linux/mm/vmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
  10 */
  11
  12#include <linux/vmalloc.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/sched/signal.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/set_memory.h>
  23#include <linux/debugobjects.h>
  24#include <linux/kallsyms.h>
  25#include <linux/list.h>
  26#include <linux/notifier.h>
  27#include <linux/rbtree.h>
  28#include <linux/radix-tree.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/llist.h>
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
  37
  38#include <linux/uaccess.h>
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
  42#include "internal.h"
  43
  44struct vfree_deferred {
  45        struct llist_head list;
  46        struct work_struct wq;
  47};
  48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  49
  50static void __vunmap(const void *, int);
  51
  52static void free_work(struct work_struct *w)
  53{
  54        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  55        struct llist_node *t, *llnode;
  56
  57        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  58                __vunmap((void *)llnode, 1);
  59}
  60
  61/*** Page table manipulation functions ***/
  62
  63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  64{
  65        pte_t *pte;
  66
  67        pte = pte_offset_kernel(pmd, addr);
  68        do {
  69                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  70                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  71        } while (pte++, addr += PAGE_SIZE, addr != end);
  72}
  73
  74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  75{
  76        pmd_t *pmd;
  77        unsigned long next;
  78
  79        pmd = pmd_offset(pud, addr);
  80        do {
  81                next = pmd_addr_end(addr, end);
  82                if (pmd_clear_huge(pmd))
  83                        continue;
  84                if (pmd_none_or_clear_bad(pmd))
  85                        continue;
  86                vunmap_pte_range(pmd, addr, next);
  87        } while (pmd++, addr = next, addr != end);
  88}
  89
  90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  91{
  92        pud_t *pud;
  93        unsigned long next;
  94
  95        pud = pud_offset(p4d, addr);
  96        do {
  97                next = pud_addr_end(addr, end);
  98                if (pud_clear_huge(pud))
  99                        continue;
 100                if (pud_none_or_clear_bad(pud))
 101                        continue;
 102                vunmap_pmd_range(pud, addr, next);
 103        } while (pud++, addr = next, addr != end);
 104}
 105
 106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 107{
 108        p4d_t *p4d;
 109        unsigned long next;
 110
 111        p4d = p4d_offset(pgd, addr);
 112        do {
 113                next = p4d_addr_end(addr, end);
 114                if (p4d_clear_huge(p4d))
 115                        continue;
 116                if (p4d_none_or_clear_bad(p4d))
 117                        continue;
 118                vunmap_pud_range(p4d, addr, next);
 119        } while (p4d++, addr = next, addr != end);
 120}
 121
 122static void vunmap_page_range(unsigned long addr, unsigned long end)
 123{
 124        pgd_t *pgd;
 125        unsigned long next;
 126
 127        BUG_ON(addr >= end);
 128        pgd = pgd_offset_k(addr);
 129        do {
 130                next = pgd_addr_end(addr, end);
 131                if (pgd_none_or_clear_bad(pgd))
 132                        continue;
 133                vunmap_p4d_range(pgd, addr, next);
 134        } while (pgd++, addr = next, addr != end);
 135}
 136
 137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 138                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 139{
 140        pte_t *pte;
 141
 142        /*
 143         * nr is a running index into the array which helps higher level
 144         * callers keep track of where we're up to.
 145         */
 146
 147        pte = pte_alloc_kernel(pmd, addr);
 148        if (!pte)
 149                return -ENOMEM;
 150        do {
 151                struct page *page = pages[*nr];
 152
 153                if (WARN_ON(!pte_none(*pte)))
 154                        return -EBUSY;
 155                if (WARN_ON(!page))
 156                        return -ENOMEM;
 157                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 158                (*nr)++;
 159        } while (pte++, addr += PAGE_SIZE, addr != end);
 160        return 0;
 161}
 162
 163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 164                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166        pmd_t *pmd;
 167        unsigned long next;
 168
 169        pmd = pmd_alloc(&init_mm, pud, addr);
 170        if (!pmd)
 171                return -ENOMEM;
 172        do {
 173                next = pmd_addr_end(addr, end);
 174                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 175                        return -ENOMEM;
 176        } while (pmd++, addr = next, addr != end);
 177        return 0;
 178}
 179
 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 181                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 182{
 183        pud_t *pud;
 184        unsigned long next;
 185
 186        pud = pud_alloc(&init_mm, p4d, addr);
 187        if (!pud)
 188                return -ENOMEM;
 189        do {
 190                next = pud_addr_end(addr, end);
 191                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 192                        return -ENOMEM;
 193        } while (pud++, addr = next, addr != end);
 194        return 0;
 195}
 196
 197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 198                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 199{
 200        p4d_t *p4d;
 201        unsigned long next;
 202
 203        p4d = p4d_alloc(&init_mm, pgd, addr);
 204        if (!p4d)
 205                return -ENOMEM;
 206        do {
 207                next = p4d_addr_end(addr, end);
 208                if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 209                        return -ENOMEM;
 210        } while (p4d++, addr = next, addr != end);
 211        return 0;
 212}
 213
 214/*
 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 216 * will have pfns corresponding to the "pages" array.
 217 *
 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 219 */
 220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 221                                   pgprot_t prot, struct page **pages)
 222{
 223        pgd_t *pgd;
 224        unsigned long next;
 225        unsigned long addr = start;
 226        int err = 0;
 227        int nr = 0;
 228
 229        BUG_ON(addr >= end);
 230        pgd = pgd_offset_k(addr);
 231        do {
 232                next = pgd_addr_end(addr, end);
 233                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 234                if (err)
 235                        return err;
 236        } while (pgd++, addr = next, addr != end);
 237
 238        return nr;
 239}
 240
 241static int vmap_page_range(unsigned long start, unsigned long end,
 242                           pgprot_t prot, struct page **pages)
 243{
 244        int ret;
 245
 246        ret = vmap_page_range_noflush(start, end, prot, pages);
 247        flush_cache_vmap(start, end);
 248        return ret;
 249}
 250
 251int is_vmalloc_or_module_addr(const void *x)
 252{
 253        /*
 254         * ARM, x86-64 and sparc64 put modules in a special place,
 255         * and fall back on vmalloc() if that fails. Others
 256         * just put it in the vmalloc space.
 257         */
 258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 259        unsigned long addr = (unsigned long)x;
 260        if (addr >= MODULES_VADDR && addr < MODULES_END)
 261                return 1;
 262#endif
 263        return is_vmalloc_addr(x);
 264}
 265
 266/*
 267 * Walk a vmap address to the struct page it maps.
 268 */
 269struct page *vmalloc_to_page(const void *vmalloc_addr)
 270{
 271        unsigned long addr = (unsigned long) vmalloc_addr;
 272        struct page *page = NULL;
 273        pgd_t *pgd = pgd_offset_k(addr);
 274        p4d_t *p4d;
 275        pud_t *pud;
 276        pmd_t *pmd;
 277        pte_t *ptep, pte;
 278
 279        /*
 280         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 281         * architectures that do not vmalloc module space
 282         */
 283        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 284
 285        if (pgd_none(*pgd))
 286                return NULL;
 287        p4d = p4d_offset(pgd, addr);
 288        if (p4d_none(*p4d))
 289                return NULL;
 290        pud = pud_offset(p4d, addr);
 291
 292        /*
 293         * Don't dereference bad PUD or PMD (below) entries. This will also
 294         * identify huge mappings, which we may encounter on architectures
 295         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 296         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 297         * not [unambiguously] associated with a struct page, so there is
 298         * no correct value to return for them.
 299         */
 300        WARN_ON_ONCE(pud_bad(*pud));
 301        if (pud_none(*pud) || pud_bad(*pud))
 302                return NULL;
 303        pmd = pmd_offset(pud, addr);
 304        WARN_ON_ONCE(pmd_bad(*pmd));
 305        if (pmd_none(*pmd) || pmd_bad(*pmd))
 306                return NULL;
 307
 308        ptep = pte_offset_map(pmd, addr);
 309        pte = *ptep;
 310        if (pte_present(pte))
 311                page = pte_page(pte);
 312        pte_unmap(ptep);
 313        return page;
 314}
 315EXPORT_SYMBOL(vmalloc_to_page);
 316
 317/*
 318 * Map a vmalloc()-space virtual address to the physical page frame number.
 319 */
 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 321{
 322        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 323}
 324EXPORT_SYMBOL(vmalloc_to_pfn);
 325
 326
 327/*** Global kva allocator ***/
 328
 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 331
 332#define VM_LAZY_FREE    0x02
 333#define VM_VM_AREA      0x04
 334
 335static DEFINE_SPINLOCK(vmap_area_lock);
 336/* Export for kexec only */
 337LIST_HEAD(vmap_area_list);
 338static LLIST_HEAD(vmap_purge_list);
 339static struct rb_root vmap_area_root = RB_ROOT;
 340static bool vmap_initialized __read_mostly;
 341
 342/*
 343 * This kmem_cache is used for vmap_area objects. Instead of
 344 * allocating from slab we reuse an object from this cache to
 345 * make things faster. Especially in "no edge" splitting of
 346 * free block.
 347 */
 348static struct kmem_cache *vmap_area_cachep;
 349
 350/*
 351 * This linked list is used in pair with free_vmap_area_root.
 352 * It gives O(1) access to prev/next to perform fast coalescing.
 353 */
 354static LIST_HEAD(free_vmap_area_list);
 355
 356/*
 357 * This augment red-black tree represents the free vmap space.
