linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/cpu.h>
 104#include        <linux/sysctl.h>
 105#include        <linux/module.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  ((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB          ((slab_flags_t __force)0x80000000U)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365/*
 366 * Do not go above this order unless 0 objects fit into the slab or
 367 * overridden on the command line.
 368 */
 369#define SLAB_MAX_ORDER_HI       1
 370#define SLAB_MAX_ORDER_LO       0
 371static int slab_max_order = SLAB_MAX_ORDER_LO;
 372static bool slab_max_order_set __initdata;
 373
 374static inline struct kmem_cache *virt_to_cache(const void *obj)
 375{
 376        struct page *page = virt_to_head_page(obj);
 377        return page->slab_cache;
 378}
 379
 380static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 381                                 unsigned int idx)
 382{
 383        return page->s_mem + cache->size * idx;
 384}
 385
 386#define BOOT_CPUCACHE_ENTRIES   1
 387/* internal cache of cache description objs */
 388static struct kmem_cache kmem_cache_boot = {
 389        .batchcount = 1,
 390        .limit = BOOT_CPUCACHE_ENTRIES,
 391        .shared = 1,
 392        .size = sizeof(struct kmem_cache),
 393        .name = "kmem_cache",
 394};
 395
 396static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 397
 398static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 399{
 400        return this_cpu_ptr(cachep->cpu_cache);
 401}
 402
 403/*
 404 * Calculate the number of objects and left-over bytes for a given buffer size.
 405 */
 406static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 407                slab_flags_t flags, size_t *left_over)
 408{
 409        unsigned int num;
 410        size_t slab_size = PAGE_SIZE << gfporder;
 411
 412        /*
 413         * The slab management structure can be either off the slab or
 414         * on it. For the latter case, the memory allocated for a
 415         * slab is used for:
 416         *
 417         * - @buffer_size bytes for each object
 418         * - One freelist_idx_t for each object
 419         *
 420         * We don't need to consider alignment of freelist because
 421         * freelist will be at the end of slab page. The objects will be
 422         * at the correct alignment.
 423         *
 424         * If the slab management structure is off the slab, then the
 425         * alignment will already be calculated into the size. Because
 426         * the slabs are all pages aligned, the objects will be at the
 427         * correct alignment when allocated.
 428         */
 429        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 430                num = slab_size / buffer_size;
 431                *left_over = slab_size % buffer_size;
 432        } else {
 433                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 434                *left_over = slab_size %
 435                        (buffer_size + sizeof(freelist_idx_t));
 436        }
 437
 438        return num;
 439}
 440
 441#if DEBUG
 442#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 443
 444static void __slab_error(const char *function, struct kmem_cache *cachep,
 445                        char *msg)
 446{
 447        pr_err("slab error in %s(): cache `%s': %s\n",
 448               function, cachep->name, msg);
 449        dump_stack();
 450        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 451}
 452#endif
 453
 454/*
 455 * By default on NUMA we use alien caches to stage the freeing of
 456 * objects allocated from other nodes. This causes massive memory
 457 * inefficiencies when using fake NUMA setup to split memory into a
 458 * large number of small nodes, so it can be disabled on the command
 459 * line
 460  */
 461
 462static int use_alien_caches __read_mostly = 1;
 463static int __init noaliencache_setup(char *s)
 464{
 465        use_alien_caches = 0;
 466        return 1;
 467}
 468__setup("noaliencache", noaliencache_setup);
 469
 470static int __init slab_max_order_setup(char *str)
 471{
 472        get_option(&str, &slab_max_order);
 473        slab_max_order = slab_max_order < 0 ? 0 :
 474                                min(slab_max_order, MAX_ORDER - 1);
 475        slab_max_order_set = true;
 476
 477        return 1;
 478}
 479__setup("slab_max_order=", slab_max_order_setup);
 480
 481#ifdef CONFIG_NUMA
 482/*
 483 * Special reaping functions for NUMA systems called from cache_reap().
 484 * These take care of doing round robin flushing of alien caches (containing
 485 * objects freed on different nodes from which they were allocated) and the
 486 * flushing of remote pcps by calling drain_node_pages.
 487 */
 488static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 489
 490static void init_reap_node(int cpu)
 491{
 492        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 493                                                    node_online_map);
 494}
 495
 496static void next_reap_node(void)
 497{
 498        int node = __this_cpu_read(slab_reap_node);
 499
 500        node = next_node_in(node, node_online_map);
 501        __this_cpu_write(slab_reap_node, node);
 502}
 503
 504#else
 505#define init_reap_node(cpu) do { } while (0)
 506#define next_reap_node(void) do { } while (0)
 507#endif
 508
 509/*
 510 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 511 * via the workqueue/eventd.
 512 * Add the CPU number into the expiration time to minimize the possibility of
 513 * the CPUs getting into lockstep and contending for the global cache chain
 514 * lock.
 515 */
 516static void start_cpu_timer(int cpu)
 517{
 518        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 519
 520        if (reap_work->work.func == NULL) {
 521                init_reap_node(cpu);
 522                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 523                schedule_delayed_work_on(cpu, reap_work,
 524                                        __round_jiffies_relative(HZ, cpu));
 525        }
 526}
 527
 528static void init_arraycache(struct array_cache *ac, int limit, int batch)
 529{
 530        if (ac) {
 531                ac->avail = 0;
 532                ac->limit = limit;
 533                ac->batchcount = batch;
 534                ac->touched = 0;
 535        }
 536}
 537
 538static struct array_cache *alloc_arraycache(int node, int entries,
 539                                            int batchcount, gfp_t gfp)
 540{
 541        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 542        struct array_cache *ac = NULL;
 543
 544        ac = kmalloc_node(memsize, gfp, node);
 545        /*
 546         * The array_cache structures contain pointers to free object.
 547         * However, when such objects are allocated or transferred to another
 548         * cache the pointers are not cleared and they could be counted as
 549         * valid references during a kmemleak scan. Therefore, kmemleak must
 550         * not scan such objects.
 551         */
 552        kmemleak_no_scan(ac);
 553        init_arraycache(ac, entries, batchcount);
 554        return ac;
 555}
 556
 557static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 558                                        struct page *page, void *objp)
 559{
 560        struct kmem_cache_node *n;
 561        int page_node;
 562        LIST_HEAD(list);
 563
 564        page_node = page_to_nid(page);
 565        n = get_node(cachep, page_node);
 566
 567        spin_lock(&n->list_lock);
 568        free_block(cachep, &objp, 1, page_node, &list);
 569        spin_unlock(&n->list_lock);
 570
 571        slabs_destroy(cachep, &list);
 572}
 573
 574/*
 575 * Transfer objects in one arraycache to another.
 576 * Locking must be handled by the caller.
 577 *
 578 * Return the number of entries transferred.
 579 */
 580static int transfer_objects(struct array_cache *to,
 581                struct array_cache *from, unsigned int max)
 582{
 583        /* Figure out how many entries to transfer */
 584        int nr = min3(from->avail, max, to->limit - to->avail);
 585
 586        if (!nr)
 587                return 0;
 588
 589        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 590                        sizeof(void *) *nr);
 591
 592        from->avail -= nr;
 593        to->avail += nr;
 594        return nr;
 595}
 596
 597#ifndef CONFIG_NUMA
 598
 599#define drain_alien_cache(cachep, alien) do { } while (0)
 600#define reap_alien(cachep, n) do { } while (0)
 601
 602static inline struct alien_cache **alloc_alien_cache(int node,
 603                                                int limit, gfp_t gfp)
 604{
 605        return NULL;
 606}
 607
 608static inline void free_alien_cache(struct alien_cache **ac_ptr)
 609{
 610}
 611
 612static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 613{
 614        return 0;
 615}
 616
 617static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 618                gfp_t flags)
 619{
 620        return NULL;
 621}
 622
 623static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 624                 gfp_t flags, int nodeid)
 625{
 626        return NULL;
 627}
 628
 629static inline gfp_t gfp_exact_node(gfp_t flags)
 630{
 631        return flags & ~__GFP_NOFAIL;
 632}
 633
 634#else   /* CONFIG_NUMA */
 635
 636static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 637static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 638
 639static struct alien_cache *__alloc_alien_cache(int node, int entries,
 640                                                int batch, gfp_t gfp)
 641{
 642        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 643        struct alien_cache *alc = NULL;
 644
 645        alc = kmalloc_node(memsize, gfp, node);
 646        if (alc) {
 647                kmemleak_no_scan(alc);
 648                init_arraycache(&alc->ac, entries, batch);
 649                spin_lock_init(&alc->lock);
 650        }
 651        return alc;
 652}
 653
 654static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 655{
 656        struct alien_cache **alc_ptr;
 657        int i;
 658
 659        if (limit > 1)
 660                limit = 12;
 661        alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 662        if (!alc_ptr)
 663                return NULL;
 664
 665        for_each_node(i) {
 666                if (i == node || !node_online(i))
 667                        continue;
 668                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 669                if (!alc_ptr[i]) {
 670                        for (i--; i >= 0; i--)
 671                                kfree(alc_ptr[i]);
 672                        kfree(alc_ptr);
 673                        return NULL;
 674                }
 675        }
 676        return alc_ptr;
 677}
 678
 679static void free_alien_cache(struct alien_cache **alc_ptr)
 680{
 681        int i;
 682
 683        if (!alc_ptr)
 684                return;
 685        for_each_node(i)
 686            kfree(alc_ptr[i]);
 687        kfree(alc_ptr);
 688}
 689
 690static void __drain_alien_cache(struct kmem_cache *cachep,
 691                                struct array_cache *ac, int node,
 692                                struct list_head *list)
 693{
 694        struct kmem_cache_node *n = get_node(cachep, node);
 695
 696        if (ac->avail) {
 697                spin_lock(&n->list_lock);
 698                /*
 699                 * Stuff objects into the remote nodes shared array first.
 700                 * That way we could avoid the overhead of putting the objects
 701                 * into the free lists and getting them back later.
 702                 */
 703                if (n->shared)
 704                        transfer_objects(n->shared, ac, ac->limit);
 705
 706                free_block(cachep, ac->entry, ac->avail, node, list);
 707                ac->avail = 0;
 708                spin_unlock(&n->list_lock);
 709        }
 710}
 711
 712/*
 713 * Called from cache_reap() to regularly drain alien caches round robin.
 714 */
 715static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 716{
 717        int node = __this_cpu_read(slab_reap_node);
 718
 719        if (n->alien) {
 720                struct alien_cache *alc = n->alien[node];
 721                struct array_cache *ac;
 722
 723                if (alc) {
 724                        ac = &alc->ac;
 725                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 726                                LIST_HEAD(list);
 727
 728                                __drain_alien_cache(cachep, ac, node, &list);
 729                                spin_unlock_irq(&alc->lock);
 730                                slabs_destroy(cachep, &list);
 731                        }
 732                }
 733        }
 734}
 735
 736static void drain_alien_cache(struct kmem_cache *cachep,
 737                                struct alien_cache **alien)
 738{
 739        int i = 0;
 740        struct alien_cache *alc;
 741        struct array_cache *ac;
 742        unsigned long flags;
 743
 744        for_each_online_node(i) {
 745                alc = alien[i];
 746                if (alc) {
 747                        LIST_HEAD(list);
 748
 749                        ac = &alc->ac;
 750                        spin_lock_irqsave(&alc->lock, flags);
 751                        __drain_alien_cache(cachep, ac, i, &list);
 752                        spin_unlock_irqrestore(&alc->lock, flags);
 753                        slabs_destroy(cachep, &list);
 754                }
 755        }
 756}
 757
 758static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 759                                int node, int page_node)
 760{
 761        struct kmem_cache_node *n;
 762        struct alien_cache *alien = NULL;
 763        struct array_cache *ac;
 764        LIST_HEAD(list);
 765
 766        n = get_node(cachep, node);
 767        STATS_INC_NODEFREES(cachep);
 768        if (n->alien && n->alien[page_node]) {
 769                alien = n->alien[page_node];
 770                ac = &alien->ac;
 771                spin_lock(&alien->lock);
 772                if (unlikely(ac->avail == ac->limit)) {
 773                        STATS_INC_ACOVERFLOW(cachep);
 774                        __drain_alien_cache(cachep, ac, page_node, &list);
 775                }
 776                ac->entry[ac->avail++] = objp;
 777                spin_unlock(&alien->lock);
 778                slabs_destroy(cachep, &list);
 779        } else {
 780                n = get_node(cachep, page_node);
 781                spin_lock(&n->list_lock);
 782                free_block(cachep, &objp, 1, page_node, &list);
 783                spin_unlock(&n->list_lock);
 784                slabs_destroy(cachep, &list);
 785        }
 786        return 1;
 787}
 788
 789static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 790{
 791        int page_node = page_to_nid(virt_to_page(objp));
 792        int node = numa_mem_id();
 793        /*
 794         * Make sure we are not freeing a object from another node to the array
 795         * cache on this cpu.
 796         */
 797        if (likely(node == page_node))
 798                return 0;
 799
 800        return __cache_free_alien(cachep, objp, node, page_node);
 801}
 802
 803/*
 804 * Construct gfp mask to allocate from a specific node but do not reclaim or
 805 * warn about failures.
 806 */
 807static inline gfp_t gfp_exact_node(gfp_t flags)
 808{
 809        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 810}
 811#endif
 812
 813static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 814{
 815        struct kmem_cache_node *n;
 816
 817        /*
 818         * Set up the kmem_cache_node for cpu before we can
 819         * begin anything. Make sure some other cpu on this
 820         * node has not already allocated this
 821         */
 822        n = get_node(cachep, node);
 823        if (n) {
 824                spin_lock_irq(&n->list_lock);
 825                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 826                                cachep->num;
 827                spin_unlock_irq(&n->list_lock);
 828
 829                return 0;
 830        }
 831
 832        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 833        if (!n)
 834                return -ENOMEM;
 835
 836        kmem_cache_node_init(n);
 837        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 838                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 839
 840        n->free_limit =
 841                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 842
 843        /*
 844         * The kmem_cache_nodes don't come and go as CPUs
 845         * come and go.  slab_mutex is sufficient
 846         * protection here.
