010 * This page is about to be returned from the page allocator
2011 */
2012static inline int check_new_page(struct page *page)
2013{
2014        if (likely(page_expected_state(page,
2015                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016                return 0;
2017
2018        check_new_page_bad(page);
2019        return 1;
2020}
2021
2022static inline bool free_pages_prezeroed(void)
2023{
2024        return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2025                page_poisoning_enabled();
2026}
2027
2028#ifdef CONFIG_DEBUG_VM
2029static bool check_pcp_refill(struct page *page)
2030{
2031        return false;
2032}
2033
2034static bool check_new_pcp(struct page *page)
2035{
2036        return check_new_page(page);
2037}
2038#else
2039static bool check_pcp_refill(struct page *page)
2040{
2041        return check_new_page(page);
2042}
2043static bool check_new_pcp(struct page *page)
2044{
2045        return false;
2046}
2047#endif /* CONFIG_DEBUG_VM */
2048
2049static bool check_new_pages(struct page *page, unsigned int order)
2050{
2051        int i;
2052        for (i = 0; i < (1 << order); i++) {
2053                struct page *p = page + i;
2054
2055                if (unlikely(check_new_page(p)))
2056                        return true;
2057        }
2058
2059        return false;
2060}
2061
2062inline void post_alloc_hook(struct page *page, unsigned int order,
2063                                gfp_t gfp_flags)
2064{
2065        set_page_private(page, 0);
2066        set_page_refcounted(page);
2067
2068        arch_alloc_page(page, order);
2069        if (debug_pagealloc_enabled())
2070                kernel_map_pages(page, 1 << order, 1);
2071        kasan_alloc_pages(page, order);
2072        kernel_poison_pages(page, 1 << order, 1);
2073        set_page_owner(page, order, gfp_flags);
2074}
2075
2076static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2077                                                        unsigned int alloc_flags)
2078{
2079        int i;
2080
2081        post_alloc_hook(page, order, gfp_flags);
2082
2083        if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2084                for (i = 0; i < (1 << order); i++)
2085                        clear_highpage(page + i);
2086
2087        if (order && (gfp_flags & __GFP_COMP))
2088                prep_compound_page(page, order);
2089
2090        /*
2091         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2092         * allocate the page. The expectation is that the caller is taking
2093         * steps that will free more memory. The caller should avoid the page
2094         * being used for !PFMEMALLOC purposes.
2095         */
2096        if (alloc_flags & ALLOC_NO_WATERMARKS)
2097                set_page_pfmemalloc(page);
2098        else
2099                clear_page_pfmemalloc(page);
2100}
2101
2102/*
2103 * Go through the free lists for the given migratetype and remove
2104 * the smallest available page from the freelists
2105 */
2106static __always_inline
2107struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2108                                                int migratetype)
2109{
2110        unsigned int current_order;
2111        struct free_area *area;
2112        struct page *page;
2113
2114        /* Find a page of the appropriate size in the preferred list */
2115        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2116                area = &(zone->free_area[current_order]);
2117                page = get_page_from_free_area(area, migratetype);
2118                if (!page)
2119                        continue;
2120                del_page_from_free_area(page, area);
2121                expand(zone, page, order, current_order, area, migratetype);
2122                set_pcppage_migratetype(page, migratetype);
2123                return page;
2124        }
2125
2126        return NULL;
2127}
2128
2129
2130/*
2131 * This array describes the order lists are fallen back to when
2132 * the free lists for the desirable migrate type are depleted
2133 */
2134static int fallbacks[MIGRATE_TYPES][4] = {
2135        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2136        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2137        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2138#ifdef CONFIG_CMA
2139        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2140#endif
2141#ifdef CONFIG_MEMORY_ISOLATION
2142        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2143#endif
2144};
2145
2146#ifdef CONFIG_CMA
2147static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2148                                        unsigned int order)
2149{
2150        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2151}
2152#else
2153static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2154                                        unsigned int order) { return NULL; }
2155#endif
2156
2157/*
2158 * Move the free pages in a range to the free lists of the requested type.
2159 * Note that start_page and end_pages are not aligned on a pageblock
2160 * boundary. If alignment is required, use move_freepages_block()
2161 */
2162static int move_freepages(struct zone *zone,
2163                          struct page *start_page, struct page *end_page,
2164                          int migratetype, int *num_movable)
2165{
2166        struct page *page;
2167        unsigned int order;
2168        int pages_moved = 0;
2169
2170#ifndef CONFIG_HOLES_IN_ZONE
2171        /*
2172         * page_zone is not safe to call in this context when
2173         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2174         * anyway as we check zone boundaries in move_freepages_block().
2175         * Remove at a later date when no bug reports exist related to
2176         * grouping pages by mobility
2177         */
2178        VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2179                  pfn_valid(page_to_pfn(end_page)) &&
2180                  page_zone(start_page) != page_zone(end_page));
2181#endif
2182        for (page = start_page; page <= end_page;) {
2183                if (!pfn_valid_within(page_to_pfn(page))) {
2184                        page++;
2185                        continue;
2186                }
2187
2188                /* Make sure we are not inadvertently changing nodes */
2189                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2190
2191                if (!PageBuddy(page)) {
2192                        /*
2193                         * We assume that pages that could be isolated for
2194                         * migration are movable. But we don't actually try
2195                         * isolating, as that would be expensive.
2196                         */
2197                        if (num_movable &&
2198                                        (PageLRU(page) || __PageMovable(page)))
2199                                (*num_movable)++;
2200
2201                        page++;
2202                        continue;
2203                }
2204
2205                order = page_order(page);
2206                move_to_free_area(page, &zone->free_area[order], migratetype);
2207                page += 1 << order;
2208                pages_moved += 1 << order;
2209        }
2210
2211        return pages_moved;
2212}
2213
2214int move_freepages_block(struct zone *zone, struct page *page,
2215                                int migratetype, int *num_movable)
2216{
2217        unsigned long start_pfn, end_pfn;
2218        struct page *start_page, *end_page;
2219
2220        if (num_movable)
2221                *num_movable = 0;
2222
2223        start_pfn = page_to_pfn(page);
2224        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2225        start_page = pfn_to_page(start_pfn);
2226        end_page = start_page + pageblock_nr_pages - 1;
2227        end_pfn = start_pfn + pageblock_nr_pages - 1;
2228
2229        /* Do not cross zone boundaries */
2230        if (!zone_spans_pfn(zone, start_pfn))
2231                start_page = page;
2232        if (!zone_spans_pfn(zone, end_pfn))
2233                return 0;
2234
2235        return move_freepages(zone, start_page, end_page, migratetype,
2236                                                                num_movable);
2237}
2238
2239static void change_pageblock_range(struct page *pageblock_page,
2240                                        int start_order, int migratetype)
2241{
2242        int nr_pageblocks = 1 << (start_order - pageblock_order);
2243
2244        while (nr_pageblocks--) {
2245                set_pageblock_migratetype(pageblock_page, migratetype);
2246                pageblock_page += pageblock_nr_pages;
2247        }
2248}
2249
2250/*
2251 * When we are falling back to another migratetype during allocation, try to
2252 * steal extra free pages from the same pageblocks to satisfy further
2253 * allocations, instead of polluting multiple pageblocks.
2254 *
2255 * If we are stealing a relatively large buddy page, it is likely there will
2256 * be more free pages in the pageblock, so try to steal them all. For
2257 * reclaimable and unmovable allocations, we steal regardless of page size,
2258 * as fragmentation caused by those allocations polluting movable pageblocks
2259 * is worse than movable allocations stealing from unmovable and reclaimable
2260 * pageblocks.
2261 */
2262static bool can_steal_fallback(unsigned int order, int start_mt)
2263{
2264        /*
2265         * Leaving this order check is intended, although there is
2266         * relaxed order check in next check. The reason is that
2267         * we can actually steal whole pageblock if this condition met,
2268         * but, below check doesn't guarantee it and that is just heuristic
2269         * so could be changed anytime.
2270         */
2271        if (order >= pageblock_order)
2272                return true;
2273
2274        if (order >= pageblock_order / 2 ||
2275                start_mt == MIGRATE_RECLAIMABLE ||
2276                start_mt == MIGRATE_UNMOVABLE ||
2277                page_group_by_mobility_disabled)
2278                return true;
2279
2280        return false;
2281}
2282
2283static inline void boost_watermark(struct zone *zone)
2284{
2285        unsigned long max_boost;
2286
2287        if (!watermark_boost_factor)
2288                return;
2289
2290        max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2291                        watermark_boost_factor, 10000);
2292
2293        /*
2294         * high watermark may be uninitialised if fragmentation occurs
2295         * very early in boot so do not boost. We do not fall
2296         * through and boost by pageblock_nr_pages as failing
2297         * allocations that early means that reclaim is not going
2298         * to help and it may even be impossible to reclaim the
2299         * boosted watermark resulting in a hang.
2300         */
2301        if (!max_boost)
2302                return;
2303
2304        max_boost = max(pageblock_nr_pages, max_boost);
2305
2306        zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2307                max_boost);
2308}
2309
2310/*
2311 * This function implements actual steal behaviour. If order is large enough,
2312 * we can steal whole pageblock. If not, we first move freepages in this
2313 * pageblock to our migratetype and determine how many already-allocated pages
2314 * are there in the pageblock with a compatible migratetype. If at least half
2315 * of pages are free or compatible, we can change migratetype of the pageblock
2316 * itself, so pages freed in the future will be put on the correct free list.
2317 */
2318static void steal_suitable_fallback(struct zone *zone, struct page *page,
2319                unsigned int alloc_flags, int start_type, bool whole_block)
2320{
2321        unsigned int current_order = page_order(page);
2322        struct free_area *area;
2323        int free_pages, movable_pages, alike_pages;
2324        int old_block_type;
2325
2326        old_block_type = get_pageblock_migratetype(page);
2327
2328        /*
2329         * This can happen due to races and we want to prevent broken
2330         * highatomic accounting.
2331         */
2332        if (is_migrate_highatomic(old_block_type))
2333                goto single_page;
2334
2335        /* Take ownership for orders >= pageblock_order */
2336        if (current_order >= pageblock_order) {
2337                change_pageblock_range(page, current_order, start_type);
2338                goto single_page;
2339        }
2340
2341        /*
2342         * Boost watermarks to increase reclaim pressure to reduce the
2343         * likelihood of future fallbacks. Wake kswapd now as the node
2344         * may be balanced overall and kswapd will not wake naturally.
2345         */
2346        boost_watermark(zone);
2347        if (alloc_flags & ALLOC_KSWAPD)
2348                set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2349
2350        /* We are not allowed to try stealing from the whole block */
2351        if (!whole_block)
2352                goto single_page;
2353
2354        free_pages = move_freepages_block(zone, page, start_type,
2355                                                &movable_pages);
2356        /*
2357         * Determine how many pages are compatible with our allocation.
2358         * For movable allocation, it's the number of movable pages which
2359         * we just obtained. For other types it's a bit more tricky.
2360         */
2361        if (start_type == MIGRATE_MOVABLE) {
2362                alike_pages = movable_pages;
2363        } else {
2364                /*
2365                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2366                 * to MOVABLE pageblock, consider all non-movable pages as
2367                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2368                 * vice versa, be conservative since we can't distinguish the
2369                 * exact migratetype of non-movable pages.
2370                 */
2371                if (old_block_type == MIGRATE_MOVABLE)
2372                        alike_pages = pageblock_nr_pages
2373                                                - (free_pages + movable_pages);
2374                else
2375                        alike_pages = 0;
2376        }
2377
2378        /* moving whole block can fail due to zone boundary conditions */
2379        if (!free_pages)
2380                goto single_page;
2381
2382        /*
2383         * If a sufficient number of pages in the block are either free or of
2384         * comparable migratability as our allocation, claim the whole block.
2385         */
2386        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2387                        page_group_by_mobility_disabled)
2388                set_pageblock_migratetype(page, start_type);
2389
2390        return;
2391
2392single_page:
2393        area = &zone->free_area[current_order];
2394        move_to_free_area(page, area, start_type);
2395}
2396
2397/*
2398 * Check whether there is a suitable fallback freepage with requested order.
2399 * If only_stealable is true, this function returns fallback_mt only if
2400 * we can steal other freepages all together. This would help to reduce
2401 * fragmentation due to mixed migratetype pages in one pageblock.
2402 */
2403int find_suitable_fallback(struct free_area *area, unsigned int order,
2404                        int migratetype, bool only_stealable, bool *can_steal)
2405{
2406        int i;
2407        int fallback_mt;
2408
2409        if (area->nr_free == 0)
2410                return -1;
2411
2412        *can_steal = false;
2413        for (i = 0;; i++) {
2414                fallback_mt = fallbacks[migratetype][i];
2415                if (fallback_mt == MIGRATE_TYPES)
2416                        break;
2417
2418                if (free_area_empty(area, fallback_mt))
2419                        continue;
2420
2421                if (can_steal_fallback(order, migratetype))
2422                        *can_steal = true;
2423
2424                if (!only_stealable)
2425                        return fallback_mt;
2426
2427                if (*can_steal)
2428                        return fallback_mt;
2429        }
2430
2431        return -1;
2432}
2433
2434/*
2435 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2436 * there are no empty page blocks that contain a page with a suitable order
2437 */
2438static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2439                                unsigned int alloc_order)
2440{
2441        int mt;
2442        unsigned long max_managed, flags;
2443
2444        /*
2445         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2446         * Check is race-prone but harmless.
2447         */
2448        max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2449        if (zone->nr_reserved_highatomic >= max_managed)
2450                return;
2451
2452        spin_lock_irqsave(&zone->lock, flags);
2453
2454        /* Recheck the nr_reserved_highatomic limit under the lock */
2455        if (zone->nr_reserved_highatomic >= max_managed)
2456                goto out_unlock;
2457
2458        /* Yoink! */
2459        mt = get_pageblock_migratetype(page);
2460        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2461            && !is_migrate_cma(mt)) {
2462                zone->nr_reserved_highatomic += pageblock_nr_pages;
2463                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2464                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2465        }
2466
2467out_unlock:
2468        spin_unlock_irqrestore(&zone->lock, flags);
2469}
2470
2471/*
2472 * Used when an allocation is about to fail under memory pressure. This
2473 * potentially hurts the reliability of high-order allocations when under
2474 * intense memory pressure but failed atomic allocations should be easier
2475 * to recover from than an OOM.
2476 *
2477 * If @force is true, try to unreserve a pageblock even though highatomic
2478 * pageblock is exhausted.
2479 */
2480static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2481                                                bool force)
2482{
2483        struct zonelist *zonelist = ac->zonelist;
2484        unsigned long flags;
2485        struct zoneref *z;
2486        struct zone *zone;
2487        struct page *page;
2488        int order;
2489        bool ret;
2490
2491        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2492                                                                ac->nodemask) {
2493                /*
2494                 * Preserve at least one pageblock unless memory pressure
2495                 * is really high.
2496                 */
2497                if (!force && zone->nr_reserved_highatomic <=
2498                                        pageblock_nr_pages)
2499                        continue;
2500
2501                spin_lock_irqsave(&zone->lock, flags);
2502                for (order = 0; order < MAX_ORDER; order++) {
2503                        struct free_area *area = &(zone->free_area[order]);
2504
2505                        page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2506                        if (!page)
2507                                continue;
2508
2509                        /*
2510                         * In page freeing path, migratetype change is racy so
2511                         * we can counter several free pages in a pageblock
2512                         * in this loop althoug we changed the pageblock type
2513                         * from highatomic to ac->migratetype. So we should
2514                         * adjust the count once.
2515                         */
2516                        if (is_migrate_highatomic_page(page)) {
2517                                /*
2518                                 * It should never happen but changes to
2519                                 * locking could inadvertently allow a per-cpu
2520                                 * drain to add pages to MIGRATE_HIGHATOMIC
2521                                 * while unreserving so be safe and watch for
2522                                 * underflows.
2523                                 */
2524                                zone->nr_reserved_highatomic -= min(
2525                                                pageblock_nr_pages,
2526                                                zone->nr_reserved_highatomic);
2527                        }
2528
2529                        /*
2530                         * Convert to ac->migratetype and avoid the normal
2531                         * pageblock stealing heuristics. Minimally, the caller
2532                         * is doing the work and needs the pages. More
2533                         * importantly, if the block was always converted to
2534                         * MIGRATE_UNMOVABLE or another type then the number
2535                         * of pageblocks that cannot be completely freed
2536                         * may increase.
2537                         */
2538                        set_pageblock_migratetype(page, ac->migratetype);
2539                        ret = move_freepages_block(zone, page, ac->migratetype,
2540                                                                        NULL);
2541                        if (ret) {
2542                                spin_unlock_irqrestore(&zone->lock, flags);
2543                                return ret;
2544                        }
2545                }
2546                spin_unlock_irqrestore(&zone->lock, flags);
2547        }
2548
2549        return false;
2550}
2551
2552/*
2553 * Try finding a free buddy page on the fallback list and put it on the free
2554 * list of requested migratetype, possibly along with other pages from the same
2555 * block, depending on fragmentation avoidance heuristics. Returns true if
2556 * fallback was found so that __rmqueue_smallest() can grab it.
2557 *
2558 * The use of signed ints for order and current_order is a deliberate
2559 * deviation from the rest of this file, to make the for loop
2560 * condition simpler.
2561 */
2562static __always_inline bool
2563__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2564                                                unsigned int alloc_flags)
2565{
2566        struct free_area *area;
2567        int current_order;
2568        int min_order = order;
2569        struct page *page;
2570        int fallback_mt;
2571        bool can_steal;
2572
2573        /*
2574         * Do not steal pages from freelists belonging to other pageblocks
2575         * i.e. orders < pageblock_order. If there are no local zones free,
2576         * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2577         */
2578        if (alloc_flags & ALLOC_NOFRAGMENT)
2579                min_order = pageblock_order;
2580
2581        /*
2582         * Find the largest available free page in the other list. This roughly
2583         * approximates finding the pageblock with the most free pages, which
2584         * would be too costly to do exactly.
2585         */
2586        for (current_order = MAX_ORDER - 1; current_order >= min_order;
2587                                --current_order) {
2588                area = &(zone->free_area[current_order]);
2589                fallback_mt = find_suitable_fallback(area, current_order,
2590                                start_migratetype, false, &can_steal);
2591                if (fallback_mt == -1)
2592                        continue;
2593
2594                /*
2595                 * We cannot steal all free pages from the pageblock and the
2596                 * requested migratetype is movable. In that case it's better to
2597                 * steal and split the smallest available page instead of the
2598                 * largest available page, because even if the next movable
2599                 * allocation falls back into a different pageblock than this
2600                 * one, it won't cause permanent fragmentation.
2601                 */
2602                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2603                                        && current_order > order)
2604                        goto find_smallest;
2605
2606                goto do_steal;
2607        }
2608
2609        return false;
2610
2611find_smallest:
2612        for (current_order = order; current_order < MAX_ORDER;
2613                                                        current_order++) {
2614                area = &(zone->free_area[current_order]);
2615                fallback_mt = find_suitable_fallback(area, current_order,
2616                                start_migratetype, false, &can_steal);
2617                if (fallback_mt != -1)
2618                        break;
2619        }
2620
2621        /*
2622         * This should not happen - we already found a suitable fallback
2623         * when looking for the largest page.
2624         */
2625        VM_BUG_ON(current_order == MAX_ORDER);
2626
2627do_steal:
2628        page = get_page_from_free_area(area, fallback_mt);
2629
2630        steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2631                                                                can_steal);
2632
2633        trace_mm_page_alloc_extfrag(page, order, current_order,
2634                start_migratetype, fallback_mt);
2635
2636        return true;
2637
2638}
2639
2640/*
2641 * Do the hard work of removing an element from the buddy allocator.
2642 * Call me with the zone->lock already held.
2643 */
2644static __always_inline struct page *
2645__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2646                                                unsigned int alloc_flags)
2647{
2648        struct page *page;
2649
2650retry:
2651        page = __rmqueue_smallest(zone, order, migratetype);
2652        if (unlikely(!page)) {
2653                if (migratetype == MIGRATE_MOVABLE)
2654                        page = __rmqueue_cma_fallback(zone, order);
2655
2656                if (!page && __rmqueue_fallback(zone, order, migratetype,
2657                                                                alloc_flags))
2658                        goto retry;
2659        }
2660
2661        trace_mm_page_alloc_zone_locked(page, order, migratetype);
2662        return page;
2663}
2664
2665/*
2666 * Obtain a specified number of elements from the buddy allocator, all under
2667 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2668 * Returns the number of new pages which were placed at *list.
2669 */
2670static int rmqueue_bulk(struct zone *zone, unsigned int order,
2671                        unsigned long count, struct list_head *list,
2672                        int migratetype, unsigned int alloc_flags)
2673{
2674        int i, alloced = 0;
2675
2676        spin_lock(&zone->lock);
2677        for (i = 0; i < count; ++i) {
2678                struct page *page = __rmqueue(zone, order, migratetype,
2679                                                                alloc_flags);
2680                if (unlikely(page == NULL))
2681                        break;
2682
2683                if (unlikely(check_pcp_refill(page)))
2684                        continue;
2685
2686                /*
2687                 * Split buddy pages returned by expand() are received here in
2688                 * physical page order. The page is added to the tail of
2689                 * caller's list. From the callers perspective, the linked list
2690                 * is ordered by page number under some conditions. This is
2691                 * useful for IO devices that can forward direction from the
2692                 * head, thus also in the physical page order. This is useful
2693                 * for IO devices that can merge IO requests if the physical
2694                 * pages are ordered properly.
2695                 */
2696                list_add_tail(&page->lru, list);
2697                alloced++;
2698                if (is_migrate_cma(get_pcppage_migratetype(page)))
2699                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2700                                              -(1 << order));
2701        }
2702
2703        /*
2704         * i pages were removed from the buddy list even if some leak due
2705         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2706         * on i. Do not confuse with 'alloced' which is the number of
2707         * pages added to the pcp list.
2708         */
2709        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2710        spin_unlock(&zone->lock);
2711        return alloced;
2712}
2713
2714#ifdef CONFIG_NUMA
2715/*
2716 * Called from the vmstat counter updater to drain pagesets of this
2717 * currently executing processor on remote nodes after they have
2718 * expired.
2719 *
2720 * Note that this function must be called with the thread pinned to
2721 * a single processor.
2722 */
2723void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2724{
2725        unsigned long flags;
2726        int to_drain, batch;
2727
2728        local_irq_save(flags);
2729        batch = READ_ONCE(pcp->batch);
2730        to_drain = min(pcp->count, batch);
2731        if (to_drain > 0)
2732                free_pcppages_bulk(zone, to_drain, pcp);
2733        local_irq_restore(flags);
2734}
2735#endif
2736
2737/*
2738 * Drain pcplists of the indicated processor and zone.
2739 *
2740 * The processor must either be the current processor and the
2741 * thread pinned to the current processor or a processor that
2742 * is not online.
2743 */
2744static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2745{
2746        unsigned long flags;
2747        struct per_cpu_pageset *pset;
2748        struct per_cpu_pages *pcp;
2749
2750        local_irq_save(flags);
2751        pset = per_cpu_ptr(zone->pageset, cpu);
2752
2753        pcp = &pset->pcp;
2754        if (pcp->count)
2755                free_pcppages_bulk(zone, pcp->count, pcp);
2756        local_irq_restore(flags);
2757}
2758
2759/*
2760 * Drain pcplists of all zones on the indicated processor.
2761 *
2762 * The processor must either be the current processor and the
2763 * thread pinned to the current processor or a processor that
2764 * is not online.
2765 */
2766static void drain_pages(unsigned int cpu)
2767{
2768        struct zone *zone;
2769
2770        for_each_populated_zone(zone) {
2771                drain_pages_zone(cpu, zone);
2772        }
2773}
2774
2775/*
2776 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2777 *
2778 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2779 * the single zone's pages.
2780 */
2781void drain_local_pages(struct zone *zone)
2782{
2783        int cpu = smp_processor_id();
2784
2785        if (zone)
2786                drain_pages_zone(cpu, zone);
2787        else
2788                drain_pages(cpu);
2789}
2790
2791static void drain_local_pages_wq(struct work_struct *work)
2792{
2793        struct pcpu_drain *drain;
2794
2795        drain = container_of(work, struct pcpu_drain, work);
2796
2797        /*
2798         * drain_all_pages doesn't use proper cpu hotplug protection so
2799         * we can race with cpu offline when the WQ can move this from
2800         * a cpu pinned worker to an unbound one. We can operate on a different
2801         * cpu which is allright but we also have to make sure to not move to
2802         * a different one.
2803         */
2804        preempt_disable();
2805        drain_local_pages(drain->zone);
2806        preempt_enable();
2807}
2808
2809/*
2810 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2811 *
2812 * When zone parameter is non-NULL, spill just the single zone's pages.
2813 *
2814 * Note that this can be extremely slow as the draining happens in a workqueue.
2815 */
2816void drain_all_pages(struct zone *zone)
2817{
2818        int cpu;
2819
2820        /*
2821         * Allocate in the BSS so we wont require allocation in
2822         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2823         */
2824        static cpumask_t cpus_with_pcps;
2825
2826        /*
2827         * Make sure nobody triggers this path before mm_percpu_wq is fully
2828         * initialized.
