linux/mm/swap_slots.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Manage cache of swap slots to be used for and returned from
   4 * swap.
   5 *
   6 * Copyright(c) 2016 Intel Corporation.
   7 *
   8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
   9 *
  10 * We allocate the swap slots from the global pool and put
  11 * it into local per cpu caches.  This has the advantage
  12 * of no needing to acquire the swap_info lock every time
  13 * we need a new slot.
  14 *
  15 * There is also opportunity to simply return the slot
  16 * to local caches without needing to acquire swap_info
  17 * lock.  We do not reuse the returned slots directly but
  18 * move them back to the global pool in a batch.  This
  19 * allows the slots to coaellesce and reduce fragmentation.
  20 *
  21 * The swap entry allocated is marked with SWAP_HAS_CACHE
  22 * flag in map_count that prevents it from being allocated
  23 * again from the global pool.
  24 *
  25 * The swap slots cache is protected by a mutex instead of
  26 * a spin lock as when we search for slots with scan_swap_map,
  27 * we can possibly sleep.
  28 */
  29
  30#include <linux/swap_slots.h>
  31#include <linux/cpu.h>
  32#include <linux/cpumask.h>
  33#include <linux/vmalloc.h>
  34#include <linux/mutex.h>
  35#include <linux/mm.h>
  36
  37static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
  38static bool     swap_slot_cache_active;
  39bool    swap_slot_cache_enabled;
  40static bool     swap_slot_cache_initialized;
  41static DEFINE_MUTEX(swap_slots_cache_mutex);
  42/* Serialize swap slots cache enable/disable operations */
  43static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
  44
  45static void __drain_swap_slots_cache(unsigned int type);
  46static void deactivate_swap_slots_cache(void);
  47static void reactivate_swap_slots_cache(void);
  48
  49#define use_swap_slot_cache (swap_slot_cache_active && \
  50                swap_slot_cache_enabled && swap_slot_cache_initialized)
  51#define SLOTS_CACHE 0x1
  52#define SLOTS_CACHE_RET 0x2
  53
  54static void deactivate_swap_slots_cache(void)
  55{
  56        mutex_lock(&swap_slots_cache_mutex);
  57        swap_slot_cache_active = false;
  58        __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
  59        mutex_unlock(&swap_slots_cache_mutex);
  60}
  61
  62static void reactivate_swap_slots_cache(void)
  63{
  64        mutex_lock(&swap_slots_cache_mutex);
  65        swap_slot_cache_active = true;
  66        mutex_unlock(&swap_slots_cache_mutex);
  67}
  68
  69/* Must not be called with cpu hot plug lock */
  70void disable_swap_slots_cache_lock(void)
  71{
  72        mutex_lock(&swap_slots_cache_enable_mutex);
  73        swap_slot_cache_enabled = false;
  74        if (swap_slot_cache_initialized) {
  75                /* serialize with cpu hotplug operations */
  76                get_online_cpus();
  77                __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
  78                put_online_cpus();
  79        }
  80}
  81
  82static void __reenable_swap_slots_cache(void)
  83{
  84        swap_slot_cache_enabled = has_usable_swap();
  85}
  86
  87void reenable_swap_slots_cache_unlock(void)
  88{
  89        __reenable_swap_slots_cache();
  90        mutex_unlock(&swap_slots_cache_enable_mutex);
  91}
  92
  93static bool check_cache_active(void)
  94{
  95        long pages;
  96
  97        if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
  98                return false;
  99
 100        pages = get_nr_swap_pages();
 101        if (!swap_slot_cache_active) {
 102                if (pages > num_online_cpus() *
 103                    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
 104                        reactivate_swap_slots_cache();
 105                goto out;
 106        }
 107
 108        /* if global pool of slot caches too low, deactivate cache */
 109        if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
 110                deactivate_swap_slots_cache();
 111out:
 112        return swap_slot_cache_active;
 113}
 114
 115static int alloc_swap_slot_cache(unsigned int cpu)
 116{
 117        struct swap_slots_cache *cache;
 118        swp_entry_t *slots, *slots_ret;
 119
 120        /*
 121         * Do allocation outside swap_slots_cache_mutex
 122         * as kvzalloc could trigger reclaim and get_swap_page,
 123         * which can lock swap_slots_cache_mutex.
