linux/mm/slab_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <asm/cacheflush.h>
  21#include <asm/tlbflush.h>
  22#include <asm/page.h>
  23#include <linux/memcontrol.h>
  24
  25#define CREATE_TRACE_POINTS
  26#include <trace/events/kmem.h>
  27
  28#include "slab.h"
  29
  30enum slab_state slab_state;
  31LIST_HEAD(slab_caches);
  32DEFINE_MUTEX(slab_mutex);
  33struct kmem_cache *kmem_cache;
  34
  35#ifdef CONFIG_HARDENED_USERCOPY
  36bool usercopy_fallback __ro_after_init =
  37                IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  38module_param(usercopy_fallback, bool, 0400);
  39MODULE_PARM_DESC(usercopy_fallback,
  40                "WARN instead of reject usercopy whitelist violations");
  41#endif
  42
  43static LIST_HEAD(slab_caches_to_rcu_destroy);
  44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  46                    slab_caches_to_rcu_destroy_workfn);
  47
  48/*
  49 * Set of flags that will prevent slab merging
  50 */
  51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  52                SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  53                SLAB_FAILSLAB | SLAB_KASAN)
  54
  55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  56                         SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  57
  58/*
  59 * Merge control. If this is set then no merging of slab caches will occur.
  60 */
  61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  62
  63static int __init setup_slab_nomerge(char *str)
  64{
  65        slab_nomerge = true;
  66        return 1;
  67}
  68
  69#ifdef CONFIG_SLUB
  70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  71#endif
  72
  73__setup("slab_nomerge", setup_slab_nomerge);
  74
  75/*
  76 * Determine the size of a slab object
  77 */
  78unsigned int kmem_cache_size(struct kmem_cache *s)
  79{
  80        return s->object_size;
  81}
  82EXPORT_SYMBOL(kmem_cache_size);
  83
  84#ifdef CONFIG_DEBUG_VM
  85static int kmem_cache_sanity_check(const char *name, unsigned int size)
  86{
  87        if (!name || in_interrupt() || size < sizeof(void *) ||
  88                size > KMALLOC_MAX_SIZE) {
  89                pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  90                return -EINVAL;
  91        }
  92
  93        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
  94        return 0;
  95}
  96#else
  97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
  98{
  99        return 0;
 100}
 101#endif
 102
 103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 104{
 105        size_t i;
 106
 107        for (i = 0; i < nr; i++) {
 108                if (s)
 109                        kmem_cache_free(s, p[i]);
 110                else
 111                        kfree(p[i]);
 112        }
 113}
 114
 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 116                                                                void **p)
 117{
 118        size_t i;
 119
 120        for (i = 0; i < nr; i++) {
 121                void *x = p[i] = kmem_cache_alloc(s, flags);
 122                if (!x) {
 123                        __kmem_cache_free_bulk(s, i, p);
 124                        return 0;
 125                }
 126        }
 127        return i;
 128}
 129
 130#ifdef CONFIG_MEMCG_KMEM
 131
 132LIST_HEAD(slab_root_caches);
 133
 134void slab_init_memcg_params(struct kmem_cache *s)
 135{
 136        s->memcg_params.root_cache = NULL;
 137        RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 138        INIT_LIST_HEAD(&s->memcg_params.children);
 139        s->memcg_params.dying = false;
 140}
 141
 142static int init_memcg_params(struct kmem_cache *s,
 143                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 144{
 145        struct memcg_cache_array *arr;
 146
 147        if (root_cache) {
 148                s->memcg_params.root_cache = root_cache;
 149                s->memcg_params.memcg = memcg;
 150                INIT_LIST_HEAD(&s->memcg_params.children_node);
 151                INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 152                return 0;
 153        }
 154
 155        slab_init_memcg_params(s);
 156
 157        if (!memcg_nr_cache_ids)
 158                return 0;
 159
 160        arr = kvzalloc(sizeof(struct memcg_cache_array) +
 161                       memcg_nr_cache_ids * sizeof(void *),
 162                       GFP_KERNEL);
 163        if (!arr)
 164                return -ENOMEM;
 165
 166        RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 167        return 0;
 168}
 169
 170static void destroy_memcg_params(struct kmem_cache *s)
 171{
 172        if (is_root_cache(s))
 173                kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 174}
 175
 176static void free_memcg_params(struct rcu_head *rcu)
 177{
 178        struct memcg_cache_array *old;
 179
 180        old = container_of(rcu, struct memcg_cache_array, rcu);
 181        kvfree(old);
 182}
 183
 184static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 185{
 186        struct memcg_cache_array *old, *new;
 187
 188        new = kvzalloc(sizeof(struct memcg_cache_array) +
 189                       new_array_size * sizeof(void *), GFP_KERNEL);
 190        if (!new)
 191                return -ENOMEM;
 192
 193        old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 194                                        lockdep_is_held(&slab_mutex));
 195        if (old)
 196                memcpy(new->entries, old->entries,
 197                       memcg_nr_cache_ids * sizeof(void *));
 198
 199        rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 200        if (old)
 201                call_rcu(&old->rcu, free_memcg_params);
 202        return 0;
 203}
 204
 205int memcg_update_all_caches(int num_memcgs)
 206{
 207        struct kmem_cache *s;
 208        int ret = 0;
 209
 210        mutex_lock(&slab_mutex);
 211        list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 212                ret = update_memcg_params(s, num_memcgs);
 213                /*
 214                 * Instead of freeing the memory, we'll just leave the caches
 215                 * up to this point in an updated state.
