linux/mm/slub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operatios
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/bitops.h>
  19#include <linux/slab.h>
  20#include "slab.h"
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kasan.h>
  24#include <linux/cpu.h>
  25#include <linux/cpuset.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ctype.h>
  28#include <linux/debugobjects.h>
  29#include <linux/kallsyms.h>
  30#include <linux/memory.h>
  31#include <linux/math64.h>
  32#include <linux/fault-inject.h>
  33#include <linux/stacktrace.h>
  34#include <linux/prefetch.h>
  35#include <linux/memcontrol.h>
  36#include <linux/random.h>
  37
  38#include <trace/events/kmem.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Lock order:
  44 *   1. slab_mutex (Global Mutex)
  45 *   2. node->list_lock
  46 *   3. slab_lock(page) (Only on some arches and for debugging)
  47 *
  48 *   slab_mutex
  49 *
  50 *   The role of the slab_mutex is to protect the list of all the slabs
  51 *   and to synchronize major metadata changes to slab cache structures.
  52 *
  53 *   The slab_lock is only used for debugging and on arches that do not
  54 *   have the ability to do a cmpxchg_double. It only protects:
  55 *      A. page->freelist       -> List of object free in a page
  56 *      B. page->inuse          -> Number of objects in use
  57 *      C. page->objects        -> Number of objects in page
  58 *      D. page->frozen         -> frozen state
  59 *
  60 *   If a slab is frozen then it is exempt from list management. It is not
  61 *   on any list except per cpu partial list. The processor that froze the
  62 *   slab is the one who can perform list operations on the page. Other
  63 *   processors may put objects onto the freelist but the processor that
  64 *   froze the slab is the only one that can retrieve the objects from the
  65 *   page's freelist.
  66 *
  67 *   The list_lock protects the partial and full list on each node and
  68 *   the partial slab counter. If taken then no new slabs may be added or
  69 *   removed from the lists nor make the number of partial slabs be modified.
  70 *   (Note that the total number of slabs is an atomic value that may be
  71 *   modified without taking the list lock).
  72 *
  73 *   The list_lock is a centralized lock and thus we avoid taking it as
  74 *   much as possible. As long as SLUB does not have to handle partial
  75 *   slabs, operations can continue without any centralized lock. F.e.
  76 *   allocating a long series of objects that fill up slabs does not require
  77 *   the list lock.
  78 *   Interrupts are disabled during allocation and deallocation in order to
  79 *   make the slab allocator safe to use in the context of an irq. In addition
  80 *   interrupts are disabled to ensure that the processor does not change
  81 *   while handling per_cpu slabs, due to kernel preemption.
  82 *
  83 * SLUB assigns one slab for allocation to each processor.
  84 * Allocations only occur from these slabs called cpu slabs.
  85 *
  86 * Slabs with free elements are kept on a partial list and during regular
  87 * operations no list for full slabs is used. If an object in a full slab is
  88 * freed then the slab will show up again on the partial lists.
  89 * We track full slabs for debugging purposes though because otherwise we
  90 * cannot scan all objects.
  91 *
  92 * Slabs are freed when they become empty. Teardown and setup is
  93 * minimal so we rely on the page allocators per cpu caches for
  94 * fast frees and allocs.
  95 *
  96 * Overloading of page flags that are otherwise used for LRU management.
  97 *
  98 * PageActive           The slab is frozen and exempt from list processing.
  99 *                      This means that the slab is dedicated to a purpose
 100 *                      such as satisfying allocations for a specific
 101 *                      processor. Objects may be freed in the slab while
 102 *                      it is frozen but slab_free will then skip the usual
 103 *                      list operations. It is up to the processor holding
 104 *                      the slab to integrate the slab into the slab lists
 105 *                      when the slab is no longer needed.
 106 *
 107 *                      One use of this flag is to mark slabs that are
 108 *                      used for allocations. Then such a slab becomes a cpu
 109 *                      slab. The cpu slab may be equipped with an additional
 110 *                      freelist that allows lockless access to
 111 *                      free objects in addition to the regular freelist
 112 *                      that requires the slab lock.
 113 *
 114 * PageError            Slab requires special handling due to debug
 115 *                      options set. This moves slab handling out of
 116 *                      the fast path and disables lockless freelists.
 117 */
 118
 119static inline int kmem_cache_debug(struct kmem_cache *s)
 120{
 121#ifdef CONFIG_SLUB_DEBUG
 122        return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 123#else
 124        return 0;
 125#endif
 126}
 127
 128void *fixup_red_left(struct kmem_cache *s, void *p)
 129{
 130        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 131                p += s->red_left_pad;
 132
 133        return p;
 134}
 135
 136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 137{
 138#ifdef CONFIG_SLUB_CPU_PARTIAL
 139        return !kmem_cache_debug(s);
 140#else
 141        return false;
 142#endif
 143}
 144
 145/*
 146 * Issues still to be resolved:
 147 *
 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 149 *
 150 * - Variable sizing of the per node arrays
 151 */
 152
 153/* Enable to test recovery from slab corruption on boot */
 154#undef SLUB_RESILIENCY_TEST
 155
 156/* Enable to log cmpxchg failures */
 157#undef SLUB_DEBUG_CMPXCHG
 158
 159/*
 160 * Mininum number of partial slabs. These will be left on the partial
 161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 162 */
 163#define MIN_PARTIAL 5
 164
 165/*
 166 * Maximum number of desirable partial slabs.
 167 * The existence of more partial slabs makes kmem_cache_shrink
 168 * sort the partial list by the number of objects in use.
 169 */
 170#define MAX_PARTIAL 10
 171
 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 173                                SLAB_POISON | SLAB_STORE_USER)
 174
 175/*
 176 * These debug flags cannot use CMPXCHG because there might be consistency
 177 * issues when checking or reading debug information
 178 */
 179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 180                                SLAB_TRACE)
 181
 182
 183/*
 184 * Debugging flags that require metadata to be stored in the slab.  These get
 185 * disabled when slub_debug=O is used and a cache's min order increases with
 186 * metadata.
 187 */
 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 189
 190#define OO_SHIFT        16
 191#define OO_MASK         ((1 << OO_SHIFT) - 1)
 192#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 193
 194/* Internal SLUB flags */
 195/* Poison object */
 196#define __OBJECT_POISON         ((slab_flags_t __force)0x80000000U)
 197/* Use cmpxchg_double */
 198#define __CMPXCHG_DOUBLE        ((slab_flags_t __force)0x40000000U)
 199
 200/*
 201 * Tracking user of a slab.
 202 */
 203#define TRACK_ADDRS_COUNT 16
 204struct track {
 205        unsigned long addr;     /* Called from address */
 206#ifdef CONFIG_STACKTRACE
 207        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 208#endif
 209        int cpu;                /* Was running on cpu */
 210        int pid;                /* Pid context */
 211        unsigned long when;     /* When did the operation occur */
 212};
 213
 214enum track_item { TRACK_ALLOC, TRACK_FREE };
 215
 216#ifdef CONFIG_SYSFS
 217static int sysfs_slab_add(struct kmem_cache *);
 218static int sysfs_slab_alias(struct kmem_cache *, const char *);
 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 220static void sysfs_slab_remove(struct kmem_cache *s);
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224                                                        { return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 227#endif
 228
 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
 230{
 231#ifdef CONFIG_SLUB_STATS
 232        /*
 233         * The rmw is racy on a preemptible kernel but this is acceptable, so
 234         * avoid this_cpu_add()'s irq-disable overhead.
 235         */
 236        raw_cpu_inc(s->cpu_slab->stat[si]);
 237#endif
 238}
 239
 240/********************************************************************
 241 *                      Core slab cache functions
 242 *******************************************************************/
 243
 244/*
 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 246 * with an XOR of the address where the pointer is held and a per-cache
 247 * random number.
 248 */
 249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 250                                 unsigned long ptr_addr)
 251{
 252#ifdef CONFIG_SLAB_FREELIST_HARDENED
 253        /*
 254         * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
 255         * Normally, this doesn't cause any issues, as both set_freepointer()
 256         * and get_freepointer() are called with a pointer with the same tag.
 257         * However, there are some issues with CONFIG_SLUB_DEBUG code. For
 258         * example, when __free_slub() iterates over objects in a cache, it
 259         * passes untagged pointers to check_object(). check_object() in turns
 260         * calls get_freepointer() with an untagged pointer, which causes the
 261         * freepointer to be restored incorrectly.
 262         */
 263        return (void *)((unsigned long)ptr ^ s->random ^
 264                        (unsigned long)kasan_reset_tag((void *)ptr_addr));
 265#else
 266        return ptr;
 267#endif
 268}
 269
 270/* Returns the freelist pointer recorded at location ptr_addr. */
 271static inline void *freelist_dereference(const struct kmem_cache *s,
 272                                         void *ptr_addr)
 273{
 274        return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 275                            (unsigned long)ptr_addr);
 276}
 277
 278static inline void *get_freepointer(struct kmem_cache *s, void *object)
 279{
 280        return freelist_dereference(s, object + s->offset);
 281}
 282
 283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 284{
 285        prefetch(object + s->offset);
 286}
 287
 288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 289{
 290        unsigned long freepointer_addr;
 291        void *p;
 292
 293        if (!debug_pagealloc_enabled())
 294                return get_freepointer(s, object);
 295
 296        freepointer_addr = (unsigned long)object + s->offset;
 297        probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
 298        return freelist_ptr(s, p, freepointer_addr);
 299}
 300
 301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 302{
 303        unsigned long freeptr_addr = (unsigned long)object + s->offset;
 304
 305#ifdef CONFIG_SLAB_FREELIST_HARDENED
 306        BUG_ON(object == fp); /* naive detection of double free or corruption */
 307#endif
 308
 309        *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 310}
 311
 312/* Loop over all objects in a slab */
 313#define for_each_object(__p, __s, __addr, __objects) \
 314        for (__p = fixup_red_left(__s, __addr); \
 315                __p < (__addr) + (__objects) * (__s)->size; \
 316                __p += (__s)->size)
 317
 318/* Determine object index from a given position */
 319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
 320{
 321        return (kasan_reset_tag(p) - addr) / s->size;
 322}
 323
 324static inline unsigned int order_objects(unsigned int order, unsigned int size)
 325{
 326        return ((unsigned int)PAGE_SIZE << order) / size;
 327}
 328
 329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 330                unsigned int size)
 331{
 332        struct kmem_cache_order_objects x = {
 333                (order << OO_SHIFT) + order_objects(order, size)
 334        };
 335
 336        return x;
 337}
 338
 339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 340{
 341        return x.x >> OO_SHIFT;
 342}
 343
 344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 345{
 346        return x.x & OO_MASK;
 347}
 348
 349/*
 350 * Per slab locking using the pagelock
 351 */
 352static __always_inline void slab_lock(struct page *page)
 353{
 354        VM_BUG_ON_PAGE(PageTail(page), page);
 355        bit_spin_lock(PG_locked, &page->flags);
 356}
 357
 358static __always_inline void slab_unlock(struct page *page)
 359{
 360        VM_BUG_ON_PAGE(PageTail(page), page);
 361        __bit_spin_unlock(PG_locked, &page->flags);
 362}
 363
 364/* Interrupts must be disabled (for the fallback code to work right) */
 365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 366                void *freelist_old, unsigned long counters_old,
 367                void *freelist_new, unsigned long counters_new,
 368                const char *n)
 369{
 370        VM_BUG_ON(!irqs_disabled());
 371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 372    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 373        if (s->flags & __CMPXCHG_DOUBLE) {
 374                if (cmpxchg_double(&page->freelist, &page->counters,
 375                                   freelist_old, counters_old,
 376                                   freelist_new, counters_new))
 377                        return true;
 378        } else
 379#endif
 380        {
 381                slab_lock(page);
 382                if (page->freelist == freelist_old &&
 383                                        page->counters == counters_old) {
 384                        page->freelist = freelist_new;
 385                        page->counters = counters_new;
 386                        slab_unlock(page);
 387                        return true;
 388                }
 389                slab_unlock(page);
 390        }
 391
 392        cpu_relax();
 393        stat(s, CMPXCHG_DOUBLE_FAIL);
 394
 395#ifdef SLUB_DEBUG_CMPXCHG
 396        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 397#endif
 398
 399        return false;
 400}
 401
 402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 403                void *freelist_old, unsigned long counters_old,
 404                void *freelist_new, unsigned long counters_new,
 405                const char *n)
 406{
 407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 408    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 409        if (s->flags & __CMPXCHG_DOUBLE) {
 410                if (cmpxchg_double(&page->freelist, &page->counters,
 411                                   freelist_old, counters_old,
 412                                   freelist_new, counters_new))
 413                        return true;
 414        } else
 415#endif
 416        {
 417                unsigned long flags;
 418
 419                local_irq_save(flags);
 420                slab_lock(page);
 421                if (page->freelist == freelist_old &&
 422                                        page->counters == counters_old) {
 423                        page->freelist = freelist_new;
 424                        page->counters = counters_new;
 425                        slab_unlock(page);
 426                        local_irq_restore(flags);
 427                        return true;
 428                }
 429                slab_unlock(page);
 430                local_irq_restore(flags);
 431        }
 432
 433        cpu_relax();
 434        stat(s, CMPXCHG_DOUBLE_FAIL);
 435
 436#ifdef SLUB_DEBUG_CMPXCHG
 437        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 438#endif
 439
 440        return false;
 441}
 442
 443#ifdef CONFIG_SLUB_DEBUG
 444/*
 445 * Determine a map of object in use on a page.
 446 *
 447 * Node listlock must be held to guarantee that the page does
 448 * not vanish from under us.
 449 */
 450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 451{
 452        void *p;
 453        void *addr = page_address(page);
 454
 455        for (p = page->freelist; p; p = get_freepointer(s, p))
 456                set_bit(slab_index(p, s, addr), map);
 457}
 458
 459static inline unsigned int size_from_object(struct kmem_cache *s)
 460{
 461        if (s->flags & SLAB_RED_ZONE)
 462                return s->size - s->red_left_pad;
 463
 464        return s->size;
 465}
 466
 467static inline void *restore_red_left(struct kmem_cache *s, void *p)
 468{
 469        if (s->flags & SLAB_RED_ZONE)
 470                p -= s->red_left_pad;
 471
 472        return p;
 473}
 474
 475/*
 476 * Debug settings:
 477 */
 478#if defined(CONFIG_SLUB_DEBUG_ON)
 479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 480#else
 481static slab_flags_t slub_debug;
 482#endif
 483
 484static char *slub_debug_slabs;
 485static int disable_higher_order_debug;
 486
 487/*
 488 * slub is about to manipulate internal object metadata.  This memory lies
 489 * outside the range of the allocated object, so accessing it would normally
 490 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 491 * to tell kasan that these accesses are OK.
 492 */
 493static inline void metadata_access_enable(void)
 494{
 495        kasan_disable_current();
 496}
 497
 498static inline void metadata_access_disable(void)
 499{
 500        kasan_enable_current();
 501}
 502
 503/*
 504 * Object debugging
 505 */
 506
 507/* Verify that a pointer has an address that is valid within a slab page */
 508static inline int check_valid_pointer(struct kmem_cache *s,
 509                                struct page *page, void *object)
 510{
 511        void *base;
 512
 513        if (!object)
 514                return 1;
 515
 516        base = page_address(page);
 517        object = kasan_reset_tag(object);
 518        object = restore_red_left(s, object);
 519        if (object < base || object >= base + page->objects * s->size ||
 520                (object - base) % s->size) {
 521                return 0;
 522        }
 523
 524        return 1;
 525}
 526
 527static void print_section(char *level, char *text, u8 *addr,
 528                          unsigned int length)
 529{
 530        metadata_access_enable();
 531        print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 532                        length, 1);
 533        metadata_access_disable();
 534}
 535
 536static struct track *get_track(struct kmem_cache *s, void *object,
 537        enum track_item alloc)
 538{
 539        struct track *p;
 540
 541        if (s->offset)
 542                p = object + s->offset + sizeof(void *);
 543        else
 544                p = object + s->inuse;
 545
 546        return p + alloc;
 547}
 548
 549static void set_track(struct kmem_cache *s, void *object,
 550                        enum track_item alloc, unsigned long addr)
 551{
 552        struct track *p = get_track(s, object, alloc);
 553
 554        if (addr) {
 555#ifdef CONFIG_STACKTRACE
 556                unsigned int nr_entries;
 557
 558                metadata_access_enable();
 559                nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
 560                metadata_access_disable();
 561
 562                if (nr_entries < TRACK_ADDRS_COUNT)
 563                        p->addrs[nr_entries] = 0;
 564#endif
 565                p->addr = addr;
 566                p->cpu = smp_processor_id();
 567                p->pid = current->pid;
 568                p->when = jiffies;
 569        } else {
 570                memset(p, 0, sizeof(struct track));
 571        }
 572}
 573
 574static void init_tracking(struct kmem_cache *s, void *object)
 575{
 576        if (!(s->flags & SLAB_STORE_USER))
 577                return;
 578
 579        set_track(s, object, TRACK_FREE, 0UL);
 580        set_track(s, object, TRACK_ALLOC, 0UL);
 581}
 582
 583static void print_track(const char *s, struct track *t, unsigned long pr_time)
 584{
 585        if (!t->addr)
 586                return;
 587
 588        pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 589               s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 590#ifdef CONFIG_STACKTRACE
 591        {
 592                int i;
 593                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 594                        if (t->addrs[i])
 595                                pr_err("\t%pS\n", (void *)t->addrs[i]);
 596                        else
 597                                break;
 598        }
 599#endif
 600}
 601
 602static void print_tracking(struct kmem_cache *s, void *object)
 603{
 604        unsigned long pr_time = jiffies;
 605        if (!(s->flags & SLAB_STORE_USER))
 606                return;
 607
 608        print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 609        print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 610}
 611
 612static void print_page_info(struct page *page)
 613{
 614        pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 615               page, page->objects, page->inuse, page->freelist, page->flags);
 616
 617}
 618
 619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 620{
 621        struct va_format vaf;
 622        va_list args;
 623
 624        va_start(args, fmt);
 625        vaf.fmt = fmt;
 626        vaf.va = &args;
 627        pr_err("=============================================================================\n");
 628        pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 629        pr_err("-----------------------------------------------------------------------------\n\n");
 630
 631        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 632        va_end(args);
 633}
 634
 635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 636{
 637        struct va_format vaf;
 638        va_list args;
 639
 640        va_start(args, fmt);
 641        vaf.fmt = fmt;
 642        vaf.va = &args;
 643        pr_err("FIX %s: %pV\n", s->name, &vaf);
 644        va_end(args);
 645}
 646
 647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 648{
 649        unsigned int off;       /* Offset of last byte */
 650        u8 *addr = page_address(page);
 651
 652        print_tracking(s, p);
 653
 654        print_page_info(page);
 655
 656        pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 657               p, p - addr, get_freepointer(s, p));
 658
 659        if (s->flags & SLAB_RED_ZONE)
 660                print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 661                              s->red_left_pad);
 662        else if (p > addr + 16)
 663                print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 664
 665        print_section(KERN_ERR, "Object ", p,
 666                      min_t(unsigned int, s->object_size, PAGE_SIZE));
 667        if (s->flags & SLAB_RED_ZONE)
 668                print_section(KERN_ERR, "Redzone ", p + s->object_size,
 669                        s->inuse - s->object_size);
 670
 671        if (s->offset)
 672                off = s->offset + sizeof(void *);
 673        else
 674                off = s->inuse;
 675
 676        if (s->flags & SLAB_STORE_USER)
 677                off += 2 * sizeof(struct track);
 678
 679        off += kasan_metadata_size(s);
 680
 681        if (off != size_from_object(s))
 682                /* Beginning of the filler is the free pointer */
 683                print_section(KERN_ERR, "Padding ", p + off,
 684                              size_from_object(s) - off);
 685
 686        dump_stack();
 687}
 688
 689void object_err(struct kmem_cache *s, struct page *page,
 690                        u8 *object, char *reason)
 691{
 692        slab_bug(s, "%s", reason);
 693        print_trailer(s, page, object);
 694}
 695
 696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
 697                        const char *fmt, ...)
 698{
 699        va_list args;
 700        char buf[100];
 701
 702        va_start(args, fmt);
 703        vsnprintf(buf, sizeof(buf), fmt, args);
 704        va_end(args);
 705        slab_bug(s, "%s", buf);
 706        print_page_info(page);
 707        dump_stack();
 708}
 709
 710static void init_object(struct kmem_cache *s, void *object, u8 val)
 711{
 712        u8 *p = object;
 713
 714        if (s->flags & SLAB_RED_ZONE)
 715                memset(p - s->red_left_pad, val, s->red_left_pad);
 716
 717        if (s->flags & __OBJECT_POISON) {
 718                memset(p, POISON_FREE, s->object_size - 1);
 719                p[s->object_size - 1] = POISON_END;
 720        }
 721
 722        if (s->flags & SLAB_RED_ZONE)
 723                memset(p + s->object_size, val, s->inuse - s->object_size);
 724}
 725
 726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 727                                                void *from, void *to)
 728{
 729        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 730        memset(from, data, to - from);
 731}
 732
 733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 734                        u8 *object, char *what,
 735                        u8 *start, unsigned int value, unsigned int bytes)
 736{
 737        u8 *fault;
 738        u8 *end;
 739
 740        metadata_access_enable();
 741        fault = memchr_inv(start, value, bytes);
 742        metadata_access_disable();
 743        if (!fault)
 744                return 1;
 745
 746        end = start + bytes;
 747        while (end > fault && end[-1] == value)
 748                end--;
 749
 750        slab_bug(s, "%s overwritten", what);
 751        pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 752                                        fault, end - 1, fault[0], value);
 753        print_trailer(s, page, object);
 754
 755        restore_bytes(s, what, value, fault, end);
 756        return 0;
 757}
 758
 759/*
 760 * Object layout:
 761 *
 762 * object address
 763 *      Bytes of the object to be managed.