2829         */
2830        if (WARN_ON_ONCE(!mm_percpu_wq))
2831                return;
2832
2833        /*
2834         * Do not drain if one is already in progress unless it's specific to
2835         * a zone. Such callers are primarily CMA and memory hotplug and need
2836         * the drain to be complete when the call returns.
2837         */
2838        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2839                if (!zone)
2840                        return;
2841                mutex_lock(&pcpu_drain_mutex);
2842        }
2843
2844        /*
2845         * We don't care about racing with CPU hotplug event
2846         * as offline notification will cause the notified
2847         * cpu to drain that CPU pcps and on_each_cpu_mask
2848         * disables preemption as part of its processing
2849         */
2850        for_each_online_cpu(cpu) {
2851                struct per_cpu_pageset *pcp;
2852                struct zone *z;
2853                bool has_pcps = false;
2854
2855                if (zone) {
2856                        pcp = per_cpu_ptr(zone->pageset, cpu);
2857                        if (pcp->pcp.count)
2858                                has_pcps = true;
2859                } else {
2860                        for_each_populated_zone(z) {
2861                                pcp = per_cpu_ptr(z->pageset, cpu);
2862                                if (pcp->pcp.count) {
2863                                        has_pcps = true;
2864                                        break;
2865                                }
2866                        }
2867                }
2868
2869                if (has_pcps)
2870                        cpumask_set_cpu(cpu, &cpus_with_pcps);
2871                else
2872                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
2873        }
2874
2875        for_each_cpu(cpu, &cpus_with_pcps) {
2876                struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2877
2878                drain->zone = zone;
2879                INIT_WORK(&drain->work, drain_local_pages_wq);
2880                queue_work_on(cpu, mm_percpu_wq, &drain->work);
2881        }
2882        for_each_cpu(cpu, &cpus_with_pcps)
2883                flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2884
2885        mutex_unlock(&pcpu_drain_mutex);
2886}
2887
2888#ifdef CONFIG_HIBERNATION
2889
2890/*
2891 * Touch the watchdog for every WD_PAGE_COUNT pages.
2892 */
2893#define WD_PAGE_COUNT   (128*1024)
2894
2895void mark_free_pages(struct zone *zone)
2896{
2897        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2898        unsigned long flags;
2899        unsigned int order, t;
2900        struct page *page;
2901
2902        if (zone_is_empty(zone))
2903                return;
2904
2905        spin_lock_irqsave(&zone->lock, flags);
2906
2907        max_zone_pfn = zone_end_pfn(zone);
2908        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2909                if (pfn_valid(pfn)) {
2910                        page = pfn_to_page(pfn);
2911
2912                        if (!--page_count) {
2913                                touch_nmi_watchdog();
2914                                page_count = WD_PAGE_COUNT;
2915                        }
2916
2917                        if (page_zone(page) != zone)
2918                                continue;
2919
2920                        if (!swsusp_page_is_forbidden(page))
2921                                swsusp_unset_page_free(page);
2922                }
2923
2924        for_each_migratetype_order(order, t) {
2925                list_for_each_entry(page,
2926                                &zone->free_area[order].free_list[t], lru) {
2927                        unsigned long i;
2928
2929                        pfn = page_to_pfn(page);
2930                        for (i = 0; i < (1UL << order); i++) {
2931                                if (!--page_count) {
2932                                        touch_nmi_watchdog();
2933                                        page_count = WD_PAGE_COUNT;
2934                                }
2935                                swsusp_set_page_free(pfn_to_page(pfn + i));
2936                        }
2937                }
2938        }
2939        spin_unlock_irqrestore(&zone->lock, flags);
2940}
2941#endif /* CONFIG_PM */
2942
2943static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2944{
2945        int migratetype;
2946
2947        if (!free_pcp_prepare(page))
2948                return false;
2949
2950        migratetype = get_pfnblock_migratetype(page, pfn);
2951        set_pcppage_migratetype(page, migratetype);
2952        return true;
2953}
2954
2955static void free_unref_page_commit(struct page *page, unsigned long pfn)
2956{
2957        struct zone *zone = page_zone(page);
2958        struct per_cpu_pages *pcp;
2959        int migratetype;
2960
2961        migratetype = get_pcppage_migratetype(page);
2962        __count_vm_event(PGFREE);
2963
2964        /*
2965         * We only track unmovable, reclaimable and movable on pcp lists.
2966         * Free ISOLATE pages back to the allocator because they are being
2967         * offlined but treat HIGHATOMIC as movable pages so we can get those
2968         * areas back if necessary. Otherwise, we may have to free
2969         * excessively into the page allocator
2970         */
2971        if (migratetype >= MIGRATE_PCPTYPES) {
2972                if (unlikely(is_migrate_isolate(migratetype))) {
2973                        free_one_page(zone, page, pfn, 0, migratetype);
2974                        return;
2975                }
2976                migratetype = MIGRATE_MOVABLE;
2977        }
2978
2979        pcp = &this_cpu_ptr(zone->pageset)->pcp;
2980        list_add(&page->lru, &pcp->lists[migratetype]);
2981        pcp->count++;
2982        if (pcp->count >= pcp->high) {
2983                unsigned long batch = READ_ONCE(pcp->batch);
2984                free_pcppages_bulk(zone, batch, pcp);
2985        }
2986}
2987
2988/*
2989 * Free a 0-order page
2990 */
2991void free_unref_page(struct page *page)
2992{
2993        unsigned long flags;
2994        unsigned long pfn = page_to_pfn(page);
2995
2996        if (!free_unref_page_prepare(page, pfn))
2997                return;
2998
2999        local_irq_save(flags);
3000        free_unref_page_commit(page, pfn);
3001        local_irq_restore(flags);
3002}
3003
3004/*
3005 * Free a list of 0-order pages
3006 */
3007void free_unref_page_list(struct list_head *list)
3008{
3009        struct page *page, *next;
3010        unsigned long flags, pfn;
3011        int batch_count = 0;
3012
3013        /* Prepare pages for freeing */
3014        list_for_each_entry_safe(page, next, list, lru) {
3015                pfn = page_to_pfn(page);
3016                if (!free_unref_page_prepare(page, pfn))
3017                        list_del(&page->lru);
3018                set_page_private(page, pfn);
3019        }
3020
3021        local_irq_save(flags);
3022        list_for_each_entry_safe(page, next, list, lru) {
3023                unsigned long pfn = page_private(page);
3024
3025                set_page_private(page, 0);
3026                trace_mm_page_free_batched(page);
3027                free_unref_page_commit(page, pfn);
3028
3029                /*
3030                 * Guard against excessive IRQ disabled times when we get
3031                 * a large list of pages to free.
3032                 */
3033                if (++batch_count == SWAP_CLUSTER_MAX) {
3034                        local_irq_restore(flags);
3035                        batch_count = 0;
3036                        local_irq_save(flags);
3037                }
3038        }
3039        local_irq_restore(flags);
3040}
3041
3042/*
3043 * split_page takes a non-compound higher-order page, and splits it into
3044 * n (1<<order) sub-pages: page[0..n]
3045 * Each sub-page must be freed individually.
3046 *
3047 * Note: this is probably too low level an operation for use in drivers.
3048 * Please consult with lkml before using this in your driver.
3049 */
3050void split_page(struct page *page, unsigned int order)
3051{
3052        int i;
3053
3054        VM_BUG_ON_PAGE(PageCompound(page), page);
3055        VM_BUG_ON_PAGE(!page_count(page), page);
3056
3057        for (i = 1; i < (1 << order); i++)
3058                set_page_refcounted(page + i);
3059        split_page_owner(page, order);
3060}
3061EXPORT_SYMBOL_GPL(split_page);
3062
3063int __isolate_free_page(struct page *page, unsigned int order)
3064{
3065        struct free_area *area = &page_zone(page)->free_area[order];
3066        unsigned long watermark;
3067        struct zone *zone;
3068        int mt;
3069
3070        BUG_ON(!PageBuddy(page));
3071
3072        zone = page_zone(page);
3073        mt = get_pageblock_migratetype(page);
3074
3075        if (!is_migrate_isolate(mt)) {
3076                /*
3077                 * Obey watermarks as if the page was being allocated. We can
3078                 * emulate a high-order watermark check with a raised order-0
3079                 * watermark, because we already know our high-order page
3080                 * exists.
3081                 */
3082                watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3083                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3084                        return 0;
3085
3086                __mod_zone_freepage_state(zone, -(1UL << order), mt);
3087        }
3088
3089        /* Remove page from free list */
3090
3091        del_page_from_free_area(page, area);
3092
3093        /*
3094         * Set the pageblock if the isolated page is at least half of a
3095         * pageblock
3096         */
3097        if (order >= pageblock_order - 1) {
3098                struct page *endpage = page + (1 << order) - 1;
3099                for (; page < endpage; page += pageblock_nr_pages) {
3100                        int mt = get_pageblock_migratetype(page);
3101                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3102                            && !is_migrate_highatomic(mt))
3103                                set_pageblock_migratetype(page,
3104                                                          MIGRATE_MOVABLE);
3105                }
3106        }
3107
3108
3109        return 1UL << order;
3110}
3111
3112/*
3113 * Update NUMA hit/miss statistics
3114 *
3115 * Must be called with interrupts disabled.
3116 */
3117static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3118{
3119#ifdef CONFIG_NUMA
3120        enum numa_stat_item local_stat = NUMA_LOCAL;
3121
3122        /* skip numa counters update if numa stats is disabled */
3123        if (!static_branch_likely(&vm_numa_stat_key))
3124                return;
3125
3126        if (zone_to_nid(z) != numa_node_id())
3127                local_stat = NUMA_OTHER;
3128
3129        if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3130                __inc_numa_state(z, NUMA_HIT);
3131        else {
3132                __inc_numa_state(z, NUMA_MISS);
3133                __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3134        }
3135        __inc_numa_state(z, local_stat);
3136#endif
3137}
3138
3139/* Remove page from the per-cpu list, caller must protect the list */
3140static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3141                        unsigned int alloc_flags,
3142                        struct per_cpu_pages *pcp,
3143                        struct list_head *list)
3144{
3145        struct page *page;
3146
3147        do {
3148                if (list_empty(list)) {
3149                        pcp->count += rmqueue_bulk(zone, 0,
3150                                        pcp->batch, list,
3151                                        migratetype, alloc_flags);
3152                        if (unlikely(list_empty(list)))
3153                                return NULL;
3154                }
3155
3156                page = list_first_entry(list, struct page, lru);
3157                list_del(&page->lru);
3158                pcp->count--;
3159        } while (check_new_pcp(page));
3160
3161        return page;
3162}
3163
3164/* Lock and remove page from the per-cpu list */
3165static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3166                        struct zone *zone, gfp_t gfp_flags,
3167                        int migratetype, unsigned int alloc_flags)
3168{
3169        struct per_cpu_pages *pcp;
3170        struct list_head *list;
3171        struct page *page;
3172        unsigned long flags;
3173
3174        local_irq_save(flags);
3175        pcp = &this_cpu_ptr(zone->pageset)->pcp;
3176        list = &pcp->lists[migratetype];
3177        page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3178        if (page) {
3179                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3180                zone_statistics(preferred_zone, zone);
3181        }
3182        local_irq_restore(flags);
3183        return page;
3184}
3185
3186/*
3187 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3188 */
3189static inline
3190struct page *rmqueue(struct zone *preferred_zone,
3191                        struct zone *zone, unsigned int order,
3192                        gfp_t gfp_flags, unsigned int alloc_flags,
3193                        int migratetype)
3194{
3195        unsigned long flags;
3196        struct page *page;
3197
3198        if (likely(order == 0)) {
3199                page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3200                                        migratetype, alloc_flags);
3201                goto out;
3202        }
3203
3204        /*
3205         * We most definitely don't want callers attempting to
3206         * allocate greater than order-1 page units with __GFP_NOFAIL.
3207         */
3208        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3209        spin_lock_irqsave(&zone->lock, flags);
3210
3211        do {
3212                page = NULL;
3213                if (alloc_flags & ALLOC_HARDER) {
3214                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3215                        if (page)
3216                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3217                }
3218                if (!page)
3219                        page = __rmqueue(zone, order, migratetype, alloc_flags);
3220        } while (page && check_new_pages(page, order));
3221        spin_unlock(&zone->lock);
3222        if (!page)
3223                goto failed;
3224        __mod_zone_freepage_state(zone, -(1 << order),
3225                                  get_pcppage_migratetype(page));
3226
3227        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3228        zone_statistics(preferred_zone, zone);
3229        local_irq_restore(flags);
3230
3231out:
3232        /* Separate test+clear to avoid unnecessary atomics */
3233        if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3234                clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3235                wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3236        }
3237
3238        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3239        return page;
3240
3241failed:
3242        local_irq_restore(flags);
3243        return NULL;
3244}
3245
3246#ifdef CONFIG_FAIL_PAGE_ALLOC
3247
3248static struct {
3249        struct fault_attr attr;
3250
3251        bool ignore_gfp_highmem;
3252        bool ignore_gfp_reclaim;
3253        u32 min_order;
3254} fail_page_alloc = {
3255        .attr = FAULT_ATTR_INITIALIZER,
3256        .ignore_gfp_reclaim = true,
3257        .ignore_gfp_highmem = true,
3258        .min_order = 1,
3259};
3260
3261static int __init setup_fail_page_alloc(char *str)
3262{
3263        return setup_fault_attr(&fail_page_alloc.attr, str);
3264}
3265__setup("fail_page_alloc=", setup_fail_page_alloc);
3266
3267static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3268{
3269        if (order < fail_page_alloc.min_order)
3270                return false;
3271        if (gfp_mask & __GFP_NOFAIL)
3272                return false;
3273        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3274                return false;
3275        if (fail_page_alloc.ignore_gfp_reclaim &&
3276                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3277                return false;
3278
3279        return should_fail(&fail_page_alloc.attr, 1 << order);
3280}
3281
3282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3283
3284static int __init fail_page_alloc_debugfs(void)
3285{
3286        umode_t mode = S_IFREG | 0600;
3287        struct dentry *dir;
3288
3289        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3290                                        &fail_page_alloc.attr);
3291
3292        debugfs_create_bool("ignore-gfp-wait", mode, dir,
3293                            &fail_page_alloc.ignore_gfp_reclaim);
3294        debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3295                            &fail_page_alloc.ignore_gfp_highmem);
3296        debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3297
3298        return 0;
3299}
3300
3301late_initcall(fail_page_alloc_debugfs);
3302
3303#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3304
3305#else /* CONFIG_FAIL_PAGE_ALLOC */
3306
3307static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3308{
3309        return false;
3310}
3311
3312#endif /* CONFIG_FAIL_PAGE_ALLOC */
3313
3314static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3315{
3316        return __should_fail_alloc_page(gfp_mask, order);
3317}
3318ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3319
3320/*
3321 * Return true if free base pages are above 'mark'. For high-order checks it
3322 * will return true of the order-0 watermark is reached and there is at least
3323 * one free page of a suitable size. Checking now avoids taking the zone lock
3324 * to check in the allocation paths if no pages are free.
3325 */
3326bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3327                         int classzone_idx, unsigned int alloc_flags,
3328                         long free_pages)
3329{
3330        long min = mark;
3331        int o;
3332        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3333
3334        /* free_pages may go negative - that's OK */
3335        free_pages -= (1 << order) - 1;
3336
3337        if (alloc_flags & ALLOC_HIGH)
3338                min -= min / 2;
3339
3340        /*
3341         * If the caller does not have rights to ALLOC_HARDER then subtract
3342         * the high-atomic reserves. This will over-estimate the size of the
3343         * atomic reserve but it avoids a search.
3344         */
3345        if (likely(!alloc_harder)) {
3346                free_pages -= z->nr_reserved_highatomic;
3347        } else {
3348                /*
3349                 * OOM victims can try even harder than normal ALLOC_HARDER
3350                 * users on the grounds that it's definitely going to be in
3351                 * the exit path shortly and free memory. Any allocation it
3352                 * makes during the free path will be small and short-lived.
3353                 */
3354                if (alloc_flags & ALLOC_OOM)
3355                        min -= min / 2;
3356                else
3357                        min -= min / 4;
3358        }
3359
3360
3361#ifdef CONFIG_CMA
3362        /* If allocation can't use CMA areas don't use free CMA pages */
3363        if (!(alloc_flags & ALLOC_CMA))
3364                free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3365#endif
3366
3367        /*
3368         * Check watermarks for an order-0 allocation request. If these
3369         * are not met, then a high-order request also cannot go ahead
3370         * even if a suitable page happened to be free.
3371         */
3372        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3373                return false;
3374
3375        /* If this is an order-0 request then the watermark is fine */
3376        if (!order)
3377                return true;
3378
3379        /* For a high-order request, check at least one suitable page is free */
3380        for (o = order; o < MAX_ORDER; o++) {
3381                struct free_area *area = &z->free_area[o];
3382                int mt;
3383
3384                if (!area->nr_free)
3385                        continue;
3386
3387                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3388                        if (!free_area_empty(area, mt))
3389                                return true;
3390                }
3391
3392#ifdef CONFIG_CMA
3393                if ((alloc_flags & ALLOC_CMA) &&
3394                    !free_area_empty(area, MIGRATE_CMA)) {
3395                        return true;
3396                }
3397#endif
3398                if (alloc_harder &&
3399                        !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3400                        return true;
3401        }
3402        return false;
3403}
3404
3405bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3406                      int classzone_idx, unsigned int alloc_flags)
3407{
3408        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3409                                        zone_page_state(z, NR_FREE_PAGES));
3410}
3411
3412static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3413                unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3414{
3415        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3416        long cma_pages = 0;
3417
3418#ifdef CONFIG_CMA
3419        /* If allocation can't use CMA areas don't use free CMA pages */
3420        if (!(alloc_flags & ALLOC_CMA))
3421                cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3422#endif
3423
3424        /*
3425         * Fast check for order-0 only. If this fails then the reserves
3426         * need to be calculated. There is a corner case where the check
3427         * passes but only the high-order atomic reserve are free. If
3428         * the caller is !atomic then it'll uselessly search the free
3429         * list. That corner case is then slower but it is harmless.
3430         */
3431        if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3432                return true;
3433
3434        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3435                                        free_pages);
3436}
3437
3438bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3439                        unsigned long mark, int classzone_idx)
3440{
3441        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3442
3443        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3444                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3445
3446        return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3447                                                                free_pages);
3448}
3449
3450#ifdef CONFIG_NUMA
3451static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3452{
3453        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3454                                RECLAIM_DISTANCE;
3455}
3456#else   /* CONFIG_NUMA */
3457static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3458{
3459        return true;
3460}
3461#endif  /* CONFIG_NUMA */
3462
3463/*
3464 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3465 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3466 * premature use of a lower zone may cause lowmem pressure problems that
3467 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3468 * probably too small. It only makes sense to spread allocations to avoid
3469 * fragmentation between the Normal and DMA32 zones.
3470 */
3471static inline unsigned int
3472alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3473{
3474        unsigned int alloc_flags = 0;
3475
3476        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3477                alloc_flags |= ALLOC_KSWAPD;
3478
3479#ifdef CONFIG_ZONE_DMA32
3480        if (!zone)
3481                return alloc_flags;
3482
3483        if (zone_idx(zone) != ZONE_NORMAL)
3484                return alloc_flags;
3485
3486        /*
3487         * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3488         * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3489         * on UMA that if Normal is populated then so is DMA32.
3490         */
3491        BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3492        if (nr_online_nodes > 1 && !populated_zone(--zone))
3493                return alloc_flags;
3494
3495        alloc_flags |= ALLOC_NOFRAGMENT;
3496#endif /* CONFIG_ZONE_DMA32 */
3497        return alloc_flags;
3498}
3499
3500/*
3501 * get_page_from_freelist goes through the zonelist trying to allocate
3502 * a page.
3503 */
3504static struct page *
3505get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3506                                                const struct alloc_context *ac)
3507{
3508        struct zoneref *z;
3509        struct zone *zone;
3510        struct pglist_data *last_pgdat_dirty_limit = NULL;
3511        bool no_fallback;
3512
3513retry:
3514        /*
3515         * Scan zonelist, looking for a zone with enough free.
3516         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3517         */
3518        no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3519        z = ac->preferred_zoneref;
3520        for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3521                                                                ac->nodemask) {
3522                struct page *page;
3523                unsigned long mark;
3524
3525                if (cpusets_enabled() &&
3526                        (alloc_flags & ALLOC_CPUSET) &&
3527                        !__cpuset_zone_allowed(zone, gfp_mask))
3528                                continue;
3529                /*
3530                 * When allocating a page cache page for writing, we
3531                 * want to get it from a node that is within its dirty
3532                 * limit, such that no single node holds more than its
3533                 * proportional share of globally allowed dirty pages.
3534                 * The dirty limits take into account the node's
3535                 * lowmem reserves and high watermark so that kswapd
3536                 * should be able to balance it without having to
3537                 * write pages from its LRU list.
3538                 *
3539                 * XXX: For now, allow allocations to potentially
3540                 * exceed the per-node dirty limit in the slowpath
3541                 * (spread_dirty_pages unset) before going into reclaim,
3542                 * which is important when on a NUMA setup the allowed
3543                 * nodes are together not big enough to reach the
3544                 * global limit.  The proper fix for these situations
3545                 * will require awareness of nodes in the
3546                 * dirty-throttling and the flusher threads.
3547                 */
3548                if (ac->spread_dirty_pages) {
3549                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
3550                                continue;
3551
3552                        if (!node_dirty_ok(zone->zone_pgdat)) {
3553                                last_pgdat_dirty_limit = zone->zone_pgdat;
3554                                continue;
3555                        }
3556                }
3557
3558                if (no_fallback && nr_online_nodes > 1 &&
3559                    zone != ac->preferred_zoneref->zone) {
3560                        int local_nid;
3561
3562                        /*
3563                         * If moving to a remote node, retry but allow
3564                         * fragmenting fallbacks. Locality is more important
3565                         * than fragmentation avoidance.
3566                         */
3567                        local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3568                        if (zone_to_nid(zone) != local_nid) {
3569                                alloc_flags &= ~ALLOC_NOFRAGMENT;
3570                                goto retry;
3571                        }
3572                }
3573
3574                mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3575                if (!zone_watermark_fast(zone, order, mark,
3576                                       ac_classzone_idx(ac), alloc_flags)) {
3577                        int ret;
3578
3579#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3580                        /*
3581                         * Watermark failed for this zone, but see if we can
3582                         * grow this zone if it contains deferred pages.
3583                         */
3584                        if (static_branch_unlikely(&deferred_pages)) {
3585                                if (_deferred_grow_zone(zone, order))
3586                                        goto try_this_zone;
3587                        }
3588#endif
3589                        /* Checked here to keep the fast path fast */
3590                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3591                        if (alloc_flags & ALLOC_NO_WATERMARKS)
3592                                goto try_this_zone;
3593
3594                        if (node_reclaim_mode == 0 ||
3595                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3596                                continue;
3597
3598                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3599                        switch (ret) {
3600                        case NODE_RECLAIM_NOSCAN:
3601                                /* did not scan */
3602                                continue;
3603                        case NODE_RECLAIM_FULL:
3604                                /* scanned but unreclaimable */
3605                                continue;
3606                        default:
3607                                /* did we reclaim enough */
3608                                if (zone_watermark_ok(zone, order, mark,
3609                                                ac_classzone_idx(ac), alloc_flags))
3610                                        goto try_this_zone;
3611
3612                                continue;
3613                        }
3614                }
3615
3616try_this_zone:
3617                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3618                                gfp_mask, alloc_flags, ac->migratetype);
3619                if (page) {
3620                        prep_new_page(page, order, gfp_mask, alloc_flags);
3621
3622                        /*
3623                         * If this is a high-order atomic allocation then check
3624                         * if the pageblock should be reserved for the future
3625                         */
3626                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3627                                reserve_highatomic_pageblock(page, zone, order);
3628
3629                        return page;
3630                } else {
3631#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3632                        /* Try again if zone has deferred pages */
3633                        if (static_branch_unlikely(&deferred_pages)) {
3634                                if (_deferred_grow_zone(zone, order))
3635                                        goto try_this_zone;
3636                        }
3637#endif
3638                }
3639        }
3640
3641        /*
3642         * It's possible on a UMA machine to get through all zones that are
3643         * fragmented. If avoiding fragmentation, reset and try again.
3644         */
3645        if (no_fallback) {
3646                alloc_flags &= ~ALLOC_NOFRAGMENT;
3647                goto retry;
3648        }
3649
3650        return NULL;
3651}
3652
3653static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3654{
3655        unsigned int filter = SHOW_MEM_FILTER_NODES;
3656        static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3657
3658        if (!__ratelimit(&show_mem_rs))
3659                return;
3660
3661        /*
3662         * This documents exceptions given to allocations in certain
3663         * contexts that are allowed to allocate outside current's set
3664         * of allowed nodes.