 216                 */
 217                if (ret)
 218                        break;
 219        }
 220        mutex_unlock(&slab_mutex);
 221        return ret;
 222}
 223
 224void memcg_link_cache(struct kmem_cache *s)
 225{
 226        if (is_root_cache(s)) {
 227                list_add(&s->root_caches_node, &slab_root_caches);
 228        } else {
 229                list_add(&s->memcg_params.children_node,
 230                         &s->memcg_params.root_cache->memcg_params.children);
 231                list_add(&s->memcg_params.kmem_caches_node,
 232                         &s->memcg_params.memcg->kmem_caches);
 233        }
 234}
 235
 236static void memcg_unlink_cache(struct kmem_cache *s)
 237{
 238        if (is_root_cache(s)) {
 239                list_del(&s->root_caches_node);
 240        } else {
 241                list_del(&s->memcg_params.children_node);
 242                list_del(&s->memcg_params.kmem_caches_node);
 243        }
 244}
 245#else
 246static inline int init_memcg_params(struct kmem_cache *s,
 247                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 248{
 249        return 0;
 250}
 251
 252static inline void destroy_memcg_params(struct kmem_cache *s)
 253{
 254}
 255
 256static inline void memcg_unlink_cache(struct kmem_cache *s)
 257{
 258}
 259#endif /* CONFIG_MEMCG_KMEM */
 260
 261/*
 262 * Figure out what the alignment of the objects will be given a set of
 263 * flags, a user specified alignment and the size of the objects.
 264 */
 265static unsigned int calculate_alignment(slab_flags_t flags,
 266                unsigned int align, unsigned int size)
 267{
 268        /*
 269         * If the user wants hardware cache aligned objects then follow that
 270         * suggestion if the object is sufficiently large.
 271         *
 272         * The hardware cache alignment cannot override the specified
 273         * alignment though. If that is greater then use it.
 274         */
 275        if (flags & SLAB_HWCACHE_ALIGN) {
 276                unsigned int ralign;
 277
 278                ralign = cache_line_size();
 279                while (size <= ralign / 2)
 280                        ralign /= 2;
 281                align = max(align, ralign);
 282        }
 283
 284        if (align < ARCH_SLAB_MINALIGN)
 285                align = ARCH_SLAB_MINALIGN;
 286
 287        return ALIGN(align, sizeof(void *));
 288}
 289
 290/*
 291 * Find a mergeable slab cache
 292 */
 293int slab_unmergeable(struct kmem_cache *s)
 294{
 295        if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 296                return 1;
 297
 298        if (!is_root_cache(s))
 299                return 1;
 300
 301        if (s->ctor)
 302                return 1;
 303
 304        if (s->usersize)
 305                return 1;
 306
 307        /*
 308         * We may have set a slab to be unmergeable during bootstrap.
 309         */
 310        if (s->refcount < 0)
 311                return 1;
 312
 313        return 0;
 314}
 315
 316struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 317                slab_flags_t flags, const char *name, void (*ctor)(void *))
 318{
 319        struct kmem_cache *s;
 320
 321        if (slab_nomerge)
 322                return NULL;
 323
 324        if (ctor)
 325                return NULL;
 326
 327        size = ALIGN(size, sizeof(void *));
 328        align = calculate_alignment(flags, align, size);
 329        size = ALIGN(size, align);
 330        flags = kmem_cache_flags(size, flags, name, NULL);
 331
 332        if (flags & SLAB_NEVER_MERGE)
 333                return NULL;
 334
 335        list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 336                if (slab_unmergeable(s))
 337                        continue;
 338
 339                if (size > s->size)
 340                        continue;
 341
 342                if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 343                        continue;
 344                /*
 345                 * Check if alignment is compatible.
 346                 * Courtesy of Adrian Drzewiecki
 347                 */
 348                if ((s->size & ~(align - 1)) != s->size)
 349                        continue;
 350
 351                if (s->size - size >= sizeof(void *))
 352                        continue;
 353
 354                if (IS_ENABLED(CONFIG_SLAB) && align &&
 355                        (align > s->align || s->align % align))
 356                        continue;
 357
 358                return s;
 359        }
 360        return NULL;
 361}
 362
 363static struct kmem_cache *create_cache(const char *name,
 364                unsigned int object_size, unsigned int align,
 365                slab_flags_t flags, unsigned int useroffset,
 366                unsigned int usersize, void (*ctor)(void *),
 367                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 368{
 369        struct kmem_cache *s;
 370        int err;
 371
 372        if (WARN_ON(useroffset + usersize > object_size))
 373                useroffset = usersize = 0;
 374
 375        err = -ENOMEM;
 376        s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 377        if (!s)
 378                goto out;
 379
 380        s->name = name;
 381        s->size = s->object_size = object_size;
 382        s->align = align;
 383        s->ctor = ctor;
 384        s->useroffset = useroffset;
 385        s->usersize = usersize;
 386
 387        err = init_memcg_params(s, memcg, root_cache);
 388        if (err)
 389                goto out_free_cache;
 390
 391        err = __kmem_cache_create(s, flags);
 392        if (err)
 393                goto out_free_cache;
 394
 395        s->refcount = 1;
 396        list_add(&s->list, &slab_caches);
 397        memcg_link_cache(s);
 398out:
 399        if (err)
 400                return ERR_PTR(err);
 401        return s;
 402
 403out_free_cache:
 404        destroy_memcg_params(s);
 405        kmem_cache_free(kmem_cache, s);
 406        goto out;
 407}
 408
 409/**
 410 * kmem_cache_create_usercopy - Create a cache with a region suitable
 411 * for copying to userspace
 412 * @name: A string which is used in /proc/slabinfo to identify this cache.
 413 * @size: The size of objects to be created in this cache.
 414 * @align: The required alignment for the objects.
 415 * @flags: SLAB flags
 416 * @useroffset: Usercopy region offset
 417 * @usersize: Usercopy region size
 418 * @ctor: A constructor for the objects.
 419 *
 420 * Cannot be called within a interrupt, but can be interrupted.
 421 * The @ctor is run when new pages are allocated by the cache.
 422 *
 423 * The flags are
 424 *
 425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 426 * to catch references to uninitialised memory.
 427 *
 428 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 429 * for buffer overruns.
 430 *
 431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 432 * cacheline.  This can be beneficial if you're counting cycles as closely
 433 * as davem.
 434 *
 435 * Return: a pointer to the cache on success, NULL on failure.