 124         */
 125        slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 126                         GFP_KERNEL);
 127        if (!slots)
 128                return -ENOMEM;
 129
 130        slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 131                             GFP_KERNEL);
 132        if (!slots_ret) {
 133                kvfree(slots);
 134                return -ENOMEM;
 135        }
 136
 137        mutex_lock(&swap_slots_cache_mutex);
 138        cache = &per_cpu(swp_slots, cpu);
 139        if (cache->slots || cache->slots_ret)
 140                /* cache already allocated */
 141                goto out;
 142        if (!cache->lock_initialized) {
 143                mutex_init(&cache->alloc_lock);
 144                spin_lock_init(&cache->free_lock);
 145                cache->lock_initialized = true;
 146        }
 147        cache->nr = 0;
 148        cache->cur = 0;
 149        cache->n_ret = 0;
 150        /*
 151         * We initialized alloc_lock and free_lock earlier.  We use
 152         * !cache->slots or !cache->slots_ret to know if it is safe to acquire
 153         * the corresponding lock and use the cache.  Memory barrier below
 154         * ensures the assumption.
 155         */
 156        mb();
 157        cache->slots = slots;
 158        slots = NULL;
 159        cache->slots_ret = slots_ret;
 160        slots_ret = NULL;
 161out:
 162        mutex_unlock(&swap_slots_cache_mutex);
 163        if (slots)
 164                kvfree(slots);
 165        if (slots_ret)
 166                kvfree(slots_ret);
 167        return 0;
 168}
 169
 170static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
 171                                  bool free_slots)
 172{
 173        struct swap_slots_cache *cache;
 174        swp_entry_t *slots = NULL;
 175
 176        cache = &per_cpu(swp_slots, cpu);
 177        if ((type & SLOTS_CACHE) && cache->slots) {
 178                mutex_lock(&cache->alloc_lock);
 179                swapcache_free_entries(cache->slots + cache->cur, cache->nr);
 180                cache->cur = 0;
 181                cache->nr = 0;
 182                if (free_slots && cache->slots) {
 183                        kvfree(cache->slots);
 184                        cache->slots = NULL;
 185                }
 186                mutex_unlock(&cache->alloc_lock);
 187        }
 188        if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
 189                spin_lock_irq(&cache->free_lock);
 190                swapcache_free_entries(cache->slots_ret, cache->n_ret);
 191                cache->n_ret = 0;
 192                if (free_slots && cache->slots_ret) {
 193                        slots = cache->slots_ret;
 194                        cache->slots_ret = NULL;
 195                }
 196                spin_unlock_irq(&cache->free_lock);
 197                if (slots)
 198                        kvfree(slots);
 199        }
 200}
 201
 202static void __drain_swap_slots_cache(unsigned int type)
 203{
 204        unsigned int cpu;
 205
 206        /*
 207         * This function is called during
 208         *      1) swapoff, when we have to make sure no
 209         *         left over slots are in cache when we remove
 210         *         a swap device;
 211         *      2) disabling of swap slot cache, when we run low
 212         *         on swap slots when allocating memory and need
 213         *         to return swap slots to global pool.
 214         *
 215         * We cannot acquire cpu hot plug lock here as
 216         * this function can be invoked in the cpu
 217         * hot plug path:
 218         * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
 219         *   -> memory allocation -> direct reclaim -> get_swap_page
 220         *   -> drain_swap_slots_cache
 221         *
 222         * Hence the loop over current online cpu below could miss cpu that
 223         * is being brought online but not yet marked as online.
 224         * That is okay as we do not schedule and run anything on a
 225         * cpu before it has been marked online. Hence, we will not
 226         * fill any swap slots in slots cache of such cpu.
 227         * There are no slots on such cpu that need to be drained.