3665         */
3666        if (!(gfp_mask & __GFP_NOMEMALLOC))
3667                if (tsk_is_oom_victim(current) ||
3668                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3669                        filter &= ~SHOW_MEM_FILTER_NODES;
3670        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3671                filter &= ~SHOW_MEM_FILTER_NODES;
3672
3673        show_mem(filter, nodemask);
3674}
3675
3676void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3677{
3678        struct va_format vaf;
3679        va_list args;
3680        static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3681                                      DEFAULT_RATELIMIT_BURST);
3682
3683        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3684                return;
3685
3686        va_start(args, fmt);
3687        vaf.fmt = fmt;
3688        vaf.va = &args;
3689        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3690                        current->comm, &vaf, gfp_mask, &gfp_mask,
3691                        nodemask_pr_args(nodemask));
3692        va_end(args);
3693
3694        cpuset_print_current_mems_allowed();
3695        pr_cont("\n");
3696        dump_stack();
3697        warn_alloc_show_mem(gfp_mask, nodemask);
3698}
3699
3700static inline struct page *
3701__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3702                              unsigned int alloc_flags,
3703                              const struct alloc_context *ac)
3704{
3705        struct page *page;
3706
3707        page = get_page_from_freelist(gfp_mask, order,
3708                        alloc_flags|ALLOC_CPUSET, ac);
3709        /*
3710         * fallback to ignore cpuset restriction if our nodes
3711         * are depleted
3712         */
3713        if (!page)
3714                page = get_page_from_freelist(gfp_mask, order,
3715                                alloc_flags, ac);
3716
3717        return page;
3718}
3719
3720static inline struct page *
3721__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3722        const struct alloc_context *ac, unsigned long *did_some_progress)
3723{
3724        struct oom_control oc = {
3725                .zonelist = ac->zonelist,
3726                .nodemask = ac->nodemask,
3727                .memcg = NULL,
3728                .gfp_mask = gfp_mask,
3729                .order = order,
3730        };
3731        struct page *page;
3732
3733        *did_some_progress = 0;
3734
3735        /*
3736         * Acquire the oom lock.  If that fails, somebody else is
3737         * making progress for us.
3738         */
3739        if (!mutex_trylock(&oom_lock)) {
3740                *did_some_progress = 1;
3741                schedule_timeout_uninterruptible(1);
3742                return NULL;
3743        }
3744
3745        /*
3746         * Go through the zonelist yet one more time, keep very high watermark
3747         * here, this is only to catch a parallel oom killing, we must fail if
3748         * we're still under heavy pressure. But make sure that this reclaim
3749         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3750         * allocation which will never fail due to oom_lock already held.
3751         */
3752        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3753                                      ~__GFP_DIRECT_RECLAIM, order,
3754                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3755        if (page)
3756                goto out;
3757
3758        /* Coredumps can quickly deplete all memory reserves */
3759        if (current->flags & PF_DUMPCORE)
3760                goto out;
3761        /* The OOM killer will not help higher order allocs */
3762        if (order > PAGE_ALLOC_COSTLY_ORDER)
3763                goto out;
3764        /*
3765         * We have already exhausted all our reclaim opportunities without any
3766         * success so it is time to admit defeat. We will skip the OOM killer
3767         * because it is very likely that the caller has a more reasonable
3768         * fallback than shooting a random task.
3769         */
3770        if (gfp_mask & __GFP_RETRY_MAYFAIL)
3771                goto out;
3772        /* The OOM killer does not needlessly kill tasks for lowmem */
3773        if (ac->high_zoneidx < ZONE_NORMAL)
3774                goto out;
3775        if (pm_suspended_storage())
3776                goto out;
3777        /*
3778         * XXX: GFP_NOFS allocations should rather fail than rely on
3779         * other request to make a forward progress.
3780         * We are in an unfortunate situation where out_of_memory cannot
3781         * do much for this context but let's try it to at least get
3782         * access to memory reserved if the current task is killed (see
3783         * out_of_memory). Once filesystems are ready to handle allocation
3784         * failures more gracefully we should just bail out here.
3785         */
3786
3787        /* The OOM killer may not free memory on a specific node */
3788        if (gfp_mask & __GFP_THISNODE)
3789                goto out;
3790
3791        /* Exhausted what can be done so it's blame time */
3792        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3793                *did_some_progress = 1;
3794
3795                /*
3796                 * Help non-failing allocations by giving them access to memory
3797                 * reserves
3798                 */
3799                if (gfp_mask & __GFP_NOFAIL)
3800                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3801                                        ALLOC_NO_WATERMARKS, ac);
3802        }
3803out:
3804        mutex_unlock(&oom_lock);
3805        return page;
3806}
3807
3808/*
3809 * Maximum number of compaction retries wit a progress before OOM
3810 * killer is consider as the only way to move forward.
3811 */
3812#define MAX_COMPACT_RETRIES 16
3813
3814#ifdef CONFIG_COMPACTION
3815/* Try memory compaction for high-order allocations before reclaim */
3816static struct page *
3817__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3818                unsigned int alloc_flags, const struct alloc_context *ac,
3819                enum compact_priority prio, enum compact_result *compact_result)
3820{
3821        struct page *page = NULL;
3822        unsigned long pflags;
3823        unsigned int noreclaim_flag;
3824
3825        if (!order)
3826                return NULL;
3827
3828        psi_memstall_enter(&pflags);
3829        noreclaim_flag = memalloc_noreclaim_save();
3830
3831        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3832                                                                prio, &page);
3833
3834        memalloc_noreclaim_restore(noreclaim_flag);
3835        psi_memstall_leave(&pflags);
3836
3837        /*
3838         * At least in one zone compaction wasn't deferred or skipped, so let's
3839         * count a compaction stall
3840         */
3841        count_vm_event(COMPACTSTALL);
3842
3843        /* Prep a captured page if available */
3844        if (page)
3845                prep_new_page(page, order, gfp_mask, alloc_flags);
3846
3847        /* Try get a page from the freelist if available */
3848        if (!page)
3849                page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3850
3851        if (page) {
3852                struct zone *zone = page_zone(page);
3853
3854                zone->compact_blockskip_flush = false;
3855                compaction_defer_reset(zone, order, true);
3856                count_vm_event(COMPACTSUCCESS);
3857                return page;
3858        }
3859
3860        /*
3861         * It's bad if compaction run occurs and fails. The most likely reason
3862         * is that pages exist, but not enough to satisfy watermarks.
3863         */
3864        count_vm_event(COMPACTFAIL);
3865
3866        cond_resched();
3867
3868        return NULL;
3869}
3870
3871static inline bool
3872should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3873                     enum compact_result compact_result,
3874                     enum compact_priority *compact_priority,
3875                     int *compaction_retries)
3876{
3877        int max_retries = MAX_COMPACT_RETRIES;
3878        int min_priority;
3879        bool ret = false;
3880        int retries = *compaction_retries;
3881        enum compact_priority priority = *compact_priority;
3882
3883        if (!order)
3884                return false;
3885
3886        if (compaction_made_progress(compact_result))
3887                (*compaction_retries)++;
3888
3889        /*
3890         * compaction considers all the zone as desperately out of memory
3891         * so it doesn't really make much sense to retry except when the
3892         * failure could be caused by insufficient priority
3893         */
3894        if (compaction_failed(compact_result))
3895                goto check_priority;
3896
3897        /*
3898         * make sure the compaction wasn't deferred or didn't bail out early
3899         * due to locks contention before we declare that we should give up.
3900         * But do not retry if the given zonelist is not suitable for
3901         * compaction.
3902         */
3903        if (compaction_withdrawn(compact_result)) {
3904                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3905                goto out;
3906        }
3907
3908        /*
3909         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3910         * costly ones because they are de facto nofail and invoke OOM
3911         * killer to move on while costly can fail and users are ready
3912         * to cope with that. 1/4 retries is rather arbitrary but we
3913         * would need much more detailed feedback from compaction to
3914         * make a better decision.
3915         */
3916        if (order > PAGE_ALLOC_COSTLY_ORDER)
3917                max_retries /= 4;
3918        if (*compaction_retries <= max_retries) {
3919                ret = true;
3920                goto out;
3921        }
3922
3923        /*
3924         * Make sure there are attempts at the highest priority if we exhausted
3925         * all retries or failed at the lower priorities.
3926         */
3927check_priority:
3928        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3929                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3930
3931        if (*compact_priority > min_priority) {
3932                (*compact_priority)--;
3933                *compaction_retries = 0;
3934                ret = true;
3935        }
3936out:
3937        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3938        return ret;
3939}
3940#else
3941static inline struct page *
3942__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3943                unsigned int alloc_flags, const struct alloc_context *ac,
3944                enum compact_priority prio, enum compact_result *compact_result)
3945{
3946        *compact_result = COMPACT_SKIPPED;
3947        return NULL;
3948}
3949
3950static inline bool
3951should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3952                     enum compact_result compact_result,
3953                     enum compact_priority *compact_priority,
3954                     int *compaction_retries)
3955{
3956        struct zone *zone;
3957        struct zoneref *z;
3958
3959        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3960                return false;
3961
3962        /*
3963         * There are setups with compaction disabled which would prefer to loop
3964         * inside the allocator rather than hit the oom killer prematurely.
3965         * Let's give them a good hope and keep retrying while the order-0
3966         * watermarks are OK.
3967         */
3968        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3969                                        ac->nodemask) {
3970                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3971                                        ac_classzone_idx(ac), alloc_flags))
3972                        return true;
3973        }
3974        return false;
3975}
3976#endif /* CONFIG_COMPACTION */
3977
3978#ifdef CONFIG_LOCKDEP
3979static struct lockdep_map __fs_reclaim_map =
3980        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3981
3982static bool __need_fs_reclaim(gfp_t gfp_mask)
3983{
3984        gfp_mask = current_gfp_context(gfp_mask);
3985
3986        /* no reclaim without waiting on it */
3987        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3988                return false;
3989
3990        /* this guy won't enter reclaim */
3991        if (current->flags & PF_MEMALLOC)
3992                return false;
3993
3994        /* We're only interested __GFP_FS allocations for now */
3995        if (!(gfp_mask & __GFP_FS))
3996                return false;
3997
3998        if (gfp_mask & __GFP_NOLOCKDEP)
3999                return false;
4000
4001        return true;
4002}
4003
4004void __fs_reclaim_acquire(void)
4005{
4006        lock_map_acquire(&__fs_reclaim_map);
4007}
4008
4009void __fs_reclaim_release(void)
4010{
4011        lock_map_release(&__fs_reclaim_map);
4012}
4013
4014void fs_reclaim_acquire(gfp_t gfp_mask)
4015{
4016        if (__need_fs_reclaim(gfp_mask))
4017                __fs_reclaim_acquire();
4018}
4019EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4020
4021void fs_reclaim_release(gfp_t gfp_mask)
4022{
4023        if (__need_fs_reclaim(gfp_mask))
4024                __fs_reclaim_release();
4025}
4026EXPORT_SYMBOL_GPL(fs_reclaim_release);
4027#endif
4028
4029/* Perform direct synchronous page reclaim */
4030static int
4031__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4032                                        const struct alloc_context *ac)
4033{
4034        struct reclaim_state reclaim_state;
4035        int progress;
4036        unsigned int noreclaim_flag;
4037        unsigned long pflags;
4038
4039        cond_resched();
4040
4041        /* We now go into synchronous reclaim */
4042        cpuset_memory_pressure_bump();
4043        psi_memstall_enter(&pflags);
4044        fs_reclaim_acquire(gfp_mask);
4045        noreclaim_flag = memalloc_noreclaim_save();
4046        reclaim_state.reclaimed_slab = 0;
4047        current->reclaim_state = &reclaim_state;
4048
4049        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4050                                                                ac->nodemask);
4051
4052        current->reclaim_state = NULL;
4053        memalloc_noreclaim_restore(noreclaim_flag);
4054        fs_reclaim_release(gfp_mask);
4055        psi_memstall_leave(&pflags);
4056
4057        cond_resched();
4058
4059        return progress;
4060}
4061
4062/* The really slow allocator path where we enter direct reclaim */
4063static inline struct page *
4064__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4065                unsigned int alloc_flags, const struct alloc_context *ac,
4066                unsigned long *did_some_progress)
4067{
4068        struct page *page = NULL;
4069        bool drained = false;
4070
4071        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4072        if (unlikely(!(*did_some_progress)))
4073                return NULL;
4074
4075retry:
4076        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4077
4078        /*
4079         * If an allocation failed after direct reclaim, it could be because
4080         * pages are pinned on the per-cpu lists or in high alloc reserves.
4081         * Shrink them them and try again
4082         */
4083        if (!page && !drained) {
4084                unreserve_highatomic_pageblock(ac, false);
4085                drain_all_pages(NULL);
4086                drained = true;
4087                goto retry;
4088        }
4089
4090        return page;
4091}
4092
4093static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4094                             const struct alloc_context *ac)
4095{
4096        struct zoneref *z;
4097        struct zone *zone;
4098        pg_data_t *last_pgdat = NULL;
4099        enum zone_type high_zoneidx = ac->high_zoneidx;
4100
4101        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4102                                        ac->nodemask) {
4103                if (last_pgdat != zone->zone_pgdat)
4104                        wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4105                last_pgdat = zone->zone_pgdat;
4106        }
4107}
4108
4109static inline unsigned int
4110gfp_to_alloc_flags(gfp_t gfp_mask)
4111{
4112        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4113
4114        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4115        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4116
4117        /*
4118         * The caller may dip into page reserves a bit more if the caller
4119         * cannot run direct reclaim, or if the caller has realtime scheduling
4120         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4121         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4122         */
4123        alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4124
4125        if (gfp_mask & __GFP_ATOMIC) {
4126                /*
4127                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4128                 * if it can't schedule.
4129                 */
4130                if (!(gfp_mask & __GFP_NOMEMALLOC))
4131                        alloc_flags |= ALLOC_HARDER;
4132                /*
4133                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4134                 * comment for __cpuset_node_allowed().
4135                 */
4136                alloc_flags &= ~ALLOC_CPUSET;
4137        } else if (unlikely(rt_task(current)) && !in_interrupt())
4138                alloc_flags |= ALLOC_HARDER;
4139
4140        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4141                alloc_flags |= ALLOC_KSWAPD;
4142
4143#ifdef CONFIG_CMA
4144        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4145                alloc_flags |= ALLOC_CMA;
4146#endif
4147        return alloc_flags;
4148}
4149
4150static bool oom_reserves_allowed(struct task_struct *tsk)
4151{
4152        if (!tsk_is_oom_victim(tsk))
4153                return false;
4154
4155        /*
4156         * !MMU doesn't have oom reaper so give access to memory reserves
4157         * only to the thread with TIF_MEMDIE set
4158         */
4159        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4160                return false;
4161
4162        return true;
4163}
4164
4165/*
4166 * Distinguish requests which really need access to full memory
4167 * reserves from oom victims which can live with a portion of it
4168 */
4169static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4170{
4171        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4172                return 0;
4173        if (gfp_mask & __GFP_MEMALLOC)
4174                return ALLOC_NO_WATERMARKS;
4175        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4176                return ALLOC_NO_WATERMARKS;
4177        if (!in_interrupt()) {
4178                if (current->flags & PF_MEMALLOC)
4179                        return ALLOC_NO_WATERMARKS;
4180                else if (oom_reserves_allowed(current))
4181                        return ALLOC_OOM;
4182        }
4183
4184        return 0;
4185}
4186
4187bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4188{
4189        return !!__gfp_pfmemalloc_flags(gfp_mask);
4190}
4191
4192/*
4193 * Checks whether it makes sense to retry the reclaim to make a forward progress
4194 * for the given allocation request.
4195 *
4196 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4197 * without success, or when we couldn't even meet the watermark if we
4198 * reclaimed all remaining pages on the LRU lists.
4199 *
4200 * Returns true if a retry is viable or false to enter the oom path.
4201 */
4202static inline bool
4203should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4204                     struct alloc_context *ac, int alloc_flags,
4205                     bool did_some_progress, int *no_progress_loops)
4206{
4207        struct zone *zone;
4208        struct zoneref *z;
4209        bool ret = false;
4210
4211        /*
4212         * Costly allocations might have made a progress but this doesn't mean
4213         * their order will become available due to high fragmentation so
4214         * always increment the no progress counter for them
4215         */
4216        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4217                *no_progress_loops = 0;
4218        else
4219                (*no_progress_loops)++;
4220
4221        /*
4222         * Make sure we converge to OOM if we cannot make any progress
4223         * several times in the row.
4224         */
4225        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4226                /* Before OOM, exhaust highatomic_reserve */
4227                return unreserve_highatomic_pageblock(ac, true);
4228        }
4229
4230        /*
4231         * Keep reclaiming pages while there is a chance this will lead
4232         * somewhere.  If none of the target zones can satisfy our allocation
4233         * request even if all reclaimable pages are considered then we are
4234         * screwed and have to go OOM.
4235         */
4236        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4237                                        ac->nodemask) {
4238                unsigned long available;
4239                unsigned long reclaimable;
4240                unsigned long min_wmark = min_wmark_pages(zone);
4241                bool wmark;
4242
4243                available = reclaimable = zone_reclaimable_pages(zone);
4244                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4245
4246                /*
4247                 * Would the allocation succeed if we reclaimed all
4248                 * reclaimable pages?
4249                 */
4250                wmark = __zone_watermark_ok(zone, order, min_wmark,
4251                                ac_classzone_idx(ac), alloc_flags, available);
4252                trace_reclaim_retry_zone(z, order, reclaimable,
4253                                available, min_wmark, *no_progress_loops, wmark);
4254                if (wmark) {
4255                        /*
4256                         * If we didn't make any progress and have a lot of
4257                         * dirty + writeback pages then we should wait for
4258                         * an IO to complete to slow down the reclaim and
4259                         * prevent from pre mature OOM
4260                         */
4261                        if (!did_some_progress) {
4262                                unsigned long write_pending;
4263
4264                                write_pending = zone_page_state_snapshot(zone,
4265                                                        NR_ZONE_WRITE_PENDING);
4266
4267                                if (2 * write_pending > reclaimable) {
4268                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
4269                                        return true;
4270                                }
4271                        }
4272
4273                        ret = true;
4274                        goto out;
4275                }
4276        }
4277
4278out:
4279        /*
4280         * Memory allocation/reclaim might be called from a WQ context and the
4281         * current implementation of the WQ concurrency control doesn't
4282         * recognize that a particular WQ is congested if the worker thread is
4283         * looping without ever sleeping. Therefore we have to do a short sleep
4284         * here rather than calling cond_resched().
4285         */
4286        if (current->flags & PF_WQ_WORKER)
4287                schedule_timeout_uninterruptible(1);
4288        else
4289                cond_resched();
4290        return ret;
4291}
4292
4293static inline bool
4294check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4295{
4296        /*
4297         * It's possible that cpuset's mems_allowed and the nodemask from
4298         * mempolicy don't intersect. This should be normally dealt with by
4299         * policy_nodemask(), but it's possible to race with cpuset update in
4300         * such a way the check therein was true, and then it became false
4301         * before we got our cpuset_mems_cookie here.
4302         * This assumes that for all allocations, ac->nodemask can come only
4303         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4304         * when it does not intersect with the cpuset restrictions) or the
4305         * caller can deal with a violated nodemask.
4306         */
4307        if (cpusets_enabled() && ac->nodemask &&
4308                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4309                ac->nodemask = NULL;
4310                return true;
4311        }
4312
4313        /*
4314         * When updating a task's mems_allowed or mempolicy nodemask, it is
4315         * possible to race with parallel threads in such a way that our
4316         * allocation can fail while the mask is being updated. If we are about
4317         * to fail, check if the cpuset changed during allocation and if so,
4318         * retry.
4319         */
4320        if (read_mems_allowed_retry(cpuset_mems_cookie))
4321                return true;
4322
4323        return false;
4324}
4325
4326static inline struct page *
4327__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4328                                                struct alloc_context *ac)
4329{
4330        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4331        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4332        struct page *page = NULL;
4333        unsigned int alloc_flags;
4334        unsigned long did_some_progress;
4335        enum compact_priority compact_priority;
4336        enum compact_result compact_result;
4337        int compaction_retries;
4338        int no_progress_loops;
4339        unsigned int cpuset_mems_cookie;
4340        int reserve_flags;
4341
4342        /*
4343         * We also sanity check to catch abuse of atomic reserves being used by
4344         * callers that are not in atomic context.
4345         */
4346        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4347                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4348                gfp_mask &= ~__GFP_ATOMIC;
4349
4350retry_cpuset:
4351        compaction_retries = 0;
4352        no_progress_loops = 0;
4353        compact_priority = DEF_COMPACT_PRIORITY;
4354        cpuset_mems_cookie = read_mems_allowed_begin();
4355
4356        /*
4357         * The fast path uses conservative alloc_flags to succeed only until
4358         * kswapd needs to be woken up, and to avoid the cost of setting up
4359         * alloc_flags precisely. So we do that now.
4360         */
4361        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4362
4363        /*
4364         * We need to recalculate the starting point for the zonelist iterator
4365         * because we might have used different nodemask in the fast path, or
4366         * there was a cpuset modification and we are retrying - otherwise we
4367         * could end up iterating over non-eligible zones endlessly.
4368         */
4369        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370                                        ac->high_zoneidx, ac->nodemask);
4371        if (!ac->preferred_zoneref->zone)
4372                goto nopage;
4373
4374        if (alloc_flags & ALLOC_KSWAPD)
4375                wake_all_kswapds(order, gfp_mask, ac);
4376
4377        /*
4378         * The adjusted alloc_flags might result in immediate success, so try
4379         * that first
4380         */
4381        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4382        if (page)
4383                goto got_pg;
4384
4385        /*
4386         * For costly allocations, try direct compaction first, as it's likely
4387         * that we have enough base pages and don't need to reclaim. For non-
4388         * movable high-order allocations, do that as well, as compaction will
4389         * try prevent permanent fragmentation by migrating from blocks of the
4390         * same migratetype.
4391         * Don't try this for allocations that are allowed to ignore
4392         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4393         */
4394        if (can_direct_reclaim &&
4395                        (costly_order ||
4396                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4397                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4398                page = __alloc_pages_direct_compact(gfp_mask, order,
4399                                                alloc_flags, ac,
4400                                                INIT_COMPACT_PRIORITY,
4401                                                &compact_result);
4402                if (page)
4403                        goto got_pg;
4404
4405                /*
4406                 * Checks for costly allocations with __GFP_NORETRY, which
4407                 * includes THP page fault allocations
4408                 */
4409                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4410                        /*
4411                         * If compaction is deferred for high-order allocations,
4412                         * it is because sync compaction recently failed. If
4413                         * this is the case and the caller requested a THP
4414                         * allocation, we do not want to heavily disrupt the
4415                         * system, so we fail the allocation instead of entering
4416                         * direct reclaim.
4417                         */
4418                        if (compact_result == COMPACT_DEFERRED)
4419                                goto nopage;
4420
4421                        /*
4422                         * Looks like reclaim/compaction is worth trying, but
4423                         * sync compaction could be very expensive, so keep
4424                         * using async compaction.
4425                         */
4426                        compact_priority = INIT_COMPACT_PRIORITY;
4427                }
4428        }
4429
4430retry:
4431        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4432        if (alloc_flags & ALLOC_KSWAPD)
4433                wake_all_kswapds(order, gfp_mask, ac);
4434
4435        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4436        if (reserve_flags)
4437                alloc_flags = reserve_flags;
4438
4439        /*
4440         * Reset the nodemask and zonelist iterators if memory policies can be
4441         * ignored. These allocations are high priority and system rather than
4442         * user oriented.
4443         */
4444        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4445                ac->nodemask = NULL;
4446                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447                                        ac->high_zoneidx, ac->nodemask);
4448        }
4449
4450        /* Attempt with potentially adjusted zonelist and alloc_flags */
4451        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4452        if (page)
4453                goto got_pg;
4454
4455        /* Caller is not willing to reclaim, we can't balance anything */
4456        if (!can_direct_reclaim)
4457                goto nopage;
4458
4459        /* Avoid recursion of direct reclaim */
4460        if (current->flags & PF_MEMALLOC)
4461                goto nopage;
4462
4463        /* Try direct reclaim and then allocating */
4464        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4465                                                        &did_some_progress);
4466        if (page)
4467                goto got_pg;
4468
4469        /* Try direct compaction and then allocating */
4470        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4471                                        compact_priority, &compact_result);
4472        if (page)
4473                goto got_pg;
4474
4475        /* Do not loop if specifically requested */
4476        if (gfp_mask & __GFP_NORETRY)
4477                goto nopage;
4478
4479        /*
4480         * Do not retry costly high order allocations unless they are
4481         * __GFP_RETRY_MAYFAIL
4482         */
4483        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4484                goto nopage;
4485
4486        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4487                                 did_some_progress > 0, &no_progress_loops))
4488                goto retry;
4489
4490        /*
4491         * It doesn't make any sense to retry for the compaction if the order-0
4492         * reclaim is not able to make any progress because the current
4493         * implementation of the compaction depends on the sufficient amount
4494         * of free memory (see __compaction_suitable)
4495         */
4496        if (did_some_progress > 0 &&
4497                        should_compact_retry(ac, order, alloc_flags,
4498                                compact_result, &compact_priority,
4499                                &compaction_retries))
4500                goto retry;
4501
4502
4503        /* Deal with possible cpuset update races before we start OOM killing */
4504        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4505                goto retry_cpuset;
4506
4507        /* Reclaim has failed us, start killing things */
4508        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4509        if (page)
4510                goto got_pg;
4511
4512        /* Avoid allocations with no watermarks from looping endlessly */
4513        if (tsk_is_oom_victim(current) &&
4514            (alloc_flags == ALLOC_OOM ||
4515             (gfp_mask & __GFP_NOMEMALLOC)))
4516                goto nopage;
4517
4518        /* Retry as long as the OOM killer is making progress */
4519        if (did_some_progress) {
4520                no_progress_loops = 0;
4521                goto retry;
4522        }
4523
4524nopage:
4525        /* Deal with possible cpuset update races before we fail */
4526        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4527                goto retry_cpuset;
4528
4529        /*
4530         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4531         * we always retry
4532         */
4533        if (gfp_mask & __GFP_NOFAIL) {
4534                /*
4535                 * All existing users of the __GFP_NOFAIL are blockable, so warn
4536                 * of any new users that actually require GFP_NOWAIT
4537                 */
4538                if (WARN_ON_ONCE(!can_direct_reclaim))
4539                        goto fail;
4540
4541                /*
4542                 * PF_MEMALLOC request from this context is rather bizarre
4543                 * because we cannot reclaim anything and only can loop waiting
4544                 * for somebody to do a work for us
4545                 */
4546                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4547
4548                /*
4549                 * non failing costly orders are a hard requirement which we
4550                 * are not prepared for much so let's warn about these users
4551                 * so that we can identify them and convert them to something
4552                 * else.