 358 * All vmap_area objects in this tree are sorted by va->va_start
 359 * address. It is used for allocation and merging when a vmap
 360 * object is released.
 361 *
 362 * Each vmap_area node contains a maximum available free block
 363 * of its sub-tree, right or left. Therefore it is possible to
 364 * find a lowest match of free area.
 365 */
 366static struct rb_root free_vmap_area_root = RB_ROOT;
 367
 368static __always_inline unsigned long
 369va_size(struct vmap_area *va)
 370{
 371        return (va->va_end - va->va_start);
 372}
 373
 374static __always_inline unsigned long
 375get_subtree_max_size(struct rb_node *node)
 376{
 377        struct vmap_area *va;
 378
 379        va = rb_entry_safe(node, struct vmap_area, rb_node);
 380        return va ? va->subtree_max_size : 0;
 381}
 382
 383/*
 384 * Gets called when remove the node and rotate.
 385 */
 386static __always_inline unsigned long
 387compute_subtree_max_size(struct vmap_area *va)
 388{
 389        return max3(va_size(va),
 390                get_subtree_max_size(va->rb_node.rb_left),
 391                get_subtree_max_size(va->rb_node.rb_right));
 392}
 393
 394RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
 395        struct vmap_area, rb_node, unsigned long, subtree_max_size,
 396        compute_subtree_max_size)
 397
 398static void purge_vmap_area_lazy(void);
 399static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 400static unsigned long lazy_max_pages(void);
 401
 402static struct vmap_area *__find_vmap_area(unsigned long addr)
 403{
 404        struct rb_node *n = vmap_area_root.rb_node;
 405
 406        while (n) {
 407                struct vmap_area *va;
 408
 409                va = rb_entry(n, struct vmap_area, rb_node);
 410                if (addr < va->va_start)
 411                        n = n->rb_left;
 412                else if (addr >= va->va_end)
 413                        n = n->rb_right;
 414                else
 415                        return va;
 416        }
 417
 418        return NULL;
 419}
 420
 421/*
 422 * This function returns back addresses of parent node
 423 * and its left or right link for further processing.
 424 */
 425static __always_inline struct rb_node **
 426find_va_links(struct vmap_area *va,
 427        struct rb_root *root, struct rb_node *from,
 428        struct rb_node **parent)
 429{
 430        struct vmap_area *tmp_va;
 431        struct rb_node **link;
 432
 433        if (root) {
 434                link = &root->rb_node;
 435                if (unlikely(!*link)) {
 436                        *parent = NULL;
 437                        return link;
 438                }
 439        } else {
 440                link = &from;
 441        }
 442
 443        /*
 444         * Go to the bottom of the tree. When we hit the last point
 445         * we end up with parent rb_node and correct direction, i name
 446         * it link, where the new va->rb_node will be attached to.
 447         */
 448        do {
 449                tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 450
 451                /*
 452                 * During the traversal we also do some sanity check.
 453                 * Trigger the BUG() if there are sides(left/right)
 454                 * or full overlaps.
 455                 */
 456                if (va->va_start < tmp_va->va_end &&
 457                                va->va_end <= tmp_va->va_start)
 458                        link = &(*link)->rb_left;
 459                else if (va->va_end > tmp_va->va_start &&
 460                                va->va_start >= tmp_va->va_end)
 461                        link = &(*link)->rb_right;
 462                else
 463                        BUG();
 464        } while (*link);
 465
 466        *parent = &tmp_va->rb_node;
 467        return link;
 468}
 469
 470static __always_inline struct list_head *
 471get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 472{
 473        struct list_head *list;
 474
 475        if (unlikely(!parent))
 476                /*
 477                 * The red-black tree where we try to find VA neighbors
 478                 * before merging or inserting is empty, i.e. it means
 479                 * there is no free vmap space. Normally it does not
 480                 * happen but we handle this case anyway.
 481                 */
 482                return NULL;
 483
 484        list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 485        return (&parent->rb_right == link ? list->next : list);
 486}
 487
 488static __always_inline void
 489link_va(struct vmap_area *va, struct rb_root *root,
 490        struct rb_node *parent, struct rb_node **link, struct list_head *head)
 491{
 492        /*
 493         * VA is still not in the list, but we can
 494         * identify its future previous list_head node.
 495         */
 496        if (likely(parent)) {
 497                head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 498                if (&parent->rb_right != link)
 499                        head = head->prev;
 500        }
 501
 502        /* Insert to the rb-tree */
 503        rb_link_node(&va->rb_node, parent, link);
 504        if (root == &free_vmap_area_root) {
 505                /*
 506                 * Some explanation here. Just perform simple insertion
 507                 * to the tree. We do not set va->subtree_max_size to
 508                 * its current size before calling rb_insert_augmented().
 509                 * It is because of we populate the tree from the bottom
 510                 * to parent levels when the node _is_ in the tree.
 511                 *
 512                 * Therefore we set subtree_max_size to zero after insertion,
 513                 * to let __augment_tree_propagate_from() puts everything to
 514                 * the correct order later on.
 515                 */
 516                rb_insert_augmented(&va->rb_node,
 517                        root, &free_vmap_area_rb_augment_cb);
 518                va->subtree_max_size = 0;
 519        } else {
 520                rb_insert_color(&va->rb_node, root);
 521        }
 522
 523        /* Address-sort this list */
 524        list_add(&va->list, head);
 525}
 526
 527static __always_inline void
 528unlink_va(struct vmap_area *va, struct rb_root *root)
 529{
 530        /*
 531         * During merging a VA node can be empty, therefore
 532         * not linked with the tree nor list. Just check it.
 533         */
 534        if (!RB_EMPTY_NODE(&va->rb_node)) {
 535                if (root == &free_vmap_area_root)
 536                        rb_erase_augmented(&va->rb_node,
 537                                root, &free_vmap_area_rb_augment_cb);
 538                else
 539                        rb_erase(&va->rb_node, root);
 540
 541                list_del(&va->list);
 542                RB_CLEAR_NODE(&va->rb_node);
 543        }
 544}
 545
 546#if DEBUG_AUGMENT_PROPAGATE_CHECK
 547static void
 548augment_tree_propagate_check(struct rb_node *n)
 549{
 550        struct vmap_area *va;
 551        struct rb_node *node;
 552        unsigned long size;
 553        bool found = false;
 554
 555        if (n == NULL)
 556                return;
 557
 558        va = rb_entry(n, struct vmap_area, rb_node);
 559        size = va->subtree_max_size;
 560        node = n;
 561
 562        while (node) {
 563                va = rb_entry(node, struct vmap_area, rb_node);
 564
 565                if (get_subtree_max_size(node->rb_left) == size) {
 566                        node = node->rb_left;
 567                } else {
 568                        if (va_size(va) == size) {
 569                                found = true;
 570                                break;
 571                        }
 572
 573                        node = node->rb_right;
 574                }
 575        }
 576
 577        if (!found) {
 578                va = rb_entry(n, struct vmap_area, rb_node);
 579                pr_emerg("tree is corrupted: %lu, %lu\n",
 580                        va_size(va), va->subtree_max_size);
 581        }
 582
 583        augment_tree_propagate_check(n->rb_left);
 584        augment_tree_propagate_check(n->rb_right);
 585}
 586#endif
 587
 588/*
 589 * This function populates subtree_max_size from bottom to upper
 590 * levels starting from VA point. The propagation must be done
 591 * when VA size is modified by changing its va_start/va_end. Or
 592 * in case of newly inserting of VA to the tree.
 593 *
 594 * It means that __augment_tree_propagate_from() must be called:
 595 * - After VA has been inserted to the tree(free path);
 596 * - After VA has been shrunk(allocation path);
 597 * - After VA has been increased(merging path).
 598 *
 599 * Please note that, it does not mean that upper parent nodes
 600 * and their subtree_max_size are recalculated all the time up
 601 * to the root node.
 602 *
 603 *       4--8
 604 *        /\
 605 *       /  \
 606 *      /    \
 607 *    2--2  8--8
 608 *
 609 * For example if we modify the node 4, shrinking it to 2, then
 610 * no any modification is required. If we shrink the node 2 to 1
 611 * its subtree_max_size is updated only, and set to 1. If we shrink
 612 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 613 * node becomes 4--6.
 614 */
 615static __always_inline void
 616augment_tree_propagate_from(struct vmap_area *va)
 617{
 618        struct rb_node *node = &va->rb_node;
 619        unsigned long new_va_sub_max_size;
 620
 621        while (node) {
 622                va = rb_entry(node, struct vmap_area, rb_node);
 623                new_va_sub_max_size = compute_subtree_max_size(va);
 624
 625                /*
 626                 * If the newly calculated maximum available size of the
 627                 * subtree is equal to the current one, then it means that
 628                 * the tree is propagated correctly. So we have to stop at
 629                 * this point to save cycles.