 228         */
 229        for_each_online_cpu(cpu)
 230                drain_slots_cache_cpu(cpu, type, false);
 231}
 232
 233static int free_slot_cache(unsigned int cpu)
 234{
 235        mutex_lock(&swap_slots_cache_mutex);
 236        drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
 237        mutex_unlock(&swap_slots_cache_mutex);
 238        return 0;
 239}
 240
 241int enable_swap_slots_cache(void)
 242{
 243        int ret = 0;
 244
 245        mutex_lock(&swap_slots_cache_enable_mutex);
 246        if (swap_slot_cache_initialized) {
 247                __reenable_swap_slots_cache();
 248                goto out_unlock;
 249        }
 250
 251        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
 252                                alloc_swap_slot_cache, free_slot_cache);
 253        if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
 254                               "without swap slots cache.\n", __func__))
 255                goto out_unlock;
 256
 257        swap_slot_cache_initialized = true;
 258        __reenable_swap_slots_cache();
 259out_unlock:
 260        mutex_unlock(&swap_slots_cache_enable_mutex);
 261        return 0;
 262}
 263
 264/* called with swap slot cache's alloc lock held */
 265static int refill_swap_slots_cache(struct swap_slots_cache *cache)
 266{
 267        if (!use_swap_slot_cache || cache->nr)
 268                return 0;
 269
 270        cache->cur = 0;
 271        if (swap_slot_cache_active)
 272                cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
 273                                           cache->slots, 1);
 274
 275        return cache->nr;
 276}
 277
 278int free_swap_slot(swp_entry_t entry)
 279{
 280        struct swap_slots_cache *cache;
 281
 282        cache = raw_cpu_ptr(&swp_slots);
 283        if (likely(use_swap_slot_cache && cache->slots_ret)) {
 284                spin_lock_irq(&cache->free_lock);
 285                /* Swap slots cache may be deactivated before acquiring lock */
 286                if (!use_swap_slot_cache || !cache->slots_ret) {
 287                        spin_unlock_irq(&cache->free_lock);
 288                        goto direct_free;
 289                }
 290                if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
 291                        /*
 292                         * Return slots to global pool.
 293                         * The current swap_map value is SWAP_HAS_CACHE.
 294                         * Set it to 0 to indicate it is available for
 295                         * allocation in global pool
 296                         */
 297                        swapcache_free_entries(cache->slots_ret, cache->n_ret);
 298                        cache->n_ret = 0;
 299                }
 300                cache->slots_ret[cache->n_ret++] = entry;
 301                spin_unlock_irq(&cache->free_lock);
 302        } else {
 303direct_free:
 304                swapcache_free_entries(&entry, 1);
 305        }
 306
 307        return 0;
 308}
 309
 310swp_entry_t get_swap_page(struct page *page)
 311{
 312        swp_entry_t entry, *pentry;
 313        struct swap_slots_cache *cache;
 314
 315        entry.val = 0;
 316
 317        if (PageTransHuge(page)) {
 318                if (IS_ENABLED(CONFIG_THP_SWAP))
 319                        get_swap_pages(1, &entry, HPAGE_PMD_NR);
 320                goto out;
 321        }
 322
 323        /*
 324         * Preemption is allowed here, because we may sleep
 325         * in refill_swap_slots_cache().  But it is safe, because
 326         * accesses to the per-CPU data structure are protected by the
 327         * mutex cache->alloc_lock.
 328         *
 329         * The alloc path here does not touch cache->slots_ret
 330         * so cache->free_lock is not taken.
 331         */
 332        cache = raw_cpu_ptr(&swp_slots);
 333
 334        if (likely(check_cache_active() && cache->slots)) {
 335                mutex_lock(&cache->alloc_lock);
 336                if (cache->slots) {
 337repeat:
 338                        if (cache->nr) {
 339                                pentry = &cache->slots[cache->cur++];
 340                                entry = *pentry;
 341                                pentry->val = 0;
 342                                cache->nr--;
 343                        } else {
 344                                if (refill_swap_slots_cache(cache))
 345                                        goto repeat;
 346                        }
 347                }
 348                mutex_unlock(&cache->alloc_lock);
 349                if (entry.val)
 350                        goto out;
 351        }
 352
 353        get_swap_pages(1, &entry, 1);
 354out:
 355        if (mem_cgroup_try_charge_swap(page, entry)) {
 356                put_swap_page(page, entry);
 357                entry.val = 0;
 358        }
 359        return entry;
 360}
 361