4553                 */
4554                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4555
4556                /*
4557                 * Help non-failing allocations by giving them access to memory
4558                 * reserves but do not use ALLOC_NO_WATERMARKS because this
4559                 * could deplete whole memory reserves which would just make
4560                 * the situation worse
4561                 */
4562                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4563                if (page)
4564                        goto got_pg;
4565
4566                cond_resched();
4567                goto retry;
4568        }
4569fail:
4570        warn_alloc(gfp_mask, ac->nodemask,
4571                        "page allocation failure: order:%u", order);
4572got_pg:
4573        return page;
4574}
4575
4576static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4577                int preferred_nid, nodemask_t *nodemask,
4578                struct alloc_context *ac, gfp_t *alloc_mask,
4579                unsigned int *alloc_flags)
4580{
4581        ac->high_zoneidx = gfp_zone(gfp_mask);
4582        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4583        ac->nodemask = nodemask;
4584        ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4585
4586        if (cpusets_enabled()) {
4587                *alloc_mask |= __GFP_HARDWALL;
4588                if (!ac->nodemask)
4589                        ac->nodemask = &cpuset_current_mems_allowed;
4590                else
4591                        *alloc_flags |= ALLOC_CPUSET;
4592        }
4593
4594        fs_reclaim_acquire(gfp_mask);
4595        fs_reclaim_release(gfp_mask);
4596
4597        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4598
4599        if (should_fail_alloc_page(gfp_mask, order))
4600                return false;
4601
4602        if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4603                *alloc_flags |= ALLOC_CMA;
4604
4605        return true;
4606}
4607
4608/* Determine whether to spread dirty pages and what the first usable zone */
4609static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4610{
4611        /* Dirty zone balancing only done in the fast path */
4612        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4613
4614        /*
4615         * The preferred zone is used for statistics but crucially it is
4616         * also used as the starting point for the zonelist iterator. It
4617         * may get reset for allocations that ignore memory policies.
4618         */
4619        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4620                                        ac->high_zoneidx, ac->nodemask);
4621}
4622
4623/*
4624 * This is the 'heart' of the zoned buddy allocator.
4625 */
4626struct page *
4627__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4628                                                        nodemask_t *nodemask)
4629{
4630        struct page *page;
4631        unsigned int alloc_flags = ALLOC_WMARK_LOW;
4632        gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4633        struct alloc_context ac = { };
4634
4635        /*
4636         * There are several places where we assume that the order value is sane
4637         * so bail out early if the request is out of bound.
4638         */
4639        if (unlikely(order >= MAX_ORDER)) {
4640                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4641                return NULL;
4642        }
4643
4644        gfp_mask &= gfp_allowed_mask;
4645        alloc_mask = gfp_mask;
4646        if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4647                return NULL;
4648
4649        finalise_ac(gfp_mask, &ac);
4650
4651        /*
4652         * Forbid the first pass from falling back to types that fragment
4653         * memory until all local zones are considered.
4654         */
4655        alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4656
4657        /* First allocation attempt */
4658        page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4659        if (likely(page))
4660                goto out;
4661
4662        /*
4663         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4664         * resp. GFP_NOIO which has to be inherited for all allocation requests
4665         * from a particular context which has been marked by
4666         * memalloc_no{fs,io}_{save,restore}.
4667         */
4668        alloc_mask = current_gfp_context(gfp_mask);
4669        ac.spread_dirty_pages = false;
4670
4671        /*
4672         * Restore the original nodemask if it was potentially replaced with
4673         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4674         */
4675        if (unlikely(ac.nodemask != nodemask))
4676                ac.nodemask = nodemask;
4677
4678        page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4679
4680out:
4681        if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4682            unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4683                __free_pages(page, order);
4684                page = NULL;
4685        }
4686
4687        trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4688
4689        return page;
4690}
4691EXPORT_SYMBOL(__alloc_pages_nodemask);
4692
4693/*
4694 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4695 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4696 * you need to access high mem.
4697 */
4698unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4699{
4700        struct page *page;
4701
4702        page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4703        if (!page)
4704                return 0;
4705        return (unsigned long) page_address(page);
4706}
4707EXPORT_SYMBOL(__get_free_pages);
4708
4709unsigned long get_zeroed_page(gfp_t gfp_mask)
4710{
4711        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4712}
4713EXPORT_SYMBOL(get_zeroed_page);
4714
4715static inline void free_the_page(struct page *page, unsigned int order)
4716{
4717        if (order == 0)         /* Via pcp? */
4718                free_unref_page(page);
4719        else
4720                __free_pages_ok(page, order);
4721}
4722
4723void __free_pages(struct page *page, unsigned int order)
4724{
4725        if (put_page_testzero(page))
4726                free_the_page(page, order);
4727}
4728EXPORT_SYMBOL(__free_pages);
4729
4730void free_pages(unsigned long addr, unsigned int order)
4731{
4732        if (addr != 0) {
4733                VM_BUG_ON(!virt_addr_valid((void *)addr));
4734                __free_pages(virt_to_page((void *)addr), order);
4735        }
4736}
4737
4738EXPORT_SYMBOL(free_pages);
4739
4740/*
4741 * Page Fragment:
4742 *  An arbitrary-length arbitrary-offset area of memory which resides
4743 *  within a 0 or higher order page.  Multiple fragments within that page
4744 *  are individually refcounted, in the page's reference counter.
4745 *
4746 * The page_frag functions below provide a simple allocation framework for
4747 * page fragments.  This is used by the network stack and network device
4748 * drivers to provide a backing region of memory for use as either an
4749 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4750 */
4751static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4752                                             gfp_t gfp_mask)
4753{
4754        struct page *page = NULL;
4755        gfp_t gfp = gfp_mask;
4756
4757#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4758        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4759                    __GFP_NOMEMALLOC;
4760        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4761                                PAGE_FRAG_CACHE_MAX_ORDER);
4762        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4763#endif
4764        if (unlikely(!page))
4765                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4766
4767        nc->va = page ? page_address(page) : NULL;
4768
4769        return page;
4770}
4771
4772void __page_frag_cache_drain(struct page *page, unsigned int count)
4773{
4774        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4775
4776        if (page_ref_sub_and_test(page, count))
4777                free_the_page(page, compound_order(page));
4778}
4779EXPORT_SYMBOL(__page_frag_cache_drain);
4780
4781void *page_frag_alloc(struct page_frag_cache *nc,
4782                      unsigned int fragsz, gfp_t gfp_mask)
4783{
4784        unsigned int size = PAGE_SIZE;
4785        struct page *page;
4786        int offset;
4787
4788        if (unlikely(!nc->va)) {
4789refill:
4790                page = __page_frag_cache_refill(nc, gfp_mask);
4791                if (!page)
4792                        return NULL;
4793
4794#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4795                /* if size can vary use size else just use PAGE_SIZE */
4796                size = nc->size;
4797#endif
4798                /* Even if we own the page, we do not use atomic_set().
4799                 * This would break get_page_unless_zero() users.
4800                 */
4801                page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4802
4803                /* reset page count bias and offset to start of new frag */
4804                nc->pfmemalloc = page_is_pfmemalloc(page);
4805                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4806                nc->offset = size;
4807        }
4808
4809        offset = nc->offset - fragsz;
4810        if (unlikely(offset < 0)) {
4811                page = virt_to_page(nc->va);
4812
4813                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4814                        goto refill;
4815
4816#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4817                /* if size can vary use size else just use PAGE_SIZE */
4818                size = nc->size;
4819#endif
4820                /* OK, page count is 0, we can safely set it */
4821                set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4822
4823                /* reset page count bias and offset to start of new frag */
4824                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4825                offset = size - fragsz;
4826        }
4827
4828        nc->pagecnt_bias--;
4829        nc->offset = offset;
4830
4831        return nc->va + offset;
4832}
4833EXPORT_SYMBOL(page_frag_alloc);
4834
4835/*
4836 * Frees a page fragment allocated out of either a compound or order 0 page.
4837 */
4838void page_frag_free(void *addr)
4839{
4840        struct page *page = virt_to_head_page(addr);
4841
4842        if (unlikely(put_page_testzero(page)))
4843                free_the_page(page, compound_order(page));
4844}
4845EXPORT_SYMBOL(page_frag_free);
4846
4847static void *make_alloc_exact(unsigned long addr, unsigned int order,
4848                size_t size)
4849{
4850        if (addr) {
4851                unsigned long alloc_end = addr + (PAGE_SIZE << order);
4852                unsigned long used = addr + PAGE_ALIGN(size);
4853
4854                split_page(virt_to_page((void *)addr), order);
4855                while (used < alloc_end) {
4856                        free_page(used);
4857                        used += PAGE_SIZE;
4858                }
4859        }
4860        return (void *)addr;
4861}
4862
4863/**
4864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4865 * @size: the number of bytes to allocate
4866 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4867 *
4868 * This function is similar to alloc_pages(), except that it allocates the
4869 * minimum number of pages to satisfy the request.  alloc_pages() can only
4870 * allocate memory in power-of-two pages.
4871 *
4872 * This function is also limited by MAX_ORDER.
4873 *
4874 * Memory allocated by this function must be released by free_pages_exact().
4875 *
4876 * Return: pointer to the allocated area or %NULL in case of error.
4877 */
4878void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4879{
4880        unsigned int order = get_order(size);
4881        unsigned long addr;
4882
4883        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4884                gfp_mask &= ~__GFP_COMP;
4885
4886        addr = __get_free_pages(gfp_mask, order);
4887        return make_alloc_exact(addr, order, size);
4888}
4889EXPORT_SYMBOL(alloc_pages_exact);
4890
4891/**
4892 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4893 *                         pages on a node.
4894 * @nid: the preferred node ID where memory should be allocated
4895 * @size: the number of bytes to allocate
4896 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4897 *
4898 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4899 * back.
4900 *
4901 * Return: pointer to the allocated area or %NULL in case of error.
4902 */
4903void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4904{
4905        unsigned int order = get_order(size);
4906        struct page *p;
4907
4908        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4909                gfp_mask &= ~__GFP_COMP;
4910
4911        p = alloc_pages_node(nid, gfp_mask, order);
4912        if (!p)
4913                return NULL;
4914        return make_alloc_exact((unsigned long)page_address(p), order, size);
4915}
4916
4917/**
4918 * free_pages_exact - release memory allocated via alloc_pages_exact()
4919 * @virt: the value returned by alloc_pages_exact.
4920 * @size: size of allocation, same value as passed to alloc_pages_exact().
4921 *
4922 * Release the memory allocated by a previous call to alloc_pages_exact.
4923 */
4924void free_pages_exact(void *virt, size_t size)
4925{
4926        unsigned long addr = (unsigned long)virt;
4927        unsigned long end = addr + PAGE_ALIGN(size);
4928
4929        while (addr < end) {
4930                free_page(addr);
4931                addr += PAGE_SIZE;
4932        }
4933}
4934EXPORT_SYMBOL(free_pages_exact);
4935
4936/**
4937 * nr_free_zone_pages - count number of pages beyond high watermark
4938 * @offset: The zone index of the highest zone
4939 *
4940 * nr_free_zone_pages() counts the number of pages which are beyond the
4941 * high watermark within all zones at or below a given zone index.  For each
4942 * zone, the number of pages is calculated as:
4943 *
4944 *     nr_free_zone_pages = managed_pages - high_pages
4945 *
4946 * Return: number of pages beyond high watermark.
4947 */
4948static unsigned long nr_free_zone_pages(int offset)
4949{
4950        struct zoneref *z;
4951        struct zone *zone;
4952
4953        /* Just pick one node, since fallback list is circular */
4954        unsigned long sum = 0;
4955
4956        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4957
4958        for_each_zone_zonelist(zone, z, zonelist, offset) {
4959                unsigned long size = zone_managed_pages(zone);
4960                unsigned long high = high_wmark_pages(zone);
4961                if (size > high)
4962                        sum += size - high;
4963        }
4964
4965        return sum;
4966}
4967
4968/**
4969 * nr_free_buffer_pages - count number of pages beyond high watermark
4970 *
4971 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4972 * watermark within ZONE_DMA and ZONE_NORMAL.
4973 *
4974 * Return: number of pages beyond high watermark within ZONE_DMA and
4975 * ZONE_NORMAL.
4976 */
4977unsigned long nr_free_buffer_pages(void)
4978{
4979        return nr_free_zone_pages(gfp_zone(GFP_USER));
4980}
4981EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4982
4983/**
4984 * nr_free_pagecache_pages - count number of pages beyond high watermark
4985 *
4986 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4987 * high watermark within all zones.
4988 *
4989 * Return: number of pages beyond high watermark within all zones.
4990 */
4991unsigned long nr_free_pagecache_pages(void)
4992{
4993        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4994}
4995
4996static inline void show_node(struct zone *zone)
4997{
4998        if (IS_ENABLED(CONFIG_NUMA))
4999                printk("Node %d ", zone_to_nid(zone));
5000}
5001
5002long si_mem_available(void)
5003{
5004        long available;
5005        unsigned long pagecache;
5006        unsigned long wmark_low = 0;
5007        unsigned long pages[NR_LRU_LISTS];
5008        unsigned long reclaimable;
5009        struct zone *zone;
5010        int lru;
5011
5012        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5013                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5014
5015        for_each_zone(zone)
5016                wmark_low += low_wmark_pages(zone);
5017
5018        /*
5019         * Estimate the amount of memory available for userspace allocations,
5020         * without causing swapping.
5021         */
5022        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5023
5024        /*
5025         * Not all the page cache can be freed, otherwise the system will
5026         * start swapping. Assume at least half of the page cache, or the
5027         * low watermark worth of cache, needs to stay.
5028         */
5029        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5030        pagecache -= min(pagecache / 2, wmark_low);
5031        available += pagecache;
5032
5033        /*
5034         * Part of the reclaimable slab and other kernel memory consists of
5035         * items that are in use, and cannot be freed. Cap this estimate at the
5036         * low watermark.
5037         */
5038        reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5039                        global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5040        available += reclaimable - min(reclaimable / 2, wmark_low);
5041
5042        if (available < 0)
5043                available = 0;
5044        return available;
5045}
5046EXPORT_SYMBOL_GPL(si_mem_available);
5047
5048void si_meminfo(struct sysinfo *val)
5049{
5050        val->totalram = totalram_pages();
5051        val->sharedram = global_node_page_state(NR_SHMEM);
5052        val->freeram = global_zone_page_state(NR_FREE_PAGES);
5053        val->bufferram = nr_blockdev_pages();
5054        val->totalhigh = totalhigh_pages();
5055        val->freehigh = nr_free_highpages();
5056        val->mem_unit = PAGE_SIZE;
5057}
5058
5059EXPORT_SYMBOL(si_meminfo);
5060
5061#ifdef CONFIG_NUMA
5062void si_meminfo_node(struct sysinfo *val, int nid)
5063{
5064        int zone_type;          /* needs to be signed */
5065        unsigned long managed_pages = 0;
5066        unsigned long managed_highpages = 0;
5067        unsigned long free_highpages = 0;
5068        pg_data_t *pgdat = NODE_DATA(nid);
5069
5070        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5071                managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5072        val->totalram = managed_pages;
5073        val->sharedram = node_page_state(pgdat, NR_SHMEM);
5074        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5075#ifdef CONFIG_HIGHMEM
5076        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5077                struct zone *zone = &pgdat->node_zones[zone_type];
5078
5079                if (is_highmem(zone)) {
5080                        managed_highpages += zone_managed_pages(zone);
5081                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5082                }
5083        }
5084        val->totalhigh = managed_highpages;
5085        val->freehigh = free_highpages;
5086#else
5087        val->totalhigh = managed_highpages;
5088        val->freehigh = free_highpages;
5089#endif
5090        val->mem_unit = PAGE_SIZE;
5091}
5092#endif
5093
5094/*
5095 * Determine whether the node should be displayed or not, depending on whether
5096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5097 */
5098static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5099{
5100        if (!(flags & SHOW_MEM_FILTER_NODES))
5101                return false;
5102
5103        /*
5104         * no node mask - aka implicit memory numa policy. Do not bother with
5105         * the synchronization - read_mems_allowed_begin - because we do not
5106         * have to be precise here.
5107         */
5108        if (!nodemask)
5109                nodemask = &cpuset_current_mems_allowed;
5110
5111        return !node_isset(nid, *nodemask);
5112}
5113
5114#define K(x) ((x) << (PAGE_SHIFT-10))
5115
5116static void show_migration_types(unsigned char type)
5117{
5118        static const char types[MIGRATE_TYPES] = {
5119                [MIGRATE_UNMOVABLE]     = 'U',
5120                [MIGRATE_MOVABLE]       = 'M',
5121                [MIGRATE_RECLAIMABLE]   = 'E',
5122                [MIGRATE_HIGHATOMIC]    = 'H',
5123#ifdef CONFIG_CMA
5124                [MIGRATE_CMA]           = 'C',
5125#endif
5126#ifdef CONFIG_MEMORY_ISOLATION
5127                [MIGRATE_ISOLATE]       = 'I',
5128#endif
5129        };
5130        char tmp[MIGRATE_TYPES + 1];
5131        char *p = tmp;
5132        int i;
5133
5134        for (i = 0; i < MIGRATE_TYPES; i++) {
5135                if (type & (1 << i))
5136                        *p++ = types[i];
5137        }
5138
5139        *p = '\0';
5140        printk(KERN_CONT "(%s) ", tmp);
5141}
5142
5143/*
5144 * Show free area list (used inside shift_scroll-lock stuff)
5145 * We also calculate the percentage fragmentation. We do this by counting the
5146 * memory on each free list with the exception of the first item on the list.
5147 *
5148 * Bits in @filter:
5149 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5150 *   cpuset.
5151 */
5152void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5153{
5154        unsigned long free_pcp = 0;
5155        int cpu;
5156        struct zone *zone;
5157        pg_data_t *pgdat;
5158
5159        for_each_populated_zone(zone) {
5160                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5161                        continue;
5162
5163                for_each_online_cpu(cpu)
5164                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5165        }
5166
5167        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5168                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5169                " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5170                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5171                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5172                " free:%lu free_pcp:%lu free_cma:%lu\n",
5173                global_node_page_state(NR_ACTIVE_ANON),
5174                global_node_page_state(NR_INACTIVE_ANON),
5175                global_node_page_state(NR_ISOLATED_ANON),
5176                global_node_page_state(NR_ACTIVE_FILE),
5177                global_node_page_state(NR_INACTIVE_FILE),
5178                global_node_page_state(NR_ISOLATED_FILE),
5179                global_node_page_state(NR_UNEVICTABLE),
5180                global_node_page_state(NR_FILE_DIRTY),
5181                global_node_page_state(NR_WRITEBACK),
5182                global_node_page_state(NR_UNSTABLE_NFS),
5183                global_node_page_state(NR_SLAB_RECLAIMABLE),
5184                global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5185                global_node_page_state(NR_FILE_MAPPED),
5186                global_node_page_state(NR_SHMEM),
5187                global_zone_page_state(NR_PAGETABLE),
5188                global_zone_page_state(NR_BOUNCE),
5189                global_zone_page_state(NR_FREE_PAGES),
5190                free_pcp,
5191                global_zone_page_state(NR_FREE_CMA_PAGES));
5192
5193        for_each_online_pgdat(pgdat) {
5194                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5195                        continue;
5196
5197                printk("Node %d"
5198                        " active_anon:%lukB"
5199                        " inactive_anon:%lukB"
5200                        " active_file:%lukB"
5201                        " inactive_file:%lukB"
5202                        " unevictable:%lukB"
5203                        " isolated(anon):%lukB"
5204                        " isolated(file):%lukB"
5205                        " mapped:%lukB"
5206                        " dirty:%lukB"
5207                        " writeback:%lukB"
5208                        " shmem:%lukB"
5209#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5210                        " shmem_thp: %lukB"
5211                        " shmem_pmdmapped: %lukB"
5212                        " anon_thp: %lukB"
5213#endif
5214                        " writeback_tmp:%lukB"
5215                        " unstable:%lukB"
5216                        " all_unreclaimable? %s"
5217                        "\n",
5218                        pgdat->node_id,
5219                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5220                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5221                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5222                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5223                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
5224                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5225                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5226                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
5227                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
5228                        K(node_page_state(pgdat, NR_WRITEBACK)),
5229                        K(node_page_state(pgdat, NR_SHMEM)),
5230#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5231                        K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5232                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5233                                        * HPAGE_PMD_NR),
5234                        K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5235#endif
5236                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5237                        K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5238                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5239                                "yes" : "no");
5240        }
5241
5242        for_each_populated_zone(zone) {
5243                int i;
5244
5245                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5246                        continue;
5247
5248                free_pcp = 0;
5249                for_each_online_cpu(cpu)
5250                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5251
5252                show_node(zone);
5253                printk(KERN_CONT
5254                        "%s"
5255                        " free:%lukB"
5256                        " min:%lukB"
5257                        " low:%lukB"
5258                        " high:%lukB"
5259                        " active_anon:%lukB"
5260                        " inactive_anon:%lukB"
5261                        " active_file:%lukB"
5262                        " inactive_file:%lukB"
5263                        " unevictable:%lukB"
5264                        " writepending:%lukB"
5265                        " present:%lukB"
5266                        " managed:%lukB"
5267                        " mlocked:%lukB"
5268                        " kernel_stack:%lukB"
5269                        " pagetables:%lukB"
5270                        " bounce:%lukB"
5271                        " free_pcp:%lukB"
5272                        " local_pcp:%ukB"
5273                        " free_cma:%lukB"
5274                        "\n",
5275                        zone->name,
5276                        K(zone_page_state(zone, NR_FREE_PAGES)),
5277                        K(min_wmark_pages(zone)),
5278                        K(low_wmark_pages(zone)),
5279                        K(high_wmark_pages(zone)),
5280                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5281                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5282                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5283                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5284                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5285                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5286                        K(zone->present_pages),
5287                        K(zone_managed_pages(zone)),
5288                        K(zone_page_state(zone, NR_MLOCK)),
5289                        zone_page_state(zone, NR_KERNEL_STACK_KB),
5290                        K(zone_page_state(zone, NR_PAGETABLE)),
5291                        K(zone_page_state(zone, NR_BOUNCE)),
5292                        K(free_pcp),
5293                        K(this_cpu_read(zone->pageset->pcp.count)),
5294                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5295                printk("lowmem_reserve[]:");
5296                for (i = 0; i < MAX_NR_ZONES; i++)
5297                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5298                printk(KERN_CONT "\n");
5299        }
5300
5301        for_each_populated_zone(zone) {
5302                unsigned int order;
5303                unsigned long nr[MAX_ORDER], flags, total = 0;
5304                unsigned char types[MAX_ORDER];
5305
5306                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5307                        continue;
5308                show_node(zone);
5309                printk(KERN_CONT "%s: ", zone->name);
5310
5311                spin_lock_irqsave(&zone->lock, flags);
5312                for (order = 0; order < MAX_ORDER; order++) {
5313                        struct free_area *area = &zone->free_area[order];
5314                        int type;
5315
5316                        nr[order] = area->nr_free;
5317                        total += nr[order] << order;
5318
5319                        types[order] = 0;
5320                        for (type = 0; type < MIGRATE_TYPES; type++) {
5321                                if (!free_area_empty(area, type))
5322                                        types[order] |= 1 << type;
5323                        }
5324                }
5325                spin_unlock_irqrestore(&zone->lock, flags);
5326                for (order = 0; order < MAX_ORDER; order++) {
5327                        printk(KERN_CONT "%lu*%lukB ",
5328                               nr[order], K(1UL) << order);
5329                        if (nr[order])
5330                                show_migration_types(types[order]);
5331                }
5332                printk(KERN_CONT "= %lukB\n", K(total));
5333        }
5334
5335        hugetlb_show_meminfo();
5336
5337        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5338
5339        show_swap_cache_info();
5340}
5341
5342static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5343{
5344        zoneref->zone = zone;
5345        zoneref->zone_idx = zone_idx(zone);
5346}
5347
5348/*
5349 * Builds allocation fallback zone lists.