 436 */
 437struct kmem_cache *
 438kmem_cache_create_usercopy(const char *name,
 439                  unsigned int size, unsigned int align,
 440                  slab_flags_t flags,
 441                  unsigned int useroffset, unsigned int usersize,
 442                  void (*ctor)(void *))
 443{
 444        struct kmem_cache *s = NULL;
 445        const char *cache_name;
 446        int err;
 447
 448        get_online_cpus();
 449        get_online_mems();
 450        memcg_get_cache_ids();
 451
 452        mutex_lock(&slab_mutex);
 453
 454        err = kmem_cache_sanity_check(name, size);
 455        if (err) {
 456                goto out_unlock;
 457        }
 458
 459        /* Refuse requests with allocator specific flags */
 460        if (flags & ~SLAB_FLAGS_PERMITTED) {
 461                err = -EINVAL;
 462                goto out_unlock;
 463        }
 464
 465        /*
 466         * Some allocators will constraint the set of valid flags to a subset
 467         * of all flags. We expect them to define CACHE_CREATE_MASK in this
 468         * case, and we'll just provide them with a sanitized version of the
 469         * passed flags.
 470         */
 471        flags &= CACHE_CREATE_MASK;
 472
 473        /* Fail closed on bad usersize of useroffset values. */
 474        if (WARN_ON(!usersize && useroffset) ||
 475            WARN_ON(size < usersize || size - usersize < useroffset))
 476                usersize = useroffset = 0;
 477
 478        if (!usersize)
 479                s = __kmem_cache_alias(name, size, align, flags, ctor);
 480        if (s)
 481                goto out_unlock;
 482
 483        cache_name = kstrdup_const(name, GFP_KERNEL);
 484        if (!cache_name) {
 485                err = -ENOMEM;
 486                goto out_unlock;
 487        }
 488
 489        s = create_cache(cache_name, size,
 490                         calculate_alignment(flags, align, size),
 491                         flags, useroffset, usersize, ctor, NULL, NULL);
 492        if (IS_ERR(s)) {
 493                err = PTR_ERR(s);
 494                kfree_const(cache_name);
 495        }
 496
 497out_unlock:
 498        mutex_unlock(&slab_mutex);
 499
 500        memcg_put_cache_ids();
 501        put_online_mems();
 502        put_online_cpus();
 503
 504        if (err) {
 505                if (flags & SLAB_PANIC)
 506                        panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 507                                name, err);
 508                else {
 509                        pr_warn("kmem_cache_create(%s) failed with error %d\n",
 510                                name, err);
 511                        dump_stack();
 512                }
 513                return NULL;
 514        }
 515        return s;
 516}
 517EXPORT_SYMBOL(kmem_cache_create_usercopy);
 518
 519/**
 520 * kmem_cache_create - Create a cache.
 521 * @name: A string which is used in /proc/slabinfo to identify this cache.
 522 * @size: The size of objects to be created in this cache.
 523 * @align: The required alignment for the objects.
 524 * @flags: SLAB flags
 525 * @ctor: A constructor for the objects.
 526 *
 527 * Cannot be called within a interrupt, but can be interrupted.
 528 * The @ctor is run when new pages are allocated by the cache.
 529 *
 530 * The flags are
 531 *
 532 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 533 * to catch references to uninitialised memory.
 534 *
 535 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 536 * for buffer overruns.
 537 *
 538 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 539 * cacheline.  This can be beneficial if you're counting cycles as closely
 540 * as davem.
 541 *
 542 * Return: a pointer to the cache on success, NULL on failure.
 543 */
 544struct kmem_cache *
 545kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 546                slab_flags_t flags, void (*ctor)(void *))
 547{
 548        return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 549                                          ctor);
 550}
 551EXPORT_SYMBOL(kmem_cache_create);
 552
 553static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 554{
 555        LIST_HEAD(to_destroy);
 556        struct kmem_cache *s, *s2;
 557
 558        /*
 559         * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 560         * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 561         * through RCU and and the associated kmem_cache are dereferenced
 562         * while freeing the pages, so the kmem_caches should be freed only
 563         * after the pending RCU operations are finished.  As rcu_barrier()
 564         * is a pretty slow operation, we batch all pending destructions
 565         * asynchronously.
 566         */
 567        mutex_lock(&slab_mutex);
 568        list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 569        mutex_unlock(&slab_mutex);
 570
 571        if (list_empty(&to_destroy))
 572                return;
 573
 574        rcu_barrier();
 575
 576        list_for_each_entry_safe(s, s2, &to_destroy, list) {
 577#ifdef SLAB_SUPPORTS_SYSFS
 578                sysfs_slab_release(s);
 579#else
 580                slab_kmem_cache_release(s);
 581#endif
 582        }
 583}
 584
 585static int shutdown_cache(struct kmem_cache *s)
 586{
 587        /* free asan quarantined objects */
 588        kasan_cache_shutdown(s);
 589
 590        if (__kmem_cache_shutdown(s) != 0)
 591                return -EBUSY;
 592
 593        memcg_unlink_cache(s);
 594        list_del(&s->list);
 595
 596        if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 597#ifdef SLAB_SUPPORTS_SYSFS
 598                sysfs_slab_unlink(s);
 599#endif
 600                list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 601                schedule_work(&slab_caches_to_rcu_destroy_work);
 602        } else {
 603#ifdef SLAB_SUPPORTS_SYSFS
 604                sysfs_slab_unlink(s);
 605                sysfs_slab_release(s);
 606#else
 607                slab_kmem_cache_release(s);
 608#endif
 609        }
 610
 611        return 0;
 612}
 613
 614#ifdef CONFIG_MEMCG_KMEM
 615/*
 616 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 617 * @memcg: The memory cgroup the new cache is for.
 618 * @root_cache: The parent of the new cache.
 619 *
 620 * This function attempts to create a kmem cache that will serve allocation
 621 * requests going from @memcg to @root_cache. The new cache inherits properties
 622 * from its parent.