 630                 */
 631                if (va->subtree_max_size == new_va_sub_max_size)
 632                        break;
 633
 634                va->subtree_max_size = new_va_sub_max_size;
 635                node = rb_parent(&va->rb_node);
 636        }
 637
 638#if DEBUG_AUGMENT_PROPAGATE_CHECK
 639        augment_tree_propagate_check(free_vmap_area_root.rb_node);
 640#endif
 641}
 642
 643static void
 644insert_vmap_area(struct vmap_area *va,
 645        struct rb_root *root, struct list_head *head)
 646{
 647        struct rb_node **link;
 648        struct rb_node *parent;
 649
 650        link = find_va_links(va, root, NULL, &parent);
 651        link_va(va, root, parent, link, head);
 652}
 653
 654static void
 655insert_vmap_area_augment(struct vmap_area *va,
 656        struct rb_node *from, struct rb_root *root,
 657        struct list_head *head)
 658{
 659        struct rb_node **link;
 660        struct rb_node *parent;
 661
 662        if (from)
 663                link = find_va_links(va, NULL, from, &parent);
 664        else
 665                link = find_va_links(va, root, NULL, &parent);
 666
 667        link_va(va, root, parent, link, head);
 668        augment_tree_propagate_from(va);
 669}
 670
 671/*
 672 * Merge de-allocated chunk of VA memory with previous
 673 * and next free blocks. If coalesce is not done a new
 674 * free area is inserted. If VA has been merged, it is
 675 * freed.
 676 */
 677static __always_inline void
 678merge_or_add_vmap_area(struct vmap_area *va,
 679        struct rb_root *root, struct list_head *head)
 680{
 681        struct vmap_area *sibling;
 682        struct list_head *next;
 683        struct rb_node **link;
 684        struct rb_node *parent;
 685        bool merged = false;
 686
 687        /*
 688         * Find a place in the tree where VA potentially will be
 689         * inserted, unless it is merged with its sibling/siblings.
 690         */
 691        link = find_va_links(va, root, NULL, &parent);
 692
 693        /*
 694         * Get next node of VA to check if merging can be done.
 695         */
 696        next = get_va_next_sibling(parent, link);
 697        if (unlikely(next == NULL))
 698                goto insert;
 699
 700        /*
 701         * start            end
 702         * |                |
 703         * |<------VA------>|<-----Next----->|
 704         *                  |                |
 705         *                  start            end
 706         */
 707        if (next != head) {
 708                sibling = list_entry(next, struct vmap_area, list);
 709                if (sibling->va_start == va->va_end) {
 710                        sibling->va_start = va->va_start;
 711
 712                        /* Check and update the tree if needed. */
 713                        augment_tree_propagate_from(sibling);
 714
 715                        /* Remove this VA, it has been merged. */
 716                        unlink_va(va, root);
 717
 718                        /* Free vmap_area object. */
 719                        kmem_cache_free(vmap_area_cachep, va);
 720
 721                        /* Point to the new merged area. */
 722                        va = sibling;
 723                        merged = true;
 724                }
 725        }
 726
 727        /*
 728         * start            end
 729         * |                |
 730         * |<-----Prev----->|<------VA------>|
 731         *                  |                |
 732         *                  start            end
 733         */
 734        if (next->prev != head) {
 735                sibling = list_entry(next->prev, struct vmap_area, list);
 736                if (sibling->va_end == va->va_start) {
 737                        sibling->va_end = va->va_end;
 738
 739                        /* Check and update the tree if needed. */
 740                        augment_tree_propagate_from(sibling);
 741
 742                        /* Remove this VA, it has been merged. */
 743                        unlink_va(va, root);
 744
 745                        /* Free vmap_area object. */
 746                        kmem_cache_free(vmap_area_cachep, va);
 747
 748                        return;
 749                }
 750        }
 751
 752insert:
 753        if (!merged) {
 754                link_va(va, root, parent, link, head);
 755                augment_tree_propagate_from(va);
 756        }
 757}
 758
 759static __always_inline bool
 760is_within_this_va(struct vmap_area *va, unsigned long size,
 761        unsigned long align, unsigned long vstart)
 762{
 763        unsigned long nva_start_addr;
 764
 765        if (va->va_start > vstart)
 766                nva_start_addr = ALIGN(va->va_start, align);
 767        else
 768                nva_start_addr = ALIGN(vstart, align);
 769
 770        /* Can be overflowed due to big size or alignment. */
 771        if (nva_start_addr + size < nva_start_addr ||
 772                        nva_start_addr < vstart)
 773                return false;
 774
 775        return (nva_start_addr + size <= va->va_end);
 776}
 777
 778/*
 779 * Find the first free block(lowest start address) in the tree,
 780 * that will accomplish the request corresponding to passing
 781 * parameters.
 782 */
 783static __always_inline struct vmap_area *
 784find_vmap_lowest_match(unsigned long size,
 785        unsigned long align, unsigned long vstart)
 786{
 787        struct vmap_area *va;
 788        struct rb_node *node;
 789        unsigned long length;
 790
 791        /* Start from the root. */
 792        node = free_vmap_area_root.rb_node;
 793
 794        /* Adjust the search size for alignment overhead. */
 795        length = size + align - 1;
 796
 797        while (node) {
 798                va = rb_entry(node, struct vmap_area, rb_node);
 799
 800                if (get_subtree_max_size(node->rb_left) >= length &&
 801                                vstart < va->va_start) {
 802                        node = node->rb_left;
 803                } else {
 804                        if (is_within_this_va(va, size, align, vstart))
 805                                return va;
 806
 807                        /*
 808                         * Does not make sense to go deeper towards the right
 809                         * sub-tree if it does not have a free block that is
 810                         * equal or bigger to the requested search length.
 811                         */
 812                        if (get_subtree_max_size(node->rb_right) >= length) {
 813                                node = node->rb_right;
 814                                continue;
 815                        }
 816
 817                        /*
 818                         * OK. We roll back and find the first right sub-tree,
 819                         * that will satisfy the search criteria. It can happen
 820                         * only once due to "vstart" restriction.
 821                         */
 822                        while ((node = rb_parent(node))) {
 823                                va = rb_entry(node, struct vmap_area, rb_node);
 824                                if (is_within_this_va(va, size, align, vstart))
 825                                        return va;
 826
 827                                if (get_subtree_max_size(node->rb_right) >= length &&
 828                                                vstart <= va->va_start) {
 829                                        node = node->rb_right;
 830                                        break;
 831                                }
 832                        }
 833                }
 834        }
 835
 836        return NULL;
 837}
 838
 839#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 840#include <linux/random.h>
 841
 842static struct vmap_area *
 843find_vmap_lowest_linear_match(unsigned long size,
 844        unsigned long align, unsigned long vstart)
 845{
 846        struct vmap_area *va;
 847
 848        list_for_each_entry(va, &free_vmap_area_list, list) {
 849                if (!is_within_this_va(va, size, align, vstart))
 850                        continue;
 851
 852                return va;
 853        }
 854
 855        return NULL;
 856}
 857
 858static void
 859find_vmap_lowest_match_check(unsigned long size)
 860{
 861        struct vmap_area *va_1, *va_2;
 862        unsigned long vstart;
 863        unsigned int rnd;
 864
 865        get_random_bytes(&rnd, sizeof(rnd));
 866        vstart = VMALLOC_START + rnd;
 867
 868        va_1 = find_vmap_lowest_match(size, 1, vstart);
 869        va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 870
 871        if (va_1 != va_2)
 872                pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 873                        va_1, va_2, vstart);
 874}
 875#endif
 876
 877enum fit_type {
 878        NOTHING_FIT = 0,
 879        FL_FIT_TYPE = 1,        /* full fit */
 880        LE_FIT_TYPE = 2,        /* left edge fit */
 881        RE_FIT_TYPE = 3,        /* right edge fit */
 882        NE_FIT_TYPE = 4         /* no edge fit */
 883};
 884
 885static __always_inline enum fit_type
 886classify_va_fit_type(struct vmap_area *va,
 887        unsigned long nva_start_addr, unsigned long size)
 888{
 889        enum fit_type type;
 890
 891        /* Check if it is within VA. */
 892        if (nva_start_addr < va->va_start ||
 893                        nva_start_addr + size > va->va_end)
 894                return NOTHING_FIT;
 895
 896        /* Now classify. */
 897        if (va->va_start == nva_start_addr) {
 898                if (va->va_end == nva_start_addr + size)
 899                        type = FL_FIT_TYPE;
 900                else
 901                        type = LE_FIT_TYPE;
 902        } else if (va->va_end == nva_start_addr + size) {
 903                type = RE_FIT_TYPE;
 904        } else {
 905                type = NE_FIT_TYPE;
 906        }
 907
 908        return type;
 909}
 910
 911static __always_inline int
 912adjust_va_to_fit_type(struct vmap_area *va,
 913        unsigned long nva_start_addr, unsigned long size,
 914        enum fit_type type)
 915{
 916        struct vmap_area *lva = NULL;
 917
 918        if (type == FL_FIT_TYPE) {
 919                /*
 920                 * No need to split VA, it fully fits.
 921                 *
 922                 * |               |
 923                 * V      NVA      V
 924                 * |---------------|
 925                 */
 926                unlink_va(va, &free_vmap_area_root);
 927                kmem_cache_free(vmap_area_cachep, va);
 928        } else if (type == LE_FIT_TYPE) {
 929                /*
 930                 * Split left edge of fit VA.
 931                 *
 932                 * |       |
 933                 * V  NVA  V   R
 934                 * |-------|-------|
 935                 */
 936                va->va_start += size;
 937        } else if (type == RE_FIT_TYPE) {
 938                /*
 939                 * Split right edge of fit VA.
 940                 *
 941                 *         |       |
 942                 *     L   V  NVA  V
 943                 * |-------|-------|
 944                 */
 945                va->va_end = nva_start_addr;
 946        } else if (type == NE_FIT_TYPE) {
 947                /*
 948                 * Split no edge of fit VA.