5350 *
5351 * Add all populated zones of a node to the zonelist.
5352 */
5353static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5354{
5355        struct zone *zone;
5356        enum zone_type zone_type = MAX_NR_ZONES;
5357        int nr_zones = 0;
5358
5359        do {
5360                zone_type--;
5361                zone = pgdat->node_zones + zone_type;
5362                if (managed_zone(zone)) {
5363                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5364                        check_highest_zone(zone_type);
5365                }
5366        } while (zone_type);
5367
5368        return nr_zones;
5369}
5370
5371#ifdef CONFIG_NUMA
5372
5373static int __parse_numa_zonelist_order(char *s)
5374{
5375        /*
5376         * We used to support different zonlists modes but they turned
5377         * out to be just not useful. Let's keep the warning in place
5378         * if somebody still use the cmd line parameter so that we do
5379         * not fail it silently
5380         */
5381        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5382                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5383                return -EINVAL;
5384        }
5385        return 0;
5386}
5387
5388static __init int setup_numa_zonelist_order(char *s)
5389{
5390        if (!s)
5391                return 0;
5392
5393        return __parse_numa_zonelist_order(s);
5394}
5395early_param("numa_zonelist_order", setup_numa_zonelist_order);
5396
5397char numa_zonelist_order[] = "Node";
5398
5399/*
5400 * sysctl handler for numa_zonelist_order
5401 */
5402int numa_zonelist_order_handler(struct ctl_table *table, int write,
5403                void __user *buffer, size_t *length,
5404                loff_t *ppos)
5405{
5406        char *str;
5407        int ret;
5408
5409        if (!write)
5410                return proc_dostring(table, write, buffer, length, ppos);
5411        str = memdup_user_nul(buffer, 16);
5412        if (IS_ERR(str))
5413                return PTR_ERR(str);
5414
5415        ret = __parse_numa_zonelist_order(str);
5416        kfree(str);
5417        return ret;
5418}
5419
5420
5421#define MAX_NODE_LOAD (nr_online_nodes)
5422static int node_load[MAX_NUMNODES];
5423
5424/**
5425 * find_next_best_node - find the next node that should appear in a given node's fallback list
5426 * @node: node whose fallback list we're appending
5427 * @used_node_mask: nodemask_t of already used nodes
5428 *
5429 * We use a number of factors to determine which is the next node that should
5430 * appear on a given node's fallback list.  The node should not have appeared
5431 * already in @node's fallback list, and it should be the next closest node
5432 * according to the distance array (which contains arbitrary distance values
5433 * from each node to each node in the system), and should also prefer nodes
5434 * with no CPUs, since presumably they'll have very little allocation pressure
5435 * on them otherwise.
5436 *
5437 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5438 */
5439static int find_next_best_node(int node, nodemask_t *used_node_mask)
5440{
5441        int n, val;
5442        int min_val = INT_MAX;
5443        int best_node = NUMA_NO_NODE;
5444        const struct cpumask *tmp = cpumask_of_node(0);
5445
5446        /* Use the local node if we haven't already */
5447        if (!node_isset(node, *used_node_mask)) {
5448                node_set(node, *used_node_mask);
5449                return node;
5450        }
5451
5452        for_each_node_state(n, N_MEMORY) {
5453
5454                /* Don't want a node to appear more than once */
5455                if (node_isset(n, *used_node_mask))
5456                        continue;
5457
5458                /* Use the distance array to find the distance */
5459                val = node_distance(node, n);
5460
5461                /* Penalize nodes under us ("prefer the next node") */
5462                val += (n < node);
5463
5464                /* Give preference to headless and unused nodes */
5465                tmp = cpumask_of_node(n);
5466                if (!cpumask_empty(tmp))
5467                        val += PENALTY_FOR_NODE_WITH_CPUS;
5468
5469                /* Slight preference for less loaded node */
5470                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5471                val += node_load[n];
5472
5473                if (val < min_val) {
5474                        min_val = val;
5475                        best_node = n;
5476                }
5477        }
5478
5479        if (best_node >= 0)
5480                node_set(best_node, *used_node_mask);
5481
5482        return best_node;
5483}
5484
5485
5486/*
5487 * Build zonelists ordered by node and zones within node.
5488 * This results in maximum locality--normal zone overflows into local
5489 * DMA zone, if any--but risks exhausting DMA zone.
5490 */
5491static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5492                unsigned nr_nodes)
5493{
5494        struct zoneref *zonerefs;
5495        int i;
5496
5497        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5498
5499        for (i = 0; i < nr_nodes; i++) {
5500                int nr_zones;
5501
5502                pg_data_t *node = NODE_DATA(node_order[i]);
5503
5504                nr_zones = build_zonerefs_node(node, zonerefs);
5505                zonerefs += nr_zones;
5506        }
5507        zonerefs->zone = NULL;
5508        zonerefs->zone_idx = 0;
5509}
5510
5511/*
5512 * Build gfp_thisnode zonelists
5513 */
5514static void build_thisnode_zonelists(pg_data_t *pgdat)
5515{
5516        struct zoneref *zonerefs;
5517        int nr_zones;
5518
5519        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5520        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5521        zonerefs += nr_zones;
5522        zonerefs->zone = NULL;
5523        zonerefs->zone_idx = 0;
5524}
5525
5526/*
5527 * Build zonelists ordered by zone and nodes within zones.
5528 * This results in conserving DMA zone[s] until all Normal memory is
5529 * exhausted, but results in overflowing to remote node while memory
5530 * may still exist in local DMA zone.
5531 */
5532
5533static void build_zonelists(pg_data_t *pgdat)
5534{
5535        static int node_order[MAX_NUMNODES];
5536        int node, load, nr_nodes = 0;
5537        nodemask_t used_mask;
5538        int local_node, prev_node;
5539
5540        /* NUMA-aware ordering of nodes */
5541        local_node = pgdat->node_id;
5542        load = nr_online_nodes;
5543        prev_node = local_node;
5544        nodes_clear(used_mask);
5545
5546        memset(node_order, 0, sizeof(node_order));
5547        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5548                /*
5549                 * We don't want to pressure a particular node.
5550                 * So adding penalty to the first node in same
5551                 * distance group to make it round-robin.
5552                 */
5553                if (node_distance(local_node, node) !=
5554                    node_distance(local_node, prev_node))
5555                        node_load[node] = load;
5556
5557                node_order[nr_nodes++] = node;
5558                prev_node = node;
5559                load--;
5560        }
5561
5562        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5563        build_thisnode_zonelists(pgdat);
5564}
5565
5566#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5567/*
5568 * Return node id of node used for "local" allocations.
5569 * I.e., first node id of first zone in arg node's generic zonelist.
5570 * Used for initializing percpu 'numa_mem', which is used primarily
5571 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5572 */
5573int local_memory_node(int node)
5574{
5575        struct zoneref *z;
5576
5577        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5578                                   gfp_zone(GFP_KERNEL),
5579                                   NULL);
5580        return zone_to_nid(z->zone);
5581}
5582#endif
5583
5584static void setup_min_unmapped_ratio(void);
5585static void setup_min_slab_ratio(void);
5586#else   /* CONFIG_NUMA */
5587
5588static void build_zonelists(pg_data_t *pgdat)
5589{
5590        int node, local_node;
5591        struct zoneref *zonerefs;
5592        int nr_zones;
5593
5594        local_node = pgdat->node_id;
5595
5596        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5597        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5598        zonerefs += nr_zones;
5599
5600        /*
5601         * Now we build the zonelist so that it contains the zones
5602         * of all the other nodes.
5603         * We don't want to pressure a particular node, so when
5604         * building the zones for node N, we make sure that the
5605         * zones coming right after the local ones are those from
5606         * node N+1 (modulo N)
5607         */
5608        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5609                if (!node_online(node))
5610                        continue;
5611                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5612                zonerefs += nr_zones;
5613        }
5614        for (node = 0; node < local_node; node++) {
5615                if (!node_online(node))
5616                        continue;
5617                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5618                zonerefs += nr_zones;
5619        }
5620
5621        zonerefs->zone = NULL;
5622        zonerefs->zone_idx = 0;
5623}
5624
5625#endif  /* CONFIG_NUMA */
5626
5627/*
5628 * Boot pageset table. One per cpu which is going to be used for all
5629 * zones and all nodes. The parameters will be set in such a way
5630 * that an item put on a list will immediately be handed over to
5631 * the buddy list. This is safe since pageset manipulation is done
5632 * with interrupts disabled.
5633 *
5634 * The boot_pagesets must be kept even after bootup is complete for
5635 * unused processors and/or zones. They do play a role for bootstrapping
5636 * hotplugged processors.
5637 *
5638 * zoneinfo_show() and maybe other functions do
5639 * not check if the processor is online before following the pageset pointer.
5640 * Other parts of the kernel may not check if the zone is available.
5641 */
5642static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5643static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5644static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5645
5646static void __build_all_zonelists(void *data)
5647{
5648        int nid;
5649        int __maybe_unused cpu;
5650        pg_data_t *self = data;
5651        static DEFINE_SPINLOCK(lock);
5652
5653        spin_lock(&lock);
5654
5655#ifdef CONFIG_NUMA
5656        memset(node_load, 0, sizeof(node_load));
5657#endif
5658
5659        /*
5660         * This node is hotadded and no memory is yet present.   So just
5661         * building zonelists is fine - no need to touch other nodes.
5662         */
5663        if (self && !node_online(self->node_id)) {
5664                build_zonelists(self);
5665        } else {
5666                for_each_online_node(nid) {
5667                        pg_data_t *pgdat = NODE_DATA(nid);
5668
5669                        build_zonelists(pgdat);
5670                }
5671
5672#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5673                /*
5674                 * We now know the "local memory node" for each node--
5675                 * i.e., the node of the first zone in the generic zonelist.
5676                 * Set up numa_mem percpu variable for on-line cpus.  During
5677                 * boot, only the boot cpu should be on-line;  we'll init the
5678                 * secondary cpus' numa_mem as they come on-line.  During
5679                 * node/memory hotplug, we'll fixup all on-line cpus.
5680                 */
5681                for_each_online_cpu(cpu)
5682                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5683#endif
5684        }
5685
5686        spin_unlock(&lock);
5687}
5688
5689static noinline void __init
5690build_all_zonelists_init(void)
5691{
5692        int cpu;
5693
5694        __build_all_zonelists(NULL);
5695
5696        /*
5697         * Initialize the boot_pagesets that are going to be used
5698         * for bootstrapping processors. The real pagesets for
5699         * each zone will be allocated later when the per cpu
5700         * allocator is available.
5701         *
5702         * boot_pagesets are used also for bootstrapping offline
5703         * cpus if the system is already booted because the pagesets
5704         * are needed to initialize allocators on a specific cpu too.
5705         * F.e. the percpu allocator needs the page allocator which
5706         * needs the percpu allocator in order to allocate its pagesets
5707         * (a chicken-egg dilemma).
5708         */
5709        for_each_possible_cpu(cpu)
5710                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5711
5712        mminit_verify_zonelist();
5713        cpuset_init_current_mems_allowed();
5714}
5715
5716/*
5717 * unless system_state == SYSTEM_BOOTING.
5718 *
5719 * __ref due to call of __init annotated helper build_all_zonelists_init
5720 * [protected by SYSTEM_BOOTING].
5721 */
5722void __ref build_all_zonelists(pg_data_t *pgdat)
5723{
5724        if (system_state == SYSTEM_BOOTING) {
5725                build_all_zonelists_init();
5726        } else {
5727                __build_all_zonelists(pgdat);
5728                /* cpuset refresh routine should be here */
5729        }
5730        vm_total_pages = nr_free_pagecache_pages();
5731        /*
5732         * Disable grouping by mobility if the number of pages in the
5733         * system is too low to allow the mechanism to work. It would be
5734         * more accurate, but expensive to check per-zone. This check is
5735         * made on memory-hotadd so a system can start with mobility
5736         * disabled and enable it later
5737         */
5738        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5739                page_group_by_mobility_disabled = 1;
5740        else
5741                page_group_by_mobility_disabled = 0;
5742
5743        pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5744                nr_online_nodes,
5745                page_group_by_mobility_disabled ? "off" : "on",
5746                vm_total_pages);
5747#ifdef CONFIG_NUMA
5748        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5749#endif
5750}
5751
5752/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5753static bool __meminit
5754overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5755{
5756#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5757        static struct memblock_region *r;
5758
5759        if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5760                if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5761                        for_each_memblock(memory, r) {
5762                                if (*pfn < memblock_region_memory_end_pfn(r))
5763                                        break;
5764                        }
5765                }
5766                if (*pfn >= memblock_region_memory_base_pfn(r) &&
5767                    memblock_is_mirror(r)) {
5768                        *pfn = memblock_region_memory_end_pfn(r);
5769                        return true;
5770                }
5771        }
5772#endif
5773        return false;
5774}
5775
5776/*
5777 * Initially all pages are reserved - free ones are freed
5778 * up by memblock_free_all() once the early boot process is
5779 * done. Non-atomic initialization, single-pass.
5780 */
5781void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5782                unsigned long start_pfn, enum memmap_context context,
5783                struct vmem_altmap *altmap)
5784{
5785        unsigned long pfn, end_pfn = start_pfn + size;
5786        struct page *page;
5787
5788        if (highest_memmap_pfn < end_pfn - 1)
5789                highest_memmap_pfn = end_pfn - 1;
5790
5791#ifdef CONFIG_ZONE_DEVICE
5792        /*
5793         * Honor reservation requested by the driver for this ZONE_DEVICE
5794         * memory. We limit the total number of pages to initialize to just
5795         * those that might contain the memory mapping. We will defer the
5796         * ZONE_DEVICE page initialization until after we have released
5797         * the hotplug lock.
5798         */
5799        if (zone == ZONE_DEVICE) {
5800                if (!altmap)
5801                        return;
5802
5803                if (start_pfn == altmap->base_pfn)
5804                        start_pfn += altmap->reserve;
5805                end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5806        }
5807#endif
5808
5809        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5810                /*
5811                 * There can be holes in boot-time mem_map[]s handed to this
5812                 * function.  They do not exist on hotplugged memory.
5813                 */
5814                if (context == MEMMAP_EARLY) {
5815                        if (!early_pfn_valid(pfn))
5816                                continue;
5817                        if (!early_pfn_in_nid(pfn, nid))
5818                                continue;
5819                        if (overlap_memmap_init(zone, &pfn))
5820                                continue;
5821                        if (defer_init(nid, pfn, end_pfn))
5822                                break;
5823                }
5824
5825                page = pfn_to_page(pfn);
5826                __init_single_page(page, pfn, zone, nid);
5827                if (context == MEMMAP_HOTPLUG)
5828                        __SetPageReserved(page);
5829
5830                /*
5831                 * Mark the block movable so that blocks are reserved for
5832                 * movable at startup. This will force kernel allocations
5833                 * to reserve their blocks rather than leaking throughout
5834                 * the address space during boot when many long-lived
5835                 * kernel allocations are made.
5836                 *
5837                 * bitmap is created for zone's valid pfn range. but memmap
5838                 * can be created for invalid pages (for alignment)
5839                 * check here not to call set_pageblock_migratetype() against
5840                 * pfn out of zone.
5841                 */
5842                if (!(pfn & (pageblock_nr_pages - 1))) {
5843                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5844                        cond_resched();
5845                }
5846        }
5847}
5848
5849#ifdef CONFIG_ZONE_DEVICE
5850void __ref memmap_init_zone_device(struct zone *zone,
5851                                   unsigned long start_pfn,
5852                                   unsigned long size,
5853                                   struct dev_pagemap *pgmap)
5854{
5855        unsigned long pfn, end_pfn = start_pfn + size;
5856        struct pglist_data *pgdat = zone->zone_pgdat;
5857        unsigned long zone_idx = zone_idx(zone);
5858        unsigned long start = jiffies;
5859        int nid = pgdat->node_id;
5860
5861        if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5862                return;
5863
5864        /*
5865         * The call to memmap_init_zone should have already taken care
5866         * of the pages reserved for the memmap, so we can just jump to
5867         * the end of that region and start processing the device pages.
5868         */
5869        if (pgmap->altmap_valid) {
5870                struct vmem_altmap *altmap = &pgmap->altmap;
5871
5872                start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5873                size = end_pfn - start_pfn;
5874        }
5875
5876        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5877                struct page *page = pfn_to_page(pfn);
5878
5879                __init_single_page(page, pfn, zone_idx, nid);
5880
5881                /*
5882                 * Mark page reserved as it will need to wait for onlining
5883                 * phase for it to be fully associated with a zone.
5884                 *
5885                 * We can use the non-atomic __set_bit operation for setting
5886                 * the flag as we are still initializing the pages.
5887                 */
5888                __SetPageReserved(page);
5889
5890                /*
5891                 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5892                 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5893                 * page is ever freed or placed on a driver-private list.
5894                 */
5895                page->pgmap = pgmap;
5896                page->hmm_data = 0;
5897
5898                /*
5899                 * Mark the block movable so that blocks are reserved for
5900                 * movable at startup. This will force kernel allocations
5901                 * to reserve their blocks rather than leaking throughout
5902                 * the address space during boot when many long-lived
5903                 * kernel allocations are made.
5904                 *
5905                 * bitmap is created for zone's valid pfn range. but memmap
5906                 * can be created for invalid pages (for alignment)
5907                 * check here not to call set_pageblock_migratetype() against
5908                 * pfn out of zone.
5909                 *
5910                 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5911                 * because this is done early in sparse_add_one_section
5912                 */
5913                if (!(pfn & (pageblock_nr_pages - 1))) {
5914                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5915                        cond_resched();
5916                }
5917        }
5918
5919        pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5920                size, jiffies_to_msecs(jiffies - start));
5921}
5922
5923#endif
5924static void __meminit zone_init_free_lists(struct zone *zone)
5925{
5926        unsigned int order, t;
5927        for_each_migratetype_order(order, t) {
5928                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5929                zone->free_area[order].nr_free = 0;
5930        }
5931}
5932
5933void __meminit __weak memmap_init(unsigned long size, int nid,
5934                                  unsigned long zone, unsigned long start_pfn)
5935{
5936        memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5937}
5938
5939static int zone_batchsize(struct zone *zone)
5940{
5941#ifdef CONFIG_MMU
5942        int batch;
5943
5944        /*
5945         * The per-cpu-pages pools are set to around 1000th of the
5946         * size of the zone.
5947         */
5948        batch = zone_managed_pages(zone) / 1024;
5949        /* But no more than a meg. */
5950        if (batch * PAGE_SIZE > 1024 * 1024)
5951                batch = (1024 * 1024) / PAGE_SIZE;
5952        batch /= 4;             /* We effectively *= 4 below */
5953        if (batch < 1)
5954                batch = 1;
5955
5956        /*
5957         * Clamp the batch to a 2^n - 1 value. Having a power
5958         * of 2 value was found to be more likely to have
5959         * suboptimal cache aliasing properties in some cases.
5960         *
5961         * For example if 2 tasks are alternately allocating
5962         * batches of pages, one task can end up with a lot
5963         * of pages of one half of the possible page colors
5964         * and the other with pages of the other colors.
5965         */
5966        batch = rounddown_pow_of_two(batch + batch/2) - 1;
5967
5968        return batch;
5969
5970#else
5971        /* The deferral and batching of frees should be suppressed under NOMMU
5972         * conditions.
5973         *
5974         * The problem is that NOMMU needs to be able to allocate large chunks
5975         * of contiguous memory as there's no hardware page translation to
5976         * assemble apparent contiguous memory from discontiguous pages.
5977         *
5978         * Queueing large contiguous runs of pages for batching, however,
5979         * causes the pages to actually be freed in smaller chunks.  As there
5980         * can be a significant delay between the individual batches being
5981         * recycled, this leads to the once large chunks of space being
5982         * fragmented and becoming unavailable for high-order allocations.
5983         */
5984        return 0;
5985#endif
5986}
5987
5988/*
5989 * pcp->high and pcp->batch values are related and dependent on one another:
5990 * ->batch must never be higher then ->high.
5991 * The following function updates them in a safe manner without read side
5992 * locking.
5993 *
5994 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5995 * those fields changing asynchronously (acording the the above rule).
5996 *
5997 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5998 * outside of boot time (or some other assurance that no concurrent updaters
5999 * exist).
6000 */
6001static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6002                unsigned long batch)
6003{
6004       /* start with a fail safe value for batch */
6005        pcp->batch = 1;
6006        smp_wmb();
6007
6008       /* Update high, then batch, in order */
6009        pcp->high = high;
6010        smp_wmb();
6011
6012        pcp->batch = batch;
6013}
6014
6015/* a companion to pageset_set_high() */
6016static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6017{
6018        pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6019}
6020
6021static void pageset_init(struct per_cpu_pageset *p)
6022{
6023        struct per_cpu_pages *pcp;
6024        int migratetype;
6025
6026        memset(p, 0, sizeof(*p));
6027
6028        pcp = &p->pcp;
6029        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6030                INIT_LIST_HEAD(&pcp->lists[migratetype]);
6031}
6032
6033static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6034{
6035        pageset_init(p);
6036        pageset_set_batch(p, batch);
6037}
6038
6039/*
6040 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6041 * to the value high for the pageset p.
6042 */
6043static void pageset_set_high(struct per_cpu_pageset *p,
6044                                unsigned long high)
6045{
6046        unsigned long batch = max(1UL, high / 4);
6047        if ((high / 4) > (PAGE_SHIFT * 8))
6048                batch = PAGE_SHIFT * 8;
6049
6050        pageset_update(&p->pcp, high, batch);
6051}
6052
6053static void pageset_set_high_and_batch(struct zone *zone,
6054                                       struct per_cpu_pageset *pcp)
6055{
6056        if (percpu_pagelist_fraction)
6057                pageset_set_high(pcp,
6058                        (zone_managed_pages(zone) /
6059                                percpu_pagelist_fraction));
6060        else
6061                pageset_set_batch(pcp, zone_batchsize(zone));
6062}
6063
6064static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6065{
6066        struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6067
6068        pageset_init(pcp);
6069        pageset_set_high_and_batch(zone, pcp);
6070}
6071
6072void __meminit setup_zone_pageset(struct zone *zone)
6073{
6074        int cpu;
6075        zone->pageset = alloc_percpu(struct per_cpu_pageset);
6076        for_each_possible_cpu(cpu)
6077                zone_pageset_init(zone, cpu);
6078}
6079
6080/*
6081 * Allocate per cpu pagesets and initialize them.
6082 * Before this call only boot pagesets were available.
6083 */
6084void __init setup_per_cpu_pageset(void)
6085{
6086        struct pglist_data *pgdat;
6087        struct zone *zone;
6088
6089        for_each_populated_zone(zone)
6090                setup_zone_pageset(zone);
6091
6092        for_each_online_pgdat(pgdat)
6093                pgdat->per_cpu_nodestats =
6094                        alloc_percpu(struct per_cpu_nodestat);
6095}
6096
6097static __meminit void zone_pcp_init(struct zone *zone)
6098{
6099        /*
6100         * per cpu subsystem is not up at this point. The following code
6101         * relies on the ability of the linker to provide the
6102         * offset of a (static) per cpu variable into the per cpu area.
6103         */
6104        zone->pageset = &boot_pageset;
6105
6106        if (populated_zone(zone))
6107                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6108                        zone->name, zone->present_pages,
6109                                         zone_batchsize(zone));
6110}
6111
6112void __meminit init_currently_empty_zone(struct zone *zone,
6113                                        unsigned long zone_start_pfn,
6114                                        unsigned long size)
6115{
6116        struct pglist_data *pgdat = zone->zone_pgdat;
6117        int zone_idx = zone_idx(zone) + 1;
6118
6119        if (zone_idx > pgdat->nr_zones)
6120                pgdat->nr_zones = zone_idx;
6121
6122        zone->zone_start_pfn = zone_start_pfn;
6123
6124        mminit_dprintk(MMINIT_TRACE, "memmap_init",
6125                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6126                        pgdat->node_id,
6127                        (unsigned long)zone_idx(zone),
6128                        zone_start_pfn, (zone_start_pfn + size));
6129
6130        zone_init_free_lists(zone);
6131        zone->initialized = 1;
6132}
6133
6134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6135#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6136
6137/*
6138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6139 */
6140int __meminit __early_pfn_to_nid(unsigned long pfn,
6141                                        struct mminit_pfnnid_cache *state)
6142{
6143        unsigned long start_pfn, end_pfn;
6144        int nid;
6145
6146        if (state->last_start <= pfn && pfn < state->last_end)
6147                return state->last_nid;
6148
6149        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6150        if (nid != NUMA_NO_NODE) {
6151                state->last_start = start_pfn;
6152                state->last_end = end_pfn;
6153                state->last_nid = nid;
6154        }
6155
6156        return nid;
6157}
6158#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6159
6160/**
6161 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6162 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6163 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6164 *
6165 * If an architecture guarantees that all ranges registered contain no holes
6166 * and may be freed, this this function may be used instead of calling
6167 * memblock_free_early_nid() manually.
