linux/mm/page_io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/page_io.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, 
   8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
   9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/gfp.h>
  17#include <linux/pagemap.h>
  18#include <linux/swap.h>
  19#include <linux/bio.h>
  20#include <linux/swapops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/writeback.h>
  23#include <linux/frontswap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uio.h>
  26#include <linux/sched/task.h>
  27#include <asm/pgtable.h>
  28
  29static struct bio *get_swap_bio(gfp_t gfp_flags,
  30                                struct page *page, bio_end_io_t end_io)
  31{
  32        struct bio *bio;
  33
  34        bio = bio_alloc(gfp_flags, 1);
  35        if (bio) {
  36                struct block_device *bdev;
  37
  38                bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  39                bio_set_dev(bio, bdev);
  40                bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  41                bio->bi_end_io = end_io;
  42
  43                bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
  44        }
  45        return bio;
  46}
  47
  48void end_swap_bio_write(struct bio *bio)
  49{
  50        struct page *page = bio_first_page_all(bio);
  51
  52        if (bio->bi_status) {
  53                SetPageError(page);
  54                /*
  55                 * We failed to write the page out to swap-space.
  56                 * Re-dirty the page in order to avoid it being reclaimed.
  57                 * Also print a dire warning that things will go BAD (tm)
  58                 * very quickly.
  59                 *
  60                 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  61                 */
  62                set_page_dirty(page);
  63                pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  64                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  65                         (unsigned long long)bio->bi_iter.bi_sector);
  66                ClearPageReclaim(page);
  67        }
  68        end_page_writeback(page);
  69        bio_put(bio);
  70}
  71
  72static void swap_slot_free_notify(struct page *page)
  73{
  74        struct swap_info_struct *sis;
  75        struct gendisk *disk;
  76
  77        /*
  78         * There is no guarantee that the page is in swap cache - the software
  79         * suspend code (at least) uses end_swap_bio_read() against a non-
  80         * swapcache page.  So we must check PG_swapcache before proceeding with
  81         * this optimization.
  82         */
  83        if (unlikely(!PageSwapCache(page)))
  84                return;
  85
  86        sis = page_swap_info(page);
  87        if (!(sis->flags & SWP_BLKDEV))
  88                return;
  89
  90        /*
  91         * The swap subsystem performs lazy swap slot freeing,
  92         * expecting that the page will be swapped out again.
  93         * So we can avoid an unnecessary write if the page
  94         * isn't redirtied.
  95         * This is good for real swap storage because we can
  96         * reduce unnecessary I/O and enhance wear-leveling
  97         * if an SSD is used as the as swap device.
  98         * But if in-memory swap device (eg zram) is used,
  99         * this causes a duplicated copy between uncompressed
 100         * data in VM-owned memory and compressed data in
 101         * zram-owned memory.  So let's free zram-owned memory
 102         * and make the VM-owned decompressed page *dirty*,
 103         * so the page should be swapped out somewhere again if
 104         * we again wish to reclaim it.
 105         */
 106        disk = sis->bdev->bd_disk;
 107        if (disk->fops->swap_slot_free_notify) {
 108                swp_entry_t entry;
 109                unsigned long offset;
 110
 111                entry.val = page_private(page);
 112                offset = swp_offset(entry);
 113
 114                SetPageDirty(page);
 115                disk->fops->swap_slot_free_notify(sis->bdev,
 116                                offset);
 117        }
 118}
 119
 120static void end_swap_bio_read(struct bio *bio)
 121{
 122        struct page *page = bio_first_page_all(bio);
 123        struct task_struct *waiter = bio->bi_private;
 124
 125        if (bio->bi_status) {
 126                SetPageError(page);
 127                ClearPageUptodate(page);
 128                pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
 129                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 130                         (unsigned long long)bio->bi_iter.bi_sector);
 131                goto out;
 132        }
 133
 134        SetPageUptodate(page);
 135        swap_slot_free_notify(page);
 136out:
 137        unlock_page(page);
 138        WRITE_ONCE(bio->bi_private, NULL);
 139        bio_put(bio);
 140        if (waiter) {
 141                blk_wake_io_task(waiter);
 142                put_task_struct(waiter);
 143        }
 144}
 145
 146int generic_swapfile_activate(struct swap_info_struct *sis,
 147                                struct file *swap_file,
 148                                sector_t *span)
 149{
 150        struct address_space *mapping = swap_file->f_mapping;
 151        struct inode *inode = mapping->host;
 152        unsigned blocks_per_page;
 153        unsigned long page_no;
 154        unsigned blkbits;
 155        sector_t probe_block;
 156        sector_t last_block;
 157        sector_t lowest_block = -1;
 158        sector_t highest_block = 0;
 159        int nr_extents = 0;
 160        int ret;
 161
 162        blkbits = inode->i_blkbits;
 163        blocks_per_page = PAGE_SIZE >> blkbits;
 164
 165        /*
 166         * Map all the blocks into the extent list.  This code doesn't try
 167         * to be very smart.