 623 */
 624void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 625                             struct kmem_cache *root_cache)
 626{
 627        static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 628        struct cgroup_subsys_state *css = &memcg->css;
 629        struct memcg_cache_array *arr;
 630        struct kmem_cache *s = NULL;
 631        char *cache_name;
 632        int idx;
 633
 634        get_online_cpus();
 635        get_online_mems();
 636
 637        mutex_lock(&slab_mutex);
 638
 639        /*
 640         * The memory cgroup could have been offlined while the cache
 641         * creation work was pending.
 642         */
 643        if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying)
 644                goto out_unlock;
 645
 646        idx = memcg_cache_id(memcg);
 647        arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 648                                        lockdep_is_held(&slab_mutex));
 649
 650        /*
 651         * Since per-memcg caches are created asynchronously on first
 652         * allocation (see memcg_kmem_get_cache()), several threads can try to
 653         * create the same cache, but only one of them may succeed.
 654         */
 655        if (arr->entries[idx])
 656                goto out_unlock;
 657
 658        cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 659        cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 660                               css->serial_nr, memcg_name_buf);
 661        if (!cache_name)
 662                goto out_unlock;
 663
 664        s = create_cache(cache_name, root_cache->object_size,
 665                         root_cache->align,
 666                         root_cache->flags & CACHE_CREATE_MASK,
 667                         root_cache->useroffset, root_cache->usersize,
 668                         root_cache->ctor, memcg, root_cache);
 669        /*
 670         * If we could not create a memcg cache, do not complain, because
 671         * that's not critical at all as we can always proceed with the root
 672         * cache.
 673         */
 674        if (IS_ERR(s)) {
 675                kfree(cache_name);
 676                goto out_unlock;
 677        }
 678
 679        /*
 680         * Since readers won't lock (see cache_from_memcg_idx()), we need a
 681         * barrier here to ensure nobody will see the kmem_cache partially
 682         * initialized.
 683         */
 684        smp_wmb();
 685        arr->entries[idx] = s;
 686
 687out_unlock:
 688        mutex_unlock(&slab_mutex);
 689
 690        put_online_mems();
 691        put_online_cpus();
 692}
 693
 694static void kmemcg_deactivate_workfn(struct work_struct *work)
 695{
 696        struct kmem_cache *s = container_of(work, struct kmem_cache,
 697                                            memcg_params.deact_work);
 698
 699        get_online_cpus();
 700        get_online_mems();
 701
 702        mutex_lock(&slab_mutex);
 703
 704        s->memcg_params.deact_fn(s);
 705
 706        mutex_unlock(&slab_mutex);
 707
 708        put_online_mems();
 709        put_online_cpus();
 710
 711        /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
 712        css_put(&s->memcg_params.memcg->css);
 713}
 714
 715static void kmemcg_deactivate_rcufn(struct rcu_head *head)
 716{
 717        struct kmem_cache *s = container_of(head, struct kmem_cache,
 718                                            memcg_params.deact_rcu_head);
 719
 720        /*
 721         * We need to grab blocking locks.  Bounce to ->deact_work.  The
 722         * work item shares the space with the RCU head and can't be
 723         * initialized eariler.
 724         */
 725        INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
 726        queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
 727}
 728
 729/**
 730 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 731 *                                         sched RCU grace period
 732 * @s: target kmem_cache
 733 * @deact_fn: deactivation function to call
 734 *
 735 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 736 * held after a sched RCU grace period.  The slab is guaranteed to stay
 737 * alive until @deact_fn is finished.  This is to be used from
 738 * __kmemcg_cache_deactivate().
 739 */
 740void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
 741                                           void (*deact_fn)(struct kmem_cache *))
 742{
 743        if (WARN_ON_ONCE(is_root_cache(s)) ||
 744            WARN_ON_ONCE(s->memcg_params.deact_fn))
 745                return;
 746
 747        if (s->memcg_params.root_cache->memcg_params.dying)
 748                return;
 749
 750        /* pin memcg so that @s doesn't get destroyed in the middle */
 751        css_get(&s->memcg_params.memcg->css);
 752
 753        s->memcg_params.deact_fn = deact_fn;
 754        call_rcu(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
 755}
 756
 757void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 758{
 759        int idx;
 760        struct memcg_cache_array *arr;
 761        struct kmem_cache *s, *c;
 762
 763        idx = memcg_cache_id(memcg);
 764
 765        get_online_cpus();
 766        get_online_mems();
 767
 768        mutex_lock(&slab_mutex);
 769        list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 770                arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 771                                                lockdep_is_held(&slab_mutex));
 772                c = arr->entries[idx];
 773                if (!c)
 774                        continue;
 775
 776                __kmemcg_cache_deactivate(c);
 777                arr->entries[idx] = NULL;
 778        }
 779        mutex_unlock(&slab_mutex);
 780
 781        put_online_mems();
 782        put_online_cpus();
 783}
 784
 785void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 786{
 787        struct kmem_cache *s, *s2;
 788
 789        get_online_cpus();
 790        get_online_mems();
 791
 792        mutex_lock(&slab_mutex);
 793        list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
 794                                 memcg_params.kmem_caches_node) {
 795                /*
 796                 * The cgroup is about to be freed and therefore has no charges
 797                 * left. Hence, all its caches must be empty by now.
 798                 */
 799                BUG_ON(shutdown_cache(s));
 800        }
 801        mutex_unlock(&slab_mutex);
 802
 803        put_online_mems();
 804        put_online_cpus();
 805}
 806
 807static int shutdown_memcg_caches(struct kmem_cache *s)
 808{
 809        struct memcg_cache_array *arr;
 810        struct kmem_cache *c, *c2;
 811        LIST_HEAD(busy);
 812        int i;
 813
 814        BUG_ON(!is_root_cache(s));
 815
 816        /*
 817         * First, shutdown active caches, i.e. caches that belong to online
 818         * memory cgroups.
 819         */
 820        arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 821                                        lockdep_is_held(&slab_mutex));
 822        for_each_memcg_cache_index(i) {
 823                c = arr->entries[i];
 824                if (!c)
 825                        continue;
 826                if (shutdown_cache(c))
 827                        /*
 828                         * The cache still has objects. Move it to a temporary
 829                         * list so as not to try to destroy it for a second
 830                         * time while iterating over inactive caches below.