6168 */
6169void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6170{
6171        unsigned long start_pfn, end_pfn;
6172        int i, this_nid;
6173
6174        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6175                start_pfn = min(start_pfn, max_low_pfn);
6176                end_pfn = min(end_pfn, max_low_pfn);
6177
6178                if (start_pfn < end_pfn)
6179                        memblock_free_early_nid(PFN_PHYS(start_pfn),
6180                                        (end_pfn - start_pfn) << PAGE_SHIFT,
6181                                        this_nid);
6182        }
6183}
6184
6185/**
6186 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6187 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6188 *
6189 * If an architecture guarantees that all ranges registered contain no holes and may
6190 * be freed, this function may be used instead of calling memory_present() manually.
6191 */
6192void __init sparse_memory_present_with_active_regions(int nid)
6193{
6194        unsigned long start_pfn, end_pfn;
6195        int i, this_nid;
6196
6197        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6198                memory_present(this_nid, start_pfn, end_pfn);
6199}
6200
6201/**
6202 * get_pfn_range_for_nid - Return the start and end page frames for a node
6203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6206 *
6207 * It returns the start and end page frame of a node based on information
6208 * provided by memblock_set_node(). If called for a node
6209 * with no available memory, a warning is printed and the start and end
6210 * PFNs will be 0.
6211 */
6212void __init get_pfn_range_for_nid(unsigned int nid,
6213                        unsigned long *start_pfn, unsigned long *end_pfn)
6214{
6215        unsigned long this_start_pfn, this_end_pfn;
6216        int i;
6217
6218        *start_pfn = -1UL;
6219        *end_pfn = 0;
6220
6221        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6222                *start_pfn = min(*start_pfn, this_start_pfn);
6223                *end_pfn = max(*end_pfn, this_end_pfn);
6224        }
6225
6226        if (*start_pfn == -1UL)
6227                *start_pfn = 0;
6228}
6229
6230/*
6231 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6232 * assumption is made that zones within a node are ordered in monotonic
6233 * increasing memory addresses so that the "highest" populated zone is used
6234 */
6235static void __init find_usable_zone_for_movable(void)
6236{
6237        int zone_index;
6238        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6239                if (zone_index == ZONE_MOVABLE)
6240                        continue;
6241
6242                if (arch_zone_highest_possible_pfn[zone_index] >
6243                                arch_zone_lowest_possible_pfn[zone_index])
6244                        break;
6245        }
6246
6247        VM_BUG_ON(zone_index == -1);
6248        movable_zone = zone_index;
6249}
6250
6251/*
6252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6253 * because it is sized independent of architecture. Unlike the other zones,
6254 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6255 * in each node depending on the size of each node and how evenly kernelcore
6256 * is distributed. This helper function adjusts the zone ranges
6257 * provided by the architecture for a given node by using the end of the
6258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6259 * zones within a node are in order of monotonic increases memory addresses
6260 */
6261static void __init adjust_zone_range_for_zone_movable(int nid,
6262                                        unsigned long zone_type,
6263                                        unsigned long node_start_pfn,
6264                                        unsigned long node_end_pfn,
6265                                        unsigned long *zone_start_pfn,
6266                                        unsigned long *zone_end_pfn)
6267{
6268        /* Only adjust if ZONE_MOVABLE is on this node */
6269        if (zone_movable_pfn[nid]) {
6270                /* Size ZONE_MOVABLE */
6271                if (zone_type == ZONE_MOVABLE) {
6272                        *zone_start_pfn = zone_movable_pfn[nid];
6273                        *zone_end_pfn = min(node_end_pfn,
6274                                arch_zone_highest_possible_pfn[movable_zone]);
6275
6276                /* Adjust for ZONE_MOVABLE starting within this range */
6277                } else if (!mirrored_kernelcore &&
6278                        *zone_start_pfn < zone_movable_pfn[nid] &&
6279                        *zone_end_pfn > zone_movable_pfn[nid]) {
6280                        *zone_end_pfn = zone_movable_pfn[nid];
6281
6282                /* Check if this whole range is within ZONE_MOVABLE */
6283                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6284                        *zone_start_pfn = *zone_end_pfn;
6285        }
6286}
6287
6288/*
6289 * Return the number of pages a zone spans in a node, including holes
6290 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6291 */
6292static unsigned long __init zone_spanned_pages_in_node(int nid,
6293                                        unsigned long zone_type,
6294                                        unsigned long node_start_pfn,
6295                                        unsigned long node_end_pfn,
6296                                        unsigned long *zone_start_pfn,
6297                                        unsigned long *zone_end_pfn,
6298                                        unsigned long *ignored)
6299{
6300        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6301        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6302        /* When hotadd a new node from cpu_up(), the node should be empty */
6303        if (!node_start_pfn && !node_end_pfn)
6304                return 0;
6305
6306        /* Get the start and end of the zone */
6307        *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6308        *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6309        adjust_zone_range_for_zone_movable(nid, zone_type,
6310                                node_start_pfn, node_end_pfn,
6311                                zone_start_pfn, zone_end_pfn);
6312
6313        /* Check that this node has pages within the zone's required range */
6314        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6315                return 0;
6316
6317        /* Move the zone boundaries inside the node if necessary */
6318        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6319        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6320
6321        /* Return the spanned pages */
6322        return *zone_end_pfn - *zone_start_pfn;
6323}
6324
6325/*
6326 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6327 * then all holes in the requested range will be accounted for.
6328 */
6329unsigned long __init __absent_pages_in_range(int nid,
6330                                unsigned long range_start_pfn,
6331                                unsigned long range_end_pfn)
6332{
6333        unsigned long nr_absent = range_end_pfn - range_start_pfn;
6334        unsigned long start_pfn, end_pfn;
6335        int i;
6336
6337        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6338                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6339                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6340                nr_absent -= end_pfn - start_pfn;
6341        }
6342        return nr_absent;
6343}
6344
6345/**
6346 * absent_pages_in_range - Return number of page frames in holes within a range
6347 * @start_pfn: The start PFN to start searching for holes
6348 * @end_pfn: The end PFN to stop searching for holes
6349 *
6350 * Return: the number of pages frames in memory holes within a range.
6351 */
6352unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6353                                                        unsigned long end_pfn)
6354{
6355        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6356}
6357
6358/* Return the number of page frames in holes in a zone on a node */
6359static unsigned long __init zone_absent_pages_in_node(int nid,
6360                                        unsigned long zone_type,
6361                                        unsigned long node_start_pfn,
6362                                        unsigned long node_end_pfn,
6363                                        unsigned long *ignored)
6364{
6365        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6366        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6367        unsigned long zone_start_pfn, zone_end_pfn;
6368        unsigned long nr_absent;
6369
6370        /* When hotadd a new node from cpu_up(), the node should be empty */
6371        if (!node_start_pfn && !node_end_pfn)
6372                return 0;
6373
6374        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6375        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6376
6377        adjust_zone_range_for_zone_movable(nid, zone_type,
6378                        node_start_pfn, node_end_pfn,
6379                        &zone_start_pfn, &zone_end_pfn);
6380        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6381
6382        /*
6383         * ZONE_MOVABLE handling.
6384         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6385         * and vice versa.
6386         */
6387        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6388                unsigned long start_pfn, end_pfn;
6389                struct memblock_region *r;
6390
6391                for_each_memblock(memory, r) {
6392                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
6393                                          zone_start_pfn, zone_end_pfn);
6394                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
6395                                        zone_start_pfn, zone_end_pfn);
6396
6397                        if (zone_type == ZONE_MOVABLE &&
6398                            memblock_is_mirror(r))
6399                                nr_absent += end_pfn - start_pfn;
6400
6401                        if (zone_type == ZONE_NORMAL &&
6402                            !memblock_is_mirror(r))
6403                                nr_absent += end_pfn - start_pfn;
6404                }
6405        }
6406
6407        return nr_absent;
6408}
6409
6410#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6412                                        unsigned long zone_type,
6413                                        unsigned long node_start_pfn,
6414                                        unsigned long node_end_pfn,
6415                                        unsigned long *zone_start_pfn,
6416                                        unsigned long *zone_end_pfn,
6417                                        unsigned long *zones_size)
6418{
6419        unsigned int zone;
6420
6421        *zone_start_pfn = node_start_pfn;
6422        for (zone = 0; zone < zone_type; zone++)
6423                *zone_start_pfn += zones_size[zone];
6424
6425        *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6426
6427        return zones_size[zone_type];
6428}
6429
6430static inline unsigned long __init zone_absent_pages_in_node(int nid,
6431                                                unsigned long zone_type,
6432                                                unsigned long node_start_pfn,
6433                                                unsigned long node_end_pfn,
6434                                                unsigned long *zholes_size)
6435{
6436        if (!zholes_size)
6437                return 0;
6438
6439        return zholes_size[zone_type];
6440}
6441
6442#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6443
6444static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6445                                                unsigned long node_start_pfn,
6446                                                unsigned long node_end_pfn,
6447                                                unsigned long *zones_size,
6448                                                unsigned long *zholes_size)
6449{
6450        unsigned long realtotalpages = 0, totalpages = 0;
6451        enum zone_type i;
6452
6453        for (i = 0; i < MAX_NR_ZONES; i++) {
6454                struct zone *zone = pgdat->node_zones + i;
6455                unsigned long zone_start_pfn, zone_end_pfn;
6456                unsigned long size, real_size;
6457
6458                size = zone_spanned_pages_in_node(pgdat->node_id, i,
6459                                                  node_start_pfn,
6460                                                  node_end_pfn,
6461                                                  &zone_start_pfn,
6462                                                  &zone_end_pfn,
6463                                                  zones_size);
6464                real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6465                                                  node_start_pfn, node_end_pfn,
6466                                                  zholes_size);
6467                if (size)
6468                        zone->zone_start_pfn = zone_start_pfn;
6469                else
6470                        zone->zone_start_pfn = 0;
6471                zone->spanned_pages = size;
6472                zone->present_pages = real_size;
6473
6474                totalpages += size;
6475                realtotalpages += real_size;
6476        }
6477
6478        pgdat->node_spanned_pages = totalpages;
6479        pgdat->node_present_pages = realtotalpages;
6480        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6481                                                        realtotalpages);
6482}
6483
6484#ifndef CONFIG_SPARSEMEM
6485/*
6486 * Calculate the size of the zone->blockflags rounded to an unsigned long
6487 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6488 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6489 * round what is now in bits to nearest long in bits, then return it in
6490 * bytes.
6491 */
6492static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6493{
6494        unsigned long usemapsize;
6495
6496        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6497        usemapsize = roundup(zonesize, pageblock_nr_pages);
6498        usemapsize = usemapsize >> pageblock_order;
6499        usemapsize *= NR_PAGEBLOCK_BITS;
6500        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6501
6502        return usemapsize / 8;
6503}
6504
6505static void __ref setup_usemap(struct pglist_data *pgdat,
6506                                struct zone *zone,
6507                                unsigned long zone_start_pfn,
6508                                unsigned long zonesize)
6509{
6510        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6511        zone->pageblock_flags = NULL;
6512        if (usemapsize) {
6513                zone->pageblock_flags =
6514                        memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6515                                            pgdat->node_id);
6516                if (!zone->pageblock_flags)
6517                        panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6518                              usemapsize, zone->name, pgdat->node_id);
6519        }
6520}
6521#else
6522static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6523                                unsigned long zone_start_pfn, unsigned long zonesize) {}
6524#endif /* CONFIG_SPARSEMEM */
6525
6526#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6527
6528/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6529void __init set_pageblock_order(void)
6530{
6531        unsigned int order;
6532
6533        /* Check that pageblock_nr_pages has not already been setup */
6534        if (pageblock_order)
6535                return;
6536
6537        if (HPAGE_SHIFT > PAGE_SHIFT)
6538                order = HUGETLB_PAGE_ORDER;
6539        else
6540                order = MAX_ORDER - 1;
6541
6542        /*
6543         * Assume the largest contiguous order of interest is a huge page.
6544         * This value may be variable depending on boot parameters on IA64 and
6545         * powerpc.
6546         */
6547        pageblock_order = order;
6548}
6549#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6550
6551/*
6552 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6553 * is unused as pageblock_order is set at compile-time. See
6554 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6555 * the kernel config
6556 */
6557void __init set_pageblock_order(void)
6558{
6559}
6560
6561#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6562
6563static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6564                                                unsigned long present_pages)
6565{
6566        unsigned long pages = spanned_pages;
6567
6568        /*
6569         * Provide a more accurate estimation if there are holes within
6570         * the zone and SPARSEMEM is in use. If there are holes within the
6571         * zone, each populated memory region may cost us one or two extra
6572         * memmap pages due to alignment because memmap pages for each
6573         * populated regions may not be naturally aligned on page boundary.
6574         * So the (present_pages >> 4) heuristic is a tradeoff for that.
6575         */
6576        if (spanned_pages > present_pages + (present_pages >> 4) &&
6577            IS_ENABLED(CONFIG_SPARSEMEM))
6578                pages = present_pages;
6579
6580        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6581}
6582
6583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584static void pgdat_init_split_queue(struct pglist_data *pgdat)
6585{
6586        spin_lock_init(&pgdat->split_queue_lock);
6587        INIT_LIST_HEAD(&pgdat->split_queue);
6588        pgdat->split_queue_len = 0;
6589}
6590#else
6591static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6592#endif
6593
6594#ifdef CONFIG_COMPACTION
6595static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6596{
6597        init_waitqueue_head(&pgdat->kcompactd_wait);
6598}
6599#else
6600static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6601#endif
6602
6603static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6604{
6605        pgdat_resize_init(pgdat);
6606
6607        pgdat_init_split_queue(pgdat);
6608        pgdat_init_kcompactd(pgdat);
6609
6610        init_waitqueue_head(&pgdat->kswapd_wait);
6611        init_waitqueue_head(&pgdat->pfmemalloc_wait);
6612
6613        pgdat_page_ext_init(pgdat);
6614        spin_lock_init(&pgdat->lru_lock);
6615        lruvec_init(node_lruvec(pgdat));
6616}
6617
6618static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6619                                                        unsigned long remaining_pages)
6620{
6621        atomic_long_set(&zone->managed_pages, remaining_pages);
6622        zone_set_nid(zone, nid);
6623        zone->name = zone_names[idx];
6624        zone->zone_pgdat = NODE_DATA(nid);
6625        spin_lock_init(&zone->lock);
6626        zone_seqlock_init(zone);
6627        zone_pcp_init(zone);
6628}
6629
6630/*
6631 * Set up the zone data structures
6632 * - init pgdat internals
6633 * - init all zones belonging to this node
6634 *
6635 * NOTE: this function is only called during memory hotplug
6636 */
6637#ifdef CONFIG_MEMORY_HOTPLUG
6638void __ref free_area_init_core_hotplug(int nid)
6639{
6640        enum zone_type z;
6641        pg_data_t *pgdat = NODE_DATA(nid);
6642
6643        pgdat_init_internals(pgdat);
6644        for (z = 0; z < MAX_NR_ZONES; z++)
6645                zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6646}
6647#endif
6648
6649/*
6650 * Set up the zone data structures:
6651 *   - mark all pages reserved
6652 *   - mark all memory queues empty
6653 *   - clear the memory bitmaps
6654 *
6655 * NOTE: pgdat should get zeroed by caller.
6656 * NOTE: this function is only called during early init.
6657 */
6658static void __init free_area_init_core(struct pglist_data *pgdat)
6659{
6660        enum zone_type j;
6661        int nid = pgdat->node_id;
6662
6663        pgdat_init_internals(pgdat);
6664        pgdat->per_cpu_nodestats = &boot_nodestats;
6665
6666        for (j = 0; j < MAX_NR_ZONES; j++) {
6667                struct zone *zone = pgdat->node_zones + j;
6668                unsigned long size, freesize, memmap_pages;
6669                unsigned long zone_start_pfn = zone->zone_start_pfn;
6670
6671                size = zone->spanned_pages;
6672                freesize = zone->present_pages;
6673
6674                /*
6675                 * Adjust freesize so that it accounts for how much memory
6676                 * is used by this zone for memmap. This affects the watermark
6677                 * and per-cpu initialisations
6678                 */
6679                memmap_pages = calc_memmap_size(size, freesize);
6680                if (!is_highmem_idx(j)) {
6681                        if (freesize >= memmap_pages) {
6682                                freesize -= memmap_pages;
6683                                if (memmap_pages)
6684                                        printk(KERN_DEBUG
6685                                               "  %s zone: %lu pages used for memmap\n",
6686                                               zone_names[j], memmap_pages);
6687                        } else
6688                                pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6689                                        zone_names[j], memmap_pages, freesize);
6690                }
6691
6692                /* Account for reserved pages */
6693                if (j == 0 && freesize > dma_reserve) {
6694                        freesize -= dma_reserve;
6695                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6696                                        zone_names[0], dma_reserve);
6697                }
6698
6699                if (!is_highmem_idx(j))
6700                        nr_kernel_pages += freesize;
6701                /* Charge for highmem memmap if there are enough kernel pages */
6702                else if (nr_kernel_pages > memmap_pages * 2)
6703                        nr_kernel_pages -= memmap_pages;
6704                nr_all_pages += freesize;
6705
6706                /*
6707                 * Set an approximate value for lowmem here, it will be adjusted
6708                 * when the bootmem allocator frees pages into the buddy system.
6709                 * And all highmem pages will be managed by the buddy system.
6710                 */
6711                zone_init_internals(zone, j, nid, freesize);
6712
6713                if (!size)
6714                        continue;
6715
6716                set_pageblock_order();
6717                setup_usemap(pgdat, zone, zone_start_pfn, size);
6718                init_currently_empty_zone(zone, zone_start_pfn, size);
6719                memmap_init(size, nid, j, zone_start_pfn);
6720        }
6721}
6722
6723#ifdef CONFIG_FLAT_NODE_MEM_MAP
6724static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6725{
6726        unsigned long __maybe_unused start = 0;
6727        unsigned long __maybe_unused offset = 0;
6728
6729        /* Skip empty nodes */
6730        if (!pgdat->node_spanned_pages)
6731                return;
6732
6733        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6734        offset = pgdat->node_start_pfn - start;
6735        /* ia64 gets its own node_mem_map, before this, without bootmem */
6736        if (!pgdat->node_mem_map) {
6737                unsigned long size, end;
6738                struct page *map;
6739
6740                /*
6741                 * The zone's endpoints aren't required to be MAX_ORDER
6742                 * aligned but the node_mem_map endpoints must be in order
6743                 * for the buddy allocator to function correctly.
6744                 */
6745                end = pgdat_end_pfn(pgdat);
6746                end = ALIGN(end, MAX_ORDER_NR_PAGES);
6747                size =  (end - start) * sizeof(struct page);
6748                map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6749                                          pgdat->node_id);
6750                if (!map)
6751                        panic("Failed to allocate %ld bytes for node %d memory map\n",
6752                              size, pgdat->node_id);
6753                pgdat->node_mem_map = map + offset;
6754        }
6755        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6756                                __func__, pgdat->node_id, (unsigned long)pgdat,
6757                                (unsigned long)pgdat->node_mem_map);
6758#ifndef CONFIG_NEED_MULTIPLE_NODES
6759        /*
6760         * With no DISCONTIG, the global mem_map is just set as node 0's
6761         */
6762        if (pgdat == NODE_DATA(0)) {
6763                mem_map = NODE_DATA(0)->node_mem_map;
6764#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6765                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6766                        mem_map -= offset;
6767#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6768        }
6769#endif
6770}
6771#else
6772static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6773#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6774
6775#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6776static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6777{
6778        pgdat->first_deferred_pfn = ULONG_MAX;
6779}
6780#else
6781static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6782#endif
6783
6784void __init free_area_init_node(int nid, unsigned long *zones_size,
6785                                   unsigned long node_start_pfn,
6786                                   unsigned long *zholes_size)
6787{
6788        pg_data_t *pgdat = NODE_DATA(nid);
6789        unsigned long start_pfn = 0;
6790        unsigned long end_pfn = 0;
6791
6792        /* pg_data_t should be reset to zero when it's allocated */
6793        WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6794
6795        pgdat->node_id = nid;
6796        pgdat->node_start_pfn = node_start_pfn;
6797        pgdat->per_cpu_nodestats = NULL;
6798#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6799        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6800        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6801                (u64)start_pfn << PAGE_SHIFT,
6802                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6803#else
6804        start_pfn = node_start_pfn;
6805#endif
6806        calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6807                                  zones_size, zholes_size);
6808
6809        alloc_node_mem_map(pgdat);
6810        pgdat_set_deferred_range(pgdat);
6811
6812        free_area_init_core(pgdat);
6813}
6814
6815#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6816/*
6817 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6818 * pages zeroed
6819 */
6820static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6821{
6822        unsigned long pfn;
6823        u64 pgcnt = 0;
6824
6825        for (pfn = spfn; pfn < epfn; pfn++) {
6826                if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6827                        pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6828                                + pageblock_nr_pages - 1;
6829                        continue;
6830                }
6831                mm_zero_struct_page(pfn_to_page(pfn));
6832                pgcnt++;
6833        }
6834
6835        return pgcnt;
6836}
6837
6838/*
6839 * Only struct pages that are backed by physical memory are zeroed and
6840 * initialized by going through __init_single_page(). But, there are some
6841 * struct pages which are reserved in memblock allocator and their fields
6842 * may be accessed (for example page_to_pfn() on some configuration accesses
6843 * flags). We must explicitly zero those struct pages.
6844 *
6845 * This function also addresses a similar issue where struct pages are left
6846 * uninitialized because the physical address range is not covered by
6847 * memblock.memory or memblock.reserved. That could happen when memblock
6848 * layout is manually configured via memmap=.
6849 */
6850void __init zero_resv_unavail(void)
6851{
6852        phys_addr_t start, end;
6853        u64 i, pgcnt;
6854        phys_addr_t next = 0;
6855
6856        /*
6857         * Loop through unavailable ranges not covered by memblock.memory.
6858         */
6859        pgcnt = 0;
6860        for_each_mem_range(i, &memblock.memory, NULL,
6861                        NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6862                if (next < start)
6863                        pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6864                next = end;
6865        }
6866        pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6867
6868        /*
6869         * Struct pages that do not have backing memory. This could be because
6870         * firmware is using some of this memory, or for some other reasons.
6871         */
6872        if (pgcnt)
6873                pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6874}
6875#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6876
6877#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6878
6879#if MAX_NUMNODES > 1
6880/*
6881 * Figure out the number of possible node ids.
6882 */
6883void __init setup_nr_node_ids(void)
6884{
6885        unsigned int highest;
6886
6887        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6888        nr_node_ids = highest + 1;
6889}
6890#endif
6891
6892/**
6893 * node_map_pfn_alignment - determine the maximum internode alignment
6894 *
6895 * This function should be called after node map is populated and sorted.
6896 * It calculates the maximum power of two alignment which can distinguish
6897 * all the nodes.
6898 *
6899 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6900 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6901 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6902 * shifted, 1GiB is enough and this function will indicate so.
6903 *
6904 * This is used to test whether pfn -> nid mapping of the chosen memory
6905 * model has fine enough granularity to avoid incorrect mapping for the
6906 * populated node map.
6907 *
6908 * Return: the determined alignment in pfn's.  0 if there is no alignment
6909 * requirement (single node).
6910 */
6911unsigned long __init node_map_pfn_alignment(void)
6912{
6913        unsigned long accl_mask = 0, last_end = 0;
6914        unsigned long start, end, mask;
6915        int last_nid = NUMA_NO_NODE;
6916        int i, nid;
6917
6918        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6919                if (!start || last_nid < 0 || last_nid == nid) {
6920                        last_nid = nid;
6921                        last_end = end;
6922                        continue;
6923                }
6924
6925                /*
6926                 * Start with a mask granular enough to pin-point to the
6927                 * start pfn and tick off bits one-by-one until it becomes
6928                 * too coarse to separate the current node from the last.
6929                 */
6930                mask = ~((1 << __ffs(start)) - 1);
6931                while (mask && last_end <= (start & (mask << 1)))
6932                        mask <<= 1;
6933
6934                /* accumulate all internode masks */
6935                accl_mask |= mask;
6936        }
6937
6938        /* convert mask to number of pages */
6939        return ~accl_mask + 1;
6940}
6941
6942/* Find the lowest pfn for a node */
6943static unsigned long __init find_min_pfn_for_node(int nid)
6944{
6945        unsigned long min_pfn = ULONG_MAX;
6946        unsigned long start_pfn;
6947        int i;
6948
6949        for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6950                min_pfn = min(min_pfn, start_pfn);
6951
6952        if (min_pfn == ULONG_MAX) {
6953                pr_warn("Could not find start_pfn for node %d\n", nid);
6954                return 0;
6955        }
6956
6957        return min_pfn;
6958}
6959
6960/**
6961 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6962 *
6963 * Return: the minimum PFN based on information provided via
6964 * memblock_set_node().
6965 */
6966unsigned long __init find_min_pfn_with_active_regions(void)
6967{
6968        return find_min_pfn_for_node(MAX_NUMNODES);
6969}
6970
6971/*
6972 * early_calculate_totalpages()
6973 * Sum pages in active regions for movable zone.
6974 * Populate N_MEMORY for calculating usable_nodes.