 847         */
 848        cachep->node[node] = n;
 849
 850        return 0;
 851}
 852
 853#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 854/*
 855 * Allocates and initializes node for a node on each slab cache, used for
 856 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 857 * will be allocated off-node since memory is not yet online for the new node.
 858 * When hotplugging memory or a cpu, existing node are not replaced if
 859 * already in use.
 860 *
 861 * Must hold slab_mutex.
 862 */
 863static int init_cache_node_node(int node)
 864{
 865        int ret;
 866        struct kmem_cache *cachep;
 867
 868        list_for_each_entry(cachep, &slab_caches, list) {
 869                ret = init_cache_node(cachep, node, GFP_KERNEL);
 870                if (ret)
 871                        return ret;
 872        }
 873
 874        return 0;
 875}
 876#endif
 877
 878static int setup_kmem_cache_node(struct kmem_cache *cachep,
 879                                int node, gfp_t gfp, bool force_change)
 880{
 881        int ret = -ENOMEM;
 882        struct kmem_cache_node *n;
 883        struct array_cache *old_shared = NULL;
 884        struct array_cache *new_shared = NULL;
 885        struct alien_cache **new_alien = NULL;
 886        LIST_HEAD(list);
 887
 888        if (use_alien_caches) {
 889                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 890                if (!new_alien)
 891                        goto fail;
 892        }
 893
 894        if (cachep->shared) {
 895                new_shared = alloc_arraycache(node,
 896                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 897                if (!new_shared)
 898                        goto fail;
 899        }
 900
 901        ret = init_cache_node(cachep, node, gfp);
 902        if (ret)
 903                goto fail;
 904
 905        n = get_node(cachep, node);
 906        spin_lock_irq(&n->list_lock);
 907        if (n->shared && force_change) {
 908                free_block(cachep, n->shared->entry,
 909                                n->shared->avail, node, &list);
 910                n->shared->avail = 0;
 911        }
 912
 913        if (!n->shared || force_change) {
 914                old_shared = n->shared;
 915                n->shared = new_shared;
 916                new_shared = NULL;
 917        }
 918
 919        if (!n->alien) {
 920                n->alien = new_alien;
 921                new_alien = NULL;
 922        }
 923
 924        spin_unlock_irq(&n->list_lock);
 925        slabs_destroy(cachep, &list);
 926
 927        /*
 928         * To protect lockless access to n->shared during irq disabled context.
 929         * If n->shared isn't NULL in irq disabled context, accessing to it is
 930         * guaranteed to be valid until irq is re-enabled, because it will be
 931         * freed after synchronize_rcu().
 932         */
 933        if (old_shared && force_change)
 934                synchronize_rcu();
 935
 936fail:
 937        kfree(old_shared);
 938        kfree(new_shared);
 939        free_alien_cache(new_alien);
 940
 941        return ret;
 942}
 943
 944#ifdef CONFIG_SMP
 945
 946static void cpuup_canceled(long cpu)
 947{
 948        struct kmem_cache *cachep;
 949        struct kmem_cache_node *n = NULL;
 950        int node = cpu_to_mem(cpu);
 951        const struct cpumask *mask = cpumask_of_node(node);
 952
 953        list_for_each_entry(cachep, &slab_caches, list) {
 954                struct array_cache *nc;
 955                struct array_cache *shared;
 956                struct alien_cache **alien;
 957                LIST_HEAD(list);
 958
 959                n = get_node(cachep, node);
 960                if (!n)
 961                        continue;
 962
 963                spin_lock_irq(&n->list_lock);
 964
 965                /* Free limit for this kmem_cache_node */
 966                n->free_limit -= cachep->batchcount;
 967
 968                /* cpu is dead; no one can alloc from it. */
 969                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 970                free_block(cachep, nc->entry, nc->avail, node, &list);
 971                nc->avail = 0;
 972
 973                if (!cpumask_empty(mask)) {
 974                        spin_unlock_irq(&n->list_lock);
 975                        goto free_slab;
 976                }
 977
 978                shared = n->shared;
 979                if (shared) {
 980                        free_block(cachep, shared->entry,
 981                                   shared->avail, node, &list);
 982                        n->shared = NULL;
 983                }
 984
 985                alien = n->alien;
 986                n->alien = NULL;
 987
 988                spin_unlock_irq(&n->list_lock);
 989
 990                kfree(shared);
 991                if (alien) {
 992                        drain_alien_cache(cachep, alien);
 993                        free_alien_cache(alien);
 994                }
 995
 996free_slab:
 997                slabs_destroy(cachep, &list);
 998        }
 999        /*
1000         * In the previous loop, all the objects were freed to
1001         * the respective cache's slabs,  now we can go ahead and
1002         * shrink each nodelist to its limit.
1003         */
1004        list_for_each_entry(cachep, &slab_caches, list) {
1005                n = get_node(cachep, node);
1006                if (!n)
1007                        continue;
1008                drain_freelist(cachep, n, INT_MAX);
1009        }
1010}
1011
1012static int cpuup_prepare(long cpu)
1013{
1014        struct kmem_cache *cachep;
1015        int node = cpu_to_mem(cpu);
1016        int err;
1017
1018        /*
1019         * We need to do this right in the beginning since
1020         * alloc_arraycache's are going to use this list.
1021         * kmalloc_node allows us to add the slab to the right
1022         * kmem_cache_node and not this cpu's kmem_cache_node
1023         */
1024        err = init_cache_node_node(node);
1025        if (err < 0)
1026                goto bad;
1027
1028        /*
1029         * Now we can go ahead with allocating the shared arrays and
1030         * array caches
1031         */
1032        list_for_each_entry(cachep, &slab_caches, list) {
1033                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1034                if (err)
1035                        goto bad;
1036        }
1037
1038        return 0;
1039bad:
1040        cpuup_canceled(cpu);
1041        return -ENOMEM;
1042}
1043
1044int slab_prepare_cpu(unsigned int cpu)
1045{
1046        int err;
1047
1048        mutex_lock(&slab_mutex);
1049        err = cpuup_prepare(cpu);
1050        mutex_unlock(&slab_mutex);
1051        return err;
1052}
1053
1054/*
1055 * This is called for a failed online attempt and for a successful
1056 * offline.
1057 *
1058 * Even if all the cpus of a node are down, we don't free the
1059 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1060 * a kmalloc allocation from another cpu for memory from the node of
1061 * the cpu going down.  The list3 structure is usually allocated from
1062 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1063 */
1064int slab_dead_cpu(unsigned int cpu)
1065{
1066        mutex_lock(&slab_mutex);
1067        cpuup_canceled(cpu);
1068        mutex_unlock(&slab_mutex);
1069        return 0;
1070}
1071#endif
1072
1073static int slab_online_cpu(unsigned int cpu)
1074{
1075        start_cpu_timer(cpu);
1076        return 0;
1077}
1078
1079static int slab_offline_cpu(unsigned int cpu)
1080{
1081        /*
1082         * Shutdown cache reaper. Note that the slab_mutex is held so
1083         * that if cache_reap() is invoked it cannot do anything
1084         * expensive but will only modify reap_work and reschedule the
1085         * timer.
1086         */
1087        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1088        /* Now the cache_reaper is guaranteed to be not running. */
1089        per_cpu(slab_reap_work, cpu).work.func = NULL;
1090        return 0;
1091}
1092
1093#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1094/*
1095 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1096 * Returns -EBUSY if all objects cannot be drained so that the node is not
1097 * removed.
1098 *
1099 * Must hold slab_mutex.
1100 */
1101static int __meminit drain_cache_node_node(int node)
1102{
1103        struct kmem_cache *cachep;
1104        int ret = 0;
1105
1106        list_for_each_entry(cachep, &slab_caches, list) {
1107                struct kmem_cache_node *n;
1108
1109                n = get_node(cachep, node);
1110                if (!n)
1111                        continue;
1112
1113                drain_freelist(cachep, n, INT_MAX);
1114
1115                if (!list_empty(&n->slabs_full) ||
1116                    !list_empty(&n->slabs_partial)) {
1117                        ret = -EBUSY;
1118                        break;
1119                }
1120        }
1121        return ret;
1122}
1123
1124static int __meminit slab_memory_callback(struct notifier_block *self,
1125                                        unsigned long action, void *arg)
1126{
1127        struct memory_notify *mnb = arg;
1128        int ret = 0;
1129        int nid;
1130
1131        nid = mnb->status_change_nid;
1132        if (nid < 0)
1133                goto out;
1134
1135        switch (action) {
1136        case MEM_GOING_ONLINE:
1137                mutex_lock(&slab_mutex);
1138                ret = init_cache_node_node(nid);
1139                mutex_unlock(&slab_mutex);
1140                break;
1141        case MEM_GOING_OFFLINE:
1142                mutex_lock(&slab_mutex);
1143                ret = drain_cache_node_node(nid);
1144                mutex_unlock(&slab_mutex);
1145                break;
1146        case MEM_ONLINE:
1147        case MEM_OFFLINE:
1148        case MEM_CANCEL_ONLINE:
1149        case MEM_CANCEL_OFFLINE:
1150                break;
1151        }
1152out:
1153        return notifier_from_errno(ret);
1154}
1155#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1156
1157/*
1158 * swap the static kmem_cache_node with kmalloced memory
1159 */
1160static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1161                                int nodeid)
1162{
1163        struct kmem_cache_node *ptr;
1164
1165        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1166        BUG_ON(!ptr);
1167
1168        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1169        /*
1170         * Do not assume that spinlocks can be initialized via memcpy:
1171         */
1172        spin_lock_init(&ptr->list_lock);
1173
1174        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1175        cachep->node[nodeid] = ptr;
1176}
1177
1178/*
1179 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1180 * size of kmem_cache_node.
1181 */
1182static void __init set_up_node(struct kmem_cache *cachep, int index)
1183{
1184        int node;
1185
1186        for_each_online_node(node) {
1187                cachep->node[node] = &init_kmem_cache_node[index + node];
1188                cachep->node[node]->next_reap = jiffies +
1189                    REAPTIMEOUT_NODE +
1190                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1191        }
1192}
1193
1194/*
1195 * Initialisation.  Called after the page allocator have been initialised and
1196 * before smp_init().
1197 */
1198void __init kmem_cache_init(void)
1199{
1200        int i;
1201
1202        kmem_cache = &kmem_cache_boot;
1203
1204        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1205                use_alien_caches = 0;
1206
1207        for (i = 0; i < NUM_INIT_LISTS; i++)
1208                kmem_cache_node_init(&init_kmem_cache_node[i]);
1209
1210        /*
1211         * Fragmentation resistance on low memory - only use bigger
1212         * page orders on machines with more than 32MB of memory if
1213         * not overridden on the command line.
1214         */
1215        if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1216                slab_max_order = SLAB_MAX_ORDER_HI;
1217
1218        /* Bootstrap is tricky, because several objects are allocated
1219         * from caches that do not exist yet:
1220         * 1) initialize the kmem_cache cache: it contains the struct
1221         *    kmem_cache structures of all caches, except kmem_cache itself:
1222         *    kmem_cache is statically allocated.
1223         *    Initially an __init data area is used for the head array and the
1224         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1225         *    array at the end of the bootstrap.
1226         * 2) Create the first kmalloc cache.
1227         *    The struct kmem_cache for the new cache is allocated normally.
1228         *    An __init data area is used for the head array.
1229         * 3) Create the remaining kmalloc caches, with minimally sized
1230         *    head arrays.
1231         * 4) Replace the __init data head arrays for kmem_cache and the first
1232         *    kmalloc cache with kmalloc allocated arrays.
1233         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1234         *    the other cache's with kmalloc allocated memory.
1235         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1236         */
1237
1238        /* 1) create the kmem_cache */
1239
1240        /*
1241         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1242         */
1243        create_boot_cache(kmem_cache, "kmem_cache",
1244                offsetof(struct kmem_cache, node) +
1245                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1246                                  SLAB_HWCACHE_ALIGN, 0, 0);
1247        list_add(&kmem_cache->list, &slab_caches);
1248        memcg_link_cache(kmem_cache);
1249        slab_state = PARTIAL;
1250
1251        /*
1252         * Initialize the caches that provide memory for the  kmem_cache_node
1253         * structures first.  Without this, further allocations will bug.
1254         */
1255        kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1256                                kmalloc_info[INDEX_NODE].name,
1257                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1258                                0, kmalloc_size(INDEX_NODE));
1259        slab_state = PARTIAL_NODE;
1260        setup_kmalloc_cache_index_table();
1261
1262        slab_early_init = 0;
1263
1264        /* 5) Replace the bootstrap kmem_cache_node */
1265        {
1266                int nid;
1267
1268                for_each_online_node(nid) {
1269                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1270
1271                        init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1272                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1273                }
1274        }
1275
1276        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1277}
1278
1279void __init kmem_cache_init_late(void)
1280{
1281        struct kmem_cache *cachep;
1282
1283        /* 6) resize the head arrays to their final sizes */
1284        mutex_lock(&slab_mutex);
1285        list_for_each_entry(cachep, &slab_caches, list)
1286                if (enable_cpucache(cachep, GFP_NOWAIT))
1287                        BUG();
1288        mutex_unlock(&slab_mutex);
1289
1290        /* Done! */
1291        slab_state = FULL;
1292
1293#ifdef CONFIG_NUMA
1294        /*
1295         * Register a memory hotplug callback that initializes and frees
1296         * node.
1297         */
1298        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1299#endif
1300
1301        /*
1302         * The reap timers are started later, with a module init call: That part
1303         * of the kernel is not yet operational.