 831                         */
 832                        list_move(&c->memcg_params.children_node, &busy);
 833                else
 834                        /*
 835                         * The cache is empty and will be destroyed soon. Clear
 836                         * the pointer to it in the memcg_caches array so that
 837                         * it will never be accessed even if the root cache
 838                         * stays alive.
 839                         */
 840                        arr->entries[i] = NULL;
 841        }
 842
 843        /*
 844         * Second, shutdown all caches left from memory cgroups that are now
 845         * offline.
 846         */
 847        list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 848                                 memcg_params.children_node)
 849                shutdown_cache(c);
 850
 851        list_splice(&busy, &s->memcg_params.children);
 852
 853        /*
 854         * A cache being destroyed must be empty. In particular, this means
 855         * that all per memcg caches attached to it must be empty too.
 856         */
 857        if (!list_empty(&s->memcg_params.children))
 858                return -EBUSY;
 859        return 0;
 860}
 861
 862static void flush_memcg_workqueue(struct kmem_cache *s)
 863{
 864        mutex_lock(&slab_mutex);
 865        s->memcg_params.dying = true;
 866        mutex_unlock(&slab_mutex);
 867
 868        /*
 869         * SLUB deactivates the kmem_caches through call_rcu. Make
 870         * sure all registered rcu callbacks have been invoked.
 871         */
 872        if (IS_ENABLED(CONFIG_SLUB))
 873                rcu_barrier();
 874
 875        /*
 876         * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
 877         * deactivates the memcg kmem_caches through workqueue. Make sure all
 878         * previous workitems on workqueue are processed.
 879         */
 880        flush_workqueue(memcg_kmem_cache_wq);
 881}
 882#else
 883static inline int shutdown_memcg_caches(struct kmem_cache *s)
 884{
 885        return 0;
 886}
 887
 888static inline void flush_memcg_workqueue(struct kmem_cache *s)
 889{
 890}
 891#endif /* CONFIG_MEMCG_KMEM */
 892
 893void slab_kmem_cache_release(struct kmem_cache *s)
 894{
 895        __kmem_cache_release(s);
 896        destroy_memcg_params(s);
 897        kfree_const(s->name);
 898        kmem_cache_free(kmem_cache, s);
 899}
 900
 901void kmem_cache_destroy(struct kmem_cache *s)
 902{
 903        int err;
 904
 905        if (unlikely(!s))
 906                return;
 907
 908        flush_memcg_workqueue(s);
 909
 910        get_online_cpus();
 911        get_online_mems();
 912
 913        mutex_lock(&slab_mutex);
 914
 915        s->refcount--;
 916        if (s->refcount)
 917                goto out_unlock;
 918
 919        err = shutdown_memcg_caches(s);
 920        if (!err)
 921                err = shutdown_cache(s);
 922
 923        if (err) {
 924                pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 925                       s->name);
 926                dump_stack();
 927        }
 928out_unlock:
 929        mutex_unlock(&slab_mutex);
 930
 931        put_online_mems();
 932        put_online_cpus();
 933}
 934EXPORT_SYMBOL(kmem_cache_destroy);
 935
 936/**
 937 * kmem_cache_shrink - Shrink a cache.
 938 * @cachep: The cache to shrink.
 939 *
 940 * Releases as many slabs as possible for a cache.
 941 * To help debugging, a zero exit status indicates all slabs were released.
 942 *
 943 * Return: %0 if all slabs were released, non-zero otherwise
 944 */
 945int kmem_cache_shrink(struct kmem_cache *cachep)
 946{
 947        int ret;
 948
 949        get_online_cpus();
 950        get_online_mems();
 951        kasan_cache_shrink(cachep);
 952        ret = __kmem_cache_shrink(cachep);
 953        put_online_mems();
 954        put_online_cpus();
 955        return ret;
 956}
 957EXPORT_SYMBOL(kmem_cache_shrink);
 958
 959bool slab_is_available(void)
 960{
 961        return slab_state >= UP;
 962}
 963
 964#ifndef CONFIG_SLOB
 965/* Create a cache during boot when no slab services are available yet */
 966void __init create_boot_cache(struct kmem_cache *s, const char *name,
 967                unsigned int size, slab_flags_t flags,
 968                unsigned int useroffset, unsigned int usersize)
 969{
 970        int err;
 971
 972        s->name = name;
 973        s->size = s->object_size = size;
 974        s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 975        s->useroffset = useroffset;
 976        s->usersize = usersize;
 977
 978        slab_init_memcg_params(s);
 979
 980        err = __kmem_cache_create(s, flags);
 981
 982        if (err)
 983                panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 984                                        name, size, err);
 985
 986        s->refcount = -1;       /* Exempt from merging for now */
 987}
 988
 989struct kmem_cache *__init create_kmalloc_cache(const char *name,
 990                unsigned int size, slab_flags_t flags,
 991                unsigned int useroffset, unsigned int usersize)
 992{
 993        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 994
 995        if (!s)
 996                panic("Out of memory when creating slab %s\n", name);
 997
 998        create_boot_cache(s, name, size, flags, useroffset, usersize);
 999        list_add(&s->list, &slab_caches);
1000        memcg_link_cache(s);
1001        s->refcount = 1;
1002        return s;
1003}
1004
1005struct kmem_cache *
1006kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
1007EXPORT_SYMBOL(kmalloc_caches);
1008
1009/*
1010 * Conversion table for small slabs sizes / 8 to the index in the
1011 * kmalloc array. This is necessary for slabs < 192 since we have non power
1012 * of two cache sizes there. The size of larger slabs can be determined using
1013 * fls.