6975 */
6976static unsigned long __init early_calculate_totalpages(void)
6977{
6978        unsigned long totalpages = 0;
6979        unsigned long start_pfn, end_pfn;
6980        int i, nid;
6981
6982        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6983                unsigned long pages = end_pfn - start_pfn;
6984
6985                totalpages += pages;
6986                if (pages)
6987                        node_set_state(nid, N_MEMORY);
6988        }
6989        return totalpages;
6990}
6991
6992/*
6993 * Find the PFN the Movable zone begins in each node. Kernel memory
6994 * is spread evenly between nodes as long as the nodes have enough
6995 * memory. When they don't, some nodes will have more kernelcore than
6996 * others
6997 */
6998static void __init find_zone_movable_pfns_for_nodes(void)
6999{
7000        int i, nid;
7001        unsigned long usable_startpfn;
7002        unsigned long kernelcore_node, kernelcore_remaining;
7003        /* save the state before borrow the nodemask */
7004        nodemask_t saved_node_state = node_states[N_MEMORY];
7005        unsigned long totalpages = early_calculate_totalpages();
7006        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7007        struct memblock_region *r;
7008
7009        /* Need to find movable_zone earlier when movable_node is specified. */
7010        find_usable_zone_for_movable();
7011
7012        /*
7013         * If movable_node is specified, ignore kernelcore and movablecore
7014         * options.
7015         */
7016        if (movable_node_is_enabled()) {
7017                for_each_memblock(memory, r) {
7018                        if (!memblock_is_hotpluggable(r))
7019                                continue;
7020
7021                        nid = r->nid;
7022
7023                        usable_startpfn = PFN_DOWN(r->base);
7024                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7025                                min(usable_startpfn, zone_movable_pfn[nid]) :
7026                                usable_startpfn;
7027                }
7028
7029                goto out2;
7030        }
7031
7032        /*
7033         * If kernelcore=mirror is specified, ignore movablecore option
7034         */
7035        if (mirrored_kernelcore) {
7036                bool mem_below_4gb_not_mirrored = false;
7037
7038                for_each_memblock(memory, r) {
7039                        if (memblock_is_mirror(r))
7040                                continue;
7041
7042                        nid = r->nid;
7043
7044                        usable_startpfn = memblock_region_memory_base_pfn(r);
7045
7046                        if (usable_startpfn < 0x100000) {
7047                                mem_below_4gb_not_mirrored = true;
7048                                continue;
7049                        }
7050
7051                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7052                                min(usable_startpfn, zone_movable_pfn[nid]) :
7053                                usable_startpfn;
7054                }
7055
7056                if (mem_below_4gb_not_mirrored)
7057                        pr_warn("This configuration results in unmirrored kernel memory.");
7058
7059                goto out2;
7060        }
7061
7062        /*
7063         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7064         * amount of necessary memory.
7065         */
7066        if (required_kernelcore_percent)
7067                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7068                                       10000UL;
7069        if (required_movablecore_percent)
7070                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7071                                        10000UL;
7072
7073        /*
7074         * If movablecore= was specified, calculate what size of
7075         * kernelcore that corresponds so that memory usable for
7076         * any allocation type is evenly spread. If both kernelcore
7077         * and movablecore are specified, then the value of kernelcore
7078         * will be used for required_kernelcore if it's greater than
7079         * what movablecore would have allowed.
7080         */
7081        if (required_movablecore) {
7082                unsigned long corepages;
7083
7084                /*
7085                 * Round-up so that ZONE_MOVABLE is at least as large as what
7086                 * was requested by the user
7087                 */
7088                required_movablecore =
7089                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7090                required_movablecore = min(totalpages, required_movablecore);
7091                corepages = totalpages - required_movablecore;
7092
7093                required_kernelcore = max(required_kernelcore, corepages);
7094        }
7095
7096        /*
7097         * If kernelcore was not specified or kernelcore size is larger
7098         * than totalpages, there is no ZONE_MOVABLE.
7099         */
7100        if (!required_kernelcore || required_kernelcore >= totalpages)
7101                goto out;
7102
7103        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7104        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7105
7106restart:
7107        /* Spread kernelcore memory as evenly as possible throughout nodes */
7108        kernelcore_node = required_kernelcore / usable_nodes;
7109        for_each_node_state(nid, N_MEMORY) {
7110                unsigned long start_pfn, end_pfn;
7111
7112                /*
7113                 * Recalculate kernelcore_node if the division per node
7114                 * now exceeds what is necessary to satisfy the requested
7115                 * amount of memory for the kernel
7116                 */
7117                if (required_kernelcore < kernelcore_node)
7118                        kernelcore_node = required_kernelcore / usable_nodes;
7119
7120                /*
7121                 * As the map is walked, we track how much memory is usable
7122                 * by the kernel using kernelcore_remaining. When it is
7123                 * 0, the rest of the node is usable by ZONE_MOVABLE
7124                 */
7125                kernelcore_remaining = kernelcore_node;
7126
7127                /* Go through each range of PFNs within this node */
7128                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7129                        unsigned long size_pages;
7130
7131                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7132                        if (start_pfn >= end_pfn)
7133                                continue;
7134
7135                        /* Account for what is only usable for kernelcore */
7136                        if (start_pfn < usable_startpfn) {
7137                                unsigned long kernel_pages;
7138                                kernel_pages = min(end_pfn, usable_startpfn)
7139                                                                - start_pfn;
7140
7141                                kernelcore_remaining -= min(kernel_pages,
7142                                                        kernelcore_remaining);
7143                                required_kernelcore -= min(kernel_pages,
7144                                                        required_kernelcore);
7145
7146                                /* Continue if range is now fully accounted */
7147                                if (end_pfn <= usable_startpfn) {
7148
7149                                        /*
7150                                         * Push zone_movable_pfn to the end so
7151                                         * that if we have to rebalance
7152                                         * kernelcore across nodes, we will
7153                                         * not double account here
7154                                         */
7155                                        zone_movable_pfn[nid] = end_pfn;
7156                                        continue;
7157                                }
7158                                start_pfn = usable_startpfn;
7159                        }
7160
7161                        /*
7162                         * The usable PFN range for ZONE_MOVABLE is from
7163                         * start_pfn->end_pfn. Calculate size_pages as the
7164                         * number of pages used as kernelcore
7165                         */
7166                        size_pages = end_pfn - start_pfn;
7167                        if (size_pages > kernelcore_remaining)
7168                                size_pages = kernelcore_remaining;
7169                        zone_movable_pfn[nid] = start_pfn + size_pages;
7170
7171                        /*
7172                         * Some kernelcore has been met, update counts and
7173                         * break if the kernelcore for this node has been
7174                         * satisfied
7175                         */
7176                        required_kernelcore -= min(required_kernelcore,
7177                                                                size_pages);
7178                        kernelcore_remaining -= size_pages;
7179                        if (!kernelcore_remaining)
7180                                break;
7181                }
7182        }
7183
7184        /*
7185         * If there is still required_kernelcore, we do another pass with one
7186         * less node in the count. This will push zone_movable_pfn[nid] further
7187         * along on the nodes that still have memory until kernelcore is
7188         * satisfied
7189         */
7190        usable_nodes--;
7191        if (usable_nodes && required_kernelcore > usable_nodes)
7192                goto restart;
7193
7194out2:
7195        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7196        for (nid = 0; nid < MAX_NUMNODES; nid++)
7197                zone_movable_pfn[nid] =
7198                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7199
7200out:
7201        /* restore the node_state */
7202        node_states[N_MEMORY] = saved_node_state;
7203}
7204
7205/* Any regular or high memory on that node ? */
7206static void check_for_memory(pg_data_t *pgdat, int nid)
7207{
7208        enum zone_type zone_type;
7209
7210        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7211                struct zone *zone = &pgdat->node_zones[zone_type];
7212                if (populated_zone(zone)) {
7213                        if (IS_ENABLED(CONFIG_HIGHMEM))
7214                                node_set_state(nid, N_HIGH_MEMORY);
7215                        if (zone_type <= ZONE_NORMAL)
7216                                node_set_state(nid, N_NORMAL_MEMORY);
7217                        break;
7218                }
7219        }
7220}
7221
7222/**
7223 * free_area_init_nodes - Initialise all pg_data_t and zone data
7224 * @max_zone_pfn: an array of max PFNs for each zone
7225 *
7226 * This will call free_area_init_node() for each active node in the system.
7227 * Using the page ranges provided by memblock_set_node(), the size of each
7228 * zone in each node and their holes is calculated. If the maximum PFN
7229 * between two adjacent zones match, it is assumed that the zone is empty.
7230 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7231 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7232 * starts where the previous one ended. For example, ZONE_DMA32 starts
7233 * at arch_max_dma_pfn.
7234 */
7235void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7236{
7237        unsigned long start_pfn, end_pfn;
7238        int i, nid;
7239
7240        /* Record where the zone boundaries are */
7241        memset(arch_zone_lowest_possible_pfn, 0,
7242                                sizeof(arch_zone_lowest_possible_pfn));
7243        memset(arch_zone_highest_possible_pfn, 0,
7244                                sizeof(arch_zone_highest_possible_pfn));
7245
7246        start_pfn = find_min_pfn_with_active_regions();
7247
7248        for (i = 0; i < MAX_NR_ZONES; i++) {
7249                if (i == ZONE_MOVABLE)
7250                        continue;
7251
7252                end_pfn = max(max_zone_pfn[i], start_pfn);
7253                arch_zone_lowest_possible_pfn[i] = start_pfn;
7254                arch_zone_highest_possible_pfn[i] = end_pfn;
7255
7256                start_pfn = end_pfn;
7257        }
7258
7259        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7260        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7261        find_zone_movable_pfns_for_nodes();
7262
7263        /* Print out the zone ranges */
7264        pr_info("Zone ranges:\n");
7265        for (i = 0; i < MAX_NR_ZONES; i++) {
7266                if (i == ZONE_MOVABLE)
7267                        continue;
7268                pr_info("  %-8s ", zone_names[i]);
7269                if (arch_zone_lowest_possible_pfn[i] ==
7270                                arch_zone_highest_possible_pfn[i])
7271                        pr_cont("empty\n");
7272                else
7273                        pr_cont("[mem %#018Lx-%#018Lx]\n",
7274                                (u64)arch_zone_lowest_possible_pfn[i]
7275                                        << PAGE_SHIFT,
7276                                ((u64)arch_zone_highest_possible_pfn[i]
7277                                        << PAGE_SHIFT) - 1);
7278        }
7279
7280        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7281        pr_info("Movable zone start for each node\n");
7282        for (i = 0; i < MAX_NUMNODES; i++) {
7283                if (zone_movable_pfn[i])
7284                        pr_info("  Node %d: %#018Lx\n", i,
7285                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7286        }
7287
7288        /* Print out the early node map */
7289        pr_info("Early memory node ranges\n");
7290        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7291                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7292                        (u64)start_pfn << PAGE_SHIFT,
7293                        ((u64)end_pfn << PAGE_SHIFT) - 1);
7294
7295        /* Initialise every node */
7296        mminit_verify_pageflags_layout();
7297        setup_nr_node_ids();
7298        zero_resv_unavail();
7299        for_each_online_node(nid) {
7300                pg_data_t *pgdat = NODE_DATA(nid);
7301                free_area_init_node(nid, NULL,
7302                                find_min_pfn_for_node(nid), NULL);
7303
7304                /* Any memory on that node */
7305                if (pgdat->node_present_pages)
7306                        node_set_state(nid, N_MEMORY);
7307                check_for_memory(pgdat, nid);
7308        }
7309}
7310
7311static int __init cmdline_parse_core(char *p, unsigned long *core,
7312                                     unsigned long *percent)
7313{
7314        unsigned long long coremem;
7315        char *endptr;
7316
7317        if (!p)
7318                return -EINVAL;
7319
7320        /* Value may be a percentage of total memory, otherwise bytes */
7321        coremem = simple_strtoull(p, &endptr, 0);
7322        if (*endptr == '%') {
7323                /* Paranoid check for percent values greater than 100 */
7324                WARN_ON(coremem > 100);
7325
7326                *percent = coremem;
7327        } else {
7328                coremem = memparse(p, &p);
7329                /* Paranoid check that UL is enough for the coremem value */
7330                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7331
7332                *core = coremem >> PAGE_SHIFT;
7333                *percent = 0UL;
7334        }
7335        return 0;
7336}
7337
7338/*
7339 * kernelcore=size sets the amount of memory for use for allocations that
7340 * cannot be reclaimed or migrated.
7341 */
7342static int __init cmdline_parse_kernelcore(char *p)
7343{
7344        /* parse kernelcore=mirror */
7345        if (parse_option_str(p, "mirror")) {
7346                mirrored_kernelcore = true;
7347                return 0;
7348        }
7349
7350        return cmdline_parse_core(p, &required_kernelcore,
7351                                  &required_kernelcore_percent);
7352}
7353
7354/*
7355 * movablecore=size sets the amount of memory for use for allocations that
7356 * can be reclaimed or migrated.
7357 */
7358static int __init cmdline_parse_movablecore(char *p)
7359{
7360        return cmdline_parse_core(p, &required_movablecore,
7361                                  &required_movablecore_percent);
7362}
7363
7364early_param("kernelcore", cmdline_parse_kernelcore);
7365early_param("movablecore", cmdline_parse_movablecore);
7366
7367#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7368
7369void adjust_managed_page_count(struct page *page, long count)
7370{
7371        atomic_long_add(count, &page_zone(page)->managed_pages);
7372        totalram_pages_add(count);
7373#ifdef CONFIG_HIGHMEM
7374        if (PageHighMem(page))
7375                totalhigh_pages_add(count);
7376#endif
7377}
7378EXPORT_SYMBOL(adjust_managed_page_count);
7379
7380unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7381{
7382        void *pos;
7383        unsigned long pages = 0;
7384
7385        start = (void *)PAGE_ALIGN((unsigned long)start);
7386        end = (void *)((unsigned long)end & PAGE_MASK);
7387        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7388                struct page *page = virt_to_page(pos);
7389                void *direct_map_addr;
7390
7391                /*
7392                 * 'direct_map_addr' might be different from 'pos'
7393                 * because some architectures' virt_to_page()
7394                 * work with aliases.  Getting the direct map
7395                 * address ensures that we get a _writeable_
7396                 * alias for the memset().
7397                 */
7398                direct_map_addr = page_address(page);
7399                if ((unsigned int)poison <= 0xFF)
7400                        memset(direct_map_addr, poison, PAGE_SIZE);
7401
7402                free_reserved_page(page);
7403        }
7404
7405        if (pages && s)
7406                pr_info("Freeing %s memory: %ldK\n",
7407                        s, pages << (PAGE_SHIFT - 10));
7408
7409        return pages;
7410}
7411
7412#ifdef  CONFIG_HIGHMEM
7413void free_highmem_page(struct page *page)
7414{
7415        __free_reserved_page(page);
7416        totalram_pages_inc();
7417        atomic_long_inc(&page_zone(page)->managed_pages);
7418        totalhigh_pages_inc();
7419}
7420#endif
7421
7422
7423void __init mem_init_print_info(const char *str)
7424{
7425        unsigned long physpages, codesize, datasize, rosize, bss_size;
7426        unsigned long init_code_size, init_data_size;
7427
7428        physpages = get_num_physpages();
7429        codesize = _etext - _stext;
7430        datasize = _edata - _sdata;
7431        rosize = __end_rodata - __start_rodata;
7432        bss_size = __bss_stop - __bss_start;
7433        init_data_size = __init_end - __init_begin;
7434        init_code_size = _einittext - _sinittext;
7435
7436        /*
7437         * Detect special cases and adjust section sizes accordingly:
7438         * 1) .init.* may be embedded into .data sections
7439         * 2) .init.text.* may be out of [__init_begin, __init_end],
7440         *    please refer to arch/tile/kernel/vmlinux.lds.S.
7441         * 3) .rodata.* may be embedded into .text or .data sections.
7442         */
7443#define adj_init_size(start, end, size, pos, adj) \
7444        do { \
7445                if (start <= pos && pos < end && size > adj) \
7446                        size -= adj; \
7447        } while (0)
7448
7449        adj_init_size(__init_begin, __init_end, init_data_size,
7450                     _sinittext, init_code_size);
7451        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7452        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7453        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7454        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7455
7456#undef  adj_init_size
7457
7458        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7459#ifdef  CONFIG_HIGHMEM
7460                ", %luK highmem"
7461#endif
7462                "%s%s)\n",
7463                nr_free_pages() << (PAGE_SHIFT - 10),
7464                physpages << (PAGE_SHIFT - 10),
7465                codesize >> 10, datasize >> 10, rosize >> 10,
7466                (init_data_size + init_code_size) >> 10, bss_size >> 10,
7467                (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7468                totalcma_pages << (PAGE_SHIFT - 10),
7469#ifdef  CONFIG_HIGHMEM
7470                totalhigh_pages() << (PAGE_SHIFT - 10),
7471#endif
7472                str ? ", " : "", str ? str : "");
7473}
7474
7475/**
7476 * set_dma_reserve - set the specified number of pages reserved in the first zone
7477 * @new_dma_reserve: The number of pages to mark reserved
7478 *
7479 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7480 * In the DMA zone, a significant percentage may be consumed by kernel image
7481 * and other unfreeable allocations which can skew the watermarks badly. This
7482 * function may optionally be used to account for unfreeable pages in the
7483 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7484 * smaller per-cpu batchsize.
7485 */
7486void __init set_dma_reserve(unsigned long new_dma_reserve)
7487{
7488        dma_reserve = new_dma_reserve;
7489}
7490
7491void __init free_area_init(unsigned long *zones_size)
7492{
7493        zero_resv_unavail();
7494        free_area_init_node(0, zones_size,
7495                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7496}
7497
7498static int page_alloc_cpu_dead(unsigned int cpu)
7499{
7500
7501        lru_add_drain_cpu(cpu);
7502        drain_pages(cpu);
7503
7504        /*
7505         * Spill the event counters of the dead processor
7506         * into the current processors event counters.
7507         * This artificially elevates the count of the current
7508         * processor.
7509         */
7510        vm_events_fold_cpu(cpu);
7511
7512        /*
7513         * Zero the differential counters of the dead processor
7514         * so that the vm statistics are consistent.
7515         *
7516         * This is only okay since the processor is dead and cannot
7517         * race with what we are doing.
7518         */
7519        cpu_vm_stats_fold(cpu);
7520        return 0;
7521}
7522
7523void __init page_alloc_init(void)
7524{
7525        int ret;
7526
7527        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7528                                        "mm/page_alloc:dead", NULL,
7529                                        page_alloc_cpu_dead);
7530        WARN_ON(ret < 0);
7531}
7532
7533/*
7534 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7535 *      or min_free_kbytes changes.
7536 */
7537static void calculate_totalreserve_pages(void)
7538{
7539        struct pglist_data *pgdat;
7540        unsigned long reserve_pages = 0;
7541        enum zone_type i, j;
7542
7543        for_each_online_pgdat(pgdat) {
7544
7545                pgdat->totalreserve_pages = 0;
7546
7547                for (i = 0; i < MAX_NR_ZONES; i++) {
7548                        struct zone *zone = pgdat->node_zones + i;
7549                        long max = 0;
7550                        unsigned long managed_pages = zone_managed_pages(zone);
7551
7552                        /* Find valid and maximum lowmem_reserve in the zone */
7553                        for (j = i; j < MAX_NR_ZONES; j++) {
7554                                if (zone->lowmem_reserve[j] > max)
7555                                        max = zone->lowmem_reserve[j];
7556                        }
7557
7558                        /* we treat the high watermark as reserved pages. */
7559                        max += high_wmark_pages(zone);
7560
7561                        if (max > managed_pages)
7562                                max = managed_pages;
7563
7564                        pgdat->totalreserve_pages += max;
7565
7566                        reserve_pages += max;
7567                }
7568        }
7569        totalreserve_pages = reserve_pages;
7570}
7571
7572/*
7573 * setup_per_zone_lowmem_reserve - called whenever
7574 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7575 *      has a correct pages reserved value, so an adequate number of
7576 *      pages are left in the zone after a successful __alloc_pages().
7577 */
7578static void setup_per_zone_lowmem_reserve(void)
7579{
7580        struct pglist_data *pgdat;
7581        enum zone_type j, idx;
7582
7583        for_each_online_pgdat(pgdat) {
7584                for (j = 0; j < MAX_NR_ZONES; j++) {
7585                        struct zone *zone = pgdat->node_zones + j;
7586                        unsigned long managed_pages = zone_managed_pages(zone);
7587
7588                        zone->lowmem_reserve[j] = 0;
7589
7590                        idx = j;
7591                        while (idx) {
7592                                struct zone *lower_zone;
7593
7594                                idx--;
7595                                lower_zone = pgdat->node_zones + idx;
7596
7597                                if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7598                                        sysctl_lowmem_reserve_ratio[idx] = 0;
7599                                        lower_zone->lowmem_reserve[j] = 0;
7600                                } else {
7601                                        lower_zone->lowmem_reserve[j] =
7602                                                managed_pages / sysctl_lowmem_reserve_ratio[idx];
7603                                }
7604                                managed_pages += zone_managed_pages(lower_zone);
7605                        }
7606                }
7607        }
7608
7609        /* update totalreserve_pages */
7610        calculate_totalreserve_pages();
7611}
7612
7613static void __setup_per_zone_wmarks(void)
7614{
7615        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7616        unsigned long lowmem_pages = 0;
7617        struct zone *zone;
7618        unsigned long flags;
7619
7620        /* Calculate total number of !ZONE_HIGHMEM pages */
7621        for_each_zone(zone) {
7622                if (!is_highmem(zone))
7623                        lowmem_pages += zone_managed_pages(zone);
7624        }
7625
7626        for_each_zone(zone) {
7627                u64 tmp;
7628
7629                spin_lock_irqsave(&zone->lock, flags);
7630                tmp = (u64)pages_min * zone_managed_pages(zone);
7631                do_div(tmp, lowmem_pages);
7632                if (is_highmem(zone)) {
7633                        /*
7634                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7635                         * need highmem pages, so cap pages_min to a small
7636                         * value here.
7637                         *
7638                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7639                         * deltas control async page reclaim, and so should
7640                         * not be capped for highmem.
7641                         */
7642                        unsigned long min_pages;
7643
7644                        min_pages = zone_managed_pages(zone) / 1024;
7645                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7646                        zone->_watermark[WMARK_MIN] = min_pages;
7647                } else {
7648                        /*
7649                         * If it's a lowmem zone, reserve a number of pages
7650                         * proportionate to the zone's size.
7651                         */
7652                        zone->_watermark[WMARK_MIN] = tmp;
7653                }
7654
7655                /*
7656                 * Set the kswapd watermarks distance according to the
7657                 * scale factor in proportion to available memory, but
7658                 * ensure a minimum size on small systems.
7659                 */
7660                tmp = max_t(u64, tmp >> 2,
7661                            mult_frac(zone_managed_pages(zone),
7662                                      watermark_scale_factor, 10000));
7663
7664                zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7665                zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7666                zone->watermark_boost = 0;
7667
7668                spin_unlock_irqrestore(&zone->lock, flags);
7669        }
7670
7671        /* update totalreserve_pages */
7672        calculate_totalreserve_pages();
7673}
7674
7675/**
7676 * setup_per_zone_wmarks - called when min_free_kbytes changes
7677 * or when memory is hot-{added|removed}
7678 *
7679 * Ensures that the watermark[min,low,high] values for each zone are set
7680 * correctly with respect to min_free_kbytes.
7681 */
7682void setup_per_zone_wmarks(void)
7683{
7684        static DEFINE_SPINLOCK(lock);
7685
7686        spin_lock(&lock);
7687        __setup_per_zone_wmarks();
7688        spin_unlock(&lock);
7689}
7690
7691/*
7692 * Initialise min_free_kbytes.
7693 *
7694 * For small machines we want it small (128k min).  For large machines
7695 * we want it large (64MB max).  But it is not linear, because network
7696 * bandwidth does not increase linearly with machine size.  We use
7697 *
7698 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7699 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
7700 *
7701 * which yields
7702 *
7703 * 16MB:        512k
7704 * 32MB:        724k
7705 * 64MB:        1024k
7706 * 128MB:       1448k
7707 * 256MB:       2048k
7708 * 512MB:       2896k
7709 * 1024MB:      4096k
7710 * 2048MB:      5792k
7711 * 4096MB:      8192k
7712 * 8192MB:      11584k
7713 * 16384MB:     16384k
7714 */
7715int __meminit init_per_zone_wmark_min(void)
7716{
7717        unsigned long lowmem_kbytes;
7718        int new_min_free_kbytes;
7719
7720        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7721        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7722
7723        if (new_min_free_kbytes > user_min_free_kbytes) {
7724                min_free_kbytes = new_min_free_kbytes;
7725                if (min_free_kbytes < 128)
7726                        min_free_kbytes = 128;
7727                if (min_free_kbytes > 65536)
7728                        min_free_kbytes = 65536;
7729        } else {
7730                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7731                                new_min_free_kbytes, user_min_free_kbytes);
7732        }
7733        setup_per_zone_wmarks();
7734        refresh_zone_stat_thresholds();
7735        setup_per_zone_lowmem_reserve();
7736
7737#ifdef CONFIG_NUMA
7738        setup_min_unmapped_ratio();
7739        setup_min_slab_ratio();
7740#endif
7741
7742        return 0;
7743}
7744core_initcall(init_per_zone_wmark_min)
7745
7746/*
7747 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7748 *      that we can call two helper functions whenever min_free_kbytes
7749 *      changes.