1304         */
1305}
1306
1307static int __init cpucache_init(void)
1308{
1309        int ret;
1310
1311        /*
1312         * Register the timers that return unneeded pages to the page allocator
1313         */
1314        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1315                                slab_online_cpu, slab_offline_cpu);
1316        WARN_ON(ret < 0);
1317
1318        return 0;
1319}
1320__initcall(cpucache_init);
1321
1322static noinline void
1323slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1324{
1325#if DEBUG
1326        struct kmem_cache_node *n;
1327        unsigned long flags;
1328        int node;
1329        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1330                                      DEFAULT_RATELIMIT_BURST);
1331
1332        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1333                return;
1334
1335        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1336                nodeid, gfpflags, &gfpflags);
1337        pr_warn("  cache: %s, object size: %d, order: %d\n",
1338                cachep->name, cachep->size, cachep->gfporder);
1339
1340        for_each_kmem_cache_node(cachep, node, n) {
1341                unsigned long total_slabs, free_slabs, free_objs;
1342
1343                spin_lock_irqsave(&n->list_lock, flags);
1344                total_slabs = n->total_slabs;
1345                free_slabs = n->free_slabs;
1346                free_objs = n->free_objects;
1347                spin_unlock_irqrestore(&n->list_lock, flags);
1348
1349                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1350                        node, total_slabs - free_slabs, total_slabs,
1351                        (total_slabs * cachep->num) - free_objs,
1352                        total_slabs * cachep->num);
1353        }
1354#endif
1355}
1356
1357/*
1358 * Interface to system's page allocator. No need to hold the
1359 * kmem_cache_node ->list_lock.
1360 *
1361 * If we requested dmaable memory, we will get it. Even if we
1362 * did not request dmaable memory, we might get it, but that
1363 * would be relatively rare and ignorable.
1364 */
1365static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1366                                                                int nodeid)
1367{
1368        struct page *page;
1369        int nr_pages;
1370
1371        flags |= cachep->allocflags;
1372
1373        page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1374        if (!page) {
1375                slab_out_of_memory(cachep, flags, nodeid);
1376                return NULL;
1377        }
1378
1379        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1380                __free_pages(page, cachep->gfporder);
1381                return NULL;
1382        }
1383
1384        nr_pages = (1 << cachep->gfporder);
1385        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1386                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1387        else
1388                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1389
1390        __SetPageSlab(page);
1391        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1392        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1393                SetPageSlabPfmemalloc(page);
1394
1395        return page;
1396}
1397
1398/*
1399 * Interface to system's page release.
1400 */
1401static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1402{
1403        int order = cachep->gfporder;
1404        unsigned long nr_freed = (1 << order);
1405
1406        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1407                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1408        else
1409                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1410
1411        BUG_ON(!PageSlab(page));
1412        __ClearPageSlabPfmemalloc(page);
1413        __ClearPageSlab(page);
1414        page_mapcount_reset(page);
1415        page->mapping = NULL;
1416
1417        if (current->reclaim_state)
1418                current->reclaim_state->reclaimed_slab += nr_freed;
1419        memcg_uncharge_slab(page, order, cachep);
1420        __free_pages(page, order);
1421}
1422
1423static void kmem_rcu_free(struct rcu_head *head)
1424{
1425        struct kmem_cache *cachep;
1426        struct page *page;
1427
1428        page = container_of(head, struct page, rcu_head);
1429        cachep = page->slab_cache;
1430
1431        kmem_freepages(cachep, page);
1432}
1433
1434#if DEBUG
1435static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1436{
1437        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1438                (cachep->size % PAGE_SIZE) == 0)
1439                return true;
1440
1441        return false;
1442}
1443
1444#ifdef CONFIG_DEBUG_PAGEALLOC
1445static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1446{
1447        if (!is_debug_pagealloc_cache(cachep))
1448                return;
1449
1450        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1451}
1452
1453#else
1454static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1455                                int map) {}
1456
1457#endif
1458
1459static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1460{
1461        int size = cachep->object_size;
1462        addr = &((char *)addr)[obj_offset(cachep)];
1463
1464        memset(addr, val, size);
1465        *(unsigned char *)(addr + size - 1) = POISON_END;
1466}
1467
1468static void dump_line(char *data, int offset, int limit)
1469{
1470        int i;
1471        unsigned char error = 0;
1472        int bad_count = 0;
1473
1474        pr_err("%03x: ", offset);
1475        for (i = 0; i < limit; i++) {
1476                if (data[offset + i] != POISON_FREE) {
1477                        error = data[offset + i];
1478                        bad_count++;
1479                }
1480        }
1481        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1482                        &data[offset], limit, 1);
1483
1484        if (bad_count == 1) {
1485                error ^= POISON_FREE;
1486                if (!(error & (error - 1))) {
1487                        pr_err("Single bit error detected. Probably bad RAM.\n");
1488#ifdef CONFIG_X86
1489                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1490#else
1491                        pr_err("Run a memory test tool.\n");
1492#endif
1493                }
1494        }
1495}
1496#endif
1497
1498#if DEBUG
1499
1500static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1501{
1502        int i, size;
1503        char *realobj;
1504
1505        if (cachep->flags & SLAB_RED_ZONE) {
1506                pr_err("Redzone: 0x%llx/0x%llx\n",
1507                       *dbg_redzone1(cachep, objp),
1508                       *dbg_redzone2(cachep, objp));
1509        }
1510
1511        if (cachep->flags & SLAB_STORE_USER)
1512                pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1513        realobj = (char *)objp + obj_offset(cachep);
1514        size = cachep->object_size;
1515        for (i = 0; i < size && lines; i += 16, lines--) {
1516                int limit;
1517                limit = 16;
1518                if (i + limit > size)
1519                        limit = size - i;
1520                dump_line(realobj, i, limit);
1521        }
1522}
1523
1524static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1525{
1526        char *realobj;
1527        int size, i;
1528        int lines = 0;
1529
1530        if (is_debug_pagealloc_cache(cachep))
1531                return;
1532
1533        realobj = (char *)objp + obj_offset(cachep);
1534        size = cachep->object_size;
1535
1536        for (i = 0; i < size; i++) {
1537                char exp = POISON_FREE;
1538                if (i == size - 1)
1539                        exp = POISON_END;
1540                if (realobj[i] != exp) {
1541                        int limit;
1542                        /* Mismatch ! */
1543                        /* Print header */
1544                        if (lines == 0) {
1545                                pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1546                                       print_tainted(), cachep->name,
1547                                       realobj, size);
1548                                print_objinfo(cachep, objp, 0);
1549                        }
1550                        /* Hexdump the affected line */
1551                        i = (i / 16) * 16;
1552                        limit = 16;
1553                        if (i + limit > size)
1554                                limit = size - i;
1555                        dump_line(realobj, i, limit);
1556                        i += 16;
1557                        lines++;
1558                        /* Limit to 5 lines */
1559                        if (lines > 5)
1560                                break;
1561                }
1562        }
1563        if (lines != 0) {
1564                /* Print some data about the neighboring objects, if they
1565                 * exist:
1566                 */
1567                struct page *page = virt_to_head_page(objp);
1568                unsigned int objnr;
1569
1570                objnr = obj_to_index(cachep, page, objp);
1571                if (objnr) {
1572                        objp = index_to_obj(cachep, page, objnr - 1);
1573                        realobj = (char *)objp + obj_offset(cachep);
1574                        pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1575                        print_objinfo(cachep, objp, 2);
1576                }
1577                if (objnr + 1 < cachep->num) {
1578                        objp = index_to_obj(cachep, page, objnr + 1);
1579                        realobj = (char *)objp + obj_offset(cachep);
1580                        pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1581                        print_objinfo(cachep, objp, 2);
1582                }
1583        }
1584}
1585#endif
1586
1587#if DEBUG
1588static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1589                                                struct page *page)
1590{
1591        int i;
1592
1593        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1594                poison_obj(cachep, page->freelist - obj_offset(cachep),
1595                        POISON_FREE);
1596        }
1597
1598        for (i = 0; i < cachep->num; i++) {
1599                void *objp = index_to_obj(cachep, page, i);
1600
1601                if (cachep->flags & SLAB_POISON) {
1602                        check_poison_obj(cachep, objp);
1603                        slab_kernel_map(cachep, objp, 1);
1604                }
1605                if (cachep->flags & SLAB_RED_ZONE) {
1606                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1607                                slab_error(cachep, "start of a freed object was overwritten");
1608                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1609                                slab_error(cachep, "end of a freed object was overwritten");
1610                }
1611        }
1612}
1613#else
1614static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1615                                                struct page *page)
1616{
1617}
1618#endif
1619
1620/**
1621 * slab_destroy - destroy and release all objects in a slab
1622 * @cachep: cache pointer being destroyed
1623 * @page: page pointer being destroyed
1624 *
1625 * Destroy all the objs in a slab page, and release the mem back to the system.
1626 * Before calling the slab page must have been unlinked from the cache. The
1627 * kmem_cache_node ->list_lock is not held/needed.
1628 */
1629static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1630{
1631        void *freelist;
1632
1633        freelist = page->freelist;
1634        slab_destroy_debugcheck(cachep, page);
1635        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1636                call_rcu(&page->rcu_head, kmem_rcu_free);
1637        else
1638                kmem_freepages(cachep, page);
1639
1640        /*
1641         * From now on, we don't use freelist
1642         * although actual page can be freed in rcu context
1643         */
1644        if (OFF_SLAB(cachep))
1645                kmem_cache_free(cachep->freelist_cache, freelist);
1646}
1647
1648static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1649{
1650        struct page *page, *n;
1651
1652        list_for_each_entry_safe(page, n, list, slab_list) {
1653                list_del(&page->slab_list);
1654                slab_destroy(cachep, page);
1655        }
1656}
1657
1658/**
1659 * calculate_slab_order - calculate size (page order) of slabs
1660 * @cachep: pointer to the cache that is being created
1661 * @size: size of objects to be created in this cache.
1662 * @flags: slab allocation flags
1663 *
1664 * Also calculates the number of objects per slab.
1665 *
1666 * This could be made much more intelligent.  For now, try to avoid using
1667 * high order pages for slabs.  When the gfp() functions are more friendly
1668 * towards high-order requests, this should be changed.
1669 *
1670 * Return: number of left-over bytes in a slab
1671 */
1672static size_t calculate_slab_order(struct kmem_cache *cachep,
1673                                size_t size, slab_flags_t flags)
1674{
1675        size_t left_over = 0;
1676        int gfporder;
1677
1678        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1679                unsigned int num;
1680                size_t remainder;
1681
1682                num = cache_estimate(gfporder, size, flags, &remainder);
1683                if (!num)
1684                        continue;
1685
1686                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1687                if (num > SLAB_OBJ_MAX_NUM)
1688                        break;
1689
1690                if (flags & CFLGS_OFF_SLAB) {
1691                        struct kmem_cache *freelist_cache;
1692                        size_t freelist_size;
1693
1694                        freelist_size = num * sizeof(freelist_idx_t);
1695                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1696                        if (!freelist_cache)
1697                                continue;
1698
1699                        /*
1700                         * Needed to avoid possible looping condition
1701                         * in cache_grow_begin()
1702                         */
1703                        if (OFF_SLAB(freelist_cache))
1704                                continue;
1705
1706                        /* check if off slab has enough benefit */
1707                        if (freelist_cache->size > cachep->size / 2)
1708                                continue;
1709                }
1710
1711                /* Found something acceptable - save it away */
1712                cachep->num = num;
1713                cachep->gfporder = gfporder;
1714                left_over = remainder;
1715
1716                /*
1717                 * A VFS-reclaimable slab tends to have most allocations
1718                 * as GFP_NOFS and we really don't want to have to be allocating
1719                 * higher-order pages when we are unable to shrink dcache.
1720                 */
1721                if (flags & SLAB_RECLAIM_ACCOUNT)
1722                        break;
1723
1724                /*
1725                 * Large number of objects is good, but very large slabs are
1726                 * currently bad for the gfp()s.
1727                 */
1728                if (gfporder >= slab_max_order)
1729                        break;
1730
1731                /*
1732                 * Acceptable internal fragmentation?
1733                 */
1734                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1735                        break;
1736        }
1737        return left_over;
1738}
1739
1740static struct array_cache __percpu *alloc_kmem_cache_cpus(
1741                struct kmem_cache *cachep, int entries, int batchcount)
1742{
1743        int cpu;
1744        size_t size;
1745        struct array_cache __percpu *cpu_cache;
1746
1747        size = sizeof(void *) * entries + sizeof(struct array_cache);
1748        cpu_cache = __alloc_percpu(size, sizeof(void *));
1749
1750        if (!cpu_cache)
1751                return NULL;
1752
1753        for_each_possible_cpu(cpu) {
1754                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1755                                entries, batchcount);
1756        }
1757
1758        return cpu_cache;
1759}
1760
1761static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1762{
1763        if (slab_state >= FULL)
1764                return enable_cpucache(cachep, gfp);
1765
1766        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1767        if (!cachep->cpu_cache)
1768                return 1;
1769
1770        if (slab_state == DOWN) {
1771                /* Creation of first cache (kmem_cache). */
1772                set_up_node(kmem_cache, CACHE_CACHE);
1773        } else if (slab_state == PARTIAL) {
1774                /* For kmem_cache_node */
1775                set_up_node(cachep, SIZE_NODE);
1776        } else {
1777                int node;
1778
1779                for_each_online_node(node) {
1780                        cachep->node[node] = kmalloc_node(
1781                                sizeof(struct kmem_cache_node), gfp, node);
1782                        BUG_ON(!cachep->node[node]);
1783                        kmem_cache_node_init(cachep->node[node]);
1784                }
1785        }
1786
1787        cachep->node[numa_mem_id()]->next_reap =
1788                        jiffies + REAPTIMEOUT_NODE +
1789                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1790
1791        cpu_cache_get(cachep)->avail = 0;
1792        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1793        cpu_cache_get(cachep)->batchcount = 1;
1794        cpu_cache_get(cachep)->touched = 0;
1795        cachep->batchcount = 1;
1796        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1797        return 0;
1798}
1799
1800slab_flags_t kmem_cache_flags(unsigned int object_size,
1801        slab_flags_t flags, const char *name,
1802        void (*ctor)(void *))
1803{
1804        return flags;
1805}
1806
1807struct kmem_cache *
1808__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1809                   slab_flags_t flags, void (*ctor)(void *))
1810{
1811        struct kmem_cache *cachep;
1812
1813        cachep = find_mergeable(size, align, flags, name, ctor);
1814        if (cachep) {
1815                cachep->refcount++;
1816
1817                /*
1818                 * Adjust the object sizes so that we clear
1819                 * the complete object on kzalloc.