 949                 *
 950                 *     |       |
 951                 *   L V  NVA  V R
 952                 * |---|-------|---|
 953                 */
 954                lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 955                if (unlikely(!lva))
 956                        return -1;
 957
 958                /*
 959                 * Build the remainder.
 960                 */
 961                lva->va_start = va->va_start;
 962                lva->va_end = nva_start_addr;
 963
 964                /*
 965                 * Shrink this VA to remaining size.
 966                 */
 967                va->va_start = nva_start_addr + size;
 968        } else {
 969                return -1;
 970        }
 971
 972        if (type != FL_FIT_TYPE) {
 973                augment_tree_propagate_from(va);
 974
 975                if (lva)        /* type == NE_FIT_TYPE */
 976                        insert_vmap_area_augment(lva, &va->rb_node,
 977                                &free_vmap_area_root, &free_vmap_area_list);
 978        }
 979
 980        return 0;
 981}
 982
 983/*
 984 * Returns a start address of the newly allocated area, if success.
 985 * Otherwise a vend is returned that indicates failure.
 986 */
 987static __always_inline unsigned long
 988__alloc_vmap_area(unsigned long size, unsigned long align,
 989        unsigned long vstart, unsigned long vend, int node)
 990{
 991        unsigned long nva_start_addr;
 992        struct vmap_area *va;
 993        enum fit_type type;
 994        int ret;
 995
 996        va = find_vmap_lowest_match(size, align, vstart);
 997        if (unlikely(!va))
 998                return vend;
 999
1000        if (va->va_start > vstart)
1001                nva_start_addr = ALIGN(va->va_start, align);
1002        else
1003                nva_start_addr = ALIGN(vstart, align);
1004
1005        /* Check the "vend" restriction. */
1006        if (nva_start_addr + size > vend)
1007                return vend;
1008
1009        /* Classify what we have found. */
1010        type = classify_va_fit_type(va, nva_start_addr, size);
1011        if (WARN_ON_ONCE(type == NOTHING_FIT))
1012                return vend;
1013
1014        /* Update the free vmap_area. */
1015        ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1016        if (ret)
1017                return vend;
1018
1019#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1020        find_vmap_lowest_match_check(size);
1021#endif
1022
1023        return nva_start_addr;
1024}
1025
1026/*
1027 * Allocate a region of KVA of the specified size and alignment, within the
1028 * vstart and vend.
1029 */
1030static struct vmap_area *alloc_vmap_area(unsigned long size,
1031                                unsigned long align,
1032                                unsigned long vstart, unsigned long vend,
1033                                int node, gfp_t gfp_mask)
1034{
1035        struct vmap_area *va;
1036        unsigned long addr;
1037        int purged = 0;
1038
1039        BUG_ON(!size);
1040        BUG_ON(offset_in_page(size));
1041        BUG_ON(!is_power_of_2(align));
1042
1043        if (unlikely(!vmap_initialized))
1044                return ERR_PTR(-EBUSY);
1045
1046        might_sleep();
1047
1048        va = kmem_cache_alloc_node(vmap_area_cachep,
1049                        gfp_mask & GFP_RECLAIM_MASK, node);
1050        if (unlikely(!va))
1051                return ERR_PTR(-ENOMEM);
1052
1053        /*
1054         * Only scan the relevant parts containing pointers to other objects
1055         * to avoid false negatives.
1056         */
1057        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1058
1059retry:
1060        spin_lock(&vmap_area_lock);
1061
1062        /*
1063         * If an allocation fails, the "vend" address is
1064         * returned. Therefore trigger the overflow path.
1065         */
1066        addr = __alloc_vmap_area(size, align, vstart, vend, node);
1067        if (unlikely(addr == vend))
1068                goto overflow;
1069
1070        va->va_start = addr;
1071        va->va_end = addr + size;
1072        va->flags = 0;
1073        insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1074
1075        spin_unlock(&vmap_area_lock);
1076
1077        BUG_ON(!IS_ALIGNED(va->va_start, align));
1078        BUG_ON(va->va_start < vstart);
1079        BUG_ON(va->va_end > vend);
1080
1081        return va;
1082
1083overflow:
1084        spin_unlock(&vmap_area_lock);
1085        if (!purged) {
1086                purge_vmap_area_lazy();
1087                purged = 1;
1088                goto retry;
1089        }
1090
1091        if (gfpflags_allow_blocking(gfp_mask)) {
1092                unsigned long freed = 0;
1093                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1094                if (freed > 0) {
1095                        purged = 0;
1096                        goto retry;
1097                }
1098        }
1099
1100        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1101                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1102                        size);
1103
1104        kmem_cache_free(vmap_area_cachep, va);
1105        return ERR_PTR(-EBUSY);
1106}
1107
1108int register_vmap_purge_notifier(struct notifier_block *nb)
1109{
1110        return blocking_notifier_chain_register(&vmap_notify_list, nb);
1111}
1112EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1113
1114int unregister_vmap_purge_notifier(struct notifier_block *nb)
1115{
1116        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1117}
1118EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1119
1120static void __free_vmap_area(struct vmap_area *va)
1121{
1122        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
1123
1124        /*
1125         * Remove from the busy tree/list.
1126         */
1127        unlink_va(va, &vmap_area_root);
1128
1129        /*
1130         * Merge VA with its neighbors, otherwise just add it.
1131         */
1132        merge_or_add_vmap_area(va,
1133                &free_vmap_area_root, &free_vmap_area_list);
1134}
1135
1136/*
1137 * Free a region of KVA allocated by alloc_vmap_area
1138 */
1139static void free_vmap_area(struct vmap_area *va)
1140{
1141        spin_lock(&vmap_area_lock);
1142        __free_vmap_area(va);
1143        spin_unlock(&vmap_area_lock);
1144}
1145
1146/*
1147 * Clear the pagetable entries of a given vmap_area
1148 */
1149static void unmap_vmap_area(struct vmap_area *va)
1150{
1151        vunmap_page_range(va->va_start, va->va_end);
1152}
1153
1154/*
1155 * lazy_max_pages is the maximum amount of virtual address space we gather up
1156 * before attempting to purge with a TLB flush.
1157 *
1158 * There is a tradeoff here: a larger number will cover more kernel page tables
1159 * and take slightly longer to purge, but it will linearly reduce the number of
1160 * global TLB flushes that must be performed. It would seem natural to scale
1161 * this number up linearly with the number of CPUs (because vmapping activity
1162 * could also scale linearly with the number of CPUs), however it is likely
1163 * that in practice, workloads might be constrained in other ways that mean
1164 * vmap activity will not scale linearly with CPUs. Also, I want to be
1165 * conservative and not introduce a big latency on huge systems, so go with
1166 * a less aggressive log scale. It will still be an improvement over the old
1167 * code, and it will be simple to change the scale factor if we find that it
1168 * becomes a problem on bigger systems.
1169 */
1170static unsigned long lazy_max_pages(void)
1171{
1172        unsigned int log;
1173
1174        log = fls(num_online_cpus());
1175
1176        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1177}
1178
1179static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1180
1181/*
1182 * Serialize vmap purging.  There is no actual criticial section protected
1183 * by this look, but we want to avoid concurrent calls for performance
1184 * reasons and to make the pcpu_get_vm_areas more deterministic.
1185 */
1186static DEFINE_MUTEX(vmap_purge_lock);
1187
1188/* for per-CPU blocks */
1189static void purge_fragmented_blocks_allcpus(void);
1190
1191/*
1192 * called before a call to iounmap() if the caller wants vm_area_struct's
1193 * immediately freed.
1194 */
1195void set_iounmap_nonlazy(void)
1196{
1197        atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1198}
1199
1200/*
1201 * Purges all lazily-freed vmap areas.
1202 */
1203static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1204{
1205        unsigned long resched_threshold;
1206        struct llist_node *valist;
1207        struct vmap_area *va;
1208        struct vmap_area *n_va;
1209
1210        lockdep_assert_held(&vmap_purge_lock);
1211
1212        valist = llist_del_all(&vmap_purge_list);
1213        if (unlikely(valist == NULL))
1214                return false;
1215
1216        /*
1217         * TODO: to calculate a flush range without looping.
1218         * The list can be up to lazy_max_pages() elements.
1219         */
1220        llist_for_each_entry(va, valist, purge_list) {
1221                if (va->va_start < start)
1222                        start = va->va_start;
1223                if (va->va_end > end)
1224                        end = va->va_end;
1225        }
1226
1227        flush_tlb_kernel_range(start, end);
1228        resched_threshold = lazy_max_pages() << 1;
1229
1230        spin_lock(&vmap_area_lock);
1231        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1232                unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1233
1234                __free_vmap_area(va);
1235                atomic_long_sub(nr, &vmap_lazy_nr);
1236
1237                if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1238                        cond_resched_lock(&vmap_area_lock);
1239        }
1240        spin_unlock(&vmap_area_lock);
1241        return true;
1242}
1243
1244/*
1245 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1246 * is already purging.
1247 */
1248static void try_purge_vmap_area_lazy(void)
1249{
1250        if (mutex_trylock(&vmap_purge_lock)) {
1251                __purge_vmap_area_lazy(ULONG_MAX, 0);
1252                mutex_unlock(&vmap_purge_lock);
1253        }
1254}
1255
1256/*
1257 * Kick off a purge of the outstanding lazy areas.