7750 */
7751int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7752        void __user *buffer, size_t *length, loff_t *ppos)
7753{
7754        int rc;
7755
7756        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7757        if (rc)
7758                return rc;
7759
7760        if (write) {
7761                user_min_free_kbytes = min_free_kbytes;
7762                setup_per_zone_wmarks();
7763        }
7764        return 0;
7765}
7766
7767int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7768        void __user *buffer, size_t *length, loff_t *ppos)
7769{
7770        int rc;
7771
7772        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7773        if (rc)
7774                return rc;
7775
7776        return 0;
7777}
7778
7779int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7780        void __user *buffer, size_t *length, loff_t *ppos)
7781{
7782        int rc;
7783
7784        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7785        if (rc)
7786                return rc;
7787
7788        if (write)
7789                setup_per_zone_wmarks();
7790
7791        return 0;
7792}
7793
7794#ifdef CONFIG_NUMA
7795static void setup_min_unmapped_ratio(void)
7796{
7797        pg_data_t *pgdat;
7798        struct zone *zone;
7799
7800        for_each_online_pgdat(pgdat)
7801                pgdat->min_unmapped_pages = 0;
7802
7803        for_each_zone(zone)
7804                zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7805                                                         sysctl_min_unmapped_ratio) / 100;
7806}
7807
7808
7809int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7810        void __user *buffer, size_t *length, loff_t *ppos)
7811{
7812        int rc;
7813
7814        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7815        if (rc)
7816                return rc;
7817
7818        setup_min_unmapped_ratio();
7819
7820        return 0;
7821}
7822
7823static void setup_min_slab_ratio(void)
7824{
7825        pg_data_t *pgdat;
7826        struct zone *zone;
7827
7828        for_each_online_pgdat(pgdat)
7829                pgdat->min_slab_pages = 0;
7830
7831        for_each_zone(zone)
7832                zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7833                                                     sysctl_min_slab_ratio) / 100;
7834}
7835
7836int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7837        void __user *buffer, size_t *length, loff_t *ppos)
7838{
7839        int rc;
7840
7841        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7842        if (rc)
7843                return rc;
7844
7845        setup_min_slab_ratio();
7846
7847        return 0;
7848}
7849#endif
7850
7851/*
7852 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7853 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7854 *      whenever sysctl_lowmem_reserve_ratio changes.
7855 *
7856 * The reserve ratio obviously has absolutely no relation with the
7857 * minimum watermarks. The lowmem reserve ratio can only make sense
7858 * if in function of the boot time zone sizes.
7859 */
7860int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7861        void __user *buffer, size_t *length, loff_t *ppos)
7862{
7863        proc_dointvec_minmax(table, write, buffer, length, ppos);
7864        setup_per_zone_lowmem_reserve();
7865        return 0;
7866}
7867
7868/*
7869 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7870 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7871 * pagelist can have before it gets flushed back to buddy allocator.
7872 */
7873int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7874        void __user *buffer, size_t *length, loff_t *ppos)
7875{
7876        struct zone *zone;
7877        int old_percpu_pagelist_fraction;
7878        int ret;
7879
7880        mutex_lock(&pcp_batch_high_lock);
7881        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7882
7883        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7884        if (!write || ret < 0)
7885                goto out;
7886
7887        /* Sanity checking to avoid pcp imbalance */
7888        if (percpu_pagelist_fraction &&
7889            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7890                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7891                ret = -EINVAL;
7892                goto out;
7893        }
7894
7895        /* No change? */
7896        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7897                goto out;
7898
7899        for_each_populated_zone(zone) {
7900                unsigned int cpu;
7901
7902                for_each_possible_cpu(cpu)
7903                        pageset_set_high_and_batch(zone,
7904                                        per_cpu_ptr(zone->pageset, cpu));
7905        }
7906out:
7907        mutex_unlock(&pcp_batch_high_lock);
7908        return ret;
7909}
7910
7911#ifdef CONFIG_NUMA
7912int hashdist = HASHDIST_DEFAULT;
7913
7914static int __init set_hashdist(char *str)
7915{
7916        if (!str)
7917                return 0;
7918        hashdist = simple_strtoul(str, &str, 0);
7919        return 1;
7920}
7921__setup("hashdist=", set_hashdist);
7922#endif
7923
7924#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7925/*
7926 * Returns the number of pages that arch has reserved but
7927 * is not known to alloc_large_system_hash().
7928 */
7929static unsigned long __init arch_reserved_kernel_pages(void)
7930{
7931        return 0;
7932}
7933#endif
7934
7935/*
7936 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7937 * machines. As memory size is increased the scale is also increased but at
7938 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7939 * quadruples the scale is increased by one, which means the size of hash table
7940 * only doubles, instead of quadrupling as well.
7941 * Because 32-bit systems cannot have large physical memory, where this scaling
7942 * makes sense, it is disabled on such platforms.
7943 */
7944#if __BITS_PER_LONG > 32
7945#define ADAPT_SCALE_BASE        (64ul << 30)
7946#define ADAPT_SCALE_SHIFT       2
7947#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7948#endif
7949
7950/*
7951 * allocate a large system hash table from bootmem
7952 * - it is assumed that the hash table must contain an exact power-of-2
7953 *   quantity of entries
7954 * - limit is the number of hash buckets, not the total allocation size
7955 */
7956void *__init alloc_large_system_hash(const char *tablename,
7957                                     unsigned long bucketsize,
7958                                     unsigned long numentries,
7959                                     int scale,
7960                                     int flags,
7961                                     unsigned int *_hash_shift,
7962                                     unsigned int *_hash_mask,
7963                                     unsigned long low_limit,
7964                                     unsigned long high_limit)
7965{
7966        unsigned long long max = high_limit;
7967        unsigned long log2qty, size;
7968        void *table = NULL;
7969        gfp_t gfp_flags;
7970
7971        /* allow the kernel cmdline to have a say */
7972        if (!numentries) {
7973                /* round applicable memory size up to nearest megabyte */
7974                numentries = nr_kernel_pages;
7975                numentries -= arch_reserved_kernel_pages();
7976
7977                /* It isn't necessary when PAGE_SIZE >= 1MB */
7978                if (PAGE_SHIFT < 20)
7979                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7980
7981#if __BITS_PER_LONG > 32
7982                if (!high_limit) {
7983                        unsigned long adapt;
7984
7985                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7986                             adapt <<= ADAPT_SCALE_SHIFT)
7987                                scale++;
7988                }
7989#endif
7990
7991                /* limit to 1 bucket per 2^scale bytes of low memory */
7992                if (scale > PAGE_SHIFT)
7993                        numentries >>= (scale - PAGE_SHIFT);
7994                else
7995                        numentries <<= (PAGE_SHIFT - scale);
7996
7997                /* Make sure we've got at least a 0-order allocation.. */
7998                if (unlikely(flags & HASH_SMALL)) {
7999                        /* Makes no sense without HASH_EARLY */
8000                        WARN_ON(!(flags & HASH_EARLY));
8001                        if (!(numentries >> *_hash_shift)) {
8002                                numentries = 1UL << *_hash_shift;
8003                                BUG_ON(!numentries);
8004                        }
8005                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8006                        numentries = PAGE_SIZE / bucketsize;
8007        }
8008        numentries = roundup_pow_of_two(numentries);
8009
8010        /* limit allocation size to 1/16 total memory by default */
8011        if (max == 0) {
8012                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8013                do_div(max, bucketsize);
8014        }
8015        max = min(max, 0x80000000ULL);
8016
8017        if (numentries < low_limit)
8018                numentries = low_limit;
8019        if (numentries > max)
8020                numentries = max;
8021
8022        log2qty = ilog2(numentries);
8023
8024        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8025        do {
8026                size = bucketsize << log2qty;
8027                if (flags & HASH_EARLY) {
8028                        if (flags & HASH_ZERO)
8029                                table = memblock_alloc(size, SMP_CACHE_BYTES);
8030                        else
8031                                table = memblock_alloc_raw(size,
8032                                                           SMP_CACHE_BYTES);
8033                } else if (hashdist) {
8034                        table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8035                } else {
8036                        /*
8037                         * If bucketsize is not a power-of-two, we may free
8038                         * some pages at the end of hash table which
8039                         * alloc_pages_exact() automatically does
8040                         */
8041                        if (get_order(size) < MAX_ORDER) {
8042                                table = alloc_pages_exact(size, gfp_flags);
8043                                kmemleak_alloc(table, size, 1, gfp_flags);
8044                        }
8045                }
8046        } while (!table && size > PAGE_SIZE && --log2qty);
8047
8048        if (!table)
8049                panic("Failed to allocate %s hash table\n", tablename);
8050
8051        pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8052                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8053
8054        if (_hash_shift)
8055                *_hash_shift = log2qty;
8056        if (_hash_mask)
8057                *_hash_mask = (1 << log2qty) - 1;
8058
8059        return table;
8060}
8061
8062/*
8063 * This function checks whether pageblock includes unmovable pages or not.
8064 * If @count is not zero, it is okay to include less @count unmovable pages
8065 *
8066 * PageLRU check without isolation or lru_lock could race so that
8067 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8068 * check without lock_page also may miss some movable non-lru pages at
8069 * race condition. So you can't expect this function should be exact.
8070 */
8071bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8072                         int migratetype, int flags)
8073{
8074        unsigned long found;
8075        unsigned long iter = 0;
8076        unsigned long pfn = page_to_pfn(page);
8077        const char *reason = "unmovable page";
8078
8079        /*
8080         * TODO we could make this much more efficient by not checking every
8081         * page in the range if we know all of them are in MOVABLE_ZONE and
8082         * that the movable zone guarantees that pages are migratable but
8083         * the later is not the case right now unfortunatelly. E.g. movablecore
8084         * can still lead to having bootmem allocations in zone_movable.
8085         */
8086
8087        if (is_migrate_cma_page(page)) {
8088                /*
8089                 * CMA allocations (alloc_contig_range) really need to mark
8090                 * isolate CMA pageblocks even when they are not movable in fact
8091                 * so consider them movable here.
8092                 */
8093                if (is_migrate_cma(migratetype))
8094                        return false;
8095
8096                reason = "CMA page";
8097                goto unmovable;
8098        }
8099
8100        for (found = 0; iter < pageblock_nr_pages; iter++) {
8101                unsigned long check = pfn + iter;
8102
8103                if (!pfn_valid_within(check))
8104                        continue;
8105
8106                page = pfn_to_page(check);
8107
8108                if (PageReserved(page))
8109                        goto unmovable;
8110
8111                /*
8112                 * If the zone is movable and we have ruled out all reserved
8113                 * pages then it should be reasonably safe to assume the rest
8114                 * is movable.
8115                 */
8116                if (zone_idx(zone) == ZONE_MOVABLE)
8117                        continue;
8118
8119                /*
8120                 * Hugepages are not in LRU lists, but they're movable.
8121                 * We need not scan over tail pages because we don't
8122                 * handle each tail page individually in migration.
8123                 */
8124                if (PageHuge(page)) {
8125                        struct page *head = compound_head(page);
8126                        unsigned int skip_pages;
8127
8128                        if (!hugepage_migration_supported(page_hstate(head)))
8129                                goto unmovable;
8130
8131                        skip_pages = (1 << compound_order(head)) - (page - head);
8132                        iter += skip_pages - 1;
8133                        continue;
8134                }
8135
8136                /*
8137                 * We can't use page_count without pin a page
8138                 * because another CPU can free compound page.
8139                 * This check already skips compound tails of THP
8140                 * because their page->_refcount is zero at all time.
8141                 */
8142                if (!page_ref_count(page)) {
8143                        if (PageBuddy(page))
8144                                iter += (1 << page_order(page)) - 1;
8145                        continue;
8146                }
8147
8148                /*
8149                 * The HWPoisoned page may be not in buddy system, and
8150                 * page_count() is not 0.
8151                 */
8152                if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8153                        continue;
8154
8155                if (__PageMovable(page))
8156                        continue;
8157
8158                if (!PageLRU(page))
8159                        found++;
8160                /*
8161                 * If there are RECLAIMABLE pages, we need to check
8162                 * it.  But now, memory offline itself doesn't call
8163                 * shrink_node_slabs() and it still to be fixed.
8164                 */
8165                /*
8166                 * If the page is not RAM, page_count()should be 0.
8167                 * we don't need more check. This is an _used_ not-movable page.
8168                 *
8169                 * The problematic thing here is PG_reserved pages. PG_reserved
8170                 * is set to both of a memory hole page and a _used_ kernel
8171                 * page at boot.
8172                 */
8173                if (found > count)
8174                        goto unmovable;
8175        }
8176        return false;
8177unmovable:
8178        WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8179        if (flags & REPORT_FAILURE)
8180                dump_page(pfn_to_page(pfn + iter), reason);
8181        return true;
8182}
8183
8184#ifdef CONFIG_CONTIG_ALLOC
8185static unsigned long pfn_max_align_down(unsigned long pfn)
8186{
8187        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8188                             pageblock_nr_pages) - 1);
8189}
8190
8191static unsigned long pfn_max_align_up(unsigned long pfn)
8192{
8193        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8194                                pageblock_nr_pages));
8195}
8196
8197/* [start, end) must belong to a single zone. */
8198static int __alloc_contig_migrate_range(struct compact_control *cc,
8199                                        unsigned long start, unsigned long end)
8200{
8201        /* This function is based on compact_zone() from compaction.c. */
8202        unsigned long nr_reclaimed;
8203        unsigned long pfn = start;
8204        unsigned int tries = 0;
8205        int ret = 0;
8206
8207        migrate_prep();
8208
8209        while (pfn < end || !list_empty(&cc->migratepages)) {
8210                if (fatal_signal_pending(current)) {
8211                        ret = -EINTR;
8212                        break;
8213                }
8214
8215                if (list_empty(&cc->migratepages)) {
8216                        cc->nr_migratepages = 0;
8217                        pfn = isolate_migratepages_range(cc, pfn, end);
8218                        if (!pfn) {
8219                                ret = -EINTR;
8220                                break;
8221                        }
8222                        tries = 0;
8223                } else if (++tries == 5) {
8224                        ret = ret < 0 ? ret : -EBUSY;
8225                        break;
8226                }
8227
8228                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8229                                                        &cc->migratepages);
8230                cc->nr_migratepages -= nr_reclaimed;
8231
8232                ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8233                                    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8234        }
8235        if (ret < 0) {
8236                putback_movable_pages(&cc->migratepages);
8237                return ret;
8238        }
8239        return 0;
8240}
8241
8242/**
8243 * alloc_contig_range() -- tries to allocate given range of pages
8244 * @start:      start PFN to allocate
8245 * @end:        one-past-the-last PFN to allocate
8246 * @migratetype:        migratetype of the underlaying pageblocks (either
8247 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8248 *                      in range must have the same migratetype and it must
8249 *                      be either of the two.
8250 * @gfp_mask:   GFP mask to use during compaction
8251 *
8252 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8253 * aligned.  The PFN range must belong to a single zone.
8254 *
8255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8256 * pageblocks in the range.  Once isolated, the pageblocks should not
8257 * be modified by others.
8258 *
8259 * Return: zero on success or negative error code.  On success all
8260 * pages which PFN is in [start, end) are allocated for the caller and
8261 * need to be freed with free_contig_range().
8262 */
8263int alloc_contig_range(unsigned long start, unsigned long end,
8264                       unsigned migratetype, gfp_t gfp_mask)
8265{
8266        unsigned long outer_start, outer_end;
8267        unsigned int order;
8268        int ret = 0;
8269
8270        struct compact_control cc = {
8271                .nr_migratepages = 0,
8272                .order = -1,
8273                .zone = page_zone(pfn_to_page(start)),
8274                .mode = MIGRATE_SYNC,
8275                .ignore_skip_hint = true,
8276                .no_set_skip_hint = true,
8277                .gfp_mask = current_gfp_context(gfp_mask),
8278        };
8279        INIT_LIST_HEAD(&cc.migratepages);
8280
8281        /*
8282         * What we do here is we mark all pageblocks in range as
8283         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8284         * have different sizes, and due to the way page allocator
8285         * work, we align the range to biggest of the two pages so
8286         * that page allocator won't try to merge buddies from
8287         * different pageblocks and change MIGRATE_ISOLATE to some
8288         * other migration type.
8289         *
8290         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8291         * migrate the pages from an unaligned range (ie. pages that
8292         * we are interested in).  This will put all the pages in
8293         * range back to page allocator as MIGRATE_ISOLATE.
8294         *
8295         * When this is done, we take the pages in range from page
8296         * allocator removing them from the buddy system.  This way
8297         * page allocator will never consider using them.
8298         *
8299         * This lets us mark the pageblocks back as
8300         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8301         * aligned range but not in the unaligned, original range are
8302         * put back to page allocator so that buddy can use them.
8303         */
8304
8305        ret = start_isolate_page_range(pfn_max_align_down(start),
8306                                       pfn_max_align_up(end), migratetype, 0);
8307        if (ret < 0)
8308                return ret;
8309
8310        /*
8311         * In case of -EBUSY, we'd like to know which page causes problem.
8312         * So, just fall through. test_pages_isolated() has a tracepoint
8313         * which will report the busy page.
8314         *
8315         * It is possible that busy pages could become available before
8316         * the call to test_pages_isolated, and the range will actually be
8317         * allocated.  So, if we fall through be sure to clear ret so that
8318         * -EBUSY is not accidentally used or returned to caller.
8319         */
8320        ret = __alloc_contig_migrate_range(&cc, start, end);
8321        if (ret && ret != -EBUSY)
8322                goto done;
8323        ret =0;
8324
8325        /*
8326         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8327         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8328         * more, all pages in [start, end) are free in page allocator.
8329         * What we are going to do is to allocate all pages from
8330         * [start, end) (that is remove them from page allocator).
8331         *
8332         * The only problem is that pages at the beginning and at the
8333         * end of interesting range may be not aligned with pages that
8334         * page allocator holds, ie. they can be part of higher order
8335         * pages.  Because of this, we reserve the bigger range and
8336         * once this is done free the pages we are not interested in.
8337         *
8338         * We don't have to hold zone->lock here because the pages are
8339         * isolated thus they won't get removed from buddy.
8340         */
8341
8342        lru_add_drain_all();
8343
8344        order = 0;
8345        outer_start = start;
8346        while (!PageBuddy(pfn_to_page(outer_start))) {
8347                if (++order >= MAX_ORDER) {
8348                        outer_start = start;
8349                        break;
8350                }
8351                outer_start &= ~0UL << order;
8352        }
8353
8354        if (outer_start != start) {
8355                order = page_order(pfn_to_page(outer_start));
8356
8357                /*
8358                 * outer_start page could be small order buddy page and
8359                 * it doesn't include start page. Adjust outer_start
8360                 * in this case to report failed page properly
8361                 * on tracepoint in test_pages_isolated()
8362                 */
8363                if (outer_start + (1UL << order) <= start)
8364                        outer_start = start;
8365        }
8366
8367        /* Make sure the range is really isolated. */
8368        if (test_pages_isolated(outer_start, end, false)) {
8369                pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8370                        __func__, outer_start, end);
8371                ret = -EBUSY;
8372                goto done;
8373        }
8374
8375        /* Grab isolated pages from freelists. */
8376        outer_end = isolate_freepages_range(&cc, outer_start, end);
8377        if (!outer_end) {
8378                ret = -EBUSY;
8379                goto done;
8380        }
8381
8382        /* Free head and tail (if any) */
8383        if (start != outer_start)
8384                free_contig_range(outer_start, start - outer_start);
8385        if (end != outer_end)
8386                free_contig_range(end, outer_end - end);
8387
8388done:
8389        undo_isolate_page_range(pfn_max_align_down(start),
8390                                pfn_max_align_up(end), migratetype);
8391        return ret;
8392}
8393#endif /* CONFIG_CONTIG_ALLOC */
8394
8395void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8396{
8397        unsigned int count = 0;
8398
8399        for (; nr_pages--; pfn++) {
8400                struct page *page = pfn_to_page(pfn);
8401
8402                count += page_count(page) != 1;
8403                __free_page(page);
8404        }
8405        WARN(count != 0, "%d pages are still in use!\n", count);
8406}
8407
8408#ifdef CONFIG_MEMORY_HOTPLUG
8409/*
8410 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8411 * page high values need to be recalulated.
8412 */
8413void __meminit zone_pcp_update(struct zone *zone)
8414{
8415        unsigned cpu;
8416        mutex_lock(&pcp_batch_high_lock);
8417        for_each_possible_cpu(cpu)
8418                pageset_set_high_and_batch(zone,
8419                                per_cpu_ptr(zone->pageset, cpu));
8420        mutex_unlock(&pcp_batch_high_lock);
8421}
8422#endif
8423
8424void zone_pcp_reset(struct zone *zone)
8425{
8426        unsigned long flags;
8427        int cpu;
8428        struct per_cpu_pageset *pset;
8429
8430        /* avoid races with drain_pages()  */
8431        local_irq_save(flags);
8432        if (zone->pageset != &boot_pageset) {
8433                for_each_online_cpu(cpu) {
8434                        pset = per_cpu_ptr(zone->pageset, cpu);
8435                        drain_zonestat(zone, pset);
8436                }
8437                free_percpu(zone->pageset);
8438                zone->pageset = &boot_pageset;
8439        }
8440        local_irq_restore(flags);
8441}
8442
8443#ifdef CONFIG_MEMORY_HOTREMOVE
8444/*
8445 * All pages in the range must be in a single zone and isolated
8446 * before calling this.
8447 */
8448unsigned long
8449__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8450{
8451        struct page *page;
8452        struct zone *zone;
8453        unsigned int order, i;
8454        unsigned long pfn;
8455        unsigned long flags;
8456        unsigned long offlined_pages = 0;
8457
8458        /* find the first valid pfn */
8459        for (pfn = start_pfn; pfn < end_pfn; pfn++)
8460                if (pfn_valid(pfn))
8461                        break;
8462        if (pfn == end_pfn)
8463                return offlined_pages;
8464
8465        offline_mem_sections(pfn, end_pfn);
8466        zone = page_zone(pfn_to_page(pfn));
8467        spin_lock_irqsave(&zone->lock, flags);
8468        pfn = start_pfn;
8469        while (pfn < end_pfn) {
8470                if (!pfn_valid(pfn)) {
8471                        pfn++;
8472                        continue;
8473                }
8474                page = pfn_to_page(pfn);
8475                /*
8476                 * The HWPoisoned page may be not in buddy system, and
8477                 * page_count() is not 0.
8478                 */
8479                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8480                        pfn++;
8481                        SetPageReserved(page);
8482                        offlined_pages++;
8483                        continue;
8484                }
8485
8486                BUG_ON(page_count(page));
8487                BUG_ON(!PageBuddy(page));
8488                order = page_order(page);
8489                offlined_pages += 1 << order;
8490#ifdef CONFIG_DEBUG_VM
8491                pr_info("remove from free list %lx %d %lx\n",
8492                        pfn, 1 << order, end_pfn);
8493#endif
8494                del_page_from_free_area(page, &zone->free_area[order]);
8495                for (i = 0; i < (1 << order); i++)
8496                        SetPageReserved((page+i));
8497                pfn += (1 << order);
8498        }
8499        spin_unlock_irqrestore(&zone->lock, flags);
8500
8501        return offlined_pages;
8502}
8503#endif
8504
8505bool is_free_buddy_page(struct page *page)
8506{
8507        struct zone *zone = page_zone(page);
8508        unsigned long pfn = page_to_pfn(page);
8509        unsigned long flags;
8510        unsigned int order;
8511
8512        spin_lock_irqsave(&zone->lock, flags);
8513        for (order = 0; order < MAX_ORDER; order++) {
8514                struct page *page_head = page - (pfn & ((1 << order) - 1));
8515
8516                if (PageBuddy(page_head) && page_order(page_head) >= order)
8517                        break;
8518        }
8519        spin_unlock_irqrestore(&zone->lock, flags);
8520
8521        return order < MAX_ORDER;
8522}
8523
8524#ifdef CONFIG_MEMORY_FAILURE
8525/*
8526 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8527 * test is performed under the zone lock to prevent a race against page
8528 * allocation.
8529 */
8530bool set_hwpoison_free_buddy_page(struct page *page)
8531{
8532        struct zone *zone = page_zone(page);
8533        unsigned long pfn = page_to_pfn(page);
8534        unsigned long flags;
8535        unsigned int order;
8536        bool hwpoisoned = false;
8537
8538        spin_lock_irqsave(&zone->lock, flags);
8539        for (order = 0; order < MAX_ORDER; order++) {
8540                struct page *page_head = page - (pfn & ((1 << order) - 1));
8541
8542                if (PageBuddy(page_head) && page_order(page_head) >= order) {
8543                        if (!TestSetPageHWPoison(page))
8544                                hwpoisoned = true;
8545                        break;
8546                }
8547        }
8548        spin_unlock_irqrestore(&zone->lock, flags);
8549
8550        return hwpoisoned;
8551}
8552#endif
8553