1820                 */
1821                cachep->object_size = max_t(int, cachep->object_size, size);
1822        }
1823        return cachep;
1824}
1825
1826static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1827                        size_t size, slab_flags_t flags)
1828{
1829        size_t left;
1830
1831        cachep->num = 0;
1832
1833        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834                return false;
1835
1836        left = calculate_slab_order(cachep, size,
1837                        flags | CFLGS_OBJFREELIST_SLAB);
1838        if (!cachep->num)
1839                return false;
1840
1841        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842                return false;
1843
1844        cachep->colour = left / cachep->colour_off;
1845
1846        return true;
1847}
1848
1849static bool set_off_slab_cache(struct kmem_cache *cachep,
1850                        size_t size, slab_flags_t flags)
1851{
1852        size_t left;
1853
1854        cachep->num = 0;
1855
1856        /*
1857         * Always use on-slab management when SLAB_NOLEAKTRACE
1858         * to avoid recursive calls into kmemleak.
1859         */
1860        if (flags & SLAB_NOLEAKTRACE)
1861                return false;
1862
1863        /*
1864         * Size is large, assume best to place the slab management obj
1865         * off-slab (should allow better packing of objs).
1866         */
1867        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868        if (!cachep->num)
1869                return false;
1870
1871        /*
1872         * If the slab has been placed off-slab, and we have enough space then
1873         * move it on-slab. This is at the expense of any extra colouring.
1874         */
1875        if (left >= cachep->num * sizeof(freelist_idx_t))
1876                return false;
1877
1878        cachep->colour = left / cachep->colour_off;
1879
1880        return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
1884                        size_t size, slab_flags_t flags)
1885{
1886        size_t left;
1887
1888        cachep->num = 0;
1889
1890        left = calculate_slab_order(cachep, size, flags);
1891        if (!cachep->num)
1892                return false;
1893
1894        cachep->colour = left / cachep->colour_off;
1895
1896        return true;
1897}
1898
1899/**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline.  This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923{
1924        size_t ralign = BYTES_PER_WORD;
1925        gfp_t gfp;
1926        int err;
1927        unsigned int size = cachep->size;
1928
1929#if DEBUG
1930#if FORCED_DEBUG
1931        /*
1932         * Enable redzoning and last user accounting, except for caches with
1933         * large objects, if the increased size would increase the object size
1934         * above the next power of two: caches with object sizes just above a
1935         * power of two have a significant amount of internal fragmentation.
1936         */
1937        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938                                                2 * sizeof(unsigned long long)))
1939                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940        if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941                flags |= SLAB_POISON;
1942#endif
1943#endif
1944
1945        /*
1946         * Check that size is in terms of words.  This is needed to avoid
1947         * unaligned accesses for some archs when redzoning is used, and makes
1948         * sure any on-slab bufctl's are also correctly aligned.
1949         */
1950        size = ALIGN(size, BYTES_PER_WORD);
1951
1952        if (flags & SLAB_RED_ZONE) {
1953                ralign = REDZONE_ALIGN;
1954                /* If redzoning, ensure that the second redzone is suitably
1955                 * aligned, by adjusting the object size accordingly. */
1956                size = ALIGN(size, REDZONE_ALIGN);
1957        }
1958
1959        /* 3) caller mandated alignment */
1960        if (ralign < cachep->align) {
1961                ralign = cachep->align;
1962        }
1963        /* disable debug if necessary */
1964        if (ralign > __alignof__(unsigned long long))
1965                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966        /*
1967         * 4) Store it.
1968         */
1969        cachep->align = ralign;
1970        cachep->colour_off = cache_line_size();
1971        /* Offset must be a multiple of the alignment. */
1972        if (cachep->colour_off < cachep->align)
1973                cachep->colour_off = cachep->align;
1974
1975        if (slab_is_available())
1976                gfp = GFP_KERNEL;
1977        else
1978                gfp = GFP_NOWAIT;
1979
1980#if DEBUG
1981
1982        /*
1983         * Both debugging options require word-alignment which is calculated
1984         * into align above.
1985         */
1986        if (flags & SLAB_RED_ZONE) {
1987                /* add space for red zone words */
1988                cachep->obj_offset += sizeof(unsigned long long);
1989                size += 2 * sizeof(unsigned long long);
1990        }
1991        if (flags & SLAB_STORE_USER) {
1992                /* user store requires one word storage behind the end of
1993                 * the real object. But if the second red zone needs to be
1994                 * aligned to 64 bits, we must allow that much space.
1995                 */
1996                if (flags & SLAB_RED_ZONE)
1997                        size += REDZONE_ALIGN;
1998                else
1999                        size += BYTES_PER_WORD;
2000        }
2001#endif
2002
2003        kasan_cache_create(cachep, &size, &flags);
2004
2005        size = ALIGN(size, cachep->align);
2006        /*
2007         * We should restrict the number of objects in a slab to implement
2008         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009         */
2010        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
2014        /*
2015         * To activate debug pagealloc, off-slab management is necessary
2016         * requirement. In early phase of initialization, small sized slab
2017         * doesn't get initialized so it would not be possible. So, we need
2018         * to check size >= 256. It guarantees that all necessary small
2019         * sized slab is initialized in current slab initialization sequence.
2020         */
2021        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2022                size >= 256 && cachep->object_size > cache_line_size()) {
2023                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027                                flags |= CFLGS_OFF_SLAB;
2028                                cachep->obj_offset += tmp_size - size;
2029                                size = tmp_size;
2030                                goto done;
2031                        }
2032                }
2033        }
2034#endif
2035
2036        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037                flags |= CFLGS_OBJFREELIST_SLAB;
2038                goto done;
2039        }
2040
2041        if (set_off_slab_cache(cachep, size, flags)) {
2042                flags |= CFLGS_OFF_SLAB;
2043                goto done;
2044        }
2045
2046        if (set_on_slab_cache(cachep, size, flags))
2047                goto done;
2048
2049        return -E2BIG;
2050
2051done:
2052        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053        cachep->flags = flags;
2054        cachep->allocflags = __GFP_COMP;
2055        if (flags & SLAB_CACHE_DMA)
2056                cachep->allocflags |= GFP_DMA;
2057        if (flags & SLAB_CACHE_DMA32)
2058                cachep->allocflags |= GFP_DMA32;
2059        if (flags & SLAB_RECLAIM_ACCOUNT)
2060                cachep->allocflags |= __GFP_RECLAIMABLE;
2061        cachep->size = size;
2062        cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064#if DEBUG
2065        /*
2066         * If we're going to use the generic kernel_map_pages()
2067         * poisoning, then it's going to smash the contents of
2068         * the redzone and userword anyhow, so switch them off.
2069         */
2070        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071                (cachep->flags & SLAB_POISON) &&
2072                is_debug_pagealloc_cache(cachep))
2073                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076        if (OFF_SLAB(cachep)) {
2077                cachep->freelist_cache =
2078                        kmalloc_slab(cachep->freelist_size, 0u);
2079        }
2080
2081        err = setup_cpu_cache(cachep, gfp);
2082        if (err) {
2083                __kmem_cache_release(cachep);
2084                return err;
2085        }
2086
2087        return 0;
2088}
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093        BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098        BUG_ON(irqs_disabled());
2099}
2100
2101static void check_mutex_acquired(void)
2102{
2103        BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
2106static void check_spinlock_acquired(struct kmem_cache *cachep)
2107{
2108#ifdef CONFIG_SMP
2109        check_irq_off();
2110        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111#endif
2112}
2113
2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115{
2116#ifdef CONFIG_SMP
2117        check_irq_off();
2118        assert_spin_locked(&get_node(cachep, node)->list_lock);
2119#endif
2120}
2121
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on()  do { } while(0)
2125#define check_mutex_acquired()  do { } while(0)
2126#define check_spinlock_acquired(x) do { } while(0)
2127#define check_spinlock_acquired_node(x, y) do { } while(0)
2128#endif
2129
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131                                int node, bool free_all, struct list_head *list)
2132{
2133        int tofree;
2134
2135        if (!ac || !ac->avail)
2136                return;
2137
2138        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139        if (tofree > ac->avail)
2140                tofree = (ac->avail + 1) / 2;
2141
2142        free_block(cachep, ac->entry, tofree, node, list);
2143        ac->avail -= tofree;
2144        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
2146
2147static void do_drain(void *arg)
2148{
2149        struct kmem_cache *cachep = arg;
2150        struct array_cache *ac;
2151        int node = numa_mem_id();
2152        struct kmem_cache_node *n;
2153        LIST_HEAD(list);
2154
2155        check_irq_off();
2156        ac = cpu_cache_get(cachep);
2157        n = get_node(cachep, node);
2158        spin_lock(&n->list_lock);
2159        free_block(cachep, ac->entry, ac->avail, node, &list);
2160        spin_unlock(&n->list_lock);
2161        slabs_destroy(cachep, &list);
2162        ac->avail = 0;
2163}
2164
2165static void drain_cpu_caches(struct kmem_cache *cachep)
2166{
2167        struct kmem_cache_node *n;
2168        int node;
2169        LIST_HEAD(list);
2170
2171        on_each_cpu(do_drain, cachep, 1);
2172        check_irq_on();
2173        for_each_kmem_cache_node(cachep, node, n)
2174                if (n->alien)
2175                        drain_alien_cache(cachep, n->alien);
2176
2177        for_each_kmem_cache_node(cachep, node, n) {
2178                spin_lock_irq(&n->list_lock);
2179                drain_array_locked(cachep, n->shared, node, true, &list);
2180                spin_unlock_irq(&n->list_lock);
2181
2182                slabs_destroy(cachep, &list);
2183        }
2184}
2185
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
2193                        struct kmem_cache_node *n, int tofree)
2194{
2195        struct list_head *p;
2196        int nr_freed;
2197        struct page *page;
2198
2199        nr_freed = 0;
2200        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202                spin_lock_irq(&n->list_lock);
2203                p = n->slabs_free.prev;
2204                if (p == &n->slabs_free) {
2205                        spin_unlock_irq(&n->list_lock);
2206                        goto out;
2207                }
2208
2209                page = list_entry(p, struct page, slab_list);
2210                list_del(&page->slab_list);
2211                n->free_slabs--;
2212                n->total_slabs--;
2213                /*
2214                 * Safe to drop the lock. The slab is no longer linked
2215                 * to the cache.
2216                 */
2217                n->free_objects -= cache->num;
2218                spin_unlock_irq(&n->list_lock);
2219                slab_destroy(cache, page);
2220                nr_freed++;
2221        }
2222out:
2223        return nr_freed;
2224}
2225
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228        int node;
2229        struct kmem_cache_node *n;
2230
2231        for_each_kmem_cache_node(s, node, n)
2232                if (!list_empty(&n->slabs_full) ||
2233                    !list_empty(&n->slabs_partial))
2234                        return false;
2235        return true;
2236}
2237
2238int __kmem_cache_shrink(struct kmem_cache *cachep)
2239{
2240        int ret = 0;
2241        int node;
2242        struct kmem_cache_node *n;
2243
2244        drain_cpu_caches(cachep);
2245
2246        check_irq_on();
2247        for_each_kmem_cache_node(cachep, node, n) {
2248                drain_freelist(cachep, n, INT_MAX);
2249
2250                ret += !list_empty(&n->slabs_full) ||
2251                        !list_empty(&n->slabs_partial);
2252        }
2253        return (ret ? 1 : 0);
2254}
2255
2256#ifdef CONFIG_MEMCG
2257void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2258{
2259        __kmem_cache_shrink(cachep);
2260}
2261#endif
2262
2263int __kmem_cache_shutdown(struct kmem_cache *cachep)
2264{
2265        return __kmem_cache_shrink(cachep);
2266}
2267
2268void __kmem_cache_release(struct kmem_cache *cachep)
2269{
2270        int i;
2271        struct kmem_cache_node *n;
2272
2273        cache_random_seq_destroy(cachep);
2274
2275        free_percpu(cachep->cpu_cache);
2276
2277        /* NUMA: free the node structures */
2278        for_each_kmem_cache_node(cachep, i, n) {
2279                kfree(n->shared);
2280                free_alien_cache(n->alien);
2281                kfree(n);
2282                cachep->node[i] = NULL;
2283        }
2284}
2285
2286/*
2287 * Get the memory for a slab management obj.
2288 *
2289 * For a slab cache when the slab descriptor is off-slab, the
2290 * slab descriptor can't come from the same cache which is being created,
2291 * Because if it is the case, that means we defer the creation of
2292 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2293 * And we eventually call down to __kmem_cache_create(), which
2294 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2295 * This is a "chicken-and-egg" problem.
2296 *
2297 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2298 * which are all initialized during kmem_cache_init().
2299 */
2300static void *alloc_slabmgmt(struct kmem_cache *cachep,
2301                                   struct page *page, int colour_off,
2302                                   gfp_t local_flags, int nodeid)
2303{
2304        void *freelist;
2305        void *addr = page_address(page);
2306
2307        page->s_mem = addr + colour_off;
2308        page->active = 0;
2309
2310        if (OBJFREELIST_SLAB(cachep))
2311                freelist = NULL;
2312        else if (OFF_SLAB(cachep)) {
2313                /* Slab management obj is off-slab. */
2314                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2315                                              local_flags, nodeid);
2316                if (!freelist)
2317                        return NULL;
2318        } else {
2319                /* We will use last bytes at the slab for freelist */
2320                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2321                                cachep->freelist_size;
2322        }
2323
2324        return freelist;
2325}
2326
2327static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2328{
2329        return ((freelist_idx_t *)page->freelist)[idx];
2330}
2331
2332static inline void set_free_obj(struct page *page,
2333                                        unsigned int idx, freelist_idx_t val)
2334{
2335        ((freelist_idx_t *)(page->freelist))[idx] = val;
2336}
2337
2338static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2339{
2340#if DEBUG
2341        int i;
2342
2343        for (i = 0; i < cachep->num; i++) {
2344                void *objp = index_to_obj(cachep, page, i);
2345
2346                if (cachep->flags & SLAB_STORE_USER)
2347                        *dbg_userword(cachep, objp) = NULL;
2348
2349                if (cachep->flags & SLAB_RED_ZONE) {
2350                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2352                }
2353                /*
2354                 * Constructors are not allowed to allocate memory from the same
2355                 * cache which they are a constructor for.  Otherwise, deadlock.