1258 */
1259static void purge_vmap_area_lazy(void)
1260{
1261        mutex_lock(&vmap_purge_lock);
1262        purge_fragmented_blocks_allcpus();
1263        __purge_vmap_area_lazy(ULONG_MAX, 0);
1264        mutex_unlock(&vmap_purge_lock);
1265}
1266
1267/*
1268 * Free a vmap area, caller ensuring that the area has been unmapped
1269 * and flush_cache_vunmap had been called for the correct range
1270 * previously.
1271 */
1272static void free_vmap_area_noflush(struct vmap_area *va)
1273{
1274        unsigned long nr_lazy;
1275
1276        nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1277                                PAGE_SHIFT, &vmap_lazy_nr);
1278
1279        /* After this point, we may free va at any time */
1280        llist_add(&va->purge_list, &vmap_purge_list);
1281
1282        if (unlikely(nr_lazy > lazy_max_pages()))
1283                try_purge_vmap_area_lazy();
1284}
1285
1286/*
1287 * Free and unmap a vmap area
1288 */
1289static void free_unmap_vmap_area(struct vmap_area *va)
1290{
1291        flush_cache_vunmap(va->va_start, va->va_end);
1292        unmap_vmap_area(va);
1293        if (debug_pagealloc_enabled())
1294                flush_tlb_kernel_range(va->va_start, va->va_end);
1295
1296        free_vmap_area_noflush(va);
1297}
1298
1299static struct vmap_area *find_vmap_area(unsigned long addr)
1300{
1301        struct vmap_area *va;
1302
1303        spin_lock(&vmap_area_lock);
1304        va = __find_vmap_area(addr);
1305        spin_unlock(&vmap_area_lock);
1306
1307        return va;
1308}
1309
1310/*** Per cpu kva allocator ***/
1311
1312/*
1313 * vmap space is limited especially on 32 bit architectures. Ensure there is
1314 * room for at least 16 percpu vmap blocks per CPU.
1315 */
1316/*
1317 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1318 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1319 * instead (we just need a rough idea)
1320 */
1321#if BITS_PER_LONG == 32
1322#define VMALLOC_SPACE           (128UL*1024*1024)
1323#else
1324#define VMALLOC_SPACE           (128UL*1024*1024*1024)
1325#endif
1326
1327#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1328#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1329#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1330#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1331#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1332#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1333#define VMAP_BBMAP_BITS         \
1334                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1335                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1336                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1337
1338#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1339
1340struct vmap_block_queue {
1341        spinlock_t lock;
1342        struct list_head free;
1343};
1344
1345struct vmap_block {
1346        spinlock_t lock;
1347        struct vmap_area *va;
1348        unsigned long free, dirty;
1349        unsigned long dirty_min, dirty_max; /*< dirty range */
1350        struct list_head free_list;
1351        struct rcu_head rcu_head;
1352        struct list_head purge;
1353};
1354
1355/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1356static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1357
1358/*
1359 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1360 * in the free path. Could get rid of this if we change the API to return a
1361 * "cookie" from alloc, to be passed to free. But no big deal yet.
1362 */
1363static DEFINE_SPINLOCK(vmap_block_tree_lock);
1364static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1365
1366/*
1367 * We should probably have a fallback mechanism to allocate virtual memory
1368 * out of partially filled vmap blocks. However vmap block sizing should be
1369 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1370 * big problem.
1371 */
1372
1373static unsigned long addr_to_vb_idx(unsigned long addr)
1374{
1375        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1376        addr /= VMAP_BLOCK_SIZE;
1377        return addr;
1378}
1379
1380static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1381{
1382        unsigned long addr;
1383
1384        addr = va_start + (pages_off << PAGE_SHIFT);
1385        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1386        return (void *)addr;
1387}
1388
1389/**
1390 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1391 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1392 * @order:    how many 2^order pages should be occupied in newly allocated block
1393 * @gfp_mask: flags for the page level allocator
1394 *
1395 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1396 */
1397static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1398{
1399        struct vmap_block_queue *vbq;
1400        struct vmap_block *vb;
1401        struct vmap_area *va;
1402        unsigned long vb_idx;
1403        int node, err;
1404        void *vaddr;
1405
1406        node = numa_node_id();
1407
1408        vb = kmalloc_node(sizeof(struct vmap_block),
1409                        gfp_mask & GFP_RECLAIM_MASK, node);
1410        if (unlikely(!vb))
1411                return ERR_PTR(-ENOMEM);
1412
1413        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1414                                        VMALLOC_START, VMALLOC_END,
1415                                        node, gfp_mask);
1416        if (IS_ERR(va)) {
1417                kfree(vb);
1418                return ERR_CAST(va);
1419        }
1420
1421        err = radix_tree_preload(gfp_mask);
1422        if (unlikely(err)) {
1423                kfree(vb);
1424                free_vmap_area(va);
1425                return ERR_PTR(err);
1426        }
1427
1428        vaddr = vmap_block_vaddr(va->va_start, 0);
1429        spin_lock_init(&vb->lock);
1430        vb->va = va;
1431        /* At least something should be left free */
1432        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1433        vb->free = VMAP_BBMAP_BITS - (1UL << order);
1434        vb->dirty = 0;
1435        vb->dirty_min = VMAP_BBMAP_BITS;
1436        vb->dirty_max = 0;
1437        INIT_LIST_HEAD(&vb->free_list);
1438
1439        vb_idx = addr_to_vb_idx(va->va_start);
1440        spin_lock(&vmap_block_tree_lock);
1441        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1442        spin_unlock(&vmap_block_tree_lock);
1443        BUG_ON(err);
1444        radix_tree_preload_end();
1445
1446        vbq = &get_cpu_var(vmap_block_queue);
1447        spin_lock(&vbq->lock);
1448        list_add_tail_rcu(&vb->free_list, &vbq->free);
1449        spin_unlock(&vbq->lock);
1450        put_cpu_var(vmap_block_queue);
1451
1452        return vaddr;
1453}
1454
1455static void free_vmap_block(struct vmap_block *vb)
1456{
1457        struct vmap_block *tmp;
1458        unsigned long vb_idx;
1459
1460        vb_idx = addr_to_vb_idx(vb->va->va_start);
1461        spin_lock(&vmap_block_tree_lock);
1462        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1463        spin_unlock(&vmap_block_tree_lock);
1464        BUG_ON(tmp != vb);
1465
1466        free_vmap_area_noflush(vb->va);
1467        kfree_rcu(vb, rcu_head);
1468}
1469
1470static void purge_fragmented_blocks(int cpu)
1471{
1472        LIST_HEAD(purge);
1473        struct vmap_block *vb;
1474        struct vmap_block *n_vb;
1475        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1476
1477        rcu_read_lock();
1478        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1479
1480                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1481                        continue;
1482
1483                spin_lock(&vb->lock);
1484                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1485                        vb->free = 0; /* prevent further allocs after releasing lock */
1486                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1487                        vb->dirty_min = 0;
1488                        vb->dirty_max = VMAP_BBMAP_BITS;
1489                        spin_lock(&vbq->lock);
1490                        list_del_rcu(&vb->free_list);
1491                        spin_unlock(&vbq->lock);
1492                        spin_unlock(&vb->lock);
1493                        list_add_tail(&vb->purge, &purge);
1494                } else
1495                        spin_unlock(&vb->lock);
1496        }
1497        rcu_read_unlock();
1498
1499        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1500                list_del(&vb->purge);
1501                free_vmap_block(vb);
1502        }
1503}
1504
1505static void purge_fragmented_blocks_allcpus(void)
1506{
1507        int cpu;
1508
1509        for_each_possible_cpu(cpu)
1510                purge_fragmented_blocks(cpu);
1511}
1512
1513static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1514{
1515        struct vmap_block_queue *vbq;
1516        struct vmap_block *vb;
1517        void *vaddr = NULL;
1518        unsigned int order;
1519
1520        BUG_ON(offset_in_page(size));
1521        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1522        if (WARN_ON(size == 0)) {
1523                /*
1524                 * Allocating 0 bytes isn't what caller wants since
1525                 * get_order(0) returns funny result. Just warn and terminate
1526                 * early.