 764 *      If the freepointer may overlay the object then the free
 765 *      pointer is the first word of the object.
 766 *
 767 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 768 *      0xa5 (POISON_END)
 769 *
 770 * object + s->object_size
 771 *      Padding to reach word boundary. This is also used for Redzoning.
 772 *      Padding is extended by another word if Redzoning is enabled and
 773 *      object_size == inuse.
 774 *
 775 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 776 *      0xcc (RED_ACTIVE) for objects in use.
 777 *
 778 * object + s->inuse
 779 *      Meta data starts here.
 780 *
 781 *      A. Free pointer (if we cannot overwrite object on free)
 782 *      B. Tracking data for SLAB_STORE_USER
 783 *      C. Padding to reach required alignment boundary or at mininum
 784 *              one word if debugging is on to be able to detect writes
 785 *              before the word boundary.
 786 *
 787 *      Padding is done using 0x5a (POISON_INUSE)
 788 *
 789 * object + s->size
 790 *      Nothing is used beyond s->size.
 791 *
 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 793 * ignored. And therefore no slab options that rely on these boundaries
 794 * may be used with merged slabcaches.
 795 */
 796
 797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 798{
 799        unsigned long off = s->inuse;   /* The end of info */
 800
 801        if (s->offset)
 802                /* Freepointer is placed after the object. */
 803                off += sizeof(void *);
 804
 805        if (s->flags & SLAB_STORE_USER)
 806                /* We also have user information there */
 807                off += 2 * sizeof(struct track);
 808
 809        off += kasan_metadata_size(s);
 810
 811        if (size_from_object(s) == off)
 812                return 1;
 813
 814        return check_bytes_and_report(s, page, p, "Object padding",
 815                        p + off, POISON_INUSE, size_from_object(s) - off);
 816}
 817
 818/* Check the pad bytes at the end of a slab page */
 819static int slab_pad_check(struct kmem_cache *s, struct page *page)
 820{
 821        u8 *start;
 822        u8 *fault;
 823        u8 *end;
 824        u8 *pad;
 825        int length;
 826        int remainder;
 827
 828        if (!(s->flags & SLAB_POISON))
 829                return 1;
 830
 831        start = page_address(page);
 832        length = PAGE_SIZE << compound_order(page);
 833        end = start + length;
 834        remainder = length % s->size;
 835        if (!remainder)
 836                return 1;
 837
 838        pad = end - remainder;
 839        metadata_access_enable();
 840        fault = memchr_inv(pad, POISON_INUSE, remainder);
 841        metadata_access_disable();
 842        if (!fault)
 843                return 1;
 844        while (end > fault && end[-1] == POISON_INUSE)
 845                end--;
 846
 847        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 848        print_section(KERN_ERR, "Padding ", pad, remainder);
 849
 850        restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 851        return 0;
 852}
 853
 854static int check_object(struct kmem_cache *s, struct page *page,
 855                                        void *object, u8 val)
 856{
 857        u8 *p = object;
 858        u8 *endobject = object + s->object_size;
 859
 860        if (s->flags & SLAB_RED_ZONE) {
 861                if (!check_bytes_and_report(s, page, object, "Redzone",
 862                        object - s->red_left_pad, val, s->red_left_pad))
 863                        return 0;
 864
 865                if (!check_bytes_and_report(s, page, object, "Redzone",
 866                        endobject, val, s->inuse - s->object_size))
 867                        return 0;
 868        } else {
 869                if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 870                        check_bytes_and_report(s, page, p, "Alignment padding",
 871                                endobject, POISON_INUSE,
 872                                s->inuse - s->object_size);
 873                }
 874        }
 875
 876        if (s->flags & SLAB_POISON) {
 877                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 878                        (!check_bytes_and_report(s, page, p, "Poison", p,
 879                                        POISON_FREE, s->object_size - 1) ||
 880                         !check_bytes_and_report(s, page, p, "Poison",
 881                                p + s->object_size - 1, POISON_END, 1)))
 882                        return 0;
 883                /*
 884                 * check_pad_bytes cleans up on its own.
 885                 */
 886                check_pad_bytes(s, page, p);
 887        }
 888
 889        if (!s->offset && val == SLUB_RED_ACTIVE)
 890                /*
 891                 * Object and freepointer overlap. Cannot check
 892                 * freepointer while object is allocated.
 893                 */
 894                return 1;
 895
 896        /* Check free pointer validity */
 897        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 898                object_err(s, page, p, "Freepointer corrupt");
 899                /*
 900                 * No choice but to zap it and thus lose the remainder
 901                 * of the free objects in this slab. May cause
 902                 * another error because the object count is now wrong.
 903                 */
 904                set_freepointer(s, p, NULL);
 905                return 0;
 906        }
 907        return 1;
 908}
 909
 910static int check_slab(struct kmem_cache *s, struct page *page)
 911{
 912        int maxobj;
 913
 914        VM_BUG_ON(!irqs_disabled());
 915
 916        if (!PageSlab(page)) {
 917                slab_err(s, page, "Not a valid slab page");
 918                return 0;
 919        }
 920
 921        maxobj = order_objects(compound_order(page), s->size);
 922        if (page->objects > maxobj) {
 923                slab_err(s, page, "objects %u > max %u",
 924                        page->objects, maxobj);
 925                return 0;
 926        }
 927        if (page->inuse > page->objects) {
 928                slab_err(s, page, "inuse %u > max %u",
 929                        page->inuse, page->objects);
 930                return 0;
 931        }
 932        /* Slab_pad_check fixes things up after itself */
 933        slab_pad_check(s, page);
 934        return 1;
 935}
 936
 937/*
 938 * Determine if a certain object on a page is on the freelist. Must hold the
 939 * slab lock to guarantee that the chains are in a consistent state.
 940 */
 941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 942{
 943        int nr = 0;
 944        void *fp;
 945        void *object = NULL;
 946        int max_objects;
 947
 948        fp = page->freelist;
 949        while (fp && nr <= page->objects) {
 950                if (fp == search)
 951                        return 1;
 952                if (!check_valid_pointer(s, page, fp)) {
 953                        if (object) {
 954                                object_err(s, page, object,
 955                                        "Freechain corrupt");
 956                                set_freepointer(s, object, NULL);
 957                        } else {
 958                                slab_err(s, page, "Freepointer corrupt");
 959                                page->freelist = NULL;
 960                                page->inuse = page->objects;
 961                                slab_fix(s, "Freelist cleared");
 962                                return 0;
 963                        }
 964                        break;
 965                }
 966                object = fp;
 967                fp = get_freepointer(s, object);
 968                nr++;
 969        }
 970
 971        max_objects = order_objects(compound_order(page), s->size);
 972        if (max_objects > MAX_OBJS_PER_PAGE)
 973                max_objects = MAX_OBJS_PER_PAGE;
 974
 975        if (page->objects != max_objects) {
 976                slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 977                         page->objects, max_objects);
 978                page->objects = max_objects;
 979                slab_fix(s, "Number of objects adjusted.");
 980        }
 981        if (page->inuse != page->objects - nr) {
 982                slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 983                         page->inuse, page->objects - nr);
 984                page->inuse = page->objects - nr;
 985                slab_fix(s, "Object count adjusted.");
 986        }
 987        return search == NULL;
 988}
 989
 990static void trace(struct kmem_cache *s, struct page *page, void *object,
 991                                                                int alloc)
 992{
 993        if (s->flags & SLAB_TRACE) {
 994                pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 995                        s->name,
 996                        alloc ? "alloc" : "free",
 997                        object, page->inuse,
 998                        page->freelist);
 999
1000                if (!alloc)
1001                        print_section(KERN_INFO, "Object ", (void *)object,
1002                                        s->object_size);
1003
1004                dump_stack();
1005        }
1006}
1007
1008/*
1009 * Tracking of fully allocated slabs for debugging purposes.
1010 */
1011static void add_full(struct kmem_cache *s,
1012        struct kmem_cache_node *n, struct page *page)
1013{
1014        if (!(s->flags & SLAB_STORE_USER))
1015                return;
1016
1017        lockdep_assert_held(&n->list_lock);
1018        list_add(&page->slab_list, &n->full);
1019}
1020
1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022{
1023        if (!(s->flags & SLAB_STORE_USER))
1024                return;
1025
1026        lockdep_assert_held(&n->list_lock);
1027        list_del(&page->slab_list);
1028}
1029
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033        struct kmem_cache_node *n = get_node(s, node);
1034
1035        return atomic_long_read(&n->nr_slabs);
1036}
1037
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040        return atomic_long_read(&n->nr_slabs);
1041}
1042
1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044{
1045        struct kmem_cache_node *n = get_node(s, node);
1046
1047        /*
1048         * May be called early in order to allocate a slab for the
1049         * kmem_cache_node structure. Solve the chicken-egg
1050         * dilemma by deferring the increment of the count during
1051         * bootstrap (see early_kmem_cache_node_alloc).
1052         */
1053        if (likely(n)) {
1054                atomic_long_inc(&n->nr_slabs);
1055                atomic_long_add(objects, &n->total_objects);
1056        }
1057}
1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059{
1060        struct kmem_cache_node *n = get_node(s, node);
1061
1062        atomic_long_dec(&n->nr_slabs);
1063        atomic_long_sub(objects, &n->total_objects);
1064}
1065
1066/* Object debug checks for alloc/free paths */
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068                                                                void *object)
1069{
1070        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071                return;
1072
1073        init_object(s, object, SLUB_RED_INACTIVE);
1074        init_tracking(s, object);
1075}
1076
1077static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078{
1079        if (!(s->flags & SLAB_POISON))
1080                return;
1081
1082        metadata_access_enable();
1083        memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084        metadata_access_disable();
1085}
1086
1087static inline int alloc_consistency_checks(struct kmem_cache *s,
1088                                        struct page *page, void *object)
1089{
1090        if (!check_slab(s, page))
1091                return 0;
1092
1093        if (!check_valid_pointer(s, page, object)) {
1094                object_err(s, page, object, "Freelist Pointer check fails");
1095                return 0;
1096        }
1097
1098        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099                return 0;
1100
1101        return 1;
1102}
1103
1104static noinline int alloc_debug_processing(struct kmem_cache *s,
1105                                        struct page *page,
1106                                        void *object, unsigned long addr)
1107{
1108        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109                if (!alloc_consistency_checks(s, page, object))
1110                        goto bad;
1111        }
1112
1113        /* Success perform special debug activities for allocs */
1114        if (s->flags & SLAB_STORE_USER)
1115                set_track(s, object, TRACK_ALLOC, addr);
1116        trace(s, page, object, 1);
1117        init_object(s, object, SLUB_RED_ACTIVE);
1118        return 1;
1119
1120bad:
1121        if (PageSlab(page)) {
1122                /*
1123                 * If this is a slab page then lets do the best we can
1124                 * to avoid issues in the future. Marking all objects
1125                 * as used avoids touching the remaining objects.
1126                 */
1127                slab_fix(s, "Marking all objects used");
1128                page->inuse = page->objects;
1129                page->freelist = NULL;
1130        }
1131        return 0;
1132}
1133
1134static inline int free_consistency_checks(struct kmem_cache *s,
1135                struct page *page, void *object, unsigned long addr)
1136{
1137        if (!check_valid_pointer(s, page, object)) {
1138                slab_err(s, page, "Invalid object pointer 0x%p", object);
1139                return 0;
1140        }
1141
1142        if (on_freelist(s, page, object)) {
1143                object_err(s, page, object, "Object already free");
1144                return 0;
1145        }
1146
1147        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148                return 0;
1149
1150        if (unlikely(s != page->slab_cache)) {
1151                if (!PageSlab(page)) {
1152                        slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153                                 object);
1154                } else if (!page->slab_cache) {
1155                        pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156                               object);
1157                        dump_stack();
1158                } else
1159                        object_err(s, page, object,
1160                                        "page slab pointer corrupt.");
1161                return 0;
1162        }
1163        return 1;
1164}
1165
1166/* Supports checking bulk free of a constructed freelist */
1167static noinline int free_debug_processing(
1168        struct kmem_cache *s, struct page *page,
1169        void *head, void *tail, int bulk_cnt,
1170        unsigned long addr)
1171{
1172        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173        void *object = head;
1174        int cnt = 0;
1175        unsigned long uninitialized_var(flags);
1176        int ret = 0;
1177
1178        spin_lock_irqsave(&n->list_lock, flags);
1179        slab_lock(page);
1180
1181        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182                if (!check_slab(s, page))
1183                        goto out;
1184        }
1185
1186next_object:
1187        cnt++;
1188
1189        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190                if (!free_consistency_checks(s, page, object, addr))
1191                        goto out;
1192        }
1193
1194        if (s->flags & SLAB_STORE_USER)
1195                set_track(s, object, TRACK_FREE, addr);
1196        trace(s, page, object, 0);
1197        /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198        init_object(s, object, SLUB_RED_INACTIVE);
1199
1200        /* Reached end of constructed freelist yet? */
1201        if (object != tail) {
1202                object = get_freepointer(s, object);
1203                goto next_object;
1204        }
1205        ret = 1;
1206
1207out:
1208        if (cnt != bulk_cnt)
1209                slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210                         bulk_cnt, cnt);
1211
1212        slab_unlock(page);
1213        spin_unlock_irqrestore(&n->list_lock, flags);
1214        if (!ret)
1215                slab_fix(s, "Object at 0x%p not freed", object);
1216        return ret;
1217}
1218
1219static int __init setup_slub_debug(char *str)
1220{
1221        slub_debug = DEBUG_DEFAULT_FLAGS;
1222        if (*str++ != '=' || !*str)
1223                /*
1224                 * No options specified. Switch on full debugging.
1225                 */
1226                goto out;
1227
1228        if (*str == ',')
1229                /*
1230                 * No options but restriction on slabs. This means full
1231                 * debugging for slabs matching a pattern.
1232                 */
1233                goto check_slabs;
1234
1235        slub_debug = 0;
1236        if (*str == '-')
1237                /*
1238                 * Switch off all debugging measures.
1239                 */
1240                goto out;
1241
1242        /*
1243         * Determine which debug features should be switched on
1244         */
1245        for (; *str && *str != ','; str++) {
1246                switch (tolower(*str)) {
1247                case 'f':
1248                        slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249                        break;
1250                case 'z':
1251                        slub_debug |= SLAB_RED_ZONE;
1252                        break;
1253                case 'p':
1254                        slub_debug |= SLAB_POISON;
1255                        break;
1256                case 'u':
1257                        slub_debug |= SLAB_STORE_USER;
1258                        break;
1259                case 't':
1260                        slub_debug |= SLAB_TRACE;
1261                        break;
1262                case 'a':
1263                        slub_debug |= SLAB_FAILSLAB;
1264                        break;
1265                case 'o':
1266                        /*
1267                         * Avoid enabling debugging on caches if its minimum
1268                         * order would increase as a result.
1269                         */
1270                        disable_higher_order_debug = 1;
1271                        break;
1272                default:
1273                        pr_err("slub_debug option '%c' unknown. skipped\n",
1274                               *str);
1275                }
1276        }
1277
1278check_slabs:
1279        if (*str == ',')
1280                slub_debug_slabs = str + 1;
1281out:
1282        return 1;
1283}
1284
1285__setup("slub_debug", setup_slub_debug);
1286
1287/*
1288 * kmem_cache_flags - apply debugging options to the cache
1289 * @object_size:        the size of an object without meta data
1290 * @flags:              flags to set
1291 * @name:               name of the cache
1292 * @ctor:               constructor function
1293 *
1294 * Debug option(s) are applied to @flags. In addition to the debug
1295 * option(s), if a slab name (or multiple) is specified i.e.
1296 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1297 * then only the select slabs will receive the debug option(s).
1298 */
1299slab_flags_t kmem_cache_flags(unsigned int object_size,
1300        slab_flags_t flags, const char *name,
1301        void (*ctor)(void *))
1302{
1303        char *iter;
1304        size_t len;
1305
1306        /* If slub_debug = 0, it folds into the if conditional. */
1307        if (!slub_debug_slabs)
1308                return flags | slub_debug;
1309
1310        len = strlen(name);
1311        iter = slub_debug_slabs;
1312        while (*iter) {
1313                char *end, *glob;
1314                size_t cmplen;
1315
1316                end = strchr(iter, ',');
1317                if (!end)
1318                        end = iter + strlen(iter);
1319
1320                glob = strnchr(iter, end - iter, '*');
1321                if (glob)
1322                        cmplen = glob - iter;
1323                else
1324                        cmplen = max_t(size_t, len, (end - iter));
1325
1326                if (!strncmp(name, iter, cmplen)) {
1327                        flags |= slub_debug;
1328                        break;
1329                }
1330
1331                if (!*end)
1332                        break;
1333                iter = end + 1;
1334        }
1335
1336        return flags;
1337}
1338#else /* !CONFIG_SLUB_DEBUG */
1339static inline void setup_object_debug(struct kmem_cache *s,
1340                        struct page *page, void *object) {}
1341static inline void setup_page_debug(struct kmem_cache *s,
1342                        void *addr, int order) {}
1343
1344static inline int alloc_debug_processing(struct kmem_cache *s,
1345        struct page *page, void *object, unsigned long addr) { return 0; }
1346
1347static inline int free_debug_processing(
1348        struct kmem_cache *s, struct page *page,
1349        void *head, void *tail, int bulk_cnt,
1350        unsigned long addr) { return 0; }
1351
1352static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1353                        { return 1; }
1354static inline int check_object(struct kmem_cache *s, struct page *page,
1355                        void *object, u8 val) { return 1; }
1356static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1357                                        struct page *page) {}
1358static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359                                        struct page *page) {}
1360slab_flags_t kmem_cache_flags(unsigned int object_size,
1361        slab_flags_t flags, const char *name,
1362        void (*ctor)(void *))
1363{
1364        return flags;
1365}
1366#define slub_debug 0
1367
1368#define disable_higher_order_debug 0
1369
1370static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1371                                                        { return 0; }
1372static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1373                                                        { return 0; }
1374static inline void inc_slabs_node(struct kmem_cache *s, int node,
1375                                                        int objects) {}
1376static inline void dec_slabs_node(struct kmem_cache *s, int node,
1377                                                        int objects) {}
1378
1379#endif /* CONFIG_SLUB_DEBUG */
1380
1381/*
1382 * Hooks for other subsystems that check memory allocations. In a typical
1383 * production configuration these hooks all should produce no code at all.
1384 */
1385static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1386{
1387        ptr = kasan_kmalloc_large(ptr, size, flags);
1388        /* As ptr might get tagged, call kmemleak hook after KASAN. */
1389        kmemleak_alloc(ptr, size, 1, flags);
1390        return ptr;
1391}
1392
1393static __always_inline void kfree_hook(void *x)
1394{
1395        kmemleak_free(x);
1396        kasan_kfree_large(x, _RET_IP_);
1397}
1398
1399static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1400{
1401        kmemleak_free_recursive(x, s->flags);
1402
1403        /*
1404         * Trouble is that we may no longer disable interrupts in the fast path
1405         * So in order to make the debug calls that expect irqs to be
1406         * disabled we need to disable interrupts temporarily.
1407         */
1408#ifdef CONFIG_LOCKDEP
1409        {
1410                unsigned long flags;
1411
1412                local_irq_save(flags);
1413                debug_check_no_locks_freed(x, s->object_size);
1414                local_irq_restore(flags);
1415        }
1416#endif
1417        if (!(s->flags & SLAB_DEBUG_OBJECTS))
1418                debug_check_no_obj_freed(x, s->object_size);
1419
1420        /* KASAN might put x into memory quarantine, delaying its reuse */
1421        return kasan_slab_free(s, x, _RET_IP_);
1422}
1423
1424static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1425                                           void **head, void **tail)
1426{
1427/*
1428 * Compiler cannot detect this function can be removed if slab_free_hook()
1429 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1430 */
1431#if defined(CONFIG_LOCKDEP)     ||              \
1432        defined(CONFIG_DEBUG_KMEMLEAK) ||       \
1433        defined(CONFIG_DEBUG_OBJECTS_FREE) ||   \
1434        defined(CONFIG_KASAN)
1435
1436        void *object;
1437        void *next = *head;
1438        void *old_tail = *tail ? *tail : *head;
1439
1440        /* Head and tail of the reconstructed freelist */
1441        *head = NULL;
1442        *tail = NULL;
1443
1444        do {
1445                object = next;
1446                next = get_freepointer(s, object);
1447                /* If object's reuse doesn't have to be delayed */
1448                if (!slab_free_hook(s, object)) {
1449                        /* Move object to the new freelist */
1450                        set_freepointer(s, object, *head);
1451                        *head = object;
1452                        if (!*tail)
1453                                *tail = object;
1454                }
1455        } while (object != old_tail);
1456
1457        if (*head == *tail)
1458                *tail = NULL;
1459
1460        return *head != NULL;
1461#else
1462        return true;
1463#endif
1464}
1465
1466static void *setup_object(struct kmem_cache *s, struct page *page,
1467                                void *object)
1468{
1469        setup_object_debug(s, page, object);
1470        object = kasan_init_slab_obj(s, object);
1471        if (unlikely(s->ctor)) {
1472                kasan_unpoison_object_data(s, object);
1473                s->ctor(object);
1474                kasan_poison_object_data(s, object);
1475        }
1476        return object;
1477}
1478
1479/*
1480 * Slab allocation and freeing
1481 */
1482static inline struct page *alloc_slab_page(struct kmem_cache *s,
1483                gfp_t flags, int node, struct kmem_cache_order_objects oo)
1484{
1485        struct page *page;
1486        unsigned int order = oo_order(oo);
1487
1488        if (node == NUMA_NO_NODE)
1489                page = alloc_pages(flags, order);
1490        else
1491                page = __alloc_pages_node(node, flags, order);
1492
1493        if (page && memcg_charge_slab(page, flags, order, s)) {
1494                __free_pages(page, order);
1495                page = NULL;
1496        }
1497
1498        return page;
1499}
1500
1501#ifdef CONFIG_SLAB_FREELIST_RANDOM
1502/* Pre-initialize the random sequence cache */
1503static int init_cache_random_seq(struct kmem_cache *s)
1504{
1505        unsigned int count = oo_objects(s->oo);
1506        int err;
1507
1508        /* Bailout if already initialised */
1509        if (s->random_seq)
1510                return 0;
1511
1512        err = cache_random_seq_create(s, count, GFP_KERNEL);
1513        if (err) {
1514                pr_err("SLUB: Unable to initialize free list for %s\n",
1515                        s->name);
1516                return err;
1517        }
1518
1519        /* Transform to an offset on the set of pages */
1520        if (s->random_seq) {
1521                unsigned int i;
1522
1523                for (i = 0; i < count; i++)
1524                        s->random_seq[i] *= s->size;
1525        }
1526        return 0;
1527}
1528
1529/* Initialize each random sequence freelist per cache */
1530static void __init init_freelist_randomization(void)
1531{
1532        struct kmem_cache *s;
1533
1534        mutex_lock(&slab_mutex);
1535
1536        list_for_each_entry(s, &slab_caches, list)
1537                init_cache_random_seq(s);
1538
1539        mutex_unlock(&slab_mutex);
1540}
1541
1542/* Get the next entry on the pre-computed freelist randomized */
1543static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1544                                unsigned long *pos, void *start,
1545                                unsigned long page_limit,
1546                                unsigned long freelist_count)
1547{
1548        unsigned int idx;
1549
1550        /*
1551         * If the target page allocation failed, the number of objects on the
1552         * page might be smaller than the usual size defined by the cache.