1014 */
1015static u8 size_index[24] __ro_after_init = {
1016        3,      /* 8 */
1017        4,      /* 16 */
1018        5,      /* 24 */
1019        5,      /* 32 */
1020        6,      /* 40 */
1021        6,      /* 48 */
1022        6,      /* 56 */
1023        6,      /* 64 */
1024        1,      /* 72 */
1025        1,      /* 80 */
1026        1,      /* 88 */
1027        1,      /* 96 */
1028        7,      /* 104 */
1029        7,      /* 112 */
1030        7,      /* 120 */
1031        7,      /* 128 */
1032        2,      /* 136 */
1033        2,      /* 144 */
1034        2,      /* 152 */
1035        2,      /* 160 */
1036        2,      /* 168 */
1037        2,      /* 176 */
1038        2,      /* 184 */
1039        2       /* 192 */
1040};
1041
1042static inline unsigned int size_index_elem(unsigned int bytes)
1043{
1044        return (bytes - 1) / 8;
1045}
1046
1047/*
1048 * Find the kmem_cache structure that serves a given size of
1049 * allocation
1050 */
1051struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1052{
1053        unsigned int index;
1054
1055        if (size <= 192) {
1056                if (!size)
1057                        return ZERO_SIZE_PTR;
1058
1059                index = size_index[size_index_elem(size)];
1060        } else {
1061                if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1062                        return NULL;
1063                index = fls(size - 1);
1064        }
1065
1066        return kmalloc_caches[kmalloc_type(flags)][index];
1067}
1068
1069/*
1070 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1071 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1072 * kmalloc-67108864.
1073 */
1074const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1075        {NULL,                      0},         {"kmalloc-96",             96},
1076        {"kmalloc-192",           192},         {"kmalloc-8",               8},
1077        {"kmalloc-16",             16},         {"kmalloc-32",             32},
1078        {"kmalloc-64",             64},         {"kmalloc-128",           128},
1079        {"kmalloc-256",           256},         {"kmalloc-512",           512},
1080        {"kmalloc-1k",           1024},         {"kmalloc-2k",           2048},
1081        {"kmalloc-4k",           4096},         {"kmalloc-8k",           8192},
1082        {"kmalloc-16k",         16384},         {"kmalloc-32k",         32768},
1083        {"kmalloc-64k",         65536},         {"kmalloc-128k",       131072},
1084        {"kmalloc-256k",       262144},         {"kmalloc-512k",       524288},
1085        {"kmalloc-1M",        1048576},         {"kmalloc-2M",        2097152},
1086        {"kmalloc-4M",        4194304},         {"kmalloc-8M",        8388608},
1087        {"kmalloc-16M",      16777216},         {"kmalloc-32M",      33554432},
1088        {"kmalloc-64M",      67108864}
1089};
1090
1091/*
1092 * Patch up the size_index table if we have strange large alignment
1093 * requirements for the kmalloc array. This is only the case for
1094 * MIPS it seems. The standard arches will not generate any code here.
1095 *
1096 * Largest permitted alignment is 256 bytes due to the way we
1097 * handle the index determination for the smaller caches.
1098 *
1099 * Make sure that nothing crazy happens if someone starts tinkering
1100 * around with ARCH_KMALLOC_MINALIGN
1101 */
1102void __init setup_kmalloc_cache_index_table(void)
1103{
1104        unsigned int i;
1105
1106        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1107                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1108
1109        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1110                unsigned int elem = size_index_elem(i);
1111
1112                if (elem >= ARRAY_SIZE(size_index))
1113                        break;
1114                size_index[elem] = KMALLOC_SHIFT_LOW;
1115        }
1116
1117        if (KMALLOC_MIN_SIZE >= 64) {
1118                /*
1119                 * The 96 byte size cache is not used if the alignment
1120                 * is 64 byte.
1121                 */
1122                for (i = 64 + 8; i <= 96; i += 8)
1123                        size_index[size_index_elem(i)] = 7;
1124
1125        }
1126
1127        if (KMALLOC_MIN_SIZE >= 128) {
1128                /*
1129                 * The 192 byte sized cache is not used if the alignment
1130                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1131                 * instead.
1132                 */
1133                for (i = 128 + 8; i <= 192; i += 8)
1134                        size_index[size_index_elem(i)] = 8;
1135        }
1136}
1137
1138static const char *
1139kmalloc_cache_name(const char *prefix, unsigned int size)
1140{
1141
1142        static const char units[3] = "\0kM";
1143        int idx = 0;
1144
1145        while (size >= 1024 && (size % 1024 == 0)) {
1146                size /= 1024;
1147                idx++;
1148        }
1149
1150        return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1151}
1152
1153static void __init
1154new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1155{
1156        const char *name;
1157
1158        if (type == KMALLOC_RECLAIM) {
1159                flags |= SLAB_RECLAIM_ACCOUNT;
1160                name = kmalloc_cache_name("kmalloc-rcl",
1161                                                kmalloc_info[idx].size);
1162                BUG_ON(!name);
1163        } else {
1164                name = kmalloc_info[idx].name;
1165        }
1166
1167        kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1168                                        kmalloc_info[idx].size, flags, 0,
1169                                        kmalloc_info[idx].size);
1170}
1171
1172/*
1173 * Create the kmalloc array. Some of the regular kmalloc arrays
1174 * may already have been created because they were needed to
1175 * enable allocations for slab creation.
1176 */
1177void __init create_kmalloc_caches(slab_flags_t flags)
1178{
1179        int i, type;
1180
1181        for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1182                for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1183                        if (!kmalloc_caches[type][i])
1184                                new_kmalloc_cache(i, type, flags);
1185
1186                        /*
1187                         * Caches that are not of the two-to-the-power-of size.