1527                 */
1528                return NULL;
1529        }
1530        order = get_order(size);
1531
1532        rcu_read_lock();
1533        vbq = &get_cpu_var(vmap_block_queue);
1534        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1535                unsigned long pages_off;
1536
1537                spin_lock(&vb->lock);
1538                if (vb->free < (1UL << order)) {
1539                        spin_unlock(&vb->lock);
1540                        continue;
1541                }
1542
1543                pages_off = VMAP_BBMAP_BITS - vb->free;
1544                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1545                vb->free -= 1UL << order;
1546                if (vb->free == 0) {
1547                        spin_lock(&vbq->lock);
1548                        list_del_rcu(&vb->free_list);
1549                        spin_unlock(&vbq->lock);
1550                }
1551
1552                spin_unlock(&vb->lock);
1553                break;
1554        }
1555
1556        put_cpu_var(vmap_block_queue);
1557        rcu_read_unlock();
1558
1559        /* Allocate new block if nothing was found */
1560        if (!vaddr)
1561                vaddr = new_vmap_block(order, gfp_mask);
1562
1563        return vaddr;
1564}
1565
1566static void vb_free(const void *addr, unsigned long size)
1567{
1568        unsigned long offset;
1569        unsigned long vb_idx;
1570        unsigned int order;
1571        struct vmap_block *vb;
1572
1573        BUG_ON(offset_in_page(size));
1574        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1575
1576        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1577
1578        order = get_order(size);
1579
1580        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1581        offset >>= PAGE_SHIFT;
1582
1583        vb_idx = addr_to_vb_idx((unsigned long)addr);
1584        rcu_read_lock();
1585        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1586        rcu_read_unlock();
1587        BUG_ON(!vb);
1588
1589        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1590
1591        if (debug_pagealloc_enabled())
1592                flush_tlb_kernel_range((unsigned long)addr,
1593                                        (unsigned long)addr + size);
1594
1595        spin_lock(&vb->lock);
1596
1597        /* Expand dirty range */
1598        vb->dirty_min = min(vb->dirty_min, offset);
1599        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1600
1601        vb->dirty += 1UL << order;
1602        if (vb->dirty == VMAP_BBMAP_BITS) {
1603                BUG_ON(vb->free);
1604                spin_unlock(&vb->lock);
1605                free_vmap_block(vb);
1606        } else
1607                spin_unlock(&vb->lock);
1608}
1609
1610static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1611{
1612        int cpu;
1613
1614        if (unlikely(!vmap_initialized))
1615                return;
1616
1617        might_sleep();
1618
1619        for_each_possible_cpu(cpu) {
1620                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1621                struct vmap_block *vb;
1622
1623                rcu_read_lock();
1624                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1625                        spin_lock(&vb->lock);
1626                        if (vb->dirty) {
1627                                unsigned long va_start = vb->va->va_start;
1628                                unsigned long s, e;
1629
1630                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1631                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1632
1633                                start = min(s, start);
1634                                end   = max(e, end);
1635
1636                                flush = 1;
1637                        }
1638                        spin_unlock(&vb->lock);
1639                }
1640                rcu_read_unlock();
1641        }
1642
1643        mutex_lock(&vmap_purge_lock);
1644        purge_fragmented_blocks_allcpus();
1645        if (!__purge_vmap_area_lazy(start, end) && flush)
1646                flush_tlb_kernel_range(start, end);
1647        mutex_unlock(&vmap_purge_lock);
1648}
1649
1650/**
1651 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1652 *
1653 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1654 * to amortize TLB flushing overheads. What this means is that any page you
1655 * have now, may, in a former life, have been mapped into kernel virtual
1656 * address by the vmap layer and so there might be some CPUs with TLB entries
1657 * still referencing that page (additional to the regular 1:1 kernel mapping).
1658 *
1659 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1660 * be sure that none of the pages we have control over will have any aliases
1661 * from the vmap layer.
1662 */
1663void vm_unmap_aliases(void)
1664{
1665        unsigned long start = ULONG_MAX, end = 0;
1666        int flush = 0;
1667
1668        _vm_unmap_aliases(start, end, flush);
1669}
1670EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1671
1672/**
1673 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1674 * @mem: the pointer returned by vm_map_ram
1675 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1676 */
1677void vm_unmap_ram(const void *mem, unsigned int count)
1678{
1679        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1680        unsigned long addr = (unsigned long)mem;
1681        struct vmap_area *va;
1682
1683        might_sleep();
1684        BUG_ON(!addr);
1685        BUG_ON(addr < VMALLOC_START);
1686        BUG_ON(addr > VMALLOC_END);
1687        BUG_ON(!PAGE_ALIGNED(addr));
1688
1689        if (likely(count <= VMAP_MAX_ALLOC)) {
1690                debug_check_no_locks_freed(mem, size);
1691                vb_free(mem, size);
1692                return;
1693        }
1694
1695        va = find_vmap_area(addr);
1696        BUG_ON(!va);
1697        debug_check_no_locks_freed((void *)va->va_start,
1698                                    (va->va_end - va->va_start));
1699        free_unmap_vmap_area(va);
1700}
1701EXPORT_SYMBOL(vm_unmap_ram);
1702
1703/**
1704 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1705 * @pages: an array of pointers to the pages to be mapped
1706 * @count: number of pages
1707 * @node: prefer to allocate data structures on this node
1708 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1709 *
1710 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1711 * faster than vmap so it's good.  But if you mix long-life and short-life
1712 * objects with vm_map_ram(), it could consume lots of address space through
1713 * fragmentation (especially on a 32bit machine).  You could see failures in
1714 * the end.  Please use this function for short-lived objects.
1715 *
1716 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1717 */
1718void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1719{
1720        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1721        unsigned long addr;
1722        void *mem;
1723
1724        if (likely(count <= VMAP_MAX_ALLOC)) {
1725                mem = vb_alloc(size, GFP_KERNEL);
1726                if (IS_ERR(mem))
1727                        return NULL;
1728                addr = (unsigned long)mem;
1729        } else {
1730                struct vmap_area *va;
1731                va = alloc_vmap_area(size, PAGE_SIZE,
1732                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1733                if (IS_ERR(va))
1734                        return NULL;
1735
1736                addr = va->va_start;
1737                mem = (void *)addr;
1738        }
1739        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1740                vm_unmap_ram(mem, count);
1741                return NULL;
1742        }
1743        return mem;
1744}
1745EXPORT_SYMBOL(vm_map_ram);
1746
1747static struct vm_struct *vmlist __initdata;
1748
1749/**
1750 * vm_area_add_early - add vmap area early during boot
1751 * @vm: vm_struct to add
1752 *
1753 * This function is used to add fixed kernel vm area to vmlist before
1754 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1755 * should contain proper values and the other fields should be zero.
1756 *
1757 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1758 */
1759void __init vm_area_add_early(struct vm_struct *vm)
1760{
1761        struct vm_struct *tmp, **p;
1762
1763        BUG_ON(vmap_initialized);
1764        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1765                if (tmp->addr >= vm->addr) {
1766                        BUG_ON(tmp->addr < vm->addr + vm->size);
1767                        break;
1768                } else
1769                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1770        }
1771        vm->next = *p;
1772        *p = vm;
1773}
1774
1775/**
1776 * vm_area_register_early - register vmap area early during boot
1777 * @vm: vm_struct to register
1778 * @align: requested alignment
1779 *
1780 * This function is used to register kernel vm area before
1781 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1782 * proper values on entry and other fields should be zero.  On return,
1783 * vm->addr contains the allocated address.
1784 *
1785 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1786 */
1787void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1788{
1789        static size_t vm_init_off __initdata;
1790        unsigned long addr;
1791
1792        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1793        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1794
1795        vm->addr = (void *)addr;
1796
1797        vm_area_add_early(vm);
1798}
1799
1800static void vmap_init_free_space(void)
1801{
1802        unsigned long vmap_start = 1;
1803        const unsigned long vmap_end = ULONG_MAX;
1804        struct vmap_area *busy, *free;
1805
1806        /*
1807         *     B     F     B     B     B     F
1808         * -|-----|.....|-----|-----|-----|.....|-
1809         *  |           The KVA space           |
1810         *  |<--------------------------------->|
1811         */
1812        list_for_each_entry(busy, &vmap_area_list, list) {
1813                if (busy->va_start - vmap_start > 0) {
1814                        free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1815                        if (!WARN_ON_ONCE(!free)) {
1816                                free->va_start = vmap_start;
1817                                free->va_end = busy->va_start;
1818
1819                                insert_vmap_area_augment(free, NULL,
1820                                        &free_vmap_area_root,
1821                                                &free_vmap_area_list);
1822                        }
1823                }
1824
1825                vmap_start = busy->va_end;
1826        }
1827
1828        if (vmap_end - vmap_start > 0) {
1829                free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1830                if (!WARN_ON_ONCE(!free)) {
1831                        free->va_start = vmap_start;
1832                        free->va_end = vmap_end;
1833
1834                        insert_vmap_area_augment(free, NULL,
1835                                &free_vmap_area_root,
1836                                        &free_vmap_area_list);
1837                }
1838        }
1839}
1840
1841void __init vmalloc_init(void)
1842{
1843        struct vmap_area *va;
1844        struct vm_struct *tmp;
1845        int i;
1846
1847        /*
1848         * Create the cache for vmap_area objects.
1849         */
1850        vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1851
1852        for_each_possible_cpu(i) {
1853                struct vmap_block_queue *vbq;
1854                struct vfree_deferred *p;
1855
1856                vbq = &per_cpu(vmap_block_queue, i);
1857                spin_lock_init(&vbq->lock);
1858                INIT_LIST_HEAD(&vbq->free);
1859                p = &per_cpu(vfree_deferred, i);
1860                init_llist_head(&p->list);
1861                INIT_WORK(&p->wq, free_work);
1862        }
1863
1864        /* Import existing vmlist entries. */
1865        for (tmp = vmlist; tmp; tmp = tmp->next) {
1866                va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1867                if (WARN_ON_ONCE(!va))
1868                        continue;
1869
1870                va->flags = VM_VM_AREA;
1871                va->va_start = (unsigned long)tmp->addr;
1872                va->va_end = va->va_start + tmp->size;
1873                va->vm = tmp;
1874                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1875        }
1876
1877        /*
1878         * Now we can initialize a free vmap space.
1879         */
1880        vmap_init_free_space();
1881        vmap_initialized = true;
1882}
1883
1884/**
1885 * map_kernel_range_noflush - map kernel VM area with the specified pages
1886 * @addr: start of the VM area to map
1887 * @size: size of the VM area to map
1888 * @prot: page protection flags to use
1889 * @pages: pages to map
1890 *
1891 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1892 * specify should have been allocated using get_vm_area() and its
1893 * friends.