1553         */
1554        do {
1555                idx = s->random_seq[*pos];
1556                *pos += 1;
1557                if (*pos >= freelist_count)
1558                        *pos = 0;
1559        } while (unlikely(idx >= page_limit));
1560
1561        return (char *)start + idx;
1562}
1563
1564/* Shuffle the single linked freelist based on a random pre-computed sequence */
1565static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1566{
1567        void *start;
1568        void *cur;
1569        void *next;
1570        unsigned long idx, pos, page_limit, freelist_count;
1571
1572        if (page->objects < 2 || !s->random_seq)
1573                return false;
1574
1575        freelist_count = oo_objects(s->oo);
1576        pos = get_random_int() % freelist_count;
1577
1578        page_limit = page->objects * s->size;
1579        start = fixup_red_left(s, page_address(page));
1580
1581        /* First entry is used as the base of the freelist */
1582        cur = next_freelist_entry(s, page, &pos, start, page_limit,
1583                                freelist_count);
1584        cur = setup_object(s, page, cur);
1585        page->freelist = cur;
1586
1587        for (idx = 1; idx < page->objects; idx++) {
1588                next = next_freelist_entry(s, page, &pos, start, page_limit,
1589                        freelist_count);
1590                next = setup_object(s, page, next);
1591                set_freepointer(s, cur, next);
1592                cur = next;
1593        }
1594        set_freepointer(s, cur, NULL);
1595
1596        return true;
1597}
1598#else
1599static inline int init_cache_random_seq(struct kmem_cache *s)
1600{
1601        return 0;
1602}
1603static inline void init_freelist_randomization(void) { }
1604static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1605{
1606        return false;
1607}
1608#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1609
1610static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1611{
1612        struct page *page;
1613        struct kmem_cache_order_objects oo = s->oo;
1614        gfp_t alloc_gfp;
1615        void *start, *p, *next;
1616        int idx, order;
1617        bool shuffle;
1618
1619        flags &= gfp_allowed_mask;
1620
1621        if (gfpflags_allow_blocking(flags))
1622                local_irq_enable();
1623
1624        flags |= s->allocflags;
1625
1626        /*
1627         * Let the initial higher-order allocation fail under memory pressure
1628         * so we fall-back to the minimum order allocation.
1629         */
1630        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1631        if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1632                alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1633
1634        page = alloc_slab_page(s, alloc_gfp, node, oo);
1635        if (unlikely(!page)) {
1636                oo = s->min;
1637                alloc_gfp = flags;
1638                /*
1639                 * Allocation may have failed due to fragmentation.
1640                 * Try a lower order alloc if possible
1641                 */
1642                page = alloc_slab_page(s, alloc_gfp, node, oo);
1643                if (unlikely(!page))
1644                        goto out;
1645                stat(s, ORDER_FALLBACK);
1646        }
1647
1648        page->objects = oo_objects(oo);
1649
1650        order = compound_order(page);
1651        page->slab_cache = s;
1652        __SetPageSlab(page);
1653        if (page_is_pfmemalloc(page))
1654                SetPageSlabPfmemalloc(page);
1655
1656        kasan_poison_slab(page);
1657
1658        start = page_address(page);
1659
1660        setup_page_debug(s, start, order);
1661
1662        shuffle = shuffle_freelist(s, page);
1663
1664        if (!shuffle) {
1665                start = fixup_red_left(s, start);
1666                start = setup_object(s, page, start);
1667                page->freelist = start;
1668                for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1669                        next = p + s->size;
1670                        next = setup_object(s, page, next);
1671                        set_freepointer(s, p, next);
1672                        p = next;
1673                }
1674                set_freepointer(s, p, NULL);
1675        }
1676
1677        page->inuse = page->objects;
1678        page->frozen = 1;
1679
1680out:
1681        if (gfpflags_allow_blocking(flags))
1682                local_irq_disable();
1683        if (!page)
1684                return NULL;
1685
1686        mod_lruvec_page_state(page,
1687                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1688                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1689                1 << oo_order(oo));
1690
1691        inc_slabs_node(s, page_to_nid(page), page->objects);
1692
1693        return page;
1694}
1695
1696static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697{
1698        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700                flags &= ~GFP_SLAB_BUG_MASK;
1701                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702                                invalid_mask, &invalid_mask, flags, &flags);
1703                dump_stack();
1704        }
1705
1706        return allocate_slab(s,
1707                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708}
1709
1710static void __free_slab(struct kmem_cache *s, struct page *page)
1711{
1712        int order = compound_order(page);
1713        int pages = 1 << order;
1714
1715        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716                void *p;
1717
1718                slab_pad_check(s, page);
1719                for_each_object(p, s, page_address(page),
1720                                                page->objects)
1721                        check_object(s, page, p, SLUB_RED_INACTIVE);
1722        }
1723
1724        mod_lruvec_page_state(page,
1725                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1726                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1727                -pages);
1728
1729        __ClearPageSlabPfmemalloc(page);
1730        __ClearPageSlab(page);
1731
1732        page->mapping = NULL;
1733        if (current->reclaim_state)
1734                current->reclaim_state->reclaimed_slab += pages;
1735        memcg_uncharge_slab(page, order, s);
1736        __free_pages(page, order);
1737}
1738
1739static void rcu_free_slab(struct rcu_head *h)
1740{
1741        struct page *page = container_of(h, struct page, rcu_head);
1742
1743        __free_slab(page->slab_cache, page);
1744}
1745
1746static void free_slab(struct kmem_cache *s, struct page *page)
1747{
1748        if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1749                call_rcu(&page->rcu_head, rcu_free_slab);
1750        } else
1751                __free_slab(s, page);
1752}
1753
1754static void discard_slab(struct kmem_cache *s, struct page *page)
1755{
1756        dec_slabs_node(s, page_to_nid(page), page->objects);
1757        free_slab(s, page);
1758}
1759
1760/*
1761 * Management of partially allocated slabs.
1762 */
1763static inline void
1764__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1765{
1766        n->nr_partial++;
1767        if (tail == DEACTIVATE_TO_TAIL)
1768                list_add_tail(&page->slab_list, &n->partial);
1769        else
1770                list_add(&page->slab_list, &n->partial);
1771}
1772
1773static inline void add_partial(struct kmem_cache_node *n,
1774                                struct page *page, int tail)
1775{
1776        lockdep_assert_held(&n->list_lock);
1777        __add_partial(n, page, tail);
1778}
1779
1780static inline void remove_partial(struct kmem_cache_node *n,
1781                                        struct page *page)
1782{
1783        lockdep_assert_held(&n->list_lock);
1784        list_del(&page->slab_list);
1785        n->nr_partial--;
1786}
1787
1788/*
1789 * Remove slab from the partial list, freeze it and
1790 * return the pointer to the freelist.
1791 *
1792 * Returns a list of objects or NULL if it fails.
1793 */
1794static inline void *acquire_slab(struct kmem_cache *s,
1795                struct kmem_cache_node *n, struct page *page,
1796                int mode, int *objects)
1797{
1798        void *freelist;
1799        unsigned long counters;
1800        struct page new;
1801
1802        lockdep_assert_held(&n->list_lock);
1803
1804        /*
1805         * Zap the freelist and set the frozen bit.
1806         * The old freelist is the list of objects for the
1807         * per cpu allocation list.
1808         */
1809        freelist = page->freelist;
1810        counters = page->counters;
1811        new.counters = counters;
1812        *objects = new.objects - new.inuse;
1813        if (mode) {
1814                new.inuse = page->objects;
1815                new.freelist = NULL;
1816        } else {
1817                new.freelist = freelist;
1818        }
1819
1820        VM_BUG_ON(new.frozen);
1821        new.frozen = 1;
1822
1823        if (!__cmpxchg_double_slab(s, page,
1824                        freelist, counters,
1825                        new.freelist, new.counters,
1826                        "acquire_slab"))
1827                return NULL;
1828
1829        remove_partial(n, page);
1830        WARN_ON(!freelist);
1831        return freelist;
1832}
1833
1834static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1835static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1836
1837/*
1838 * Try to allocate a partial slab from a specific node.
1839 */
1840static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1841                                struct kmem_cache_cpu *c, gfp_t flags)
1842{
1843        struct page *page, *page2;
1844        void *object = NULL;
1845        unsigned int available = 0;
1846        int objects;
1847
1848        /*
1849         * Racy check. If we mistakenly see no partial slabs then we
1850         * just allocate an empty slab. If we mistakenly try to get a
1851         * partial slab and there is none available then get_partials()
1852         * will return NULL.
1853         */
1854        if (!n || !n->nr_partial)
1855                return NULL;
1856
1857        spin_lock(&n->list_lock);
1858        list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1859                void *t;
1860
1861                if (!pfmemalloc_match(page, flags))
1862                        continue;
1863
1864                t = acquire_slab(s, n, page, object == NULL, &objects);
1865                if (!t)
1866                        break;
1867
1868                available += objects;
1869                if (!object) {
1870                        c->page = page;
1871                        stat(s, ALLOC_FROM_PARTIAL);
1872                        object = t;
1873                } else {
1874                        put_cpu_partial(s, page, 0);
1875                        stat(s, CPU_PARTIAL_NODE);
1876                }
1877                if (!kmem_cache_has_cpu_partial(s)
1878                        || available > slub_cpu_partial(s) / 2)
1879                        break;
1880
1881        }
1882        spin_unlock(&n->list_lock);
1883        return object;
1884}
1885
1886/*
1887 * Get a page from somewhere. Search in increasing NUMA distances.
1888 */
1889static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1890                struct kmem_cache_cpu *c)
1891{
1892#ifdef CONFIG_NUMA
1893        struct zonelist *zonelist;
1894        struct zoneref *z;
1895        struct zone *zone;
1896        enum zone_type high_zoneidx = gfp_zone(flags);
1897        void *object;
1898        unsigned int cpuset_mems_cookie;
1899
1900        /*
1901         * The defrag ratio allows a configuration of the tradeoffs between
1902         * inter node defragmentation and node local allocations. A lower
1903         * defrag_ratio increases the tendency to do local allocations
1904         * instead of attempting to obtain partial slabs from other nodes.
1905         *
1906         * If the defrag_ratio is set to 0 then kmalloc() always
1907         * returns node local objects. If the ratio is higher then kmalloc()
1908         * may return off node objects because partial slabs are obtained
1909         * from other nodes and filled up.
1910         *
1911         * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1912         * (which makes defrag_ratio = 1000) then every (well almost)
1913         * allocation will first attempt to defrag slab caches on other nodes.
1914         * This means scanning over all nodes to look for partial slabs which
1915         * may be expensive if we do it every time we are trying to find a slab
1916         * with available objects.
1917         */
1918        if (!s->remote_node_defrag_ratio ||
1919                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
1920                return NULL;
1921
1922        do {
1923                cpuset_mems_cookie = read_mems_allowed_begin();
1924                zonelist = node_zonelist(mempolicy_slab_node(), flags);
1925                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1926                        struct kmem_cache_node *n;
1927
1928                        n = get_node(s, zone_to_nid(zone));
1929
1930                        if (n && cpuset_zone_allowed(zone, flags) &&
1931                                        n->nr_partial > s->min_partial) {
1932                                object = get_partial_node(s, n, c, flags);
1933                                if (object) {
1934                                        /*
1935                                         * Don't check read_mems_allowed_retry()
1936                                         * here - if mems_allowed was updated in
1937                                         * parallel, that was a harmless race
1938                                         * between allocation and the cpuset
1939                                         * update
1940                                         */
1941                                        return object;
1942                                }
1943                        }
1944                }
1945        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1946#endif  /* CONFIG_NUMA */
1947        return NULL;
1948}
1949
1950/*
1951 * Get a partial page, lock it and return it.
1952 */
1953static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1954                struct kmem_cache_cpu *c)
1955{
1956        void *object;
1957        int searchnode = node;
1958
1959        if (node == NUMA_NO_NODE)
1960                searchnode = numa_mem_id();
1961        else if (!node_present_pages(node))
1962                searchnode = node_to_mem_node(node);
1963
1964        object = get_partial_node(s, get_node(s, searchnode), c, flags);
1965        if (object || node != NUMA_NO_NODE)
1966                return object;
1967
1968        return get_any_partial(s, flags, c);
1969}
1970
1971#ifdef CONFIG_PREEMPT
1972/*
1973 * Calculate the next globally unique transaction for disambiguiation
1974 * during cmpxchg. The transactions start with the cpu number and are then
1975 * incremented by CONFIG_NR_CPUS.
1976 */
1977#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1978#else
1979/*
1980 * No preemption supported therefore also no need to check for
1981 * different cpus.
1982 */
1983#define TID_STEP 1
1984#endif
1985
1986static inline unsigned long next_tid(unsigned long tid)
1987{
1988        return tid + TID_STEP;
1989}
1990
1991static inline unsigned int tid_to_cpu(unsigned long tid)
1992{
1993        return tid % TID_STEP;
1994}
1995
1996static inline unsigned long tid_to_event(unsigned long tid)
1997{
1998        return tid / TID_STEP;
1999}
2000
2001static inline unsigned int init_tid(int cpu)
2002{
2003        return cpu;
2004}
2005
2006static inline void note_cmpxchg_failure(const char *n,
2007                const struct kmem_cache *s, unsigned long tid)
2008{
2009#ifdef SLUB_DEBUG_CMPXCHG
2010        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2011
2012        pr_info("%s %s: cmpxchg redo ", n, s->name);
2013
2014#ifdef CONFIG_PREEMPT
2015        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2016                pr_warn("due to cpu change %d -> %d\n",
2017                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
2018        else
2019#endif
2020        if (tid_to_event(tid) != tid_to_event(actual_tid))
2021                pr_warn("due to cpu running other code. Event %ld->%ld\n",
2022                        tid_to_event(tid), tid_to_event(actual_tid));
2023        else
2024                pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2025                        actual_tid, tid, next_tid(tid));
2026#endif
2027        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2028}
2029
2030static void init_kmem_cache_cpus(struct kmem_cache *s)
2031{
2032        int cpu;
2033
2034        for_each_possible_cpu(cpu)
2035                per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2036}
2037
2038/*
2039 * Remove the cpu slab
2040 */
2041static void deactivate_slab(struct kmem_cache *s, struct page *page,
2042                                void *freelist, struct kmem_cache_cpu *c)
2043{
2044        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2045        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2046        int lock = 0;
2047        enum slab_modes l = M_NONE, m = M_NONE;
2048        void *nextfree;
2049        int tail = DEACTIVATE_TO_HEAD;
2050        struct page new;
2051        struct page old;
2052
2053        if (page->freelist) {
2054                stat(s, DEACTIVATE_REMOTE_FREES);
2055                tail = DEACTIVATE_TO_TAIL;
2056        }
2057
2058        /*
2059         * Stage one: Free all available per cpu objects back
2060         * to the page freelist while it is still frozen. Leave the
2061         * last one.
2062         *
2063         * There is no need to take the list->lock because the page
2064         * is still frozen.
2065         */
2066        while (freelist && (nextfree = get_freepointer(s, freelist))) {
2067                void *prior;
2068                unsigned long counters;
2069
2070                do {
2071                        prior = page->freelist;
2072                        counters = page->counters;
2073                        set_freepointer(s, freelist, prior);
2074                        new.counters = counters;
2075                        new.inuse--;
2076                        VM_BUG_ON(!new.frozen);
2077
2078                } while (!__cmpxchg_double_slab(s, page,
2079                        prior, counters,
2080                        freelist, new.counters,
2081                        "drain percpu freelist"));
2082
2083                freelist = nextfree;
2084        }
2085
2086        /*
2087         * Stage two: Ensure that the page is unfrozen while the
2088         * list presence reflects the actual number of objects
2089         * during unfreeze.
2090         *
2091         * We setup the list membership and then perform a cmpxchg
2092         * with the count. If there is a mismatch then the page
2093         * is not unfrozen but the page is on the wrong list.
2094         *
2095         * Then we restart the process which may have to remove
2096         * the page from the list that we just put it on again
2097         * because the number of objects in the slab may have
2098         * changed.
2099         */
2100redo:
2101
2102        old.freelist = page->freelist;
2103        old.counters = page->counters;
2104        VM_BUG_ON(!old.frozen);
2105
2106        /* Determine target state of the slab */
2107        new.counters = old.counters;
2108        if (freelist) {
2109                new.inuse--;
2110                set_freepointer(s, freelist, old.freelist);
2111                new.freelist = freelist;
2112        } else
2113                new.freelist = old.freelist;
2114
2115        new.frozen = 0;
2116
2117        if (!new.inuse && n->nr_partial >= s->min_partial)
2118                m = M_FREE;
2119        else if (new.freelist) {
2120                m = M_PARTIAL;
2121                if (!lock) {
2122                        lock = 1;
2123                        /*
2124                         * Taking the spinlock removes the possibility
2125                         * that acquire_slab() will see a slab page that
2126                         * is frozen
2127                         */
2128                        spin_lock(&n->list_lock);
2129                }
2130        } else {
2131                m = M_FULL;
2132                if (kmem_cache_debug(s) && !lock) {
2133                        lock = 1;
2134                        /*
2135                         * This also ensures that the scanning of full
2136                         * slabs from diagnostic functions will not see
2137                         * any frozen slabs.
2138                         */
2139                        spin_lock(&n->list_lock);
2140                }
2141        }
2142
2143        if (l != m) {
2144                if (l == M_PARTIAL)
2145                        remove_partial(n, page);
2146                else if (l == M_FULL)
2147                        remove_full(s, n, page);
2148
2149                if (m == M_PARTIAL)
2150                        add_partial(n, page, tail);
2151                else if (m == M_FULL)
2152                        add_full(s, n, page);
2153        }
2154
2155        l = m;
2156        if (!__cmpxchg_double_slab(s, page,
2157                                old.freelist, old.counters,
2158                                new.freelist, new.counters,
2159                                "unfreezing slab"))
2160                goto redo;
2161
2162        if (lock)
2163                spin_unlock(&n->list_lock);
2164
2165        if (m == M_PARTIAL)
2166                stat(s, tail);
2167        else if (m == M_FULL)
2168                stat(s, DEACTIVATE_FULL);
2169        else if (m == M_FREE) {
2170                stat(s, DEACTIVATE_EMPTY);
2171                discard_slab(s, page);
2172                stat(s, FREE_SLAB);
2173        }
2174
2175        c->page = NULL;
2176        c->freelist = NULL;
2177}
2178
2179/*
2180 * Unfreeze all the cpu partial slabs.
2181 *
2182 * This function must be called with interrupts disabled
2183 * for the cpu using c (or some other guarantee must be there
2184 * to guarantee no concurrent accesses).
2185 */
2186static void unfreeze_partials(struct kmem_cache *s,
2187                struct kmem_cache_cpu *c)
2188{
2189#ifdef CONFIG_SLUB_CPU_PARTIAL
2190        struct kmem_cache_node *n = NULL, *n2 = NULL;
2191        struct page *page, *discard_page = NULL;
2192
2193        while ((page = c->partial)) {
2194                struct page new;
2195                struct page old;
2196
2197                c->partial = page->next;
2198
2199                n2 = get_node(s, page_to_nid(page));
2200                if (n != n2) {
2201                        if (n)
2202                                spin_unlock(&n->list_lock);
2203
2204                        n = n2;
2205                        spin_lock(&n->list_lock);
2206                }
2207
2208                do {
2209
2210                        old.freelist = page->freelist;
2211                        old.counters = page->counters;
2212                        VM_BUG_ON(!old.frozen);
2213
2214                        new.counters = old.counters;
2215                        new.freelist = old.freelist;
2216
2217                        new.frozen = 0;
2218
2219                } while (!__cmpxchg_double_slab(s, page,
2220                                old.freelist, old.counters,
2221                                new.freelist, new.counters,
2222                                "unfreezing slab"));
2223
2224                if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2225                        page->next = discard_page;
2226                        discard_page = page;
2227                } else {
2228                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2229                        stat(s, FREE_ADD_PARTIAL);
2230                }
2231        }
2232
2233        if (n)
2234                spin_unlock(&n->list_lock);
2235
2236        while (discard_page) {
2237                page = discard_page;
2238                discard_page = discard_page->next;
2239
2240                stat(s, DEACTIVATE_EMPTY);
2241                discard_slab(s, page);
2242                stat(s, FREE_SLAB);
2243        }
2244#endif  /* CONFIG_SLUB_CPU_PARTIAL */
2245}
2246
2247/*
2248 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2249 * partial page slot if available.