 168         */
 169        probe_block = 0;
 170        page_no = 0;
 171        last_block = i_size_read(inode) >> blkbits;
 172        while ((probe_block + blocks_per_page) <= last_block &&
 173                        page_no < sis->max) {
 174                unsigned block_in_page;
 175                sector_t first_block;
 176
 177                cond_resched();
 178
 179                first_block = bmap(inode, probe_block);
 180                if (first_block == 0)
 181                        goto bad_bmap;
 182
 183                /*
 184                 * It must be PAGE_SIZE aligned on-disk
 185                 */
 186                if (first_block & (blocks_per_page - 1)) {
 187                        probe_block++;
 188                        goto reprobe;
 189                }
 190
 191                for (block_in_page = 1; block_in_page < blocks_per_page;
 192                                        block_in_page++) {
 193                        sector_t block;
 194
 195                        block = bmap(inode, probe_block + block_in_page);
 196                        if (block == 0)
 197                                goto bad_bmap;
 198                        if (block != first_block + block_in_page) {
 199                                /* Discontiguity */
 200                                probe_block++;
 201                                goto reprobe;
 202                        }
 203                }
 204
 205                first_block >>= (PAGE_SHIFT - blkbits);
 206                if (page_no) {  /* exclude the header page */
 207                        if (first_block < lowest_block)
 208                                lowest_block = first_block;
 209                        if (first_block > highest_block)
 210                                highest_block = first_block;
 211                }
 212
 213                /*
 214                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
 215                 */
 216                ret = add_swap_extent(sis, page_no, 1, first_block);
 217                if (ret < 0)
 218                        goto out;
 219                nr_extents += ret;
 220                page_no++;
 221                probe_block += blocks_per_page;
 222reprobe:
 223                continue;
 224        }
 225        ret = nr_extents;
 226        *span = 1 + highest_block - lowest_block;
 227        if (page_no == 0)
 228                page_no = 1;    /* force Empty message */
 229        sis->max = page_no;
 230        sis->pages = page_no - 1;
 231        sis->highest_bit = page_no - 1;
 232out:
 233        return ret;
 234bad_bmap:
 235        pr_err("swapon: swapfile has holes\n");
 236        ret = -EINVAL;
 237        goto out;
 238}
 239
 240/*
 241 * We may have stale swap cache pages in memory: notice
 242 * them here and get rid of the unnecessary final write.
 243 */
 244int swap_writepage(struct page *page, struct writeback_control *wbc)
 245{
 246        int ret = 0;
 247
 248        if (try_to_free_swap(page)) {
 249                unlock_page(page);
 250                goto out;
 251        }
 252        if (frontswap_store(page) == 0) {
 253                set_page_writeback(page);
 254                unlock_page(page);
 255                end_page_writeback(page);
 256                goto out;
 257        }
 258        ret = __swap_writepage(page, wbc, end_swap_bio_write);
 259out:
 260        return ret;
 261}
 262
 263static sector_t swap_page_sector(struct page *page)
 264{
 265        return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 266}
 267
 268static inline void count_swpout_vm_event(struct page *page)
 269{
 270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 271        if (unlikely(PageTransHuge(page)))
 272                count_vm_event(THP_SWPOUT);
 273#endif
 274        count_vm_events(PSWPOUT, hpage_nr_pages(page));
 275}
 276
 277int __swap_writepage(struct page *page, struct writeback_control *wbc,
 278                bio_end_io_t end_write_func)
 279{
 280        struct bio *bio;
 281        int ret;
 282        struct swap_info_struct *sis = page_swap_info(page);
 283
 284        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 285        if (sis->flags & SWP_FS) {
 286                struct kiocb kiocb;
 287                struct file *swap_file = sis->swap_file;
 288                struct address_space *mapping = swap_file->f_mapping;
 289                struct bio_vec bv = {
 290                        .bv_page = page,
 291                        .bv_len  = PAGE_SIZE,
 292                        .bv_offset = 0
 293                };
 294                struct iov_iter from;
 295
 296                iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
 297                init_sync_kiocb(&kiocb, swap_file);
 298                kiocb.ki_pos = page_file_offset(page);
 299
 300                set_page_writeback(page);
 301                unlock_page(page);
 302                ret = mapping->a_ops->direct_IO(&kiocb, &from);
 303                if (ret == PAGE_SIZE) {
 304                        count_vm_event(PSWPOUT);
 305                        ret = 0;
 306                } else {
 307                        /*
 308                         * In the case of swap-over-nfs, this can be a
 309                         * temporary failure if the system has limited
 310                         * memory for allocating transmit buffers.