1894 *
1895 * NOTE:
1896 * This function does NOT do any cache flushing.  The caller is
1897 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1898 * before calling this function.
1899 *
1900 * RETURNS:
1901 * The number of pages mapped on success, -errno on failure.
1902 */
1903int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1904                             pgprot_t prot, struct page **pages)
1905{
1906        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1907}
1908
1909/**
1910 * unmap_kernel_range_noflush - unmap kernel VM area
1911 * @addr: start of the VM area to unmap
1912 * @size: size of the VM area to unmap
1913 *
1914 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1915 * specify should have been allocated using get_vm_area() and its
1916 * friends.
1917 *
1918 * NOTE:
1919 * This function does NOT do any cache flushing.  The caller is
1920 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1921 * before calling this function and flush_tlb_kernel_range() after.
1922 */
1923void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1924{
1925        vunmap_page_range(addr, addr + size);
1926}
1927EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1928
1929/**
1930 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1931 * @addr: start of the VM area to unmap
1932 * @size: size of the VM area to unmap
1933 *
1934 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1935 * the unmapping and tlb after.
1936 */
1937void unmap_kernel_range(unsigned long addr, unsigned long size)
1938{
1939        unsigned long end = addr + size;
1940
1941        flush_cache_vunmap(addr, end);
1942        vunmap_page_range(addr, end);
1943        flush_tlb_kernel_range(addr, end);
1944}
1945EXPORT_SYMBOL_GPL(unmap_kernel_range);
1946
1947int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1948{
1949        unsigned long addr = (unsigned long)area->addr;
1950        unsigned long end = addr + get_vm_area_size(area);
1951        int err;
1952
1953        err = vmap_page_range(addr, end, prot, pages);
1954
1955        return err > 0 ? 0 : err;
1956}
1957EXPORT_SYMBOL_GPL(map_vm_area);
1958
1959static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1960                              unsigned long flags, const void *caller)
1961{
1962        spin_lock(&vmap_area_lock);
1963        vm->flags = flags;
1964        vm->addr = (void *)va->va_start;
1965        vm->size = va->va_end - va->va_start;
1966        vm->caller = caller;
1967        va->vm = vm;
1968        va->flags |= VM_VM_AREA;
1969        spin_unlock(&vmap_area_lock);
1970}
1971
1972static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1973{
1974        /*
1975         * Before removing VM_UNINITIALIZED,
1976         * we should make sure that vm has proper values.
1977         * Pair with smp_rmb() in show_numa_info().
1978         */
1979        smp_wmb();
1980        vm->flags &= ~VM_UNINITIALIZED;
1981}
1982
1983static struct vm_struct *__get_vm_area_node(unsigned long size,
1984                unsigned long align, unsigned long flags, unsigned long start,
1985                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1986{
1987        struct vmap_area *va;
1988        struct vm_struct *area;
1989
1990        BUG_ON(in_interrupt());
1991        size = PAGE_ALIGN(size);
1992        if (unlikely(!size))
1993                return NULL;
1994
1995        if (flags & VM_IOREMAP)
1996                align = 1ul << clamp_t(int, get_count_order_long(size),
1997                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1998
1999        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2000        if (unlikely(!area))
2001                return NULL;
2002
2003        if (!(flags & VM_NO_GUARD))
2004                size += PAGE_SIZE;
2005
2006        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2007        if (IS_ERR(va)) {
2008                kfree(area);
2009                return NULL;
2010        }
2011
2012        setup_vmalloc_vm(area, va, flags, caller);
2013
2014        return area;
2015}
2016
2017struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2018                                unsigned long start, unsigned long end)
2019{
2020        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2021                                  GFP_KERNEL, __builtin_return_address(0));
2022}
2023EXPORT_SYMBOL_GPL(__get_vm_area);
2024
2025struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2026                                       unsigned long start, unsigned long end,
2027                                       const void *caller)
2028{
2029        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2030                                  GFP_KERNEL, caller);
2031}
2032
2033/**
2034 * get_vm_area - reserve a contiguous kernel virtual area
2035 * @size:        size of the area
2036 * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2037 *
2038 * Search an area of @size in the kernel virtual mapping area,
2039 * and reserved it for out purposes.  Returns the area descriptor
2040 * on success or %NULL on failure.
2041 *
2042 * Return: the area descriptor on success or %NULL on failure.
2043 */
2044struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2045{
2046        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2047                                  NUMA_NO_NODE, GFP_KERNEL,
2048                                  __builtin_return_address(0));
2049}
2050
2051struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2052                                const void *caller)
2053{
2054        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2055                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2056}
2057
2058/**
2059 * find_vm_area - find a continuous kernel virtual area
2060 * @addr:         base address
2061 *
2062 * Search for the kernel VM area starting at @addr, and return it.
2063 * It is up to the caller to do all required locking to keep the returned
2064 * pointer valid.
2065 *
2066 * Return: pointer to the found area or %NULL on faulure
2067 */
2068struct vm_struct *find_vm_area(const void *addr)
2069{
2070        struct vmap_area *va;
2071
2072        va = find_vmap_area((unsigned long)addr);
2073        if (va && va->flags & VM_VM_AREA)
2074                return va->vm;
2075
2076        return NULL;
2077}
2078
2079/**
2080 * remove_vm_area - find and remove a continuous kernel virtual area
2081 * @addr:           base address
2082 *
2083 * Search for the kernel VM area starting at @addr, and remove it.
2084 * This function returns the found VM area, but using it is NOT safe
2085 * on SMP machines, except for its size or flags.
2086 *
2087 * Return: pointer to the found area or %NULL on faulure
2088 */
2089struct vm_struct *remove_vm_area(const void *addr)
2090{
2091        struct vmap_area *va;
2092
2093        might_sleep();
2094
2095        va = find_vmap_area((unsigned long)addr);
2096        if (va && va->flags & VM_VM_AREA) {
2097                struct vm_struct *vm = va->vm;
2098
2099                spin_lock(&vmap_area_lock);
2100                va->vm = NULL;
2101                va->flags &= ~VM_VM_AREA;
2102                va->flags |= VM_LAZY_FREE;
2103                spin_unlock(&vmap_area_lock);
2104
2105                kasan_free_shadow(vm);
2106                free_unmap_vmap_area(va);
2107
2108                return vm;
2109        }
2110        return NULL;
2111}
2112
2113static inline void set_area_direct_map(const struct vm_struct *area,
2114                                       int (*set_direct_map)(struct page *page))
2115{
2116        int i;
2117
2118        for (i = 0; i < area->nr_pages; i++)
2119                if (page_address(area->pages[i]))
2120                        set_direct_map(area->pages[i]);
2121}
2122
2123/* Handle removing and resetting vm mappings related to the vm_struct. */
2124static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2125{
2126        unsigned long start = ULONG_MAX, end = 0;
2127        int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2128        int flush_dmap = 0;
2129        int i;
2130
2131        /*
2132         * The below block can be removed when all architectures that have
2133         * direct map permissions also have set_direct_map_() implementations.
2134         * This is concerned with resetting the direct map any an vm alias with
2135         * execute permissions, without leaving a RW+X window.
2136         */
2137        if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
2138                set_memory_nx((unsigned long)area->addr, area->nr_pages);
2139                set_memory_rw((unsigned long)area->addr, area->nr_pages);
2140        }
2141
2142        remove_vm_area(area->addr);
2143
2144        /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2145        if (!flush_reset)
2146                return;
2147
2148        /*
2149         * If not deallocating pages, just do the flush of the VM area and
2150         * return.
2151         */
2152        if (!deallocate_pages) {
2153                vm_unmap_aliases();
2154                return;
2155        }
2156
2157        /*
2158         * If execution gets here, flush the vm mapping and reset the direct
2159         * map. Find the start and end range of the direct mappings to make sure
2160         * the vm_unmap_aliases() flush includes the direct map.
2161         */
2162        for (i = 0; i < area->nr_pages; i++) {
2163                unsigned long addr = (unsigned long)page_address(area->pages[i]);
2164                if (addr) {
2165                        start = min(addr, start);
2166                        end = max(addr + PAGE_SIZE, end);
2167                        flush_dmap = 1;
2168                }
2169        }
2170
2171        /*
2172         * Set direct map to something invalid so that it won't be cached if
2173         * there are any accesses after the TLB flush, then flush the TLB and
2174         * reset the direct map permissions to the default.
2175         */
2176        set_area_direct_map(area, set_direct_map_invalid_noflush);
2177        _vm_unmap_aliases(start, end, flush_dmap);
2178        set_area_direct_map(area, set_direct_map_default_noflush);
2179}
2180
2181static void __vunmap(const void *addr, int deallocate_pages)
2182{
2183        struct vm_struct *area;
2184
2185        if (!addr)
2186                return;
2187
2188        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2189                        addr))
2190                return;
2191
2192        area = find_vm_area(addr);
2193        if (unlikely(!area)) {
2194                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2195                                addr);
2196                return;
2197        }
2198
2199        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2200        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2201
2202        vm_remove_mappings(area, deallocate_pages);
2203
2204        if (deallocate_pages) {
2205                int i;
2206
2207                for (i = 0; i < area->nr_pages; i++) {
2208                        struct page *page = area->pages[i];
2209
2210                        BUG_ON(!page);
2211                        __free_pages(page, 0);
2212                }
2213
2214                kvfree(area->pages);
2215        }
2216
2217        kfree(area);
2218        return;
2219}
2220
2221static inline void __vfree_deferred(const void *addr)
2222{
2223        /*
2224         * Use raw_cpu_ptr() because this can be called from preemptible
2225         * context. Preemption is absolutely fine here, because the llist_add()
2226         * implementation is lockless, so it works even if we are adding to
2227         * nother cpu's list.  schedule_work() should be fine with this too.