1188                         * These have to be created immediately after the
1189                         * earlier power of two caches
1190                         */
1191                        if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1192                                        !kmalloc_caches[type][1])
1193                                new_kmalloc_cache(1, type, flags);
1194                        if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1195                                        !kmalloc_caches[type][2])
1196                                new_kmalloc_cache(2, type, flags);
1197                }
1198        }
1199
1200        /* Kmalloc array is now usable */
1201        slab_state = UP;
1202
1203#ifdef CONFIG_ZONE_DMA
1204        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1205                struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1206
1207                if (s) {
1208                        unsigned int size = kmalloc_size(i);
1209                        const char *n = kmalloc_cache_name("dma-kmalloc", size);
1210
1211                        BUG_ON(!n);
1212                        kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1213                                n, size, SLAB_CACHE_DMA | flags, 0, 0);
1214                }
1215        }
1216#endif
1217}
1218#endif /* !CONFIG_SLOB */
1219
1220/*
1221 * To avoid unnecessary overhead, we pass through large allocation requests
1222 * directly to the page allocator. We use __GFP_COMP, because we will need to
1223 * know the allocation order to free the pages properly in kfree.
1224 */
1225void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1226{
1227        void *ret;
1228        struct page *page;
1229
1230        flags |= __GFP_COMP;
1231        page = alloc_pages(flags, order);
1232        ret = page ? page_address(page) : NULL;
1233        ret = kasan_kmalloc_large(ret, size, flags);
1234        /* As ret might get tagged, call kmemleak hook after KASAN. */
1235        kmemleak_alloc(ret, size, 1, flags);
1236        return ret;
1237}
1238EXPORT_SYMBOL(kmalloc_order);
1239
1240#ifdef CONFIG_TRACING
1241void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1242{
1243        void *ret = kmalloc_order(size, flags, order);
1244        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1245        return ret;
1246}
1247EXPORT_SYMBOL(kmalloc_order_trace);
1248#endif
1249
1250#ifdef CONFIG_SLAB_FREELIST_RANDOM
1251/* Randomize a generic freelist */
1252static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1253                               unsigned int count)
1254{
1255        unsigned int rand;
1256        unsigned int i;
1257
1258        for (i = 0; i < count; i++)
1259                list[i] = i;
1260
1261        /* Fisher-Yates shuffle */
1262        for (i = count - 1; i > 0; i--) {
1263                rand = prandom_u32_state(state);
1264                rand %= (i + 1);
1265                swap(list[i], list[rand]);
1266        }
1267}
1268
1269/* Create a random sequence per cache */
1270int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1271                                    gfp_t gfp)
1272{
1273        struct rnd_state state;
1274
1275        if (count < 2 || cachep->random_seq)
1276                return 0;
1277
1278        cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1279        if (!cachep->random_seq)
1280                return -ENOMEM;
1281
1282        /* Get best entropy at this stage of boot */
1283        prandom_seed_state(&state, get_random_long());
1284
1285        freelist_randomize(&state, cachep->random_seq, count);
1286        return 0;
1287}
1288
1289/* Destroy the per-cache random freelist sequence */
1290void cache_random_seq_destroy(struct kmem_cache *cachep)
1291{
1292        kfree(cachep->random_seq);
1293        cachep->random_seq = NULL;
1294}
1295#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1296
1297#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1298#ifdef CONFIG_SLAB
1299#define SLABINFO_RIGHTS (0600)
1300#else
1301#define SLABINFO_RIGHTS (0400)
1302#endif
1303
1304static void print_slabinfo_header(struct seq_file *m)
1305{
1306        /*
1307         * Output format version, so at least we can change it
1308         * without _too_ many complaints.
1309         */
1310#ifdef CONFIG_DEBUG_SLAB
1311        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1312#else
1313        seq_puts(m, "slabinfo - version: 2.1\n");
1314#endif
1315        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1316        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1317        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1318#ifdef CONFIG_DEBUG_SLAB
1319        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1320        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1321#endif
1322        seq_putc(m, '\n');
1323}
1324
1325void *slab_start(struct seq_file *m, loff_t *pos)
1326{
1327        mutex_lock(&slab_mutex);
1328        return seq_list_start(&slab_root_caches, *pos);
1329}
1330
1331void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1332{
1333        return seq_list_next(p, &slab_root_caches, pos);
1334}
1335
1336void slab_stop(struct seq_file *m, void *p)
1337{
1338        mutex_unlock(&slab_mutex);
1339}
1340
1341static void
1342memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1343{
1344        struct kmem_cache *c;
1345        struct slabinfo sinfo;
1346
1347        if (!is_root_cache(s))
1348                return;
1349
1350        for_each_memcg_cache(c, s) {
1351                memset(&sinfo, 0, sizeof(sinfo));
1352                get_slabinfo(c, &sinfo);
1353
1354                info->active_slabs += sinfo.active_slabs;
1355                info->num_slabs += sinfo.num_slabs;
1356                info->shared_avail += sinfo.shared_avail;
1357                info->active_objs += sinfo.active_objs;
1358                info->num_objs += sinfo.num_objs;
1359        }
1360}
1361
1362static void cache_show(struct kmem_cache *s, struct seq_file *m)
1363{
1364        struct slabinfo sinfo;
1365
1366        memset(&sinfo, 0, sizeof(sinfo));
1367        get_slabinfo(s, &sinfo);
1368
1369        memcg_accumulate_slabinfo(s, &sinfo);
1370
1371        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1372                   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1373                   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1374
1375        seq_printf(m, " : tunables %4u %4u %4u",
1376                   sinfo.limit, sinfo.batchcount, sinfo.shared);
1377        seq_printf(m, " : slabdata %6lu %6lu %6lu",
1378                   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1379        slabinfo_show_stats(m, s);
1380        seq_putc(m, '\n');
1381}
1382
1383static int slab_show(struct seq_file *m, void *p)
1384{
1385        struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1386
1387        if (p == slab_root_caches.next)
1388                print_slabinfo_header(m);
1389        cache_show(s, m);
1390        return 0;
1391}
1392
1393void dump_unreclaimable_slab(void)
1394{
1395        struct kmem_cache *s, *s2;
1396        struct slabinfo sinfo;
1397
1398        /*
1399         * Here acquiring slab_mutex is risky since we don't prefer to get
1400         * sleep in oom path. But, without mutex hold, it may introduce a
1401         * risk of crash.
1402         * Use mutex_trylock to protect the list traverse, dump nothing
1403         * without acquiring the mutex.