 311                         * Mark the page dirty and avoid
 312                         * rotate_reclaimable_page but rate-limit the
 313                         * messages but do not flag PageError like
 314                         * the normal direct-to-bio case as it could
 315                         * be temporary.
 316                         */
 317                        set_page_dirty(page);
 318                        ClearPageReclaim(page);
 319                        pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
 320                                           page_file_offset(page));
 321                }
 322                end_page_writeback(page);
 323                return ret;
 324        }
 325
 326        ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
 327        if (!ret) {
 328                count_swpout_vm_event(page);
 329                return 0;
 330        }
 331
 332        ret = 0;
 333        bio = get_swap_bio(GFP_NOIO, page, end_write_func);
 334        if (bio == NULL) {
 335                set_page_dirty(page);
 336                unlock_page(page);
 337                ret = -ENOMEM;
 338                goto out;
 339        }
 340        bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
 341        bio_associate_blkg_from_page(bio, page);
 342        count_swpout_vm_event(page);
 343        set_page_writeback(page);
 344        unlock_page(page);
 345        submit_bio(bio);
 346out:
 347        return ret;
 348}
 349
 350int swap_readpage(struct page *page, bool synchronous)
 351{
 352        struct bio *bio;
 353        int ret = 0;
 354        struct swap_info_struct *sis = page_swap_info(page);
 355        blk_qc_t qc;
 356        struct gendisk *disk;
 357
 358        VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
 359        VM_BUG_ON_PAGE(!PageLocked(page), page);
 360        VM_BUG_ON_PAGE(PageUptodate(page), page);
 361        if (frontswap_load(page) == 0) {
 362                SetPageUptodate(page);
 363                unlock_page(page);
 364                goto out;
 365        }
 366
 367        if (sis->flags & SWP_FS) {
 368                struct file *swap_file = sis->swap_file;
 369                struct address_space *mapping = swap_file->f_mapping;
 370
 371                ret = mapping->a_ops->readpage(swap_file, page);
 372                if (!ret)
 373                        count_vm_event(PSWPIN);
 374                return ret;
 375        }
 376
 377        ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
 378        if (!ret) {
 379                if (trylock_page(page)) {
 380                        swap_slot_free_notify(page);
 381                        unlock_page(page);
 382                }
 383
 384                count_vm_event(PSWPIN);
 385                return 0;
 386        }
 387
 388        ret = 0;
 389        bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
 390        if (bio == NULL) {
 391                unlock_page(page);
 392                ret = -ENOMEM;
 393                goto out;
 394        }
 395        disk = bio->bi_disk;
 396        /*
 397         * Keep this task valid during swap readpage because the oom killer may
 398         * attempt to access it in the page fault retry time check.
 399         */
 400        bio_set_op_attrs(bio, REQ_OP_READ, 0);
 401        if (synchronous) {
 402                bio->bi_opf |= REQ_HIPRI;
 403                get_task_struct(current);
 404                bio->bi_private = current;
 405        }
 406        count_vm_event(PSWPIN);
 407        bio_get(bio);
 408        qc = submit_bio(bio);
 409        while (synchronous) {
 410                set_current_state(TASK_UNINTERRUPTIBLE);
 411                if (!READ_ONCE(bio->bi_private))
 412                        break;
 413
 414                if (!blk_poll(disk->queue, qc, true))
 415                        io_schedule();
 416        }
 417        __set_current_state(TASK_RUNNING);
 418        bio_put(bio);
 419
 420out:
 421        return ret;
 422}
 423
 424int swap_set_page_dirty(struct page *page)
 425{
 426        struct swap_info_struct *sis = page_swap_info(page);
 427
 428        if (sis->flags & SWP_FS) {
 429                struct address_space *mapping = sis->swap_file->f_mapping;
 430
 431                VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 432                return mapping->a_ops->set_page_dirty(page);
 433        } else {
 434                return __set_page_dirty_no_writeback(page);
 435        }
 436}
 437