2250 *
2251 * If we did not find a slot then simply move all the partials to the
2252 * per node partial list.
2253 */
2254static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2255{
2256#ifdef CONFIG_SLUB_CPU_PARTIAL
2257        struct page *oldpage;
2258        int pages;
2259        int pobjects;
2260
2261        preempt_disable();
2262        do {
2263                pages = 0;
2264                pobjects = 0;
2265                oldpage = this_cpu_read(s->cpu_slab->partial);
2266
2267                if (oldpage) {
2268                        pobjects = oldpage->pobjects;
2269                        pages = oldpage->pages;
2270                        if (drain && pobjects > s->cpu_partial) {
2271                                unsigned long flags;
2272                                /*
2273                                 * partial array is full. Move the existing
2274                                 * set to the per node partial list.
2275                                 */
2276                                local_irq_save(flags);
2277                                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2278                                local_irq_restore(flags);
2279                                oldpage = NULL;
2280                                pobjects = 0;
2281                                pages = 0;
2282                                stat(s, CPU_PARTIAL_DRAIN);
2283                        }
2284                }
2285
2286                pages++;
2287                pobjects += page->objects - page->inuse;
2288
2289                page->pages = pages;
2290                page->pobjects = pobjects;
2291                page->next = oldpage;
2292
2293        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2294                                                                != oldpage);
2295        if (unlikely(!s->cpu_partial)) {
2296                unsigned long flags;
2297
2298                local_irq_save(flags);
2299                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2300                local_irq_restore(flags);
2301        }
2302        preempt_enable();
2303#endif  /* CONFIG_SLUB_CPU_PARTIAL */
2304}
2305
2306static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2307{
2308        stat(s, CPUSLAB_FLUSH);
2309        deactivate_slab(s, c->page, c->freelist, c);
2310
2311        c->tid = next_tid(c->tid);
2312}
2313
2314/*
2315 * Flush cpu slab.
2316 *
2317 * Called from IPI handler with interrupts disabled.
2318 */
2319static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2320{
2321        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2322
2323        if (c->page)
2324                flush_slab(s, c);
2325
2326        unfreeze_partials(s, c);
2327}
2328
2329static void flush_cpu_slab(void *d)
2330{
2331        struct kmem_cache *s = d;
2332
2333        __flush_cpu_slab(s, smp_processor_id());
2334}
2335
2336static bool has_cpu_slab(int cpu, void *info)
2337{
2338        struct kmem_cache *s = info;
2339        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340
2341        return c->page || slub_percpu_partial(c);
2342}
2343
2344static void flush_all(struct kmem_cache *s)
2345{
2346        on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2347}
2348
2349/*
2350 * Use the cpu notifier to insure that the cpu slabs are flushed when
2351 * necessary.
2352 */
2353static int slub_cpu_dead(unsigned int cpu)
2354{
2355        struct kmem_cache *s;
2356        unsigned long flags;
2357
2358        mutex_lock(&slab_mutex);
2359        list_for_each_entry(s, &slab_caches, list) {
2360                local_irq_save(flags);
2361                __flush_cpu_slab(s, cpu);
2362                local_irq_restore(flags);
2363        }
2364        mutex_unlock(&slab_mutex);
2365        return 0;
2366}
2367
2368/*
2369 * Check if the objects in a per cpu structure fit numa
2370 * locality expectations.
2371 */
2372static inline int node_match(struct page *page, int node)
2373{
2374#ifdef CONFIG_NUMA
2375        if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2376                return 0;
2377#endif
2378        return 1;
2379}
2380
2381#ifdef CONFIG_SLUB_DEBUG
2382static int count_free(struct page *page)
2383{
2384        return page->objects - page->inuse;
2385}
2386
2387static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2388{
2389        return atomic_long_read(&n->total_objects);
2390}
2391#endif /* CONFIG_SLUB_DEBUG */
2392
2393#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2394static unsigned long count_partial(struct kmem_cache_node *n,
2395                                        int (*get_count)(struct page *))
2396{
2397        unsigned long flags;
2398        unsigned long x = 0;
2399        struct page *page;
2400
2401        spin_lock_irqsave(&n->list_lock, flags);
2402        list_for_each_entry(page, &n->partial, slab_list)
2403                x += get_count(page);
2404        spin_unlock_irqrestore(&n->list_lock, flags);
2405        return x;
2406}
2407#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2408
2409static noinline void
2410slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2411{
2412#ifdef CONFIG_SLUB_DEBUG
2413        static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2414                                      DEFAULT_RATELIMIT_BURST);
2415        int node;
2416        struct kmem_cache_node *n;
2417
2418        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2419                return;
2420
2421        pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2422                nid, gfpflags, &gfpflags);
2423        pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2424                s->name, s->object_size, s->size, oo_order(s->oo),
2425                oo_order(s->min));
2426
2427        if (oo_order(s->min) > get_order(s->object_size))
2428                pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2429                        s->name);
2430
2431        for_each_kmem_cache_node(s, node, n) {
2432                unsigned long nr_slabs;
2433                unsigned long nr_objs;
2434                unsigned long nr_free;
2435
2436                nr_free  = count_partial(n, count_free);
2437                nr_slabs = node_nr_slabs(n);
2438                nr_objs  = node_nr_objs(n);
2439
2440                pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2441                        node, nr_slabs, nr_objs, nr_free);
2442        }
2443#endif
2444}
2445
2446static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2447                        int node, struct kmem_cache_cpu **pc)
2448{
2449        void *freelist;
2450        struct kmem_cache_cpu *c = *pc;
2451        struct page *page;
2452
2453        WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2454
2455        freelist = get_partial(s, flags, node, c);
2456
2457        if (freelist)
2458                return freelist;
2459
2460        page = new_slab(s, flags, node);
2461        if (page) {
2462                c = raw_cpu_ptr(s->cpu_slab);
2463                if (c->page)
2464                        flush_slab(s, c);
2465
2466                /*
2467                 * No other reference to the page yet so we can
2468                 * muck around with it freely without cmpxchg
2469                 */
2470                freelist = page->freelist;
2471                page->freelist = NULL;
2472
2473                stat(s, ALLOC_SLAB);
2474                c->page = page;
2475                *pc = c;
2476        }
2477
2478        return freelist;
2479}
2480
2481static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2482{
2483        if (unlikely(PageSlabPfmemalloc(page)))
2484                return gfp_pfmemalloc_allowed(gfpflags);
2485
2486        return true;
2487}
2488
2489/*
2490 * Check the page->freelist of a page and either transfer the freelist to the
2491 * per cpu freelist or deactivate the page.
2492 *
2493 * The page is still frozen if the return value is not NULL.
2494 *
2495 * If this function returns NULL then the page has been unfrozen.
2496 *
2497 * This function must be called with interrupt disabled.
2498 */
2499static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2500{
2501        struct page new;
2502        unsigned long counters;
2503        void *freelist;
2504
2505        do {
2506                freelist = page->freelist;
2507                counters = page->counters;
2508
2509                new.counters = counters;
2510                VM_BUG_ON(!new.frozen);
2511
2512                new.inuse = page->objects;
2513                new.frozen = freelist != NULL;
2514
2515        } while (!__cmpxchg_double_slab(s, page,
2516                freelist, counters,
2517                NULL, new.counters,
2518                "get_freelist"));
2519
2520        return freelist;
2521}
2522
2523/*
2524 * Slow path. The lockless freelist is empty or we need to perform
2525 * debugging duties.
2526 *
2527 * Processing is still very fast if new objects have been freed to the
2528 * regular freelist. In that case we simply take over the regular freelist
2529 * as the lockless freelist and zap the regular freelist.
2530 *
2531 * If that is not working then we fall back to the partial lists. We take the
2532 * first element of the freelist as the object to allocate now and move the
2533 * rest of the freelist to the lockless freelist.
2534 *
2535 * And if we were unable to get a new slab from the partial slab lists then
2536 * we need to allocate a new slab. This is the slowest path since it involves
2537 * a call to the page allocator and the setup of a new slab.
2538 *
2539 * Version of __slab_alloc to use when we know that interrupts are
2540 * already disabled (which is the case for bulk allocation).
2541 */
2542static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2543                          unsigned long addr, struct kmem_cache_cpu *c)
2544{
2545        void *freelist;
2546        struct page *page;
2547
2548        page = c->page;
2549        if (!page)
2550                goto new_slab;
2551redo:
2552
2553        if (unlikely(!node_match(page, node))) {
2554                int searchnode = node;
2555
2556                if (node != NUMA_NO_NODE && !node_present_pages(node))
2557                        searchnode = node_to_mem_node(node);
2558
2559                if (unlikely(!node_match(page, searchnode))) {
2560                        stat(s, ALLOC_NODE_MISMATCH);
2561                        deactivate_slab(s, page, c->freelist, c);
2562                        goto new_slab;
2563                }
2564        }
2565
2566        /*
2567         * By rights, we should be searching for a slab page that was
2568         * PFMEMALLOC but right now, we are losing the pfmemalloc
2569         * information when the page leaves the per-cpu allocator
2570         */
2571        if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2572                deactivate_slab(s, page, c->freelist, c);
2573                goto new_slab;
2574        }
2575
2576        /* must check again c->freelist in case of cpu migration or IRQ */
2577        freelist = c->freelist;
2578        if (freelist)
2579                goto load_freelist;
2580
2581        freelist = get_freelist(s, page);
2582
2583        if (!freelist) {
2584                c->page = NULL;
2585                stat(s, DEACTIVATE_BYPASS);
2586                goto new_slab;
2587        }
2588
2589        stat(s, ALLOC_REFILL);
2590
2591load_freelist:
2592        /*
2593         * freelist is pointing to the list of objects to be used.
2594         * page is pointing to the page from which the objects are obtained.
2595         * That page must be frozen for per cpu allocations to work.
2596         */
2597        VM_BUG_ON(!c->page->frozen);
2598        c->freelist = get_freepointer(s, freelist);
2599        c->tid = next_tid(c->tid);
2600        return freelist;
2601
2602new_slab:
2603
2604        if (slub_percpu_partial(c)) {
2605                page = c->page = slub_percpu_partial(c);
2606                slub_set_percpu_partial(c, page);
2607                stat(s, CPU_PARTIAL_ALLOC);
2608                goto redo;
2609        }
2610
2611        freelist = new_slab_objects(s, gfpflags, node, &c);
2612
2613        if (unlikely(!freelist)) {
2614                slab_out_of_memory(s, gfpflags, node);
2615                return NULL;
2616        }
2617
2618        page = c->page;
2619        if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2620                goto load_freelist;
2621
2622        /* Only entered in the debug case */
2623        if (kmem_cache_debug(s) &&
2624                        !alloc_debug_processing(s, page, freelist, addr))
2625                goto new_slab;  /* Slab failed checks. Next slab needed */
2626
2627        deactivate_slab(s, page, get_freepointer(s, freelist), c);
2628        return freelist;
2629}
2630
2631/*
2632 * Another one that disabled interrupt and compensates for possible
2633 * cpu changes by refetching the per cpu area pointer.
2634 */
2635static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2636                          unsigned long addr, struct kmem_cache_cpu *c)
2637{
2638        void *p;
2639        unsigned long flags;
2640
2641        local_irq_save(flags);
2642#ifdef CONFIG_PREEMPT
2643        /*
2644         * We may have been preempted and rescheduled on a different
2645         * cpu before disabling interrupts. Need to reload cpu area
2646         * pointer.
2647         */
2648        c = this_cpu_ptr(s->cpu_slab);
2649#endif
2650
2651        p = ___slab_alloc(s, gfpflags, node, addr, c);
2652        local_irq_restore(flags);
2653        return p;
2654}
2655
2656/*
2657 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2658 * have the fastpath folded into their functions. So no function call
2659 * overhead for requests that can be satisfied on the fastpath.
2660 *
2661 * The fastpath works by first checking if the lockless freelist can be used.
2662 * If not then __slab_alloc is called for slow processing.
2663 *
2664 * Otherwise we can simply pick the next object from the lockless free list.
2665 */
2666static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2667                gfp_t gfpflags, int node, unsigned long addr)
2668{
2669        void *object;
2670        struct kmem_cache_cpu *c;
2671        struct page *page;
2672        unsigned long tid;
2673
2674        s = slab_pre_alloc_hook(s, gfpflags);
2675        if (!s)
2676                return NULL;
2677redo:
2678        /*
2679         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2680         * enabled. We may switch back and forth between cpus while
2681         * reading from one cpu area. That does not matter as long
2682         * as we end up on the original cpu again when doing the cmpxchg.
2683         *
2684         * We should guarantee that tid and kmem_cache are retrieved on
2685         * the same cpu. It could be different if CONFIG_PREEMPT so we need
2686         * to check if it is matched or not.
2687         */
2688        do {
2689                tid = this_cpu_read(s->cpu_slab->tid);
2690                c = raw_cpu_ptr(s->cpu_slab);
2691        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2692                 unlikely(tid != READ_ONCE(c->tid)));
2693
2694        /*
2695         * Irqless object alloc/free algorithm used here depends on sequence
2696         * of fetching cpu_slab's data. tid should be fetched before anything
2697         * on c to guarantee that object and page associated with previous tid
2698         * won't be used with current tid. If we fetch tid first, object and
2699         * page could be one associated with next tid and our alloc/free
2700         * request will be failed. In this case, we will retry. So, no problem.
2701         */
2702        barrier();
2703
2704        /*
2705         * The transaction ids are globally unique per cpu and per operation on
2706         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2707         * occurs on the right processor and that there was no operation on the
2708         * linked list in between.
2709         */
2710
2711        object = c->freelist;
2712        page = c->page;
2713        if (unlikely(!object || !node_match(page, node))) {
2714                object = __slab_alloc(s, gfpflags, node, addr, c);
2715                stat(s, ALLOC_SLOWPATH);
2716        } else {
2717                void *next_object = get_freepointer_safe(s, object);
2718
2719                /*
2720                 * The cmpxchg will only match if there was no additional
2721                 * operation and if we are on the right processor.
2722                 *
2723                 * The cmpxchg does the following atomically (without lock
2724                 * semantics!)
2725                 * 1. Relocate first pointer to the current per cpu area.
2726                 * 2. Verify that tid and freelist have not been changed
2727                 * 3. If they were not changed replace tid and freelist
2728                 *
2729                 * Since this is without lock semantics the protection is only
2730                 * against code executing on this cpu *not* from access by
2731                 * other cpus.
2732                 */
2733                if (unlikely(!this_cpu_cmpxchg_double(
2734                                s->cpu_slab->freelist, s->cpu_slab->tid,
2735                                object, tid,
2736                                next_object, next_tid(tid)))) {
2737
2738                        note_cmpxchg_failure("slab_alloc", s, tid);
2739                        goto redo;
2740                }
2741                prefetch_freepointer(s, next_object);
2742                stat(s, ALLOC_FASTPATH);
2743        }
2744
2745        if (unlikely(gfpflags & __GFP_ZERO) && object)
2746                memset(object, 0, s->object_size);
2747
2748        slab_post_alloc_hook(s, gfpflags, 1, &object);
2749
2750        return object;
2751}
2752
2753static __always_inline void *slab_alloc(struct kmem_cache *s,
2754                gfp_t gfpflags, unsigned long addr)
2755{
2756        return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2757}
2758
2759void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2760{
2761        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2762
2763        trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2764                                s->size, gfpflags);
2765
2766        return ret;
2767}
2768EXPORT_SYMBOL(kmem_cache_alloc);
2769
2770#ifdef CONFIG_TRACING
2771void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2772{
2773        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2774        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2775        ret = kasan_kmalloc(s, ret, size, gfpflags);
2776        return ret;
2777}
2778EXPORT_SYMBOL(kmem_cache_alloc_trace);
2779#endif
2780
2781#ifdef CONFIG_NUMA
2782void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2783{
2784        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2785
2786        trace_kmem_cache_alloc_node(_RET_IP_, ret,
2787                                    s->object_size, s->size, gfpflags, node);
2788
2789        return ret;
2790}
2791EXPORT_SYMBOL(kmem_cache_alloc_node);
2792
2793#ifdef CONFIG_TRACING
2794void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2795                                    gfp_t gfpflags,
2796                                    int node, size_t size)
2797{
2798        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2799
2800        trace_kmalloc_node(_RET_IP_, ret,
2801                           size, s->size, gfpflags, node);
2802
2803        ret = kasan_kmalloc(s, ret, size, gfpflags);
2804        return ret;
2805}
2806EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2807#endif
2808#endif  /* CONFIG_NUMA */
2809
2810/*
2811 * Slow path handling. This may still be called frequently since objects
2812 * have a longer lifetime than the cpu slabs in most processing loads.
2813 *
2814 * So we still attempt to reduce cache line usage. Just take the slab
2815 * lock and free the item. If there is no additional partial page
2816 * handling required then we can return immediately.
2817 */
2818static void __slab_free(struct kmem_cache *s, struct page *page,
2819                        void *head, void *tail, int cnt,
2820                        unsigned long addr)
2821
2822{
2823        void *prior;
2824        int was_frozen;
2825        struct page new;
2826        unsigned long counters;
2827        struct kmem_cache_node *n = NULL;
2828        unsigned long uninitialized_var(flags);
2829
2830        stat(s, FREE_SLOWPATH);
2831
2832        if (kmem_cache_debug(s) &&
2833            !free_debug_processing(s, page, head, tail, cnt, addr))
2834                return;
2835
2836        do {
2837                if (unlikely(n)) {
2838                        spin_unlock_irqrestore(&n->list_lock, flags);
2839                        n = NULL;
2840                }
2841                prior = page->freelist;
2842                counters = page->counters;
2843                set_freepointer(s, tail, prior);
2844                new.counters = counters;
2845                was_frozen = new.frozen;
2846                new.inuse -= cnt;
2847                if ((!new.inuse || !prior) && !was_frozen) {
2848
2849                        if (kmem_cache_has_cpu_partial(s) && !prior) {
2850
2851                                /*
2852                                 * Slab was on no list before and will be
2853                                 * partially empty
2854                                 * We can defer the list move and instead
2855                                 * freeze it.
2856                                 */
2857                                new.frozen = 1;
2858
2859                        } else { /* Needs to be taken off a list */
2860
2861                                n = get_node(s, page_to_nid(page));
2862                                /*
2863                                 * Speculatively acquire the list_lock.
2864                                 * If the cmpxchg does not succeed then we may
2865                                 * drop the list_lock without any processing.
2866                                 *
2867                                 * Otherwise the list_lock will synchronize with
2868                                 * other processors updating the list of slabs.
2869                                 */
2870                                spin_lock_irqsave(&n->list_lock, flags);
2871
2872                        }
2873                }
2874
2875        } while (!cmpxchg_double_slab(s, page,
2876                prior, counters,
2877                head, new.counters,
2878                "__slab_free"));
2879
2880        if (likely(!n)) {
2881
2882                /*
2883                 * If we just froze the page then put it onto the
2884                 * per cpu partial list.
2885                 */
2886                if (new.frozen && !was_frozen) {
2887                        put_cpu_partial(s, page, 1);
2888                        stat(s, CPU_PARTIAL_FREE);
2889                }
2890                /*
2891                 * The list lock was not taken therefore no list
2892                 * activity can be necessary.
2893                 */
2894                if (was_frozen)
2895                        stat(s, FREE_FROZEN);
2896                return;
2897        }
2898
2899        if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2900                goto slab_empty;
2901
2902        /*
2903         * Objects left in the slab. If it was not on the partial list before
2904         * then add it.
2905         */
2906        if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2907                remove_full(s, n, page);
2908                add_partial(n, page, DEACTIVATE_TO_TAIL);
2909                stat(s, FREE_ADD_PARTIAL);
2910        }
2911        spin_unlock_irqrestore(&n->list_lock, flags);
2912        return;
2913
2914slab_empty:
2915        if (prior) {
2916                /*
2917                 * Slab on the partial list.
2918                 */
2919                remove_partial(n, page);
2920                stat(s, FREE_REMOVE_PARTIAL);
2921        } else {
2922                /* Slab must be on the full list */
2923                remove_full(s, n, page);
2924        }
2925
2926        spin_unlock_irqrestore(&n->list_lock, flags);
2927        stat(s, FREE_SLAB);
2928        discard_slab(s, page);
2929}
2930
2931/*
2932 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2933 * can perform fastpath freeing without additional function calls.
2934 *
2935 * The fastpath is only possible if we are freeing to the current cpu slab
2936 * of this processor. This typically the case if we have just allocated
2937 * the item before.
2938 *
2939 * If fastpath is not possible then fall back to __slab_free where we deal
2940 * with all sorts of special processing.
2941 *
2942 * Bulk free of a freelist with several objects (all pointing to the
2943 * same page) possible by specifying head and tail ptr, plus objects
2944 * count (cnt). Bulk free indicated by tail pointer being set.
2945 */
2946static __always_inline void do_slab_free(struct kmem_cache *s,
2947                                struct page *page, void *head, void *tail,
2948                                int cnt, unsigned long addr)
2949{
2950        void *tail_obj = tail ? : head;
2951        struct kmem_cache_cpu *c;
2952        unsigned long tid;
2953redo:
2954        /*
2955         * Determine the currently cpus per cpu slab.