1404         */
1405        if (!mutex_trylock(&slab_mutex)) {
1406                pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1407                return;
1408        }
1409
1410        pr_info("Unreclaimable slab info:\n");
1411        pr_info("Name                      Used          Total\n");
1412
1413        list_for_each_entry_safe(s, s2, &slab_caches, list) {
1414                if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1415                        continue;
1416
1417                get_slabinfo(s, &sinfo);
1418
1419                if (sinfo.num_objs > 0)
1420                        pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1421                                (sinfo.active_objs * s->size) / 1024,
1422                                (sinfo.num_objs * s->size) / 1024);
1423        }
1424        mutex_unlock(&slab_mutex);
1425}
1426
1427#if defined(CONFIG_MEMCG)
1428void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1429{
1430        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1431
1432        mutex_lock(&slab_mutex);
1433        return seq_list_start(&memcg->kmem_caches, *pos);
1434}
1435
1436void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1437{
1438        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1439
1440        return seq_list_next(p, &memcg->kmem_caches, pos);
1441}
1442
1443void memcg_slab_stop(struct seq_file *m, void *p)
1444{
1445        mutex_unlock(&slab_mutex);
1446}
1447
1448int memcg_slab_show(struct seq_file *m, void *p)
1449{
1450        struct kmem_cache *s = list_entry(p, struct kmem_cache,
1451                                          memcg_params.kmem_caches_node);
1452        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1453
1454        if (p == memcg->kmem_caches.next)
1455                print_slabinfo_header(m);
1456        cache_show(s, m);
1457        return 0;
1458}
1459#endif
1460
1461/*
1462 * slabinfo_op - iterator that generates /proc/slabinfo
1463 *
1464 * Output layout:
1465 * cache-name
1466 * num-active-objs
1467 * total-objs
1468 * object size
1469 * num-active-slabs
1470 * total-slabs
1471 * num-pages-per-slab
1472 * + further values on SMP and with statistics enabled
1473 */
1474static const struct seq_operations slabinfo_op = {
1475        .start = slab_start,
1476        .next = slab_next,
1477        .stop = slab_stop,
1478        .show = slab_show,
1479};
1480
1481static int slabinfo_open(struct inode *inode, struct file *file)
1482{
1483        return seq_open(file, &slabinfo_op);
1484}
1485
1486static const struct file_operations proc_slabinfo_operations = {
1487        .open           = slabinfo_open,
1488        .read           = seq_read,
1489        .write          = slabinfo_write,
1490        .llseek         = seq_lseek,
1491        .release        = seq_release,
1492};
1493
1494static int __init slab_proc_init(void)
1495{
1496        proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1497                                                &proc_slabinfo_operations);
1498        return 0;
1499}
1500module_init(slab_proc_init);
1501#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1502
1503static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1504                                           gfp_t flags)
1505{
1506        void *ret;
1507        size_t ks = 0;
1508
1509        if (p)
1510                ks = ksize(p);
1511
1512        if (ks >= new_size) {
1513                p = kasan_krealloc((void *)p, new_size, flags);
1514                return (void *)p;
1515        }
1516
1517        ret = kmalloc_track_caller(new_size, flags);
1518        if (ret && p)
1519                memcpy(ret, p, ks);
1520
1521        return ret;
1522}
1523
1524/**
1525 * __krealloc - like krealloc() but don't free @p.
1526 * @p: object to reallocate memory for.
1527 * @new_size: how many bytes of memory are required.
1528 * @flags: the type of memory to allocate.
1529 *
1530 * This function is like krealloc() except it never frees the originally
1531 * allocated buffer. Use this if you don't want to free the buffer immediately
1532 * like, for example, with RCU.
1533 *
1534 * Return: pointer to the allocated memory or %NULL in case of error
1535 */
1536void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1537{
1538        if (unlikely(!new_size))
1539                return ZERO_SIZE_PTR;
1540
1541        return __do_krealloc(p, new_size, flags);
1542
1543}
1544EXPORT_SYMBOL(__krealloc);
1545
1546/**
1547 * krealloc - reallocate memory. The contents will remain unchanged.
1548 * @p: object to reallocate memory for.
1549 * @new_size: how many bytes of memory are required.
1550 * @flags: the type of memory to allocate.
1551 *
1552 * The contents of the object pointed to are preserved up to the
1553 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1554 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1555 * %NULL pointer, the object pointed to is freed.
1556 *
1557 * Return: pointer to the allocated memory or %NULL in case of error
1558 */
1559void *krealloc(const void *p, size_t new_size, gfp_t flags)
1560{
1561        void *ret;
1562
1563        if (unlikely(!new_size)) {
1564                kfree(p);
1565                return ZERO_SIZE_PTR;
1566        }
1567
1568        ret = __do_krealloc(p, new_size, flags);
1569        if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1570                kfree(p);
1571
1572        return ret;
1573}
1574EXPORT_SYMBOL(krealloc);
1575
1576/**
1577 * kzfree - like kfree but zero memory
1578 * @p: object to free memory of
1579 *
1580 * The memory of the object @p points to is zeroed before freed.
1581 * If @p is %NULL, kzfree() does nothing.
1582 *
1583 * Note: this function zeroes the whole allocated buffer which can be a good
1584 * deal bigger than the requested buffer size passed to kmalloc(). So be
1585 * careful when using this function in performance sensitive code.
1586 */
1587void kzfree(const void *p)
1588{
1589        size_t ks;
1590        void *mem = (void *)p;
1591
1592        if (unlikely(ZERO_OR_NULL_PTR(mem)))
1593                return;
1594        ks = ksize(mem);
1595        memset(mem, 0, ks);
1596        kfree(mem);
1597}
1598EXPORT_SYMBOL(kzfree);
1599
1600/* Tracepoints definitions. */
1601EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1602EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1603EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1604EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1605EXPORT_TRACEPOINT_SYMBOL(kfree);
1606EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1607
1608int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1609{
1610        if (__should_failslab(s, gfpflags))
1611                return -ENOMEM;
1612        return 0;
1613}
1614ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1615