2356                 * They must also be threaded.
2357                 */
2358                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2359                        kasan_unpoison_object_data(cachep,
2360                                                   objp + obj_offset(cachep));
2361                        cachep->ctor(objp + obj_offset(cachep));
2362                        kasan_poison_object_data(
2363                                cachep, objp + obj_offset(cachep));
2364                }
2365
2366                if (cachep->flags & SLAB_RED_ZONE) {
2367                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2368                                slab_error(cachep, "constructor overwrote the end of an object");
2369                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2370                                slab_error(cachep, "constructor overwrote the start of an object");
2371                }
2372                /* need to poison the objs? */
2373                if (cachep->flags & SLAB_POISON) {
2374                        poison_obj(cachep, objp, POISON_FREE);
2375                        slab_kernel_map(cachep, objp, 0);
2376                }
2377        }
2378#endif
2379}
2380
2381#ifdef CONFIG_SLAB_FREELIST_RANDOM
2382/* Hold information during a freelist initialization */
2383union freelist_init_state {
2384        struct {
2385                unsigned int pos;
2386                unsigned int *list;
2387                unsigned int count;
2388        };
2389        struct rnd_state rnd_state;
2390};
2391
2392/*
2393 * Initialize the state based on the randomization methode available.
2394 * return true if the pre-computed list is available, false otherwize.
2395 */
2396static bool freelist_state_initialize(union freelist_init_state *state,
2397                                struct kmem_cache *cachep,
2398                                unsigned int count)
2399{
2400        bool ret;
2401        unsigned int rand;
2402
2403        /* Use best entropy available to define a random shift */
2404        rand = get_random_int();
2405
2406        /* Use a random state if the pre-computed list is not available */
2407        if (!cachep->random_seq) {
2408                prandom_seed_state(&state->rnd_state, rand);
2409                ret = false;
2410        } else {
2411                state->list = cachep->random_seq;
2412                state->count = count;
2413                state->pos = rand % count;
2414                ret = true;
2415        }
2416        return ret;
2417}
2418
2419/* Get the next entry on the list and randomize it using a random shift */
2420static freelist_idx_t next_random_slot(union freelist_init_state *state)
2421{
2422        if (state->pos >= state->count)
2423                state->pos = 0;
2424        return state->list[state->pos++];
2425}
2426
2427/* Swap two freelist entries */
2428static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2429{
2430        swap(((freelist_idx_t *)page->freelist)[a],
2431                ((freelist_idx_t *)page->freelist)[b]);
2432}
2433
2434/*
2435 * Shuffle the freelist initialization state based on pre-computed lists.
2436 * return true if the list was successfully shuffled, false otherwise.
2437 */
2438static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2439{
2440        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2441        union freelist_init_state state;
2442        bool precomputed;
2443
2444        if (count < 2)
2445                return false;
2446
2447        precomputed = freelist_state_initialize(&state, cachep, count);
2448
2449        /* Take a random entry as the objfreelist */
2450        if (OBJFREELIST_SLAB(cachep)) {
2451                if (!precomputed)
2452                        objfreelist = count - 1;
2453                else
2454                        objfreelist = next_random_slot(&state);
2455                page->freelist = index_to_obj(cachep, page, objfreelist) +
2456                                                obj_offset(cachep);
2457                count--;
2458        }
2459
2460        /*
2461         * On early boot, generate the list dynamically.
2462         * Later use a pre-computed list for speed.
2463         */
2464        if (!precomputed) {
2465                for (i = 0; i < count; i++)
2466                        set_free_obj(page, i, i);
2467
2468                /* Fisher-Yates shuffle */
2469                for (i = count - 1; i > 0; i--) {
2470                        rand = prandom_u32_state(&state.rnd_state);
2471                        rand %= (i + 1);
2472                        swap_free_obj(page, i, rand);
2473                }
2474        } else {
2475                for (i = 0; i < count; i++)
2476                        set_free_obj(page, i, next_random_slot(&state));
2477        }
2478
2479        if (OBJFREELIST_SLAB(cachep))
2480                set_free_obj(page, cachep->num - 1, objfreelist);
2481
2482        return true;
2483}
2484#else
2485static inline bool shuffle_freelist(struct kmem_cache *cachep,
2486                                struct page *page)
2487{
2488        return false;
2489}
2490#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2491
2492static void cache_init_objs(struct kmem_cache *cachep,
2493                            struct page *page)
2494{
2495        int i;
2496        void *objp;
2497        bool shuffled;
2498
2499        cache_init_objs_debug(cachep, page);
2500
2501        /* Try to randomize the freelist if enabled */
2502        shuffled = shuffle_freelist(cachep, page);
2503
2504        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2505                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2506                                                obj_offset(cachep);
2507        }
2508
2509        for (i = 0; i < cachep->num; i++) {
2510                objp = index_to_obj(cachep, page, i);
2511                objp = kasan_init_slab_obj(cachep, objp);
2512
2513                /* constructor could break poison info */
2514                if (DEBUG == 0 && cachep->ctor) {
2515                        kasan_unpoison_object_data(cachep, objp);
2516                        cachep->ctor(objp);
2517                        kasan_poison_object_data(cachep, objp);
2518                }
2519
2520                if (!shuffled)
2521                        set_free_obj(page, i, i);
2522        }
2523}
2524
2525static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2526{
2527        void *objp;
2528
2529        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2530        page->active++;
2531
2532        return objp;
2533}
2534
2535static void slab_put_obj(struct kmem_cache *cachep,
2536                        struct page *page, void *objp)
2537{
2538        unsigned int objnr = obj_to_index(cachep, page, objp);
2539#if DEBUG
2540        unsigned int i;
2541
2542        /* Verify double free bug */
2543        for (i = page->active; i < cachep->num; i++) {
2544                if (get_free_obj(page, i) == objnr) {
2545                        pr_err("slab: double free detected in cache '%s', objp %px\n",
2546                               cachep->name, objp);
2547                        BUG();
2548                }
2549        }
2550#endif
2551        page->active--;
2552        if (!page->freelist)
2553                page->freelist = objp + obj_offset(cachep);
2554
2555        set_free_obj(page, page->active, objnr);
2556}
2557
2558/*
2559 * Map pages beginning at addr to the given cache and slab. This is required
2560 * for the slab allocator to be able to lookup the cache and slab of a
2561 * virtual address for kfree, ksize, and slab debugging.
2562 */
2563static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2564                           void *freelist)
2565{
2566        page->slab_cache = cache;
2567        page->freelist = freelist;
2568}
2569
2570/*
2571 * Grow (by 1) the number of slabs within a cache.  This is called by
2572 * kmem_cache_alloc() when there are no active objs left in a cache.
2573 */
2574static struct page *cache_grow_begin(struct kmem_cache *cachep,
2575                                gfp_t flags, int nodeid)
2576{
2577        void *freelist;
2578        size_t offset;
2579        gfp_t local_flags;
2580        int page_node;
2581        struct kmem_cache_node *n;
2582        struct page *page;
2583
2584        /*
2585         * Be lazy and only check for valid flags here,  keeping it out of the
2586         * critical path in kmem_cache_alloc().
2587         */
2588        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2589                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2590                flags &= ~GFP_SLAB_BUG_MASK;
2591                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2592                                invalid_mask, &invalid_mask, flags, &flags);
2593                dump_stack();
2594        }
2595        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2596        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2597
2598        check_irq_off();
2599        if (gfpflags_allow_blocking(local_flags))
2600                local_irq_enable();
2601
2602        /*
2603         * Get mem for the objs.  Attempt to allocate a physical page from
2604         * 'nodeid'.
2605         */
2606        page = kmem_getpages(cachep, local_flags, nodeid);
2607        if (!page)
2608                goto failed;
2609
2610        page_node = page_to_nid(page);
2611        n = get_node(cachep, page_node);
2612
2613        /* Get colour for the slab, and cal the next value. */
2614        n->colour_next++;
2615        if (n->colour_next >= cachep->colour)
2616                n->colour_next = 0;
2617
2618        offset = n->colour_next;
2619        if (offset >= cachep->colour)
2620                offset = 0;
2621
2622        offset *= cachep->colour_off;
2623
2624        /*
2625         * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2626         * page_address() in the latter returns a non-tagged pointer,
2627         * as it should be for slab pages.
2628         */
2629        kasan_poison_slab(page);
2630
2631        /* Get slab management. */
2632        freelist = alloc_slabmgmt(cachep, page, offset,
2633                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2634        if (OFF_SLAB(cachep) && !freelist)
2635                goto opps1;
2636
2637        slab_map_pages(cachep, page, freelist);
2638
2639        cache_init_objs(cachep, page);
2640
2641        if (gfpflags_allow_blocking(local_flags))
2642                local_irq_disable();
2643
2644        return page;
2645
2646opps1:
2647        kmem_freepages(cachep, page);
2648failed:
2649        if (gfpflags_allow_blocking(local_flags))
2650                local_irq_disable();
2651        return NULL;
2652}
2653
2654static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2655{
2656        struct kmem_cache_node *n;
2657        void *list = NULL;
2658
2659        check_irq_off();
2660
2661        if (!page)
2662                return;
2663
2664        INIT_LIST_HEAD(&page->slab_list);
2665        n = get_node(cachep, page_to_nid(page));
2666
2667        spin_lock(&n->list_lock);
2668        n->total_slabs++;
2669        if (!page->active) {
2670                list_add_tail(&page->slab_list, &n->slabs_free);
2671                n->free_slabs++;
2672        } else
2673                fixup_slab_list(cachep, n, page, &list);
2674
2675        STATS_INC_GROWN(cachep);
2676        n->free_objects += cachep->num - page->active;
2677        spin_unlock(&n->list_lock);
2678
2679        fixup_objfreelist_debug(cachep, &list);
2680}
2681
2682#if DEBUG
2683
2684/*
2685 * Perform extra freeing checks:
2686 * - detect bad pointers.
2687 * - POISON/RED_ZONE checking
2688 */
2689static void kfree_debugcheck(const void *objp)
2690{
2691        if (!virt_addr_valid(objp)) {
2692                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2693                       (unsigned long)objp);
2694                BUG();
2695        }
2696}
2697
2698static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2699{
2700        unsigned long long redzone1, redzone2;
2701
2702        redzone1 = *dbg_redzone1(cache, obj);
2703        redzone2 = *dbg_redzone2(cache, obj);
2704
2705        /*
2706         * Redzone is ok.
2707         */
2708        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2709                return;
2710
2711        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2712                slab_error(cache, "double free detected");
2713        else
2714                slab_error(cache, "memory outside object was overwritten");
2715
2716        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2717               obj, redzone1, redzone2);
2718}
2719
2720static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2721                                   unsigned long caller)
2722{
2723        unsigned int objnr;
2724        struct page *page;
2725
2726        BUG_ON(virt_to_cache(objp) != cachep);
2727
2728        objp -= obj_offset(cachep);
2729        kfree_debugcheck(objp);
2730        page = virt_to_head_page(objp);
2731
2732        if (cachep->flags & SLAB_RED_ZONE) {
2733                verify_redzone_free(cachep, objp);
2734                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2735                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2736        }
2737        if (cachep->flags & SLAB_STORE_USER)
2738                *dbg_userword(cachep, objp) = (void *)caller;
2739
2740        objnr = obj_to_index(cachep, page, objp);
2741
2742        BUG_ON(objnr >= cachep->num);
2743        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2744
2745        if (cachep->flags & SLAB_POISON) {
2746                poison_obj(cachep, objp, POISON_FREE);
2747                slab_kernel_map(cachep, objp, 0);
2748        }
2749        return objp;
2750}
2751
2752#else
2753#define kfree_debugcheck(x) do { } while(0)
2754#define cache_free_debugcheck(x,objp,z) (objp)
2755#endif
2756
2757static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2758                                                void **list)
2759{
2760#if DEBUG
2761        void *next = *list;
2762        void *objp;
2763
2764        while (next) {
2765                objp = next - obj_offset(cachep);
2766                next = *(void **)next;
2767                poison_obj(cachep, objp, POISON_FREE);
2768        }
2769#endif
2770}
2771
2772static inline void fixup_slab_list(struct kmem_cache *cachep,
2773                                struct kmem_cache_node *n, struct page *page,
2774                                void **list)
2775{
2776        /* move slabp to correct slabp list: */
2777        list_del(&page->slab_list);
2778        if (page->active == cachep->num) {
2779                list_add(&page->slab_list, &n->slabs_full);
2780                if (OBJFREELIST_SLAB(cachep)) {
2781#if DEBUG
2782                        /* Poisoning will be done without holding the lock */
2783                        if (cachep->flags & SLAB_POISON) {
2784                                void **objp = page->freelist;
2785
2786                                *objp = *list;
2787                                *list = objp;
2788                        }
2789#endif
2790                        page->freelist = NULL;
2791                }
2792        } else
2793                list_add(&page->slab_list, &n->slabs_partial);
2794}
2795
2796/* Try to find non-pfmemalloc slab if needed */
2797static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2798                                        struct page *page, bool pfmemalloc)
2799{
2800        if (!page)
2801                return NULL;
2802
2803        if (pfmemalloc)
2804                return page;
2805
2806        if (!PageSlabPfmemalloc(page))
2807                return page;
2808
2809        /* No need to keep pfmemalloc slab if we have enough free objects */
2810        if (n->free_objects > n->free_limit) {
2811                ClearPageSlabPfmemalloc(page);
2812                return page;
2813        }
2814
2815        /* Move pfmemalloc slab to the end of list to speed up next search */
2816        list_del(&page->slab_list);
2817        if (!page->active) {
2818                list_add_tail(&page->slab_list, &n->slabs_free);
2819                n->free_slabs++;
2820        } else
2821                list_add_tail(&page->slab_list, &n->slabs_partial);
2822
2823        list_for_each_entry(page, &n->slabs_partial, slab_list) {
2824                if (!PageSlabPfmemalloc(page))
2825                        return page;
2826        }
2827
2828        n->free_touched = 1;
2829        list_for_each_entry(page, &n->slabs_free, slab_list) {
2830                if (!PageSlabPfmemalloc(page)) {
2831                        n->free_slabs--;
2832                        return page;
2833                }
2834        }
2835
2836        return NULL;
2837}
2838
2839static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2840{
2841        struct page *page;
2842
2843        assert_spin_locked(&n->list_lock);
2844        page = list_first_entry_or_null(&n->slabs_partial, struct page,
2845                                        slab_list);
2846        if (!page) {
2847                n->free_touched = 1;
2848                page = list_first_entry_or_null(&n->slabs_free, struct page,
2849                                                slab_list);
2850                if (page)
2851                        n->free_slabs--;
2852        }
2853
2854        if (sk_memalloc_socks())
2855                page = get_valid_first_slab(n, page, pfmemalloc);
2856
2857        return page;
2858}
2859
2860static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2861                                struct kmem_cache_node *n, gfp_t flags)
2862{
2863        struct page *page;
2864        void *obj;
2865        void *list = NULL;
2866
2867        if (!gfp_pfmemalloc_allowed(flags))
2868                return NULL;
2869
2870        spin_lock(&n->list_lock);
2871        page = get_first_slab(n, true);
2872        if (!page) {
2873                spin_unlock(&n->list_lock);
2874                return NULL;
2875        }
2876
2877        obj = slab_get_obj(cachep, page);
2878        n->free_objects--;
2879
2880        fixup_slab_list(cachep, n, page, &list);
2881
2882        spin_unlock(&n->list_lock);
2883        fixup_objfreelist_debug(cachep, &list);
2884
2885        return obj;
2886}
2887
2888/*
2889 * Slab list should be fixed up by fixup_slab_list() for existing slab
2890 * or cache_grow_end() for new slab
2891 */
2892static __always_inline int alloc_block(struct kmem_cache *cachep,
2893                struct array_cache *ac, struct page *page, int batchcount)
2894{
2895        /*
2896         * There must be at least one object available for
2897         * allocation.