2956         * The cpu may change afterward. However that does not matter since
2957         * data is retrieved via this pointer. If we are on the same cpu
2958         * during the cmpxchg then the free will succeed.
2959         */
2960        do {
2961                tid = this_cpu_read(s->cpu_slab->tid);
2962                c = raw_cpu_ptr(s->cpu_slab);
2963        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2964                 unlikely(tid != READ_ONCE(c->tid)));
2965
2966        /* Same with comment on barrier() in slab_alloc_node() */
2967        barrier();
2968
2969        if (likely(page == c->page)) {
2970                set_freepointer(s, tail_obj, c->freelist);
2971
2972                if (unlikely(!this_cpu_cmpxchg_double(
2973                                s->cpu_slab->freelist, s->cpu_slab->tid,
2974                                c->freelist, tid,
2975                                head, next_tid(tid)))) {
2976
2977                        note_cmpxchg_failure("slab_free", s, tid);
2978                        goto redo;
2979                }
2980                stat(s, FREE_FASTPATH);
2981        } else
2982                __slab_free(s, page, head, tail_obj, cnt, addr);
2983
2984}
2985
2986static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2987                                      void *head, void *tail, int cnt,
2988                                      unsigned long addr)
2989{
2990        /*
2991         * With KASAN enabled slab_free_freelist_hook modifies the freelist
2992         * to remove objects, whose reuse must be delayed.
2993         */
2994        if (slab_free_freelist_hook(s, &head, &tail))
2995                do_slab_free(s, page, head, tail, cnt, addr);
2996}
2997
2998#ifdef CONFIG_KASAN_GENERIC
2999void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000{
3001        do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002}
3003#endif
3004
3005void kmem_cache_free(struct kmem_cache *s, void *x)
3006{
3007        s = cache_from_obj(s, x);
3008        if (!s)
3009                return;
3010        slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3011        trace_kmem_cache_free(_RET_IP_, x);
3012}
3013EXPORT_SYMBOL(kmem_cache_free);
3014
3015struct detached_freelist {
3016        struct page *page;
3017        void *tail;
3018        void *freelist;
3019        int cnt;
3020        struct kmem_cache *s;
3021};
3022
3023/*
3024 * This function progressively scans the array with free objects (with
3025 * a limited look ahead) and extract objects belonging to the same
3026 * page.  It builds a detached freelist directly within the given
3027 * page/objects.  This can happen without any need for
3028 * synchronization, because the objects are owned by running process.
3029 * The freelist is build up as a single linked list in the objects.
3030 * The idea is, that this detached freelist can then be bulk
3031 * transferred to the real freelist(s), but only requiring a single
3032 * synchronization primitive.  Look ahead in the array is limited due
3033 * to performance reasons.
3034 */
3035static inline
3036int build_detached_freelist(struct kmem_cache *s, size_t size,
3037                            void **p, struct detached_freelist *df)
3038{
3039        size_t first_skipped_index = 0;
3040        int lookahead = 3;
3041        void *object;
3042        struct page *page;
3043
3044        /* Always re-init detached_freelist */
3045        df->page = NULL;
3046
3047        do {
3048                object = p[--size];
3049                /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3050        } while (!object && size);
3051
3052        if (!object)
3053                return 0;
3054
3055        page = virt_to_head_page(object);
3056        if (!s) {
3057                /* Handle kalloc'ed objects */
3058                if (unlikely(!PageSlab(page))) {
3059                        BUG_ON(!PageCompound(page));
3060                        kfree_hook(object);
3061                        __free_pages(page, compound_order(page));
3062                        p[size] = NULL; /* mark object processed */
3063                        return size;
3064                }
3065                /* Derive kmem_cache from object */
3066                df->s = page->slab_cache;
3067        } else {
3068                df->s = cache_from_obj(s, object); /* Support for memcg */
3069        }
3070
3071        /* Start new detached freelist */
3072        df->page = page;
3073        set_freepointer(df->s, object, NULL);
3074        df->tail = object;
3075        df->freelist = object;
3076        p[size] = NULL; /* mark object processed */
3077        df->cnt = 1;
3078
3079        while (size) {
3080                object = p[--size];
3081                if (!object)
3082                        continue; /* Skip processed objects */
3083
3084                /* df->page is always set at this point */
3085                if (df->page == virt_to_head_page(object)) {
3086                        /* Opportunity build freelist */
3087                        set_freepointer(df->s, object, df->freelist);
3088                        df->freelist = object;
3089                        df->cnt++;
3090                        p[size] = NULL; /* mark object processed */
3091
3092                        continue;
3093                }
3094
3095                /* Limit look ahead search */
3096                if (!--lookahead)
3097                        break;
3098
3099                if (!first_skipped_index)
3100                        first_skipped_index = size + 1;
3101        }
3102
3103        return first_skipped_index;
3104}
3105
3106/* Note that interrupts must be enabled when calling this function. */
3107void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3108{
3109        if (WARN_ON(!size))
3110                return;
3111
3112        do {
3113                struct detached_freelist df;
3114
3115                size = build_detached_freelist(s, size, p, &df);
3116                if (!df.page)
3117                        continue;
3118
3119                slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3120        } while (likely(size));
3121}
3122EXPORT_SYMBOL(kmem_cache_free_bulk);
3123
3124/* Note that interrupts must be enabled when calling this function. */
3125int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126                          void **p)
3127{
3128        struct kmem_cache_cpu *c;
3129        int i;
3130
3131        /* memcg and kmem_cache debug support */
3132        s = slab_pre_alloc_hook(s, flags);
3133        if (unlikely(!s))
3134                return false;
3135        /*
3136         * Drain objects in the per cpu slab, while disabling local
3137         * IRQs, which protects against PREEMPT and interrupts
3138         * handlers invoking normal fastpath.
3139         */
3140        local_irq_disable();
3141        c = this_cpu_ptr(s->cpu_slab);
3142
3143        for (i = 0; i < size; i++) {
3144                void *object = c->freelist;
3145
3146                if (unlikely(!object)) {
3147                        /*
3148                         * Invoking slow path likely have side-effect
3149                         * of re-populating per CPU c->freelist
3150                         */
3151                        p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3152                                            _RET_IP_, c);
3153                        if (unlikely(!p[i]))
3154                                goto error;
3155
3156                        c = this_cpu_ptr(s->cpu_slab);
3157                        continue; /* goto for-loop */
3158                }
3159                c->freelist = get_freepointer(s, object);
3160                p[i] = object;
3161        }
3162        c->tid = next_tid(c->tid);
3163        local_irq_enable();
3164
3165        /* Clear memory outside IRQ disabled fastpath loop */
3166        if (unlikely(flags & __GFP_ZERO)) {
3167                int j;
3168
3169                for (j = 0; j < i; j++)
3170                        memset(p[j], 0, s->object_size);
3171        }
3172
3173        /* memcg and kmem_cache debug support */
3174        slab_post_alloc_hook(s, flags, size, p);
3175        return i;
3176error:
3177        local_irq_enable();
3178        slab_post_alloc_hook(s, flags, i, p);
3179        __kmem_cache_free_bulk(s, i, p);
3180        return 0;
3181}
3182EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183
3184
3185/*
3186 * Object placement in a slab is made very easy because we always start at
3187 * offset 0. If we tune the size of the object to the alignment then we can
3188 * get the required alignment by putting one properly sized object after
3189 * another.
3190 *
3191 * Notice that the allocation order determines the sizes of the per cpu
3192 * caches. Each processor has always one slab available for allocations.
3193 * Increasing the allocation order reduces the number of times that slabs
3194 * must be moved on and off the partial lists and is therefore a factor in
3195 * locking overhead.
3196 */
3197
3198/*
3199 * Mininum / Maximum order of slab pages. This influences locking overhead
3200 * and slab fragmentation. A higher order reduces the number of partial slabs
3201 * and increases the number of allocations possible without having to
3202 * take the list_lock.
3203 */
3204static unsigned int slub_min_order;
3205static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3206static unsigned int slub_min_objects;
3207
3208/*
3209 * Calculate the order of allocation given an slab object size.
3210 *
3211 * The order of allocation has significant impact on performance and other
3212 * system components. Generally order 0 allocations should be preferred since
3213 * order 0 does not cause fragmentation in the page allocator. Larger objects
3214 * be problematic to put into order 0 slabs because there may be too much
3215 * unused space left. We go to a higher order if more than 1/16th of the slab
3216 * would be wasted.
3217 *
3218 * In order to reach satisfactory performance we must ensure that a minimum
3219 * number of objects is in one slab. Otherwise we may generate too much
3220 * activity on the partial lists which requires taking the list_lock. This is
3221 * less a concern for large slabs though which are rarely used.
3222 *
3223 * slub_max_order specifies the order where we begin to stop considering the
3224 * number of objects in a slab as critical. If we reach slub_max_order then
3225 * we try to keep the page order as low as possible. So we accept more waste
3226 * of space in favor of a small page order.
3227 *
3228 * Higher order allocations also allow the placement of more objects in a
3229 * slab and thereby reduce object handling overhead. If the user has
3230 * requested a higher mininum order then we start with that one instead of
3231 * the smallest order which will fit the object.
3232 */
3233static inline unsigned int slab_order(unsigned int size,
3234                unsigned int min_objects, unsigned int max_order,
3235                unsigned int fract_leftover)
3236{
3237        unsigned int min_order = slub_min_order;
3238        unsigned int order;
3239
3240        if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3241                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3242
3243        for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3244                        order <= max_order; order++) {
3245
3246                unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3247                unsigned int rem;
3248
3249                rem = slab_size % size;
3250
3251                if (rem <= slab_size / fract_leftover)
3252                        break;
3253        }
3254
3255        return order;
3256}
3257
3258static inline int calculate_order(unsigned int size)
3259{
3260        unsigned int order;
3261        unsigned int min_objects;
3262        unsigned int max_objects;
3263
3264        /*
3265         * Attempt to find best configuration for a slab. This
3266         * works by first attempting to generate a layout with
3267         * the best configuration and backing off gradually.
3268         *
3269         * First we increase the acceptable waste in a slab. Then
3270         * we reduce the minimum objects required in a slab.
3271         */
3272        min_objects = slub_min_objects;
3273        if (!min_objects)
3274                min_objects = 4 * (fls(nr_cpu_ids) + 1);
3275        max_objects = order_objects(slub_max_order, size);
3276        min_objects = min(min_objects, max_objects);
3277
3278        while (min_objects > 1) {
3279                unsigned int fraction;
3280
3281                fraction = 16;
3282                while (fraction >= 4) {
3283                        order = slab_order(size, min_objects,
3284                                        slub_max_order, fraction);
3285                        if (order <= slub_max_order)
3286                                return order;
3287                        fraction /= 2;
3288                }
3289                min_objects--;
3290        }
3291
3292        /*
3293         * We were unable to place multiple objects in a slab. Now
3294         * lets see if we can place a single object there.
3295         */
3296        order = slab_order(size, 1, slub_max_order, 1);
3297        if (order <= slub_max_order)
3298                return order;
3299
3300        /*
3301         * Doh this slab cannot be placed using slub_max_order.
3302         */
3303        order = slab_order(size, 1, MAX_ORDER, 1);
3304        if (order < MAX_ORDER)
3305                return order;
3306        return -ENOSYS;
3307}
3308
3309static void
3310init_kmem_cache_node(struct kmem_cache_node *n)
3311{
3312        n->nr_partial = 0;
3313        spin_lock_init(&n->list_lock);
3314        INIT_LIST_HEAD(&n->partial);
3315#ifdef CONFIG_SLUB_DEBUG
3316        atomic_long_set(&n->nr_slabs, 0);
3317        atomic_long_set(&n->total_objects, 0);
3318        INIT_LIST_HEAD(&n->full);
3319#endif
3320}
3321
3322static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3323{
3324        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3325                        KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3326
3327        /*
3328         * Must align to double word boundary for the double cmpxchg
3329         * instructions to work; see __pcpu_double_call_return_bool().
3330         */
3331        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3332                                     2 * sizeof(void *));
3333
3334        if (!s->cpu_slab)
3335                return 0;
3336
3337        init_kmem_cache_cpus(s);
3338
3339        return 1;
3340}
3341
3342static struct kmem_cache *kmem_cache_node;
3343
3344/*
3345 * No kmalloc_node yet so do it by hand. We know that this is the first
3346 * slab on the node for this slabcache. There are no concurrent accesses
3347 * possible.
3348 *
3349 * Note that this function only works on the kmem_cache_node
3350 * when allocating for the kmem_cache_node. This is used for bootstrapping
3351 * memory on a fresh node that has no slab structures yet.
3352 */
3353static void early_kmem_cache_node_alloc(int node)
3354{
3355        struct page *page;
3356        struct kmem_cache_node *n;
3357
3358        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3359
3360        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3361
3362        BUG_ON(!page);
3363        if (page_to_nid(page) != node) {
3364                pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3365                pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3366        }
3367
3368        n = page->freelist;
3369        BUG_ON(!n);
3370#ifdef CONFIG_SLUB_DEBUG
3371        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3372        init_tracking(kmem_cache_node, n);
3373#endif
3374        n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3375                      GFP_KERNEL);
3376        page->freelist = get_freepointer(kmem_cache_node, n);
3377        page->inuse = 1;
3378        page->frozen = 0;
3379        kmem_cache_node->node[node] = n;
3380        init_kmem_cache_node(n);
3381        inc_slabs_node(kmem_cache_node, node, page->objects);
3382
3383        /*
3384         * No locks need to be taken here as it has just been
3385         * initialized and there is no concurrent access.
3386         */
3387        __add_partial(n, page, DEACTIVATE_TO_HEAD);
3388}
3389
3390static void free_kmem_cache_nodes(struct kmem_cache *s)
3391{
3392        int node;
3393        struct kmem_cache_node *n;
3394
3395        for_each_kmem_cache_node(s, node, n) {
3396                s->node[node] = NULL;
3397                kmem_cache_free(kmem_cache_node, n);
3398        }
3399}
3400
3401void __kmem_cache_release(struct kmem_cache *s)
3402{
3403        cache_random_seq_destroy(s);
3404        free_percpu(s->cpu_slab);
3405        free_kmem_cache_nodes(s);
3406}
3407
3408static int init_kmem_cache_nodes(struct kmem_cache *s)
3409{
3410        int node;
3411
3412        for_each_node_state(node, N_NORMAL_MEMORY) {
3413                struct kmem_cache_node *n;
3414
3415                if (slab_state == DOWN) {
3416                        early_kmem_cache_node_alloc(node);
3417                        continue;
3418                }
3419                n = kmem_cache_alloc_node(kmem_cache_node,
3420                                                GFP_KERNEL, node);
3421
3422                if (!n) {
3423                        free_kmem_cache_nodes(s);
3424                        return 0;
3425                }
3426
3427                init_kmem_cache_node(n);
3428                s->node[node] = n;
3429        }
3430        return 1;
3431}
3432
3433static void set_min_partial(struct kmem_cache *s, unsigned long min)
3434{
3435        if (min < MIN_PARTIAL)
3436                min = MIN_PARTIAL;
3437        else if (min > MAX_PARTIAL)
3438                min = MAX_PARTIAL;
3439        s->min_partial = min;
3440}
3441
3442static void set_cpu_partial(struct kmem_cache *s)
3443{
3444#ifdef CONFIG_SLUB_CPU_PARTIAL
3445        /*
3446         * cpu_partial determined the maximum number of objects kept in the
3447         * per cpu partial lists of a processor.
3448         *
3449         * Per cpu partial lists mainly contain slabs that just have one
3450         * object freed. If they are used for allocation then they can be
3451         * filled up again with minimal effort. The slab will never hit the
3452         * per node partial lists and therefore no locking will be required.
3453         *
3454         * This setting also determines
3455         *
3456         * A) The number of objects from per cpu partial slabs dumped to the
3457         *    per node list when we reach the limit.
3458         * B) The number of objects in cpu partial slabs to extract from the
3459         *    per node list when we run out of per cpu objects. We only fetch
3460         *    50% to keep some capacity around for frees.
3461         */
3462        if (!kmem_cache_has_cpu_partial(s))
3463                s->cpu_partial = 0;
3464        else if (s->size >= PAGE_SIZE)
3465                s->cpu_partial = 2;
3466        else if (s->size >= 1024)
3467                s->cpu_partial = 6;
3468        else if (s->size >= 256)
3469                s->cpu_partial = 13;
3470        else
3471                s->cpu_partial = 30;
3472#endif
3473}
3474
3475/*
3476 * calculate_sizes() determines the order and the distribution of data within
3477 * a slab object.
3478 */
3479static int calculate_sizes(struct kmem_cache *s, int forced_order)
3480{
3481        slab_flags_t flags = s->flags;
3482        unsigned int size = s->object_size;
3483        unsigned int order;
3484
3485        /*
3486         * Round up object size to the next word boundary. We can only
3487         * place the free pointer at word boundaries and this determines
3488         * the possible location of the free pointer.
3489         */
3490        size = ALIGN(size, sizeof(void *));
3491
3492#ifdef CONFIG_SLUB_DEBUG
3493        /*
3494         * Determine if we can poison the object itself. If the user of
3495         * the slab may touch the object after free or before allocation
3496         * then we should never poison the object itself.
3497         */
3498        if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3499                        !s->ctor)
3500                s->flags |= __OBJECT_POISON;
3501        else
3502                s->flags &= ~__OBJECT_POISON;
3503
3504
3505        /*
3506         * If we are Redzoning then check if there is some space between the
3507         * end of the object and the free pointer. If not then add an
3508         * additional word to have some bytes to store Redzone information.
3509         */
3510        if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3511                size += sizeof(void *);
3512#endif
3513
3514        /*
3515         * With that we have determined the number of bytes in actual use
3516         * by the object. This is the potential offset to the free pointer.
3517         */
3518        s->inuse = size;
3519
3520        if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3521                s->ctor)) {
3522                /*
3523                 * Relocate free pointer after the object if it is not
3524                 * permitted to overwrite the first word of the object on
3525                 * kmem_cache_free.
3526                 *
3527                 * This is the case if we do RCU, have a constructor or
3528                 * destructor or are poisoning the objects.
3529                 */
3530                s->offset = size;
3531                size += sizeof(void *);
3532        }
3533
3534#ifdef CONFIG_SLUB_DEBUG
3535        if (flags & SLAB_STORE_USER)
3536                /*
3537                 * Need to store information about allocs and frees after
3538                 * the object.
3539                 */
3540                size += 2 * sizeof(struct track);
3541#endif
3542
3543        kasan_cache_create(s, &size, &s->flags);
3544#ifdef CONFIG_SLUB_DEBUG
3545        if (flags & SLAB_RED_ZONE) {
3546                /*
3547                 * Add some empty padding so that we can catch
3548                 * overwrites from earlier objects rather than let
3549                 * tracking information or the free pointer be
3550                 * corrupted if a user writes before the start
3551                 * of the object.
3552                 */
3553                size += sizeof(void *);
3554
3555                s->red_left_pad = sizeof(void *);
3556                s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3557                size += s->red_left_pad;
3558        }
3559#endif
3560
3561        /*
3562         * SLUB stores one object immediately after another beginning from
3563         * offset 0. In order to align the objects we have to simply size
3564         * each object to conform to the alignment.
3565         */
3566        size = ALIGN(size, s->align);
3567        s->size = size;
3568        if (forced_order >= 0)
3569                order = forced_order;
3570        else
3571                order = calculate_order(size);
3572
3573        if ((int)order < 0)
3574                return 0;
3575
3576        s->allocflags = 0;
3577        if (order)
3578                s->allocflags |= __GFP_COMP;
3579
3580        if (s->flags & SLAB_CACHE_DMA)
3581                s->allocflags |= GFP_DMA;
3582
3583        if (s->flags & SLAB_CACHE_DMA32)
3584                s->allocflags |= GFP_DMA32;
3585
3586        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3587                s->allocflags |= __GFP_RECLAIMABLE;
3588
3589        /*
3590         * Determine the number of objects per slab
3591         */
3592        s->oo = oo_make(order, size);
3593        s->min = oo_make(get_order(size), size);
3594        if (oo_objects(s->oo) > oo_objects(s->max))
3595                s->max = s->oo;
3596
3597        return !!oo_objects(s->oo);
3598}
3599
3600static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3601{
3602        s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3603#ifdef CONFIG_SLAB_FREELIST_HARDENED
3604        s->random = get_random_long();
3605#endif
3606
3607        if (!calculate_sizes(s, -1))
3608                goto error;
3609        if (disable_higher_order_debug) {
3610                /*
3611                 * Disable debugging flags that store metadata if the min slab
3612                 * order increased.
3613                 */
3614                if (get_order(s->size) > get_order(s->object_size)) {
3615                        s->flags &= ~DEBUG_METADATA_FLAGS;
3616                        s->offset = 0;
3617                        if (!calculate_sizes(s, -1))
3618                                goto error;
3619                }
3620        }
3621
3622#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624        if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625                /* Enable fast mode */
3626                s->flags |= __CMPXCHG_DOUBLE;
3627#endif
3628
3629        /*
3630         * The larger the object size is, the more pages we want on the partial
3631         * list to avoid pounding the page allocator excessively.