2898         */
2899        BUG_ON(page->active >= cachep->num);
2900
2901        while (page->active < cachep->num && batchcount--) {
2902                STATS_INC_ALLOCED(cachep);
2903                STATS_INC_ACTIVE(cachep);
2904                STATS_SET_HIGH(cachep);
2905
2906                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2907        }
2908
2909        return batchcount;
2910}
2911
2912static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2913{
2914        int batchcount;
2915        struct kmem_cache_node *n;
2916        struct array_cache *ac, *shared;
2917        int node;
2918        void *list = NULL;
2919        struct page *page;
2920
2921        check_irq_off();
2922        node = numa_mem_id();
2923
2924        ac = cpu_cache_get(cachep);
2925        batchcount = ac->batchcount;
2926        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2927                /*
2928                 * If there was little recent activity on this cache, then
2929                 * perform only a partial refill.  Otherwise we could generate
2930                 * refill bouncing.
2931                 */
2932                batchcount = BATCHREFILL_LIMIT;
2933        }
2934        n = get_node(cachep, node);
2935
2936        BUG_ON(ac->avail > 0 || !n);
2937        shared = READ_ONCE(n->shared);
2938        if (!n->free_objects && (!shared || !shared->avail))
2939                goto direct_grow;
2940
2941        spin_lock(&n->list_lock);
2942        shared = READ_ONCE(n->shared);
2943
2944        /* See if we can refill from the shared array */
2945        if (shared && transfer_objects(ac, shared, batchcount)) {
2946                shared->touched = 1;
2947                goto alloc_done;
2948        }
2949
2950        while (batchcount > 0) {
2951                /* Get slab alloc is to come from. */
2952                page = get_first_slab(n, false);
2953                if (!page)
2954                        goto must_grow;
2955
2956                check_spinlock_acquired(cachep);
2957
2958                batchcount = alloc_block(cachep, ac, page, batchcount);
2959                fixup_slab_list(cachep, n, page, &list);
2960        }
2961
2962must_grow:
2963        n->free_objects -= ac->avail;
2964alloc_done:
2965        spin_unlock(&n->list_lock);
2966        fixup_objfreelist_debug(cachep, &list);
2967
2968direct_grow:
2969        if (unlikely(!ac->avail)) {
2970                /* Check if we can use obj in pfmemalloc slab */
2971                if (sk_memalloc_socks()) {
2972                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2973
2974                        if (obj)
2975                                return obj;
2976                }
2977
2978                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2979
2980                /*
2981                 * cache_grow_begin() can reenable interrupts,
2982                 * then ac could change.
2983                 */
2984                ac = cpu_cache_get(cachep);
2985                if (!ac->avail && page)
2986                        alloc_block(cachep, ac, page, batchcount);
2987                cache_grow_end(cachep, page);
2988
2989                if (!ac->avail)
2990                        return NULL;
2991        }
2992        ac->touched = 1;
2993
2994        return ac->entry[--ac->avail];
2995}
2996
2997static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2998                                                gfp_t flags)
2999{
3000        might_sleep_if(gfpflags_allow_blocking(flags));
3001}
3002
3003#if DEBUG
3004static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3005                                gfp_t flags, void *objp, unsigned long caller)
3006{
3007        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3008        if (!objp)
3009                return objp;
3010        if (cachep->flags & SLAB_POISON) {
3011                check_poison_obj(cachep, objp);
3012                slab_kernel_map(cachep, objp, 1);
3013                poison_obj(cachep, objp, POISON_INUSE);
3014        }
3015        if (cachep->flags & SLAB_STORE_USER)
3016                *dbg_userword(cachep, objp) = (void *)caller;
3017
3018        if (cachep->flags & SLAB_RED_ZONE) {
3019                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3020                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3021                        slab_error(cachep, "double free, or memory outside object was overwritten");
3022                        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3023                               objp, *dbg_redzone1(cachep, objp),
3024                               *dbg_redzone2(cachep, objp));
3025                }
3026                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3027                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3028        }
3029
3030        objp += obj_offset(cachep);
3031        if (cachep->ctor && cachep->flags & SLAB_POISON)
3032                cachep->ctor(objp);
3033        if (ARCH_SLAB_MINALIGN &&
3034            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3035                pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3036                       objp, (int)ARCH_SLAB_MINALIGN);
3037        }
3038        return objp;
3039}
3040#else
3041#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3042#endif
3043
3044static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3045{
3046        void *objp;
3047        struct array_cache *ac;
3048
3049        check_irq_off();
3050
3051        ac = cpu_cache_get(cachep);
3052        if (likely(ac->avail)) {
3053                ac->touched = 1;
3054                objp = ac->entry[--ac->avail];
3055
3056                STATS_INC_ALLOCHIT(cachep);
3057                goto out;
3058        }
3059
3060        STATS_INC_ALLOCMISS(cachep);
3061        objp = cache_alloc_refill(cachep, flags);
3062        /*
3063         * the 'ac' may be updated by cache_alloc_refill(),
3064         * and kmemleak_erase() requires its correct value.
3065         */
3066        ac = cpu_cache_get(cachep);
3067
3068out:
3069        /*
3070         * To avoid a false negative, if an object that is in one of the
3071         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3072         * treat the array pointers as a reference to the object.
3073         */
3074        if (objp)
3075                kmemleak_erase(&ac->entry[ac->avail]);
3076        return objp;
3077}
3078
3079#ifdef CONFIG_NUMA
3080/*
3081 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3082 *
3083 * If we are in_interrupt, then process context, including cpusets and
3084 * mempolicy, may not apply and should not be used for allocation policy.
3085 */
3086static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3087{
3088        int nid_alloc, nid_here;
3089
3090        if (in_interrupt() || (flags & __GFP_THISNODE))
3091                return NULL;
3092        nid_alloc = nid_here = numa_mem_id();
3093        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3094                nid_alloc = cpuset_slab_spread_node();
3095        else if (current->mempolicy)
3096                nid_alloc = mempolicy_slab_node();
3097        if (nid_alloc != nid_here)
3098                return ____cache_alloc_node(cachep, flags, nid_alloc);
3099        return NULL;
3100}
3101
3102/*
3103 * Fallback function if there was no memory available and no objects on a
3104 * certain node and fall back is permitted. First we scan all the
3105 * available node for available objects. If that fails then we
3106 * perform an allocation without specifying a node. This allows the page
3107 * allocator to do its reclaim / fallback magic. We then insert the
3108 * slab into the proper nodelist and then allocate from it.
3109 */
3110static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3111{
3112        struct zonelist *zonelist;
3113        struct zoneref *z;
3114        struct zone *zone;
3115        enum zone_type high_zoneidx = gfp_zone(flags);
3116        void *obj = NULL;
3117        struct page *page;
3118        int nid;
3119        unsigned int cpuset_mems_cookie;
3120
3121        if (flags & __GFP_THISNODE)
3122                return NULL;
3123
3124retry_cpuset:
3125        cpuset_mems_cookie = read_mems_allowed_begin();
3126        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3127
3128retry:
3129        /*
3130         * Look through allowed nodes for objects available
3131         * from existing per node queues.
3132         */
3133        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3134                nid = zone_to_nid(zone);
3135
3136                if (cpuset_zone_allowed(zone, flags) &&
3137                        get_node(cache, nid) &&
3138                        get_node(cache, nid)->free_objects) {
3139                                obj = ____cache_alloc_node(cache,
3140                                        gfp_exact_node(flags), nid);
3141                                if (obj)
3142                                        break;
3143                }
3144        }
3145
3146        if (!obj) {
3147                /*
3148                 * This allocation will be performed within the constraints
3149                 * of the current cpuset / memory policy requirements.
3150                 * We may trigger various forms of reclaim on the allowed
3151                 * set and go into memory reserves if necessary.
3152                 */
3153                page = cache_grow_begin(cache, flags, numa_mem_id());
3154                cache_grow_end(cache, page);
3155                if (page) {
3156                        nid = page_to_nid(page);
3157                        obj = ____cache_alloc_node(cache,
3158                                gfp_exact_node(flags), nid);
3159
3160                        /*
3161                         * Another processor may allocate the objects in
3162                         * the slab since we are not holding any locks.
3163                         */
3164                        if (!obj)
3165                                goto retry;
3166                }
3167        }
3168
3169        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3170                goto retry_cpuset;
3171        return obj;
3172}
3173
3174/*
3175 * A interface to enable slab creation on nodeid
3176 */
3177static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3178                                int nodeid)
3179{
3180        struct page *page;
3181        struct kmem_cache_node *n;
3182        void *obj = NULL;
3183        void *list = NULL;
3184
3185        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3186        n = get_node(cachep, nodeid);
3187        BUG_ON(!n);
3188
3189        check_irq_off();
3190        spin_lock(&n->list_lock);
3191        page = get_first_slab(n, false);
3192        if (!page)
3193                goto must_grow;
3194
3195        check_spinlock_acquired_node(cachep, nodeid);
3196
3197        STATS_INC_NODEALLOCS(cachep);
3198        STATS_INC_ACTIVE(cachep);
3199        STATS_SET_HIGH(cachep);
3200
3201        BUG_ON(page->active == cachep->num);
3202
3203        obj = slab_get_obj(cachep, page);
3204        n->free_objects--;
3205
3206        fixup_slab_list(cachep, n, page, &list);
3207
3208        spin_unlock(&n->list_lock);
3209        fixup_objfreelist_debug(cachep, &list);
3210        return obj;
3211
3212must_grow:
3213        spin_unlock(&n->list_lock);
3214        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3215        if (page) {
3216                /* This slab isn't counted yet so don't update free_objects */
3217                obj = slab_get_obj(cachep, page);
3218        }
3219        cache_grow_end(cachep, page);
3220
3221        return obj ? obj : fallback_alloc(cachep, flags);
3222}
3223
3224static __always_inline void *
3225slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3226                   unsigned long caller)
3227{
3228        unsigned long save_flags;
3229        void *ptr;
3230        int slab_node = numa_mem_id();
3231
3232        flags &= gfp_allowed_mask;
3233        cachep = slab_pre_alloc_hook(cachep, flags);
3234        if (unlikely(!cachep))
3235                return NULL;
3236
3237        cache_alloc_debugcheck_before(cachep, flags);
3238        local_irq_save(save_flags);
3239
3240        if (nodeid == NUMA_NO_NODE)
3241                nodeid = slab_node;
3242
3243        if (unlikely(!get_node(cachep, nodeid))) {
3244                /* Node not bootstrapped yet */
3245                ptr = fallback_alloc(cachep, flags);
3246                goto out;
3247        }
3248
3249        if (nodeid == slab_node) {
3250                /*
3251                 * Use the locally cached objects if possible.
3252                 * However ____cache_alloc does not allow fallback
3253                 * to other nodes. It may fail while we still have
3254                 * objects on other nodes available.
3255                 */
3256                ptr = ____cache_alloc(cachep, flags);
3257                if (ptr)
3258                        goto out;
3259        }
3260        /* ___cache_alloc_node can fall back to other nodes */
3261        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3262  out:
3263        local_irq_restore(save_flags);
3264        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3265
3266        if (unlikely(flags & __GFP_ZERO) && ptr)
3267                memset(ptr, 0, cachep->object_size);
3268
3269        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3270        return ptr;
3271}
3272
3273static __always_inline void *
3274__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3275{
3276        void *objp;
3277
3278        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3279                objp = alternate_node_alloc(cache, flags);
3280                if (objp)
3281                        goto out;
3282        }
3283        objp = ____cache_alloc(cache, flags);
3284
3285        /*
3286         * We may just have run out of memory on the local node.
3287         * ____cache_alloc_node() knows how to locate memory on other nodes
3288         */
3289        if (!objp)
3290                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3291
3292  out:
3293        return objp;
3294}
3295#else
3296
3297static __always_inline void *
3298__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3299{
3300        return ____cache_alloc(cachep, flags);
3301}
3302
3303#endif /* CONFIG_NUMA */
3304
3305static __always_inline void *
3306slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3307{
3308        unsigned long save_flags;
3309        void *objp;
3310
3311        flags &= gfp_allowed_mask;
3312        cachep = slab_pre_alloc_hook(cachep, flags);
3313        if (unlikely(!cachep))
3314                return NULL;
3315
3316        cache_alloc_debugcheck_before(cachep, flags);
3317        local_irq_save(save_flags);
3318        objp = __do_cache_alloc(cachep, flags);
3319        local_irq_restore(save_flags);
3320        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3321        prefetchw(objp);
3322
3323        if (unlikely(flags & __GFP_ZERO) && objp)
3324                memset(objp, 0, cachep->object_size);
3325
3326        slab_post_alloc_hook(cachep, flags, 1, &objp);
3327        return objp;
3328}
3329
3330/*
3331 * Caller needs to acquire correct kmem_cache_node's list_lock
3332 * @list: List of detached free slabs should be freed by caller
3333 */
3334static void free_block(struct kmem_cache *cachep, void **objpp,
3335                        int nr_objects, int node, struct list_head *list)
3336{
3337        int i;
3338        struct kmem_cache_node *n = get_node(cachep, node);
3339        struct page *page;
3340
3341        n->free_objects += nr_objects;
3342
3343        for (i = 0; i < nr_objects; i++) {
3344                void *objp;
3345                struct page *page;
3346
3347                objp = objpp[i];
3348
3349                page = virt_to_head_page(objp);
3350                list_del(&page->slab_list);
3351                check_spinlock_acquired_node(cachep, node);
3352                slab_put_obj(cachep, page, objp);
3353                STATS_DEC_ACTIVE(cachep);
3354
3355                /* fixup slab chains */
3356                if (page->active == 0) {
3357                        list_add(&page->slab_list, &n->slabs_free);
3358                        n->free_slabs++;
3359                } else {
3360                        /* Unconditionally move a slab to the end of the
3361                         * partial list on free - maximum time for the
3362                         * other objects to be freed, too.
3363                         */
3364                        list_add_tail(&page->slab_list, &n->slabs_partial);
3365                }
3366        }
3367
3368        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3369                n->free_objects -= cachep->num;
3370
3371                page = list_last_entry(&n->slabs_free, struct page, slab_list);
3372                list_move(&page->slab_list, list);
3373                n->free_slabs--;
3374                n->total_slabs--;
3375        }
3376}
3377
3378static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3379{
3380        int batchcount;
3381        struct kmem_cache_node *n;
3382        int node = numa_mem_id();
3383        LIST_HEAD(list);
3384
3385        batchcount = ac->batchcount;
3386
3387        check_irq_off();
3388        n = get_node(cachep, node);
3389        spin_lock(&n->list_lock);
3390        if (n->shared) {
3391                struct array_cache *shared_array = n->shared;
3392                int max = shared_array->limit - shared_array->avail;
3393                if (max) {
3394                        if (batchcount > max)
3395                                batchcount = max;
3396                        memcpy(&(shared_array->entry[shared_array->avail]),
3397                               ac->entry, sizeof(void *) * batchcount);
3398                        shared_array->avail += batchcount;
3399                        goto free_done;
3400                }
3401        }
3402
3403        free_block(cachep, ac->entry, batchcount, node, &list);
3404free_done:
3405#if STATS
3406        {
3407                int i = 0;
3408                struct page *page;
3409
3410                list_for_each_entry(page, &n->slabs_free, slab_list) {
3411                        BUG_ON(page->active);
3412
3413                        i++;
3414                }
3415                STATS_SET_FREEABLE(cachep, i);
3416        }
3417#endif
3418        spin_unlock(&n->list_lock);
3419        slabs_destroy(cachep, &list);
3420        ac->avail -= batchcount;
3421        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3422}
3423
3424/*
3425 * Release an obj back to its cache. If the obj has a constructed state, it must
3426 * be in this state _before_ it is released.  Called with disabled ints.
3427 */
3428static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3429                                         unsigned long caller)
3430{
3431        /* Put the object into the quarantine, don't touch it for now. */
3432        if (kasan_slab_free(cachep, objp, _RET_IP_))
3433                return;
3434
3435        ___cache_free(cachep, objp, caller);
3436}
3437
3438void ___cache_free(struct kmem_cache *cachep, void *objp,
3439                unsigned long caller)
3440{
3441        struct array_cache *ac = cpu_cache_get(cachep);
3442
3443        check_irq_off();
3444        kmemleak_free_recursive(objp, cachep->flags);
3445        objp = cache_free_debugcheck(cachep, objp, caller);
3446
3447        /*
3448         * Skip calling cache_free_alien() when the platform is not numa.
3449         * This will avoid cache misses that happen while accessing slabp (which
3450         * is per page memory  reference) to get nodeid. Instead use a global
3451         * variable to skip the call, which is mostly likely to be present in
3452         * the cache.
3453         */
3454        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3455                return;
3456
3457        if (ac->avail < ac->limit) {
3458                STATS_INC_FREEHIT(cachep);
3459        } else {
3460                STATS_INC_FREEMISS(cachep);
3461                cache_flusharray(cachep, ac);
3462        }
3463
3464        if (sk_memalloc_socks()) {
3465                struct page *page = virt_to_head_page(objp);
3466
3467                if (unlikely(PageSlabPfmemalloc(page))) {
3468                        cache_free_pfmemalloc(cachep, page, objp);
3469                        return;
3470                }
3471        }
3472
3473        ac->entry[ac->avail++] = objp;
3474}
3475
3476/**
3477 * kmem_cache_alloc - Allocate an object
3478 * @cachep: The cache to allocate from.
3479 * @flags: See kmalloc().
3480 *
3481 * Allocate an object from this cache.  The flags are only relevant
3482 * if the cache has no available objects.
3483 *
3484 * Return: pointer to the new object or %NULL in case of error
3485 */
3486void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3487{
3488        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3489
3490        trace_kmem_cache_alloc(_RET_IP_, ret,
3491                               cachep->object_size, cachep->size, flags);
3492
3493        return ret;
3494}
3495EXPORT_SYMBOL(kmem_cache_alloc);
3496
3497static __always_inline void
3498cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3499                                  size_t size, void **p, unsigned long caller)
3500{
3501        size_t i;
3502
3503        for (i = 0; i < size; i++)
3504                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3505}
3506
3507int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3508                          void **p)
3509{
3510        size_t i;
3511
3512        s = slab_pre_alloc_hook(s, flags);
3513        if (!s)
3514                return 0;
3515
3516        cache_alloc_debugcheck_before(s, flags);
3517
3518        local_irq_disable();
3519        for (i = 0; i < size; i++) {
3520                void *objp = __do_cache_alloc(s, flags);
3521
3522                if (unlikely(!objp))
3523                        goto error;
3524                p[i] = objp;
3525        }
3526        local_irq_enable();
3527
3528        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529
3530        /* Clear memory outside IRQ disabled section */
3531        if (unlikely(flags & __GFP_ZERO))
3532                for (i = 0; i < size; i++)
3533                        memset(p[i], 0, s->object_size);
3534
3535        slab_post_alloc_hook(s, flags, size, p);
3536        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3537        return size;
3538error:
3539        local_irq_enable();
3540        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3541        slab_post_alloc_hook(s, flags, i, p);
3542        __kmem_cache_free_bulk(s, i, p);
3543        return 0;
3544}
3545EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546
3547#ifdef CONFIG_TRACING
3548void *
3549kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3550{
3551        void *ret;
3552
3553        ret = slab_alloc(cachep, flags, _RET_IP_);
3554
3555        ret = kasan_kmalloc(cachep, ret, size, flags);
3556        trace_kmalloc(_RET_IP_, ret,
3557                      size, cachep->size, flags);
3558        return ret;
3559}
3560EXPORT_SYMBOL(kmem_cache_alloc_trace);
3561#endif
3562
3563#ifdef CONFIG_NUMA
3564/**
3565 * kmem_cache_alloc_node - Allocate an object on the specified node
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 * @nodeid: node number of the target node.
3569 *
3570 * Identical to kmem_cache_alloc but it will allocate memory on the given
3571 * node, which can improve the performance for cpu bound structures.
3572 *
3573 * Fallback to other node is possible if __GFP_THISNODE is not set.
3574 *
3575 * Return: pointer to the new object or %NULL in case of error
3576 */
3577void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578{
3579        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3580
3581        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3582                                    cachep->object_size, cachep->size,
3583                                    flags, nodeid);
3584
3585        return ret;
3586}
3587EXPORT_SYMBOL(kmem_cache_alloc_node);
3588
3589#ifdef CONFIG_TRACING
3590void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3591                                  gfp_t flags,
3592                                  int nodeid,
3593                                  size_t size)
3594{
3595        void *ret;
3596
3597        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3598
3599        ret = kasan_kmalloc(cachep, ret, size, flags);
3600        trace_kmalloc_node(_RET_IP_, ret,
3601                           size, cachep->size,
3602                           flags, nodeid);
3603        return ret;
3604}
3605EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3606#endif
3607
3608static __always_inline void *
3609__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3610{
3611        struct kmem_cache *cachep;
3612        void *ret;
3613
3614        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3615                return NULL;
3616        cachep = kmalloc_slab(size, flags);
3617        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3618                return cachep;
3619        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3620        ret = kasan_kmalloc(cachep, ret, size, flags);
3621
3622        return ret;
3623}
3624
3625void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626{
3627        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3628}
3629EXPORT_SYMBOL(__kmalloc_node);
3630
3631void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3632                int node, unsigned long caller)
3633{
3634        return __do_kmalloc_node(size, flags, node, caller);
3635}
3636EXPORT_SYMBOL(__kmalloc_node_track_caller);
3637#endif /* CONFIG_NUMA */
3638
3639/**
3640 * __do_kmalloc - allocate memory
3641 * @size: how many bytes of memory are required.
3642 * @flags: the type of memory to allocate (see kmalloc).
3643 * @caller: function caller for debug tracking of the caller
3644 *
3645 * Return: pointer to the allocated memory or %NULL in case of error
3646 */
3647static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3648                                          unsigned long caller)
3649{
3650        struct kmem_cache *cachep;
3651        void *ret;
3652
3653        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3654                return NULL;
3655        cachep = kmalloc_slab(size, flags);
3656        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657                return cachep;
3658        ret = slab_alloc(cachep, flags, caller);
3659
3660        ret = kasan_kmalloc(cachep, ret, size, flags);
3661        trace_kmalloc(caller, ret,
3662                      size, cachep->size, flags);
3663
3664        return ret;
3665}
3666
3667void *__kmalloc(size_t size, gfp_t flags)
3668{
3669        return __do_kmalloc(size, flags, _RET_IP_);
3670}
3671EXPORT_SYMBOL(__kmalloc);
3672
3673void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3674{
3675        return __do_kmalloc(size, flags, caller);
3676}
3677EXPORT_SYMBOL(__kmalloc_track_caller);
3678
3679/**
3680 * kmem_cache_free - Deallocate an object
3681 * @cachep: The cache the allocation was from.
3682 * @objp: The previously allocated object.
3683 *
3684 * Free an object which was previously allocated from this
3685 * cache.
3686 */
3687void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3688{
3689        unsigned long flags;
3690        cachep = cache_from_obj(cachep, objp);
3691        if (!cachep)
3692                return;
3693
3694        local_irq_save(flags);
3695        debug_check_no_locks_freed(objp, cachep->object_size);
3696        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3697                debug_check_no_obj_freed(objp, cachep->object_size);
3698        __cache_free(cachep, objp, _RET_IP_);
3699        local_irq_restore(flags);
3700
3701        trace_kmem_cache_free(_RET_IP_, objp);
3702}
3703EXPORT_SYMBOL(kmem_cache_free);
3704
3705void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706{
3707        struct kmem_cache *s;
3708        size_t i;
3709
3710        local_irq_disable();
3711        for (i = 0; i < size; i++) {
3712                void *objp = p[i];
3713
3714                if (!orig_s) /* called via kfree_bulk */
3715                        s = virt_to_cache(objp);
3716                else
3717                        s = cache_from_obj(orig_s, objp);
3718
3719                debug_check_no_locks_freed(objp, s->object_size);
3720                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3721                        debug_check_no_obj_freed(objp, s->object_size);
3722
3723                __cache_free(s, objp, _RET_IP_);
3724        }
3725        local_irq_enable();
3726
3727        /* FIXME: add tracing */
3728}
3729EXPORT_SYMBOL(kmem_cache_free_bulk);
3730
3731/**
3732 * kfree - free previously allocated memory
3733 * @objp: pointer returned by kmalloc.
3734 *
3735 * If @objp is NULL, no operation is performed.
3736 *
3737 * Don't free memory not originally allocated by kmalloc()
3738 * or you will run into trouble.
3739 */
3740void kfree(const void *objp)
3741{
3742        struct kmem_cache *c;
3743        unsigned long flags;
3744
3745        trace_kfree(_RET_IP_, objp);
3746
3747        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3748                return;
3749        local_irq_save(flags);
3750        kfree_debugcheck(objp);
3751        c = virt_to_cache(objp);
3752        debug_check_no_locks_freed(objp, c->object_size);
3753
3754        debug_check_no_obj_freed(objp, c->object_size);
3755        __cache_free(c, (void *)objp, _RET_IP_);
3756        local_irq_restore(flags);
3757}
3758EXPORT_SYMBOL(kfree);
3759
3760/*
3761 * This initializes kmem_cache_node or resizes various caches for all nodes.