3632         */
3633        set_min_partial(s, ilog2(s->size) / 2);
3634
3635        set_cpu_partial(s);
3636
3637#ifdef CONFIG_NUMA
3638        s->remote_node_defrag_ratio = 1000;
3639#endif
3640
3641        /* Initialize the pre-computed randomized freelist if slab is up */
3642        if (slab_state >= UP) {
3643                if (init_cache_random_seq(s))
3644                        goto error;
3645        }
3646
3647        if (!init_kmem_cache_nodes(s))
3648                goto error;
3649
3650        if (alloc_kmem_cache_cpus(s))
3651                return 0;
3652
3653        free_kmem_cache_nodes(s);
3654error:
3655        if (flags & SLAB_PANIC)
3656                panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3657                      s->name, s->size, s->size,
3658                      oo_order(s->oo), s->offset, (unsigned long)flags);
3659        return -EINVAL;
3660}
3661
3662static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663                                                        const char *text)
3664{
3665#ifdef CONFIG_SLUB_DEBUG
3666        void *addr = page_address(page);
3667        void *p;
3668        unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3669        if (!map)
3670                return;
3671        slab_err(s, page, text, s->name);
3672        slab_lock(page);
3673
3674        get_map(s, page, map);
3675        for_each_object(p, s, addr, page->objects) {
3676
3677                if (!test_bit(slab_index(p, s, addr), map)) {
3678                        pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3679                        print_tracking(s, p);
3680                }
3681        }
3682        slab_unlock(page);
3683        bitmap_free(map);
3684#endif
3685}
3686
3687/*
3688 * Attempt to free all partial slabs on a node.
3689 * This is called from __kmem_cache_shutdown(). We must take list_lock
3690 * because sysfs file might still access partial list after the shutdowning.
3691 */
3692static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3693{
3694        LIST_HEAD(discard);
3695        struct page *page, *h;
3696
3697        BUG_ON(irqs_disabled());
3698        spin_lock_irq(&n->list_lock);
3699        list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3700                if (!page->inuse) {
3701                        remove_partial(n, page);
3702                        list_add(&page->slab_list, &discard);
3703                } else {
3704                        list_slab_objects(s, page,
3705                        "Objects remaining in %s on __kmem_cache_shutdown()");
3706                }
3707        }
3708        spin_unlock_irq(&n->list_lock);
3709
3710        list_for_each_entry_safe(page, h, &discard, slab_list)
3711                discard_slab(s, page);
3712}
3713
3714bool __kmem_cache_empty(struct kmem_cache *s)
3715{
3716        int node;
3717        struct kmem_cache_node *n;
3718
3719        for_each_kmem_cache_node(s, node, n)
3720                if (n->nr_partial || slabs_node(s, node))
3721                        return false;
3722        return true;
3723}
3724
3725/*
3726 * Release all resources used by a slab cache.
3727 */
3728int __kmem_cache_shutdown(struct kmem_cache *s)
3729{
3730        int node;
3731        struct kmem_cache_node *n;
3732
3733        flush_all(s);
3734        /* Attempt to free all objects */
3735        for_each_kmem_cache_node(s, node, n) {
3736                free_partial(s, n);
3737                if (n->nr_partial || slabs_node(s, node))
3738                        return 1;
3739        }
3740        sysfs_slab_remove(s);
3741        return 0;
3742}
3743
3744/********************************************************************
3745 *              Kmalloc subsystem
3746 *******************************************************************/
3747
3748static int __init setup_slub_min_order(char *str)
3749{
3750        get_option(&str, (int *)&slub_min_order);
3751
3752        return 1;
3753}
3754
3755__setup("slub_min_order=", setup_slub_min_order);
3756
3757static int __init setup_slub_max_order(char *str)
3758{
3759        get_option(&str, (int *)&slub_max_order);
3760        slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3761
3762        return 1;
3763}
3764
3765__setup("slub_max_order=", setup_slub_max_order);
3766
3767static int __init setup_slub_min_objects(char *str)
3768{
3769        get_option(&str, (int *)&slub_min_objects);
3770
3771        return 1;
3772}
3773
3774__setup("slub_min_objects=", setup_slub_min_objects);
3775
3776void *__kmalloc(size_t size, gfp_t flags)
3777{
3778        struct kmem_cache *s;
3779        void *ret;
3780
3781        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3782                return kmalloc_large(size, flags);
3783
3784        s = kmalloc_slab(size, flags);
3785
3786        if (unlikely(ZERO_OR_NULL_PTR(s)))
3787                return s;
3788
3789        ret = slab_alloc(s, flags, _RET_IP_);
3790
3791        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3792
3793        ret = kasan_kmalloc(s, ret, size, flags);
3794
3795        return ret;
3796}
3797EXPORT_SYMBOL(__kmalloc);
3798
3799#ifdef CONFIG_NUMA
3800static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3801{
3802        struct page *page;
3803        void *ptr = NULL;
3804
3805        flags |= __GFP_COMP;
3806        page = alloc_pages_node(node, flags, get_order(size));
3807        if (page)
3808                ptr = page_address(page);
3809
3810        return kmalloc_large_node_hook(ptr, size, flags);
3811}
3812
3813void *__kmalloc_node(size_t size, gfp_t flags, int node)
3814{
3815        struct kmem_cache *s;
3816        void *ret;
3817
3818        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819                ret = kmalloc_large_node(size, flags, node);
3820
3821                trace_kmalloc_node(_RET_IP_, ret,
3822                                   size, PAGE_SIZE << get_order(size),
3823                                   flags, node);
3824
3825                return ret;
3826        }
3827
3828        s = kmalloc_slab(size, flags);
3829
3830        if (unlikely(ZERO_OR_NULL_PTR(s)))
3831                return s;
3832
3833        ret = slab_alloc_node(s, flags, node, _RET_IP_);
3834
3835        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3836
3837        ret = kasan_kmalloc(s, ret, size, flags);
3838
3839        return ret;
3840}
3841EXPORT_SYMBOL(__kmalloc_node);
3842#endif  /* CONFIG_NUMA */
3843
3844#ifdef CONFIG_HARDENED_USERCOPY
3845/*
3846 * Rejects incorrectly sized objects and objects that are to be copied
3847 * to/from userspace but do not fall entirely within the containing slab
3848 * cache's usercopy region.
3849 *
3850 * Returns NULL if check passes, otherwise const char * to name of cache
3851 * to indicate an error.
3852 */
3853void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3854                         bool to_user)
3855{
3856        struct kmem_cache *s;
3857        unsigned int offset;
3858        size_t object_size;
3859
3860        ptr = kasan_reset_tag(ptr);
3861
3862        /* Find object and usable object size. */
3863        s = page->slab_cache;
3864
3865        /* Reject impossible pointers. */
3866        if (ptr < page_address(page))
3867                usercopy_abort("SLUB object not in SLUB page?!", NULL,
3868                               to_user, 0, n);
3869
3870        /* Find offset within object. */
3871        offset = (ptr - page_address(page)) % s->size;
3872
3873        /* Adjust for redzone and reject if within the redzone. */
3874        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3875                if (offset < s->red_left_pad)
3876                        usercopy_abort("SLUB object in left red zone",
3877                                       s->name, to_user, offset, n);
3878                offset -= s->red_left_pad;
3879        }
3880
3881        /* Allow address range falling entirely within usercopy region. */
3882        if (offset >= s->useroffset &&
3883            offset - s->useroffset <= s->usersize &&
3884            n <= s->useroffset - offset + s->usersize)
3885                return;
3886
3887        /*
3888         * If the copy is still within the allocated object, produce
3889         * a warning instead of rejecting the copy. This is intended
3890         * to be a temporary method to find any missing usercopy
3891         * whitelists.
3892         */
3893        object_size = slab_ksize(s);
3894        if (usercopy_fallback &&
3895            offset <= object_size && n <= object_size - offset) {
3896                usercopy_warn("SLUB object", s->name, to_user, offset, n);
3897                return;
3898        }
3899
3900        usercopy_abort("SLUB object", s->name, to_user, offset, n);
3901}
3902#endif /* CONFIG_HARDENED_USERCOPY */
3903
3904static size_t __ksize(const void *object)
3905{
3906        struct page *page;
3907
3908        if (unlikely(object == ZERO_SIZE_PTR))
3909                return 0;
3910
3911        page = virt_to_head_page(object);
3912
3913        if (unlikely(!PageSlab(page))) {
3914                WARN_ON(!PageCompound(page));
3915                return PAGE_SIZE << compound_order(page);
3916        }
3917
3918        return slab_ksize(page->slab_cache);
3919}
3920
3921size_t ksize(const void *object)
3922{
3923        size_t size = __ksize(object);
3924        /* We assume that ksize callers could use whole allocated area,
3925         * so we need to unpoison this area.
3926         */
3927        kasan_unpoison_shadow(object, size);
3928        return size;
3929}
3930EXPORT_SYMBOL(ksize);
3931
3932void kfree(const void *x)
3933{
3934        struct page *page;
3935        void *object = (void *)x;
3936
3937        trace_kfree(_RET_IP_, x);
3938
3939        if (unlikely(ZERO_OR_NULL_PTR(x)))
3940                return;
3941
3942        page = virt_to_head_page(x);
3943        if (unlikely(!PageSlab(page))) {
3944                BUG_ON(!PageCompound(page));
3945                kfree_hook(object);
3946                __free_pages(page, compound_order(page));
3947                return;
3948        }
3949        slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3950}
3951EXPORT_SYMBOL(kfree);
3952
3953#define SHRINK_PROMOTE_MAX 32
3954
3955/*
3956 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3957 * up most to the head of the partial lists. New allocations will then
3958 * fill those up and thus they can be removed from the partial lists.
3959 *
3960 * The slabs with the least items are placed last. This results in them
3961 * being allocated from last increasing the chance that the last objects
3962 * are freed in them.
3963 */
3964int __kmem_cache_shrink(struct kmem_cache *s)
3965{
3966        int node;
3967        int i;
3968        struct kmem_cache_node *n;
3969        struct page *page;
3970        struct page *t;
3971        struct list_head discard;
3972        struct list_head promote[SHRINK_PROMOTE_MAX];
3973        unsigned long flags;
3974        int ret = 0;
3975
3976        flush_all(s);
3977        for_each_kmem_cache_node(s, node, n) {
3978                INIT_LIST_HEAD(&discard);
3979                for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3980                        INIT_LIST_HEAD(promote + i);
3981
3982                spin_lock_irqsave(&n->list_lock, flags);
3983
3984                /*
3985                 * Build lists of slabs to discard or promote.
3986                 *
3987                 * Note that concurrent frees may occur while we hold the
3988                 * list_lock. page->inuse here is the upper limit.
3989                 */
3990                list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3991                        int free = page->objects - page->inuse;
3992
3993                        /* Do not reread page->inuse */
3994                        barrier();
3995
3996                        /* We do not keep full slabs on the list */
3997                        BUG_ON(free <= 0);
3998
3999                        if (free == page->objects) {
4000                                list_move(&page->slab_list, &discard);
4001                                n->nr_partial--;
4002                        } else if (free <= SHRINK_PROMOTE_MAX)
4003                                list_move(&page->slab_list, promote + free - 1);
4004                }
4005
4006                /*
4007                 * Promote the slabs filled up most to the head of the
4008                 * partial list.
4009                 */
4010                for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4011                        list_splice(promote + i, &n->partial);
4012
4013                spin_unlock_irqrestore(&n->list_lock, flags);
4014
4015                /* Release empty slabs */
4016                list_for_each_entry_safe(page, t, &discard, slab_list)
4017                        discard_slab(s, page);
4018
4019                if (slabs_node(s, node))
4020                        ret = 1;
4021        }
4022
4023        return ret;
4024}
4025
4026#ifdef CONFIG_MEMCG
4027static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4028{
4029        /*
4030         * Called with all the locks held after a sched RCU grace period.
4031         * Even if @s becomes empty after shrinking, we can't know that @s
4032         * doesn't have allocations already in-flight and thus can't
4033         * destroy @s until the associated memcg is released.
4034         *
4035         * However, let's remove the sysfs files for empty caches here.
4036         * Each cache has a lot of interface files which aren't
4037         * particularly useful for empty draining caches; otherwise, we can
4038         * easily end up with millions of unnecessary sysfs files on
4039         * systems which have a lot of memory and transient cgroups.
4040         */
4041        if (!__kmem_cache_shrink(s))
4042                sysfs_slab_remove(s);
4043}
4044
4045void __kmemcg_cache_deactivate(struct kmem_cache *s)
4046{
4047        /*
4048         * Disable empty slabs caching. Used to avoid pinning offline
4049         * memory cgroups by kmem pages that can be freed.
4050         */
4051        slub_set_cpu_partial(s, 0);
4052        s->min_partial = 0;
4053
4054        /*
4055         * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4056         * we have to make sure the change is visible before shrinking.
4057         */
4058        slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4059}
4060#endif  /* CONFIG_MEMCG */
4061
4062static int slab_mem_going_offline_callback(void *arg)
4063{
4064        struct kmem_cache *s;
4065
4066        mutex_lock(&slab_mutex);
4067        list_for_each_entry(s, &slab_caches, list)
4068                __kmem_cache_shrink(s);
4069        mutex_unlock(&slab_mutex);
4070
4071        return 0;
4072}
4073
4074static void slab_mem_offline_callback(void *arg)
4075{
4076        struct kmem_cache_node *n;
4077        struct kmem_cache *s;
4078        struct memory_notify *marg = arg;
4079        int offline_node;
4080
4081        offline_node = marg->status_change_nid_normal;
4082
4083        /*
4084         * If the node still has available memory. we need kmem_cache_node
4085         * for it yet.
4086         */
4087        if (offline_node < 0)
4088                return;
4089
4090        mutex_lock(&slab_mutex);
4091        list_for_each_entry(s, &slab_caches, list) {
4092                n = get_node(s, offline_node);
4093                if (n) {
4094                        /*
4095                         * if n->nr_slabs > 0, slabs still exist on the node
4096                         * that is going down. We were unable to free them,
4097                         * and offline_pages() function shouldn't call this
4098                         * callback. So, we must fail.
4099                         */
4100                        BUG_ON(slabs_node(s, offline_node));
4101
4102                        s->node[offline_node] = NULL;
4103                        kmem_cache_free(kmem_cache_node, n);
4104                }
4105        }
4106        mutex_unlock(&slab_mutex);
4107}
4108
4109static int slab_mem_going_online_callback(void *arg)
4110{
4111        struct kmem_cache_node *n;
4112        struct kmem_cache *s;
4113        struct memory_notify *marg = arg;
4114        int nid = marg->status_change_nid_normal;
4115        int ret = 0;
4116
4117        /*
4118         * If the node's memory is already available, then kmem_cache_node is
4119         * already created. Nothing to do.
4120         */
4121        if (nid < 0)
4122                return 0;
4123
4124        /*
4125         * We are bringing a node online. No memory is available yet. We must
4126         * allocate a kmem_cache_node structure in order to bring the node
4127         * online.
4128         */
4129        mutex_lock(&slab_mutex);
4130        list_for_each_entry(s, &slab_caches, list) {
4131                /*
4132                 * XXX: kmem_cache_alloc_node will fallback to other nodes
4133                 *      since memory is not yet available from the node that
4134                 *      is brought up.
4135                 */
4136                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4137                if (!n) {
4138                        ret = -ENOMEM;
4139                        goto out;
4140                }
4141                init_kmem_cache_node(n);
4142                s->node[nid] = n;
4143        }
4144out:
4145        mutex_unlock(&slab_mutex);
4146        return ret;
4147}
4148
4149static int slab_memory_callback(struct notifier_block *self,
4150                                unsigned long action, void *arg)
4151{
4152        int ret = 0;
4153
4154        switch (action) {
4155        case MEM_GOING_ONLINE:
4156                ret = slab_mem_going_online_callback(arg);
4157                break;
4158        case MEM_GOING_OFFLINE:
4159                ret = slab_mem_going_offline_callback(arg);
4160                break;
4161        case MEM_OFFLINE:
4162        case MEM_CANCEL_ONLINE:
4163                slab_mem_offline_callback(arg);
4164                break;
4165        case MEM_ONLINE:
4166        case MEM_CANCEL_OFFLINE:
4167                break;
4168        }
4169        if (ret)
4170                ret = notifier_from_errno(ret);
4171        else
4172                ret = NOTIFY_OK;
4173        return ret;
4174}
4175
4176static struct notifier_block slab_memory_callback_nb = {
4177        .notifier_call = slab_memory_callback,
4178        .priority = SLAB_CALLBACK_PRI,
4179};
4180
4181/********************************************************************
4182 *                      Basic setup of slabs
4183 *******************************************************************/
4184
4185/*
4186 * Used for early kmem_cache structures that were allocated using
4187 * the page allocator. Allocate them properly then fix up the pointers
4188 * that may be pointing to the wrong kmem_cache structure.
4189 */
4190
4191static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4192{
4193        int node;
4194        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4195        struct kmem_cache_node *n;
4196
4197        memcpy(s, static_cache, kmem_cache->object_size);
4198
4199        /*
4200         * This runs very early, and only the boot processor is supposed to be
4201         * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4202         * IPIs around.
4203         */
4204        __flush_cpu_slab(s, smp_processor_id());
4205        for_each_kmem_cache_node(s, node, n) {
4206                struct page *p;
4207
4208                list_for_each_entry(p, &n->partial, slab_list)
4209                        p->slab_cache = s;
4210
4211#ifdef CONFIG_SLUB_DEBUG
4212                list_for_each_entry(p, &n->full, slab_list)
4213                        p->slab_cache = s;
4214#endif
4215        }
4216        slab_init_memcg_params(s);
4217        list_add(&s->list, &slab_caches);
4218        memcg_link_cache(s);
4219        return s;
4220}
4221
4222void __init kmem_cache_init(void)
4223{
4224        static __initdata struct kmem_cache boot_kmem_cache,
4225                boot_kmem_cache_node;
4226
4227        if (debug_guardpage_minorder())
4228                slub_max_order = 0;
4229
4230        kmem_cache_node = &boot_kmem_cache_node;
4231        kmem_cache = &boot_kmem_cache;
4232
4233        create_boot_cache(kmem_cache_node, "kmem_cache_node",
4234                sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4235
4236        register_hotmemory_notifier(&slab_memory_callback_nb);
4237
4238        /* Able to allocate the per node structures */
4239        slab_state = PARTIAL;
4240
4241        create_boot_cache(kmem_cache, "kmem_cache",
4242                        offsetof(struct kmem_cache, node) +
4243                                nr_node_ids * sizeof(struct kmem_cache_node *),
4244                       SLAB_HWCACHE_ALIGN, 0, 0);
4245
4246        kmem_cache = bootstrap(&boot_kmem_cache);
4247        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4248
4249        /* Now we can use the kmem_cache to allocate kmalloc slabs */
4250        setup_kmalloc_cache_index_table();
4251        create_kmalloc_caches(0);
4252
4253        /* Setup random freelists for each cache */
4254        init_freelist_randomization();
4255
4256        cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4257                                  slub_cpu_dead);
4258
4259        pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4260                cache_line_size(),
4261                slub_min_order, slub_max_order, slub_min_objects,
4262                nr_cpu_ids, nr_node_ids);
4263}
4264
4265void __init kmem_cache_init_late(void)
4266{
4267}
4268
4269struct kmem_cache *
4270__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4271                   slab_flags_t flags, void (*ctor)(void *))
4272{
4273        struct kmem_cache *s, *c;
4274
4275        s = find_mergeable(size, align, flags, name, ctor);
4276        if (s) {
4277                s->refcount++;
4278
4279                /*
4280                 * Adjust the object sizes so that we clear
4281                 * the complete object on kzalloc.
4282                 */
4283                s->object_size = max(s->object_size, size);
4284                s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4285
4286                for_each_memcg_cache(c, s) {
4287                        c->object_size = s->object_size;
4288                        c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4289                }
4290
4291                if (sysfs_slab_alias(s, name)) {
4292                        s->refcount--;
4293                        s = NULL;
4294                }
4295        }
4296
4297        return s;
4298}
4299
4300int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4301{
4302        int err;
4303
4304        err = kmem_cache_open(s, flags);
4305        if (err)
4306                return err;
4307
4308        /* Mutex is not taken during early boot */
4309        if (slab_state <= UP)
4310                return 0;
4311
4312        memcg_propagate_slab_attrs(s);
4313        err = sysfs_slab_add(s);
4314        if (err)
4315                __kmem_cache_release(s);
4316
4317        return err;
4318}
4319
4320void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4321{
4322        struct kmem_cache *s;
4323        void *ret;
4324
4325        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4326                return kmalloc_large(size, gfpflags);
4327
4328        s = kmalloc_slab(size, gfpflags);
4329
4330        if (unlikely(ZERO_OR_NULL_PTR(s)))
4331                return s;
4332
4333        ret = slab_alloc(s, gfpflags, caller);
4334
4335        /* Honor the call site pointer we received. */
4336        trace_kmalloc(caller, ret, size, s->size, gfpflags);
4337
4338        return ret;
4339}
4340
4341#ifdef CONFIG_NUMA
4342void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4343                                        int node, unsigned long caller)
4344{
4345        struct kmem_cache *s;
4346        void *ret;
4347
4348        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4349                ret = kmalloc_large_node(size, gfpflags, node);
4350
4351                trace_kmalloc_node(caller, ret,
4352                                   size, PAGE_SIZE << get_order(size),
4353                                   gfpflags, node);
4354
4355                return ret;
4356        }
4357
4358        s = kmalloc_slab(size, gfpflags);
4359
4360        if (unlikely(ZERO_OR_NULL_PTR(s)))
4361                return s;
4362
4363        ret = slab_alloc_node(s, gfpflags, node, caller);
4364
4365        /* Honor the call site pointer we received. */
4366        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4367
4368        return ret;
4369}
4370#endif
4371
4372#ifdef CONFIG_SYSFS
4373static int count_inuse(struct page *page)
4374{
4375        return page->inuse;
4376}
4377
4378static int count_total(struct page *page)
4379{
4380        return page->objects;
4381}
4382#endif
4383
4384#ifdef CONFIG_SLUB_DEBUG
4385static int validate_slab(struct kmem_cache *s, struct page *page,
4386                                                unsigned long *map)
4387{
4388        void *p;
4389        void *addr = page_address(page);
4390
4391        if (!check_slab(s, page) ||
4392                        !on_freelist(s, page, NULL))
4393                return 0;
4394
4395        /* Now we know that a valid freelist exists */
4396        bitmap_zero(map, page->objects);
4397
4398        get_map(s, page, map);
4399        for_each_object(p, s, addr, page->objects) {
4400                if (test_bit(slab_index(p, s, addr), map))
4401                        if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4402                                return 0;
4403        }
4404
4405        for_each_object(p, s, addr, page->objects)
4406                if (!test_bit(slab_index(p, s, addr), map))
4407                        if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4408                                return 0;
4409        return 1;
4410}
4411
4412static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4413                                                unsigned long *map)
4414{
4415        slab_lock(page);
4416        validate_slab(s, page, map);
4417        slab_unlock(page);
4418}
4419
4420static int validate_slab_node(struct kmem_cache *s,
4421                struct kmem_cache_node *n, unsigned long *map)
4422{
4423        unsigned long count = 0;
4424        struct page *page;
4425        unsigned long flags;
4426
4427        spin_lock_irqsave(&n->list_lock, flags);
4428
4429        list_for_each_entry(page, &n->partial, slab_list) {
4430                validate_slab_slab(s, page, map);
4431                count++;
4432        }
4433        if (count != n->nr_partial)
4434                pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4435                       s->name, count, n->nr_partial);
4436
4437        if (!(s->flags & SLAB_STORE_USER))
4438                goto out;
4439
4440        list_for_each_entry(page, &n->full, slab_list) {
4441                validate_slab_slab(s, page, map);
4442                count++;
4443        }
4444        if (count != atomic_long_read(&n->nr_slabs))
4445                pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4446                       s->name, count, atomic_long_read(&n->nr_slabs));
4447
4448out:
4449        spin_unlock_irqrestore(&n->list_lock, flags);
4450        return count;
4451}
4452
4453static long validate_slab_cache(struct kmem_cache *s)
4454{
4455        int node;
4456        unsigned long count = 0;
4457        struct kmem_cache_node *n;
4458        unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4459
4460        if (!map)
4461                return -ENOMEM;
4462
4463        flush_all(s);
4464        for_each_kmem_cache_node(s, node, n)
4465                count += validate_slab_node(s, n, map);
4466        bitmap_free(map);
4467        return count;
4468}
4469/*
4470 * Generate lists of code addresses where slabcache objects are allocated
4471 * and freed.