3762 */
3763static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3764{
3765        int ret;
3766        int node;
3767        struct kmem_cache_node *n;
3768
3769        for_each_online_node(node) {
3770                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3771                if (ret)
3772                        goto fail;
3773
3774        }
3775
3776        return 0;
3777
3778fail:
3779        if (!cachep->list.next) {
3780                /* Cache is not active yet. Roll back what we did */
3781                node--;
3782                while (node >= 0) {
3783                        n = get_node(cachep, node);
3784                        if (n) {
3785                                kfree(n->shared);
3786                                free_alien_cache(n->alien);
3787                                kfree(n);
3788                                cachep->node[node] = NULL;
3789                        }
3790                        node--;
3791                }
3792        }
3793        return -ENOMEM;
3794}
3795
3796/* Always called with the slab_mutex held */
3797static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3798                                int batchcount, int shared, gfp_t gfp)
3799{
3800        struct array_cache __percpu *cpu_cache, *prev;
3801        int cpu;
3802
3803        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3804        if (!cpu_cache)
3805                return -ENOMEM;
3806
3807        prev = cachep->cpu_cache;
3808        cachep->cpu_cache = cpu_cache;
3809        /*
3810         * Without a previous cpu_cache there's no need to synchronize remote
3811         * cpus, so skip the IPIs.
3812         */
3813        if (prev)
3814                kick_all_cpus_sync();
3815
3816        check_irq_on();
3817        cachep->batchcount = batchcount;
3818        cachep->limit = limit;
3819        cachep->shared = shared;
3820
3821        if (!prev)
3822                goto setup_node;
3823
3824        for_each_online_cpu(cpu) {
3825                LIST_HEAD(list);
3826                int node;
3827                struct kmem_cache_node *n;
3828                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3829
3830                node = cpu_to_mem(cpu);
3831                n = get_node(cachep, node);
3832                spin_lock_irq(&n->list_lock);
3833                free_block(cachep, ac->entry, ac->avail, node, &list);
3834                spin_unlock_irq(&n->list_lock);
3835                slabs_destroy(cachep, &list);
3836        }
3837        free_percpu(prev);
3838
3839setup_node:
3840        return setup_kmem_cache_nodes(cachep, gfp);
3841}
3842
3843static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3844                                int batchcount, int shared, gfp_t gfp)
3845{
3846        int ret;
3847        struct kmem_cache *c;
3848
3849        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3850
3851        if (slab_state < FULL)
3852                return ret;
3853
3854        if ((ret < 0) || !is_root_cache(cachep))
3855                return ret;
3856
3857        lockdep_assert_held(&slab_mutex);
3858        for_each_memcg_cache(c, cachep) {
3859                /* return value determined by the root cache only */
3860                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3861        }
3862
3863        return ret;
3864}
3865
3866/* Called with slab_mutex held always */
3867static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3868{
3869        int err;
3870        int limit = 0;
3871        int shared = 0;
3872        int batchcount = 0;
3873
3874        err = cache_random_seq_create(cachep, cachep->num, gfp);
3875        if (err)
3876                goto end;
3877
3878        if (!is_root_cache(cachep)) {
3879                struct kmem_cache *root = memcg_root_cache(cachep);
3880                limit = root->limit;
3881                shared = root->shared;
3882                batchcount = root->batchcount;
3883        }
3884
3885        if (limit && shared && batchcount)
3886                goto skip_setup;
3887        /*
3888         * The head array serves three purposes:
3889         * - create a LIFO ordering, i.e. return objects that are cache-warm
3890         * - reduce the number of spinlock operations.
3891         * - reduce the number of linked list operations on the slab and
3892         *   bufctl chains: array operations are cheaper.
3893         * The numbers are guessed, we should auto-tune as described by
3894         * Bonwick.
3895         */
3896        if (cachep->size > 131072)
3897                limit = 1;
3898        else if (cachep->size > PAGE_SIZE)
3899                limit = 8;
3900        else if (cachep->size > 1024)
3901                limit = 24;
3902        else if (cachep->size > 256)
3903                limit = 54;
3904        else
3905                limit = 120;
3906
3907        /*
3908         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3909         * allocation behaviour: Most allocs on one cpu, most free operations
3910         * on another cpu. For these cases, an efficient object passing between
3911         * cpus is necessary. This is provided by a shared array. The array
3912         * replaces Bonwick's magazine layer.
3913         * On uniprocessor, it's functionally equivalent (but less efficient)
3914         * to a larger limit. Thus disabled by default.
3915         */
3916        shared = 0;
3917        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3918                shared = 8;
3919
3920#if DEBUG
3921        /*
3922         * With debugging enabled, large batchcount lead to excessively long
3923         * periods with disabled local interrupts. Limit the batchcount
3924         */
3925        if (limit > 32)
3926                limit = 32;
3927#endif
3928        batchcount = (limit + 1) / 2;
3929skip_setup:
3930        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3931end:
3932        if (err)
3933                pr_err("enable_cpucache failed for %s, error %d\n",
3934                       cachep->name, -err);
3935        return err;
3936}
3937
3938/*
3939 * Drain an array if it contains any elements taking the node lock only if
3940 * necessary. Note that the node listlock also protects the array_cache
3941 * if drain_array() is used on the shared array.
3942 */
3943static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3944                         struct array_cache *ac, int node)
3945{
3946        LIST_HEAD(list);
3947
3948        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949        check_mutex_acquired();
3950
3951        if (!ac || !ac->avail)
3952                return;
3953
3954        if (ac->touched) {
3955                ac->touched = 0;
3956                return;
3957        }
3958
3959        spin_lock_irq(&n->list_lock);
3960        drain_array_locked(cachep, ac, node, false, &list);
3961        spin_unlock_irq(&n->list_lock);
3962
3963        slabs_destroy(cachep, &list);
3964}
3965
3966/**
3967 * cache_reap - Reclaim memory from caches.
3968 * @w: work descriptor
3969 *
3970 * Called from workqueue/eventd every few seconds.
3971 * Purpose:
3972 * - clear the per-cpu caches for this CPU.
3973 * - return freeable pages to the main free memory pool.
3974 *
3975 * If we cannot acquire the cache chain mutex then just give up - we'll try
3976 * again on the next iteration.
3977 */
3978static void cache_reap(struct work_struct *w)
3979{
3980        struct kmem_cache *searchp;
3981        struct kmem_cache_node *n;
3982        int node = numa_mem_id();
3983        struct delayed_work *work = to_delayed_work(w);
3984
3985        if (!mutex_trylock(&slab_mutex))
3986                /* Give up. Setup the next iteration. */
3987                goto out;
3988
3989        list_for_each_entry(searchp, &slab_caches, list) {
3990                check_irq_on();
3991
3992                /*
3993                 * We only take the node lock if absolutely necessary and we
3994                 * have established with reasonable certainty that
3995                 * we can do some work if the lock was obtained.
3996                 */
3997                n = get_node(searchp, node);
3998
3999                reap_alien(searchp, n);
4000
4001                drain_array(searchp, n, cpu_cache_get(searchp), node);
4002
4003                /*
4004                 * These are racy checks but it does not matter
4005                 * if we skip one check or scan twice.
4006                 */
4007                if (time_after(n->next_reap, jiffies))
4008                        goto next;
4009
4010                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4011
4012                drain_array(searchp, n, n->shared, node);
4013
4014                if (n->free_touched)
4015                        n->free_touched = 0;
4016                else {
4017                        int freed;
4018
4019                        freed = drain_freelist(searchp, n, (n->free_limit +
4020                                5 * searchp->num - 1) / (5 * searchp->num));
4021                        STATS_ADD_REAPED(searchp, freed);
4022                }
4023next:
4024                cond_resched();
4025        }
4026        check_irq_on();
4027        mutex_unlock(&slab_mutex);
4028        next_reap_node();
4029out:
4030        /* Set up the next iteration */
4031        schedule_delayed_work_on(smp_processor_id(), work,
4032                                round_jiffies_relative(REAPTIMEOUT_AC));
4033}
4034
4035void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4036{
4037        unsigned long active_objs, num_objs, active_slabs;
4038        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4039        unsigned long free_slabs = 0;
4040        int node;
4041        struct kmem_cache_node *n;
4042
4043        for_each_kmem_cache_node(cachep, node, n) {
4044                check_irq_on();
4045                spin_lock_irq(&n->list_lock);
4046
4047                total_slabs += n->total_slabs;
4048                free_slabs += n->free_slabs;
4049                free_objs += n->free_objects;
4050
4051                if (n->shared)
4052                        shared_avail += n->shared->avail;
4053
4054                spin_unlock_irq(&n->list_lock);
4055        }
4056        num_objs = total_slabs * cachep->num;
4057        active_slabs = total_slabs - free_slabs;
4058        active_objs = num_objs - free_objs;
4059
4060        sinfo->active_objs = active_objs;
4061        sinfo->num_objs = num_objs;
4062        sinfo->active_slabs = active_slabs;
4063        sinfo->num_slabs = total_slabs;
4064        sinfo->shared_avail = shared_avail;
4065        sinfo->limit = cachep->limit;
4066        sinfo->batchcount = cachep->batchcount;
4067        sinfo->shared = cachep->shared;
4068        sinfo->objects_per_slab = cachep->num;
4069        sinfo->cache_order = cachep->gfporder;
4070}
4071
4072void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4073{
4074#if STATS
4075        {                       /* node stats */
4076                unsigned long high = cachep->high_mark;
4077                unsigned long allocs = cachep->num_allocations;
4078                unsigned long grown = cachep->grown;
4079                unsigned long reaped = cachep->reaped;
4080                unsigned long errors = cachep->errors;
4081                unsigned long max_freeable = cachep->max_freeable;
4082                unsigned long node_allocs = cachep->node_allocs;
4083                unsigned long node_frees = cachep->node_frees;
4084                unsigned long overflows = cachep->node_overflow;
4085
4086                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4087                           allocs, high, grown,
4088                           reaped, errors, max_freeable, node_allocs,
4089                           node_frees, overflows);
4090        }
4091        /* cpu stats */
4092        {
4093                unsigned long allochit = atomic_read(&cachep->allochit);
4094                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4095                unsigned long freehit = atomic_read(&cachep->freehit);
4096                unsigned long freemiss = atomic_read(&cachep->freemiss);
4097
4098                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4099                           allochit, allocmiss, freehit, freemiss);
4100        }
4101#endif
4102}
4103
4104#define MAX_SLABINFO_WRITE 128
4105/**
4106 * slabinfo_write - Tuning for the slab allocator
4107 * @file: unused
4108 * @buffer: user buffer
4109 * @count: data length
4110 * @ppos: unused
4111 *
4112 * Return: %0 on success, negative error code otherwise.
4113 */
4114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4115                       size_t count, loff_t *ppos)
4116{
4117        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4118        int limit, batchcount, shared, res;
4119        struct kmem_cache *cachep;
4120
4121        if (count > MAX_SLABINFO_WRITE)
4122                return -EINVAL;
4123        if (copy_from_user(&kbuf, buffer, count))
4124                return -EFAULT;
4125        kbuf[MAX_SLABINFO_WRITE] = '\0';
4126
4127        tmp = strchr(kbuf, ' ');
4128        if (!tmp)
4129                return -EINVAL;
4130        *tmp = '\0';
4131        tmp++;
4132        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4133                return -EINVAL;
4134
4135        /* Find the cache in the chain of caches. */
4136        mutex_lock(&slab_mutex);
4137        res = -EINVAL;
4138        list_for_each_entry(cachep, &slab_caches, list) {
4139                if (!strcmp(cachep->name, kbuf)) {
4140                        if (limit < 1 || batchcount < 1 ||
4141                                        batchcount > limit || shared < 0) {
4142                                res = 0;
4143                        } else {
4144                                res = do_tune_cpucache(cachep, limit,
4145                                                       batchcount, shared,
4146                                                       GFP_KERNEL);
4147                        }
4148                        break;
4149                }
4150        }
4151        mutex_unlock(&slab_mutex);
4152        if (res >= 0)
4153                res = count;
4154        return res;
4155}
4156
4157#ifdef CONFIG_HARDENED_USERCOPY
4158/*
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
4162 *
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4165 */
4166void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167                         bool to_user)
4168{
4169        struct kmem_cache *cachep;
4170        unsigned int objnr;
4171        unsigned long offset;
4172
4173        ptr = kasan_reset_tag(ptr);
4174
4175        /* Find and validate object. */
4176        cachep = page->slab_cache;
4177        objnr = obj_to_index(cachep, page, (void *)ptr);
4178        BUG_ON(objnr >= cachep->num);
4179
4180        /* Find offset within object. */
4181        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4182
4183        /* Allow address range falling entirely within usercopy region. */
4184        if (offset >= cachep->useroffset &&
4185            offset - cachep->useroffset <= cachep->usersize &&
4186            n <= cachep->useroffset - offset + cachep->usersize)
4187                return;
4188
4189        /*
4190         * If the copy is still within the allocated object, produce
4191         * a warning instead of rejecting the copy. This is intended
4192         * to be a temporary method to find any missing usercopy
4193         * whitelists.
4194         */
4195        if (usercopy_fallback &&
4196            offset <= cachep->object_size &&
4197            n <= cachep->object_size - offset) {
4198                usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4199                return;
4200        }
4201
4202        usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4203}
4204#endif /* CONFIG_HARDENED_USERCOPY */
4205
4206/**
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4209 *
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
4217 *
4218 * Return: size of the actual memory used by @objp in bytes
4219 */
4220size_t ksize(const void *objp)
4221{
4222        size_t size;
4223
4224        BUG_ON(!objp);
4225        if (unlikely(objp == ZERO_SIZE_PTR))
4226                return 0;
4227
4228        size = virt_to_cache(objp)->object_size;
4229        /* We assume that ksize callers could use the whole allocated area,
4230         * so we need to unpoison this area.
4231         */
4232        kasan_unpoison_shadow(objp, size);
4233
4234        return size;
4235}
4236EXPORT_SYMBOL(ksize);
4237