4472 */
4473
4474struct location {
4475        unsigned long count;
4476        unsigned long addr;
4477        long long sum_time;
4478        long min_time;
4479        long max_time;
4480        long min_pid;
4481        long max_pid;
4482        DECLARE_BITMAP(cpus, NR_CPUS);
4483        nodemask_t nodes;
4484};
4485
4486struct loc_track {
4487        unsigned long max;
4488        unsigned long count;
4489        struct location *loc;
4490};
4491
4492static void free_loc_track(struct loc_track *t)
4493{
4494        if (t->max)
4495                free_pages((unsigned long)t->loc,
4496                        get_order(sizeof(struct location) * t->max));
4497}
4498
4499static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4500{
4501        struct location *l;
4502        int order;
4503
4504        order = get_order(sizeof(struct location) * max);
4505
4506        l = (void *)__get_free_pages(flags, order);
4507        if (!l)
4508                return 0;
4509
4510        if (t->count) {
4511                memcpy(l, t->loc, sizeof(struct location) * t->count);
4512                free_loc_track(t);
4513        }
4514        t->max = max;
4515        t->loc = l;
4516        return 1;
4517}
4518
4519static int add_location(struct loc_track *t, struct kmem_cache *s,
4520                                const struct track *track)
4521{
4522        long start, end, pos;
4523        struct location *l;
4524        unsigned long caddr;
4525        unsigned long age = jiffies - track->when;
4526
4527        start = -1;
4528        end = t->count;
4529
4530        for ( ; ; ) {
4531                pos = start + (end - start + 1) / 2;
4532
4533                /*
4534                 * There is nothing at "end". If we end up there
4535                 * we need to add something to before end.
4536                 */
4537                if (pos == end)
4538                        break;
4539
4540                caddr = t->loc[pos].addr;
4541                if (track->addr == caddr) {
4542
4543                        l = &t->loc[pos];
4544                        l->count++;
4545                        if (track->when) {
4546                                l->sum_time += age;
4547                                if (age < l->min_time)
4548                                        l->min_time = age;
4549                                if (age > l->max_time)
4550                                        l->max_time = age;
4551
4552                                if (track->pid < l->min_pid)
4553                                        l->min_pid = track->pid;
4554                                if (track->pid > l->max_pid)
4555                                        l->max_pid = track->pid;
4556
4557                                cpumask_set_cpu(track->cpu,
4558                                                to_cpumask(l->cpus));
4559                        }
4560                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4561                        return 1;
4562                }
4563
4564                if (track->addr < caddr)
4565                        end = pos;
4566                else
4567                        start = pos;
4568        }
4569
4570        /*
4571         * Not found. Insert new tracking element.
4572         */
4573        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4574                return 0;
4575
4576        l = t->loc + pos;
4577        if (pos < t->count)
4578                memmove(l + 1, l,
4579                        (t->count - pos) * sizeof(struct location));
4580        t->count++;
4581        l->count = 1;
4582        l->addr = track->addr;
4583        l->sum_time = age;
4584        l->min_time = age;
4585        l->max_time = age;
4586        l->min_pid = track->pid;
4587        l->max_pid = track->pid;
4588        cpumask_clear(to_cpumask(l->cpus));
4589        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4590        nodes_clear(l->nodes);
4591        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4592        return 1;
4593}
4594
4595static void process_slab(struct loc_track *t, struct kmem_cache *s,
4596                struct page *page, enum track_item alloc,
4597                unsigned long *map)
4598{
4599        void *addr = page_address(page);
4600        void *p;
4601
4602        bitmap_zero(map, page->objects);
4603        get_map(s, page, map);
4604
4605        for_each_object(p, s, addr, page->objects)
4606                if (!test_bit(slab_index(p, s, addr), map))
4607                        add_location(t, s, get_track(s, p, alloc));
4608}
4609
4610static int list_locations(struct kmem_cache *s, char *buf,
4611                                        enum track_item alloc)
4612{
4613        int len = 0;
4614        unsigned long i;
4615        struct loc_track t = { 0, 0, NULL };
4616        int node;
4617        struct kmem_cache_node *n;
4618        unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4619
4620        if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4621                                     GFP_KERNEL)) {
4622                bitmap_free(map);
4623                return sprintf(buf, "Out of memory\n");
4624        }
4625        /* Push back cpu slabs */
4626        flush_all(s);
4627
4628        for_each_kmem_cache_node(s, node, n) {
4629                unsigned long flags;
4630                struct page *page;
4631
4632                if (!atomic_long_read(&n->nr_slabs))
4633                        continue;
4634
4635                spin_lock_irqsave(&n->list_lock, flags);
4636                list_for_each_entry(page, &n->partial, slab_list)
4637                        process_slab(&t, s, page, alloc, map);
4638                list_for_each_entry(page, &n->full, slab_list)
4639                        process_slab(&t, s, page, alloc, map);
4640                spin_unlock_irqrestore(&n->list_lock, flags);
4641        }
4642
4643        for (i = 0; i < t.count; i++) {
4644                struct location *l = &t.loc[i];
4645
4646                if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4647                        break;
4648                len += sprintf(buf + len, "%7ld ", l->count);
4649
4650                if (l->addr)
4651                        len += sprintf(buf + len, "%pS", (void *)l->addr);
4652                else
4653                        len += sprintf(buf + len, "<not-available>");
4654
4655                if (l->sum_time != l->min_time) {
4656                        len += sprintf(buf + len, " age=%ld/%ld/%ld",
4657                                l->min_time,
4658                                (long)div_u64(l->sum_time, l->count),
4659                                l->max_time);
4660                } else
4661                        len += sprintf(buf + len, " age=%ld",
4662                                l->min_time);
4663
4664                if (l->min_pid != l->max_pid)
4665                        len += sprintf(buf + len, " pid=%ld-%ld",
4666                                l->min_pid, l->max_pid);
4667                else
4668                        len += sprintf(buf + len, " pid=%ld",
4669                                l->min_pid);
4670
4671                if (num_online_cpus() > 1 &&
4672                                !cpumask_empty(to_cpumask(l->cpus)) &&
4673                                len < PAGE_SIZE - 60)
4674                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4675                                         " cpus=%*pbl",
4676                                         cpumask_pr_args(to_cpumask(l->cpus)));
4677
4678                if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4679                                len < PAGE_SIZE - 60)
4680                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4681                                         " nodes=%*pbl",
4682                                         nodemask_pr_args(&l->nodes));
4683
4684                len += sprintf(buf + len, "\n");
4685        }
4686
4687        free_loc_track(&t);
4688        bitmap_free(map);
4689        if (!t.count)
4690                len += sprintf(buf, "No data\n");
4691        return len;
4692}
4693#endif  /* CONFIG_SLUB_DEBUG */
4694
4695#ifdef SLUB_RESILIENCY_TEST
4696static void __init resiliency_test(void)
4697{
4698        u8 *p;
4699        int type = KMALLOC_NORMAL;
4700
4701        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4702
4703        pr_err("SLUB resiliency testing\n");
4704        pr_err("-----------------------\n");
4705        pr_err("A. Corruption after allocation\n");
4706
4707        p = kzalloc(16, GFP_KERNEL);
4708        p[16] = 0x12;
4709        pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4710               p + 16);
4711
4712        validate_slab_cache(kmalloc_caches[type][4]);
4713
4714        /* Hmmm... The next two are dangerous */
4715        p = kzalloc(32, GFP_KERNEL);
4716        p[32 + sizeof(void *)] = 0x34;
4717        pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4718               p);
4719        pr_err("If allocated object is overwritten then not detectable\n\n");
4720
4721        validate_slab_cache(kmalloc_caches[type][5]);
4722        p = kzalloc(64, GFP_KERNEL);
4723        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4724        *p = 0x56;
4725        pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4726               p);
4727        pr_err("If allocated object is overwritten then not detectable\n\n");
4728        validate_slab_cache(kmalloc_caches[type][6]);
4729
4730        pr_err("\nB. Corruption after free\n");
4731        p = kzalloc(128, GFP_KERNEL);
4732        kfree(p);
4733        *p = 0x78;
4734        pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4735        validate_slab_cache(kmalloc_caches[type][7]);
4736
4737        p = kzalloc(256, GFP_KERNEL);
4738        kfree(p);
4739        p[50] = 0x9a;
4740        pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4741        validate_slab_cache(kmalloc_caches[type][8]);
4742
4743        p = kzalloc(512, GFP_KERNEL);
4744        kfree(p);
4745        p[512] = 0xab;
4746        pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4747        validate_slab_cache(kmalloc_caches[type][9]);
4748}
4749#else
4750#ifdef CONFIG_SYSFS
4751static void resiliency_test(void) {};
4752#endif
4753#endif  /* SLUB_RESILIENCY_TEST */
4754
4755#ifdef CONFIG_SYSFS
4756enum slab_stat_type {
4757        SL_ALL,                 /* All slabs */
4758        SL_PARTIAL,             /* Only partially allocated slabs */
4759        SL_CPU,                 /* Only slabs used for cpu caches */
4760        SL_OBJECTS,             /* Determine allocated objects not slabs */
4761        SL_TOTAL                /* Determine object capacity not slabs */
4762};
4763
4764#define SO_ALL          (1 << SL_ALL)
4765#define SO_PARTIAL      (1 << SL_PARTIAL)
4766#define SO_CPU          (1 << SL_CPU)
4767#define SO_OBJECTS      (1 << SL_OBJECTS)
4768#define SO_TOTAL        (1 << SL_TOTAL)
4769
4770#ifdef CONFIG_MEMCG
4771static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4772
4773static int __init setup_slub_memcg_sysfs(char *str)
4774{
4775        int v;
4776
4777        if (get_option(&str, &v) > 0)
4778                memcg_sysfs_enabled = v;
4779
4780        return 1;
4781}
4782
4783__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4784#endif
4785
4786static ssize_t show_slab_objects(struct kmem_cache *s,
4787                            char *buf, unsigned long flags)
4788{
4789        unsigned long total = 0;
4790        int node;
4791        int x;
4792        unsigned long *nodes;
4793
4794        nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4795        if (!nodes)
4796                return -ENOMEM;
4797
4798        if (flags & SO_CPU) {
4799                int cpu;
4800
4801                for_each_possible_cpu(cpu) {
4802                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4803                                                               cpu);
4804                        int node;
4805                        struct page *page;
4806
4807                        page = READ_ONCE(c->page);
4808                        if (!page)
4809                                continue;
4810
4811                        node = page_to_nid(page);
4812                        if (flags & SO_TOTAL)
4813                                x = page->objects;
4814                        else if (flags & SO_OBJECTS)
4815                                x = page->inuse;
4816                        else
4817                                x = 1;
4818
4819                        total += x;
4820                        nodes[node] += x;
4821
4822                        page = slub_percpu_partial_read_once(c);
4823                        if (page) {
4824                                node = page_to_nid(page);
4825                                if (flags & SO_TOTAL)
4826                                        WARN_ON_ONCE(1);
4827                                else if (flags & SO_OBJECTS)
4828                                        WARN_ON_ONCE(1);
4829                                else
4830                                        x = page->pages;
4831                                total += x;
4832                                nodes[node] += x;
4833                        }
4834                }
4835        }
4836
4837        get_online_mems();
4838#ifdef CONFIG_SLUB_DEBUG
4839        if (flags & SO_ALL) {
4840                struct kmem_cache_node *n;
4841
4842                for_each_kmem_cache_node(s, node, n) {
4843
4844                        if (flags & SO_TOTAL)
4845                                x = atomic_long_read(&n->total_objects);
4846                        else if (flags & SO_OBJECTS)
4847                                x = atomic_long_read(&n->total_objects) -
4848                                        count_partial(n, count_free);
4849                        else
4850                                x = atomic_long_read(&n->nr_slabs);
4851                        total += x;
4852                        nodes[node] += x;
4853                }
4854
4855        } else
4856#endif
4857        if (flags & SO_PARTIAL) {
4858                struct kmem_cache_node *n;
4859
4860                for_each_kmem_cache_node(s, node, n) {
4861                        if (flags & SO_TOTAL)
4862                                x = count_partial(n, count_total);
4863                        else if (flags & SO_OBJECTS)
4864                                x = count_partial(n, count_inuse);
4865                        else
4866                                x = n->nr_partial;
4867                        total += x;
4868                        nodes[node] += x;
4869                }
4870        }
4871        x = sprintf(buf, "%lu", total);
4872#ifdef CONFIG_NUMA
4873        for (node = 0; node < nr_node_ids; node++)
4874                if (nodes[node])
4875                        x += sprintf(buf + x, " N%d=%lu",
4876                                        node, nodes[node]);
4877#endif
4878        put_online_mems();
4879        kfree(nodes);
4880        return x + sprintf(buf + x, "\n");
4881}
4882
4883#ifdef CONFIG_SLUB_DEBUG
4884static int any_slab_objects(struct kmem_cache *s)
4885{
4886        int node;
4887        struct kmem_cache_node *n;
4888
4889        for_each_kmem_cache_node(s, node, n)
4890                if (atomic_long_read(&n->total_objects))
4891                        return 1;
4892
4893        return 0;
4894}
4895#endif
4896
4897#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4898#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4899
4900struct slab_attribute {
4901        struct attribute attr;
4902        ssize_t (*show)(struct kmem_cache *s, char *buf);
4903        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4904};
4905
4906#define SLAB_ATTR_RO(_name) \
4907        static struct slab_attribute _name##_attr = \
4908        __ATTR(_name, 0400, _name##_show, NULL)
4909
4910#define SLAB_ATTR(_name) \
4911        static struct slab_attribute _name##_attr =  \
4912        __ATTR(_name, 0600, _name##_show, _name##_store)
4913
4914static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4915{
4916        return sprintf(buf, "%u\n", s->size);
4917}
4918SLAB_ATTR_RO(slab_size);
4919
4920static ssize_t align_show(struct kmem_cache *s, char *buf)
4921{
4922        return sprintf(buf, "%u\n", s->align);
4923}
4924SLAB_ATTR_RO(align);
4925
4926static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4927{
4928        return sprintf(buf, "%u\n", s->object_size);
4929}
4930SLAB_ATTR_RO(object_size);
4931
4932static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4933{
4934        return sprintf(buf, "%u\n", oo_objects(s->oo));
4935}
4936SLAB_ATTR_RO(objs_per_slab);
4937
4938static ssize_t order_store(struct kmem_cache *s,
4939                                const char *buf, size_t length)
4940{
4941        unsigned int order;
4942        int err;
4943
4944        err = kstrtouint(buf, 10, &order);
4945        if (err)
4946                return err;
4947
4948        if (order > slub_max_order || order < slub_min_order)
4949                return -EINVAL;
4950
4951        calculate_sizes(s, order);
4952        return length;
4953}
4954
4955static ssize_t order_show(struct kmem_cache *s, char *buf)
4956{
4957        return sprintf(buf, "%u\n", oo_order(s->oo));
4958}
4959SLAB_ATTR(order);
4960
4961static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4962{
4963        return sprintf(buf, "%lu\n", s->min_partial);
4964}
4965
4966static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4967                                 size_t length)
4968{
4969        unsigned long min;
4970        int err;
4971
4972        err = kstrtoul(buf, 10, &min);
4973        if (err)
4974                return err;
4975
4976        set_min_partial(s, min);
4977        return length;
4978}
4979SLAB_ATTR(min_partial);
4980
4981static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4982{
4983        return sprintf(buf, "%u\n", slub_cpu_partial(s));
4984}
4985
4986static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4987                                 size_t length)
4988{
4989        unsigned int objects;
4990        int err;
4991
4992        err = kstrtouint(buf, 10, &objects);
4993        if (err)
4994                return err;
4995        if (objects && !kmem_cache_has_cpu_partial(s))
4996                return -EINVAL;
4997
4998        slub_set_cpu_partial(s, objects);
4999        flush_all(s);
5000        return length;
5001}
5002SLAB_ATTR(cpu_partial);
5003
5004static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5005{
5006        if (!s->ctor)
5007                return 0;
5008        return sprintf(buf, "%pS\n", s->ctor);
5009}
5010SLAB_ATTR_RO(ctor);
5011
5012static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5013{
5014        return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5015}
5016SLAB_ATTR_RO(aliases);
5017
5018static ssize_t partial_show(struct kmem_cache *s, char *buf)
5019{
5020        return show_slab_objects(s, buf, SO_PARTIAL);
5021}
5022SLAB_ATTR_RO(partial);
5023
5024static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5025{
5026        return show_slab_objects(s, buf, SO_CPU);
5027}
5028SLAB_ATTR_RO(cpu_slabs);
5029
5030static ssize_t objects_show(struct kmem_cache *s, char *buf)
5031{
5032        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5033}
5034SLAB_ATTR_RO(objects);
5035
5036static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5037{
5038        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5039}
5040SLAB_ATTR_RO(objects_partial);
5041
5042static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5043{
5044        int objects = 0;
5045        int pages = 0;
5046        int cpu;
5047        int len;
5048
5049        for_each_online_cpu(cpu) {
5050                struct page *page;
5051
5052                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5053
5054                if (page) {
5055                        pages += page->pages;
5056                        objects += page->pobjects;
5057                }
5058        }
5059
5060        len = sprintf(buf, "%d(%d)", objects, pages);
5061
5062#ifdef CONFIG_SMP
5063        for_each_online_cpu(cpu) {
5064                struct page *page;
5065
5066                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5067
5068                if (page && len < PAGE_SIZE - 20)
5069                        len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5070                                page->pobjects, page->pages);
5071        }
5072#endif
5073        return len + sprintf(buf + len, "\n");
5074}
5075SLAB_ATTR_RO(slabs_cpu_partial);
5076
5077static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5078{
5079        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5080}
5081
5082static ssize_t reclaim_account_store(struct kmem_cache *s,
5083                                const char *buf, size_t length)
5084{
5085        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5086        if (buf[0] == '1')
5087                s->flags |= SLAB_RECLAIM_ACCOUNT;
5088        return length;
5089}
5090SLAB_ATTR(reclaim_account);
5091
5092static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5093{
5094        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5095}
5096SLAB_ATTR_RO(hwcache_align);
5097
5098#ifdef CONFIG_ZONE_DMA
5099static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5100{
5101        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5102}
5103SLAB_ATTR_RO(cache_dma);
5104#endif
5105
5106static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5107{
5108        return sprintf(buf, "%u\n", s->usersize);
5109}
5110SLAB_ATTR_RO(usersize);
5111
5112static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5113{
5114        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5115}
5116SLAB_ATTR_RO(destroy_by_rcu);
5117
5118#ifdef CONFIG_SLUB_DEBUG
5119static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5120{
5121        return show_slab_objects(s, buf, SO_ALL);
5122}
5123SLAB_ATTR_RO(slabs);
5124
5125static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5126{
5127        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5128}
5129SLAB_ATTR_RO(total_objects);
5130
5131static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5132{
5133        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5134}
5135
5136static ssize_t sanity_checks_store(struct kmem_cache *s,
5137                                const char *buf, size_t length)
5138{
5139        s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5140        if (buf[0] == '1') {
5141                s->flags &= ~__CMPXCHG_DOUBLE;
5142                s->flags |= SLAB_CONSISTENCY_CHECKS;
5143        }
5144        return length;
5145}
5146SLAB_ATTR(sanity_checks);
5147
5148static ssize_t trace_show(struct kmem_cache *s, char *buf)
5149{
5150        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5151}
5152
5153static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5154                                                        size_t length)
5155{
5156        /*
5157         * Tracing a merged cache is going to give confusing results
5158         * as well as cause other issues like converting a mergeable
5159         * cache into an umergeable one.
5160         */
5161        if (s->refcount > 1)
5162                return -EINVAL;
5163
5164        s->flags &= ~SLAB_TRACE;
5165        if (buf[0] == '1') {
5166                s->flags &= ~__CMPXCHG_DOUBLE;
5167                s->flags |= SLAB_TRACE;
5168        }
5169        return length;
5170}
5171SLAB_ATTR(trace);
5172
5173static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5174{
5175        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5176}
5177
5178static ssize_t red_zone_store(struct kmem_cache *s,
5179                                const char *buf, size_t length)
5180{
5181        if (any_slab_objects(s))
5182                return -EBUSY;
5183
5184        s->flags &= ~SLAB_RED_ZONE;
5185        if (buf[0] == '1') {
5186                s->flags |= SLAB_RED_ZONE;
5187        }
5188        calculate_sizes(s, -1);
5189        return length;
5190}
5191SLAB_ATTR(red_zone);
5192
5193static ssize_t poison_show(struct kmem_cache *s, char *buf)
5194{
5195        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5196}
5197
5198static ssize_t poison_store(struct kmem_cache *s,
5199                                const char *buf, size_t length)
5200{
5201        if (any_slab_objects(s))
5202                return -EBUSY;
5203
5204        s->flags &= ~SLAB_POISON;
5205        if (buf[0] == '1') {
5206                s->flags |= SLAB_POISON;
5207        }
5208        calculate_sizes(s, -1);
5209        return length;
5210}
5211SLAB_ATTR(poison);
5212
5213static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5214{
5215        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5216}
5217
5218static ssize_t store_user_store(struct kmem_cache *s,
5219                                const char *buf, size_t length)
5220{
5221        if (any_slab_objects(s))
5222                return -EBUSY;
5223
5224        s->flags &= ~SLAB_STORE_USER;
5225        if (buf[0] == '1') {
5226                s->flags &= ~__CMPXCHG_DOUBLE;
5227                s->flags |= SLAB_STORE_USER;
5228        }
5229        calculate_sizes(s, -1);
5230        return length;
5231}
5232SLAB_ATTR(store_user);
5233
5234static ssize_t validate_show(struct kmem_cache *s, char *buf)
5235{
5236        return 0;
5237}
5238
5239static ssize_t validate_store(struct kmem_cache *s,
5240                        const char *buf, size_t length)
5241{
5242        int ret = -EINVAL;
5243
5244        if (buf[0] == '1') {
5245                ret = validate_slab_cache(s);
5246                if (ret >= 0)
5247                        ret = length;
5248        }
5249        return ret;
5250}
5251SLAB_ATTR(validate);
5252
5253static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5254{
5255        if (!(s->flags & SLAB_STORE_USER))
5256                return -ENOSYS;
5257        return list_locations(s, buf, TRACK_ALLOC);
5258}
5259SLAB_ATTR_RO(alloc_calls);
5260
5261static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5262{
5263        if (!(s->flags & SLAB_STORE_USER))
5264                return -ENOSYS;
5265        return list_locations(s, buf, TRACK_FREE);
5266}
5267SLAB_ATTR_RO(free_calls);
5268#endif /* CONFIG_SLUB_DEBUG */
5269
5270#ifdef CONFIG_FAILSLAB
5271static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5272{
5273        return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5274}
5275
5276static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5277                                                        size_t length)
5278{
5279        if (s->refcount > 1)
5280                return -EINVAL;
5281
5282        s->flags &= ~SLAB_FAILSLAB;
5283        if (buf[0] == '1')
5284                s->flags |= SLAB_FAILSLAB;
5285        return length;
5286}
5287SLAB_ATTR(failslab);
5288#endif
5289
5290static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291{
5292        return 0;
5293}
5294
5295static ssize_t shrink_store(struct kmem_cache *s,
5296                        const char *buf, size_t length)
5297{
5298        if (buf[0] == '1')
5299                kmem_cache_shrink(s);
5300        else
5301                return -EINVAL;
5302        return length;
5303}
5304SLAB_ATTR(shrink);
5305
5306#ifdef CONFIG_NUMA
5307static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5308{
5309        return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5310}
5311
5312static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5313                                const char *buf, size_t length)
5314{
5315        unsigned int ratio;
5316        int err;
5317
5318        err = kstrtouint(buf, 10, &ratio);
5319        if (err)
5320                return err;
5321        if (ratio > 100)
5322                return -ERANGE;
5323
5324        s->remote_node_defrag_ratio = ratio * 10;
5325
5326        return length;
5327}
5328SLAB_ATTR(remote_node_defrag_ratio);
5329#endif
5330
5331#ifdef CONFIG_SLUB_STATS
5332static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333{
5334        unsigned long sum  = 0;
5335        int cpu;
5336        int len;
5337        int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5338
5339        if (!data)
5340                return -ENOMEM;
5341
5342        for_each_online_cpu(cpu) {
5343                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5344
5345                data[cpu] = x;
5346                sum += x;
5347        }
5348
5349        len = sprintf(buf, "%lu", sum);
5350
5351#ifdef CONFIG_SMP
5352        for_each_online_cpu(cpu) {
5353                if (data[cpu] && len < PAGE_SIZE - 20)
5354                        len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5355        }
5356#endif
5357        kfree(data);
5358        return len + sprintf(buf + len, "\n");
5359}
5360
5361static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362{
5363        int cpu;
5364
5365        for_each_online_cpu(cpu)
5366                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5367}
5368
5369#define STAT_ATTR(si, text)                                     \
5370static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
5371{                                                               \
5372        return show_stat(s, buf, si);                           \
5373}                                                               \
5374static ssize_t text##_store(struct kmem_cache *s,               \
5375                                const char *buf, size_t length) \
5376{                                                               \
5377        if (buf[0] != '0')                                      \
5378                return -EINVAL;                                 \
5379        clear_stat(s, si);                                      \
5380        return length;                                          \
5381}                                                               \
5382SLAB_ATTR(text);                                                \
5383
5384STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388STAT_ATTR(FREE_FROZEN, free_frozen);
5389STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395STAT_ATTR(FREE_SLAB, free_slab);
5396STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410#endif  /* CONFIG_SLUB_STATS */
5411
5412static struct attribute *slab_attrs[] = {
5413        &slab_size_attr.attr,
5414        &object_size_attr.attr,
5415        &objs_per_slab_attr.attr,
5416        &order_attr.attr,
5417        &min_partial_attr.attr,
5418        &cpu_partial_attr.attr,
5419        &objects_attr.attr,
5420        &objects_partial_attr.attr,
5421        &partial_attr.attr,
5422        &cpu_slabs_attr.attr,
5423        &ctor_attr.attr,
5424        &aliases_attr.attr,
5425        &align_attr.attr,
5426        &hwcache_align_attr.attr,
5427        &reclaim_account_attr.attr,
5428        &destroy_by_rcu_attr.attr,
5429        &shrink_attr.attr,
5430        &slabs_cpu_partial_attr.attr,
5431#ifdef CONFIG_SLUB_DEBUG
5432        &total_objects_attr.attr,
5433        &slabs_attr.attr,
5434        &sanity_checks_attr.attr,
5435        &trace_attr.attr,
5436        &red_zone_attr.attr,
5437        &poison_attr.attr,
5438        &store_user_attr.attr,
5439        &validate_attr.attr,
5440        &alloc_calls_attr.attr,
5441        &free_calls_attr.attr,
5442#endif
5443#ifdef CONFIG_ZONE_DMA
5444        &cache_dma_attr.attr,
5445#endif
5446#ifdef CONFIG_NUMA
5447        &remote_node_defrag_ratio_attr.attr,
5448#endif
5449#ifdef CONFIG_SLUB_STATS
5450        &alloc_fastpath_attr.attr,
5451        &alloc_slowpath_attr.attr,
5452        &free_fastpath_attr.attr,
5453        &free_slowpath_attr.attr,
5454        &free_frozen_attr.attr,
5455        &free_add_partial_attr.attr,
5456        &free_remove_partial_attr.attr,
5457        &alloc_from_partial_attr.attr,
5458        &alloc_slab_attr.attr,
5459        &alloc_refill_attr.attr,
5460        &alloc_node_mismatch_attr.attr,
5461        &free_slab_attr.attr,
5462        &cpuslab_flush_attr.attr,
5463        &deactivate_full_attr.attr,
5464        &deactivate_empty_attr.attr,
5465        &deactivate_to_head_attr.attr,
5466        &deactivate_to_tail_attr.attr,
5467        &deactivate_remote_frees_attr.attr,
5468        &deactivate_bypass_attr.attr,
5469        &order_fallback_attr.attr,
5470        &cmpxchg_double_fail_attr.attr,
5471        &cmpxchg_double_cpu_fail_attr.attr,
5472        &cpu_partial_alloc_attr.attr,
5473        &cpu_partial_free_attr.attr,
5474        &cpu_partial_node_attr.attr,
5475        &cpu_partial_drain_attr.attr,
5476#endif
5477#ifdef CONFIG_FAILSLAB
5478        &failslab_attr.attr,
5479#endif
5480        &usersize_attr.attr,
5481
5482        NULL
5483};
5484
5485static const struct attribute_group slab_attr_group = {
5486        .attrs = slab_attrs,
5487};
5488
5489static ssize_t slab_attr_show(struct kobject *kobj,
5490                                struct attribute *attr,
5491                                char *buf)
5492{
5493        struct slab_attribute *attribute;
5494        struct kmem_cache *s;
5495        int err;
5496
5497        attribute = to_slab_attr(attr);
5498        s = to_slab(kobj);
5499
5500        if (!attribute->show)
5501                return -EIO;
5502
5503        err = attribute->show(s, buf);
5504
5505        return err;
5506}
5507
5508static ssize_t slab_attr_store(struct kobject *kobj,
5509                                struct attribute *attr,
5510                                const char *buf, size_t len)
5511{
5512        struct slab_attribute *attribute;
5513        struct kmem_cache *s;
5514        int err;
5515
5516        attribute = to_slab_attr(attr);
5517        s = to_slab(kobj);
5518
5519        if (!attribute->store)
5520                return -EIO;
5521
5522        err = attribute->store(s, buf, len);
5523#ifdef CONFIG_MEMCG
5524        if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5525                struct kmem_cache *c;
5526
5527                mutex_lock(&slab_mutex);
5528                if (s->max_attr_size < len)
5529                        s->max_attr_size = len;
5530
5531                /*
5532                 * This is a best effort propagation, so this function's return
5533                 * value will be determined by the parent cache only. This is
5534                 * basically because not all attributes will have a well
5535                 * defined semantics for rollbacks - most of the actions will
5536                 * have permanent effects.
5537                 *
5538                 * Returning the error value of any of the children that fail
5539                 * is not 100 % defined, in the sense that users seeing the
5540                 * error code won't be able to know anything about the state of
5541                 * the cache.
5542                 *
5543                 * Only returning the error code for the parent cache at least
5544                 * has well defined semantics. The cache being written to
5545                 * directly either failed or succeeded, in which case we loop
5546                 * through the descendants with best-effort propagation.
5547                 */
5548                for_each_memcg_cache(c, s)
5549                        attribute->store(c, buf, len);
5550                mutex_unlock(&slab_mutex);
5551        }
5552#endif
5553        return err;
5554}
5555
5556static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5557{
5558#ifdef CONFIG_MEMCG
5559        int i;
5560        char *buffer = NULL;
5561        struct kmem_cache *root_cache;
5562
5563        if (is_root_cache(s))
5564                return;
5565
5566        root_cache = s->memcg_params.root_cache;
5567
5568        /*
5569         * This mean this cache had no attribute written. Therefore, no point
5570         * in copying default values around
5571         */
5572        if (!root_cache->max_attr_size)
5573                return;
5574
5575        for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5576                char mbuf[64];
5577                char *buf;
5578                struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5579                ssize_t len;
5580
5581                if (!attr || !attr->store || !attr->show)
5582                        continue;
5583
5584                /*
5585                 * It is really bad that we have to allocate here, so we will
5586                 * do it only as a fallback. If we actually allocate, though,
5587                 * we can just use the allocated buffer until the end.
5588                 *
5589                 * Most of the slub attributes will tend to be very small in
5590                 * size, but sysfs allows buffers up to a page, so they can
5591                 * theoretically happen.
5592                 */
5593                if (buffer)
5594                        buf = buffer;
5595                else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5596                        buf = mbuf;
5597                else {
5598                        buffer = (char *) get_zeroed_page(GFP_KERNEL);
5599                        if (WARN_ON(!buffer))
5600                                continue;
5601                        buf = buffer;
5602                }
5603
5604                len = attr->show(root_cache, buf);
5605                if (len > 0)
5606                        attr->store(s, buf, len);
5607        }
5608
5609        if (buffer)
5610                free_page((unsigned long)buffer);
5611#endif  /* CONFIG_MEMCG */
5612}
5613
5614static void kmem_cache_release(struct kobject *k)
5615{
5616        slab_kmem_cache_release(to_slab(k));
5617}
5618
5619static const struct sysfs_ops slab_sysfs_ops = {
5620        .show = slab_attr_show,
5621        .store = slab_attr_store,
5622};
5623
5624static struct kobj_type slab_ktype = {
5625        .sysfs_ops = &slab_sysfs_ops,
5626        .release = kmem_cache_release,
5627};
5628
5629static int uevent_filter(struct kset *kset, struct kobject *kobj)
5630{
5631        struct kobj_type *ktype = get_ktype(kobj);
5632
5633        if (ktype == &slab_ktype)
5634                return 1;
5635        return 0;
5636}
5637
5638static const struct kset_uevent_ops slab_uevent_ops = {
5639        .filter = uevent_filter,
5640};
5641
5642static struct kset *slab_kset;
5643
5644static inline struct kset *cache_kset(struct kmem_cache *s)
5645{
5646#ifdef CONFIG_MEMCG
5647        if (!is_root_cache(s))
5648                return s->memcg_params.root_cache->memcg_kset;
5649#endif
5650        return slab_kset;
5651}
5652
5653#define ID_STR_LENGTH 64
5654
5655/* Create a unique string id for a slab cache:
5656 *
5657 * Format       :[flags-]size
5658 */
5659static char *create_unique_id(struct kmem_cache *s)
5660{
5661        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662        char *p = name;
5663
5664        BUG_ON(!name);
5665
5666        *p++ = ':';
5667        /*
5668         * First flags affecting slabcache operations. We will only
5669         * get here for aliasable slabs so we do not need to support
5670         * too many flags. The flags here must cover all flags that
5671         * are matched during merging to guarantee that the id is
5672         * unique.
5673         */
5674        if (s->flags & SLAB_CACHE_DMA)
5675                *p++ = 'd';
5676        if (s->flags & SLAB_CACHE_DMA32)
5677                *p++ = 'D';
5678        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679                *p++ = 'a';
5680        if (s->flags & SLAB_CONSISTENCY_CHECKS)
5681                *p++ = 'F';
5682        if (s->flags & SLAB_ACCOUNT)
5683                *p++ = 'A';
5684        if (p != name + 1)
5685                *p++ = '-';
5686        p += sprintf(p, "%07u", s->size);
5687
5688        BUG_ON(p > name + ID_STR_LENGTH - 1);
5689        return name;
5690}
5691
5692static void sysfs_slab_remove_workfn(struct work_struct *work)
5693{
5694        struct kmem_cache *s =
5695                container_of(work, struct kmem_cache, kobj_remove_work);
5696
5697        if (!s->kobj.state_in_sysfs)
5698                /*
5699                 * For a memcg cache, this may be called during
5700                 * deactivation and again on shutdown.  Remove only once.
5701                 * A cache is never shut down before deactivation is
5702                 * complete, so no need to worry about synchronization.
5703                 */
5704                goto out;
5705
5706#ifdef CONFIG_MEMCG
5707        kset_unregister(s->memcg_kset);
5708#endif
5709        kobject_uevent(&s->kobj, KOBJ_REMOVE);
5710out:
5711        kobject_put(&s->kobj);
5712}
5713
5714static int sysfs_slab_add(struct kmem_cache *s)
5715{
5716        int err;
5717        const char *name;
5718        struct kset *kset = cache_kset(s);
5719        int unmergeable = slab_unmergeable(s);
5720
5721        INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5722
5723        if (!kset) {
5724                kobject_init(&s->kobj, &slab_ktype);
5725                return 0;
5726        }
5727
5728        if (!unmergeable && disable_higher_order_debug &&
5729                        (slub_debug & DEBUG_METADATA_FLAGS))
5730                unmergeable = 1;
5731
5732        if (unmergeable) {
5733                /*
5734                 * Slabcache can never be merged so we can use the name proper.
5735                 * This is typically the case for debug situations. In that
5736                 * case we can catch duplicate names easily.
5737                 */
5738                sysfs_remove_link(&slab_kset->kobj, s->name);
5739                name = s->name;
5740        } else {
5741                /*
5742                 * Create a unique name for the slab as a target
5743                 * for the symlinks.
5744                 */
5745                name = create_unique_id(s);
5746        }
5747
5748        s->kobj.kset = kset;
5749        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5750        if (err)
5751                goto out;
5752
5753        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5754        if (err)
5755                goto out_del_kobj;
5756
5757#ifdef CONFIG_MEMCG
5758        if (is_root_cache(s) && memcg_sysfs_enabled) {
5759                s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5760                if (!s->memcg_kset) {
5761                        err = -ENOMEM;
5762                        goto out_del_kobj;
5763                }
5764        }
5765#endif
5766
5767        kobject_uevent(&s->kobj, KOBJ_ADD);
5768        if (!unmergeable) {
5769                /* Setup first alias */
5770                sysfs_slab_alias(s, s->name);
5771        }
5772out:
5773        if (!unmergeable)
5774                kfree(name);
5775        return err;
5776out_del_kobj:
5777        kobject_del(&s->kobj);
5778        goto out;
5779}
5780
5781static void sysfs_slab_remove(struct kmem_cache *s)
5782{
5783        if (slab_state < FULL)
5784                /*
5785                 * Sysfs has not been setup yet so no need to remove the
5786                 * cache from sysfs.
5787                 */
5788                return;
5789
5790        kobject_get(&s->kobj);
5791        schedule_work(&s->kobj_remove_work);
5792}
5793
5794void sysfs_slab_unlink(struct kmem_cache *s)
5795{
5796        if (slab_state >= FULL)
5797                kobject_del(&s->kobj);
5798}
5799
5800void sysfs_slab_release(struct kmem_cache *s)
5801{
5802        if (slab_state >= FULL)
5803                kobject_put(&s->kobj);
5804}
5805
5806/*
5807 * Need to buffer aliases during bootup until sysfs becomes
5808 * available lest we lose that information.
5809 */
5810struct saved_alias {
5811        struct kmem_cache *s;
5812        const char *name;
5813        struct saved_alias *next;
5814};
5815
5816static struct saved_alias *alias_list;
5817
5818static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5819{
5820        struct saved_alias *al;
5821
5822        if (slab_state == FULL) {
5823                /*
5824                 * If we have a leftover link then remove it.
5825                 */
5826                sysfs_remove_link(&slab_kset->kobj, name);
5827                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5828        }
5829
5830        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5831        if (!al)
5832                return -ENOMEM;
5833
5834        al->s = s;
5835        al->name = name;
5836        al->next = alias_list;
5837        alias_list = al;
5838        return 0;
5839}
5840
5841static int __init slab_sysfs_init(void)
5842{
5843        struct kmem_cache *s;
5844        int err;
5845
5846        mutex_lock(&slab_mutex);
5847
5848        slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5849        if (!slab_kset) {
5850                mutex_unlock(&slab_mutex);
5851                pr_err("Cannot register slab subsystem.\n");
5852                return -ENOSYS;
5853        }
5854
5855        slab_state = FULL;
5856
5857        list_for_each_entry(s, &slab_caches, list) {
5858                err = sysfs_slab_add(s);
5859                if (err)
5860                        pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5861                               s->name);
5862        }
5863
5864        while (alias_list) {
5865                struct saved_alias *al = alias_list;
5866
5867                alias_list = alias_list->next;
5868                err = sysfs_slab_alias(al->s, al->name);
5869                if (err)
5870                        pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5871                               al->name);
5872                kfree(al);
5873        }
5874
5875        mutex_unlock(&slab_mutex);
5876        resiliency_test();
5877        return 0;
5878}
5879
5880__initcall(slab_sysfs_init);
5881#endif /* CONFIG_SYSFS */
5882
5883/*
5884 * The /proc/slabinfo ABI
5885 */
5886#ifdef CONFIG_SLUB_DEBUG
5887void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5888{
5889        unsigned long nr_slabs = 0;
5890        unsigned long nr_objs = 0;
5891        unsigned long nr_free = 0;
5892        int node;
5893        struct kmem_cache_node *n;
5894
5895        for_each_kmem_cache_node(s, node, n) {
5896                nr_slabs += node_nr_slabs(n);
5897                nr_objs += node_nr_objs(n);
5898                nr_free += count_partial(n, count_free);
5899        }
5900
5901        sinfo->active_objs = nr_objs - nr_free;
5902        sinfo->num_objs = nr_objs;
5903        sinfo->active_slabs = nr_slabs;
5904        sinfo->num_slabs = nr_slabs;
5905        sinfo->objects_per_slab = oo_objects(s->oo);
5906        sinfo->cache_order = oo_order(s->oo);
5907}
5908
5909void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5910{
5911}
5912
5913ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5914                       size_t count, loff_t *ppos)
5915{
5916        return -EIO;
5917}
5918#endif /* CONFIG_SLUB_DEBUG */
5919