2228         */
2229        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2230
2231        if (llist_add((struct llist_node *)addr, &p->list))
2232                schedule_work(&p->wq);
2233}
2234
2235/**
2236 * vfree_atomic - release memory allocated by vmalloc()
2237 * @addr:         memory base address
2238 *
2239 * This one is just like vfree() but can be called in any atomic context
2240 * except NMIs.
2241 */
2242void vfree_atomic(const void *addr)
2243{
2244        BUG_ON(in_nmi());
2245
2246        kmemleak_free(addr);
2247
2248        if (!addr)
2249                return;
2250        __vfree_deferred(addr);
2251}
2252
2253static void __vfree(const void *addr)
2254{
2255        if (unlikely(in_interrupt()))
2256                __vfree_deferred(addr);
2257        else
2258                __vunmap(addr, 1);
2259}
2260
2261/**
2262 * vfree - release memory allocated by vmalloc()
2263 * @addr:  memory base address
2264 *
2265 * Free the virtually continuous memory area starting at @addr, as
2266 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2267 * NULL, no operation is performed.
2268 *
2269 * Must not be called in NMI context (strictly speaking, only if we don't
2270 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2271 * conventions for vfree() arch-depenedent would be a really bad idea)
2272 *
2273 * May sleep if called *not* from interrupt context.
2274 *
2275 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2276 */
2277void vfree(const void *addr)
2278{
2279        BUG_ON(in_nmi());
2280
2281        kmemleak_free(addr);
2282
2283        might_sleep_if(!in_interrupt());
2284
2285        if (!addr)
2286                return;
2287
2288        __vfree(addr);
2289}
2290EXPORT_SYMBOL(vfree);
2291
2292/**
2293 * vunmap - release virtual mapping obtained by vmap()
2294 * @addr:   memory base address
2295 *
2296 * Free the virtually contiguous memory area starting at @addr,
2297 * which was created from the page array passed to vmap().
2298 *
2299 * Must not be called in interrupt context.
2300 */
2301void vunmap(const void *addr)
2302{
2303        BUG_ON(in_interrupt());
2304        might_sleep();
2305        if (addr)
2306                __vunmap(addr, 0);
2307}
2308EXPORT_SYMBOL(vunmap);
2309
2310/**
2311 * vmap - map an array of pages into virtually contiguous space
2312 * @pages: array of page pointers
2313 * @count: number of pages to map
2314 * @flags: vm_area->flags
2315 * @prot: page protection for the mapping
2316 *
2317 * Maps @count pages from @pages into contiguous kernel virtual
2318 * space.
2319 *
2320 * Return: the address of the area or %NULL on failure
2321 */
2322void *vmap(struct page **pages, unsigned int count,
2323           unsigned long flags, pgprot_t prot)
2324{
2325        struct vm_struct *area;
2326        unsigned long size;             /* In bytes */
2327
2328        might_sleep();
2329
2330        if (count > totalram_pages())
2331                return NULL;
2332
2333        size = (unsigned long)count << PAGE_SHIFT;
2334        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2335        if (!area)
2336                return NULL;
2337
2338        if (map_vm_area(area, prot, pages)) {
2339                vunmap(area->addr);
2340                return NULL;
2341        }
2342
2343        return area->addr;
2344}
2345EXPORT_SYMBOL(vmap);
2346
2347static void *__vmalloc_node(unsigned long size, unsigned long align,
2348                            gfp_t gfp_mask, pgprot_t prot,
2349                            int node, const void *caller);
2350static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2351                                 pgprot_t prot, int node)
2352{
2353        struct page **pages;
2354        unsigned int nr_pages, array_size, i;
2355        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2356        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2357        const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2358                                        0 :
2359                                        __GFP_HIGHMEM;
2360
2361        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2362        array_size = (nr_pages * sizeof(struct page *));
2363
2364        area->nr_pages = nr_pages;
2365        /* Please note that the recursion is strictly bounded. */
2366        if (array_size > PAGE_SIZE) {
2367                pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2368                                PAGE_KERNEL, node, area->caller);
2369        } else {
2370                pages = kmalloc_node(array_size, nested_gfp, node);
2371        }
2372        area->pages = pages;
2373        if (!area->pages) {
2374                remove_vm_area(area->addr);
2375                kfree(area);
2376                return NULL;
2377        }
2378
2379        for (i = 0; i < area->nr_pages; i++) {
2380                struct page *page;
2381
2382                if (node == NUMA_NO_NODE)
2383                        page = alloc_page(alloc_mask|highmem_mask);
2384                else
2385                        page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2386
2387                if (unlikely(!page)) {
2388                        /* Successfully allocated i pages, free them in __vunmap() */
2389                        area->nr_pages = i;
2390                        goto fail;
2391                }
2392                area->pages[i] = page;
2393                if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2394                        cond_resched();
2395        }
2396
2397        if (map_vm_area(area, prot, pages))
2398                goto fail;
2399        return area->addr;
2400
2401fail:
2402        warn_alloc(gfp_mask, NULL,
2403                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
2404                          (area->nr_pages*PAGE_SIZE), area->size);
2405        __vfree(area->addr);
2406        return NULL;
2407}
2408
2409/**
2410 * __vmalloc_node_range - allocate virtually contiguous memory
2411 * @size:                 allocation size
2412 * @align:                desired alignment
2413 * @start:                vm area range start
2414 * @end:                  vm area range end
2415 * @gfp_mask:             flags for the page level allocator
2416 * @prot:                 protection mask for the allocated pages
2417 * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
2418 * @node:                 node to use for allocation or NUMA_NO_NODE
2419 * @caller:               caller's return address
2420 *
2421 * Allocate enough pages to cover @size from the page level
2422 * allocator with @gfp_mask flags.  Map them into contiguous
2423 * kernel virtual space, using a pagetable protection of @prot.
2424 *
2425 * Return: the address of the area or %NULL on failure
2426 */
2427void *__vmalloc_node_range(unsigned long size, unsigned long align,
2428                        unsigned long start, unsigned long end, gfp_t gfp_mask,
2429                        pgprot_t prot, unsigned long vm_flags, int node,
2430                        const void *caller)
2431{
2432        struct vm_struct *area;
2433        void *addr;
2434        unsigned long real_size = size;
2435
2436        size = PAGE_ALIGN(size);
2437        if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2438                goto fail;
2439
2440        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2441                                vm_flags, start, end, node, gfp_mask, caller);
2442        if (!area)
2443                goto fail;
2444
2445        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2446        if (!addr)
2447                return NULL;
2448
2449        /*
2450         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2451         * flag. It means that vm_struct is not fully initialized.
2452         * Now, it is fully initialized, so remove this flag here.
2453         */
2454        clear_vm_uninitialized_flag(area);
2455
2456        kmemleak_vmalloc(area, size, gfp_mask);
2457
2458        return addr;
2459
2460fail:
2461        warn_alloc(gfp_mask, NULL,
2462                          "vmalloc: allocation failure: %lu bytes", real_size);
2463        return NULL;
2464}
2465
2466/*
2467 * This is only for performance analysis of vmalloc and stress purpose.
2468 * It is required by vmalloc test module, therefore do not use it other
2469 * than that.
2470 */
2471#ifdef CONFIG_TEST_VMALLOC_MODULE
2472EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2473#endif
2474
2475/**
2476 * __vmalloc_node - allocate virtually contiguous memory
2477 * @size:           allocation size
2478 * @align:          desired alignment
2479 * @gfp_mask:       flags for the page level allocator
2480 * @prot:           protection mask for the allocated pages
2481 * @node:           node to use for allocation or NUMA_NO_NODE
2482 * @caller:         caller's return address
2483 *
2484 * Allocate enough pages to cover @size from the page level
2485 * allocator with @gfp_mask flags.  Map them into contiguous
2486 * kernel virtual space, using a pagetable protection of @prot.
2487 *
2488 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2489 * and __GFP_NOFAIL are not supported
2490 *
2491 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2492 * with mm people.
2493 *
2494 * Return: pointer to the allocated memory or %NULL on error
2495 */
2496static void *__vmalloc_node(unsigned long size, unsigned long align,
2497                            gfp_t gfp_mask, pgprot_t prot,
2498                            int node, const void *caller)
2499{
2500        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2501                                gfp_mask, prot, 0, node, caller);
2502}
2503
2504void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2505{
2506        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2507                                __builtin_return_address(0));
2508}
2509EXPORT_SYMBOL(__vmalloc);
2510
2511static inline void *__vmalloc_node_flags(unsigned long size,
2512                                        int node, gfp_t flags)
2513{
2514        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2515                                        node, __builtin_return_address(0));
2516}
2517
2518
2519void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2520                                  void *caller)
2521{
2522        return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2523}
2524
2525/**
2526 * vmalloc - allocate virtually contiguous memory
2527 * @size:    allocation size
2528 *
2529 * Allocate enough pages to cover @size from the page level
2530 * allocator and map them into contiguous kernel virtual space.
2531 *
2532 * For tight control over page level allocator and protection flags
2533 * use __vmalloc() instead.
2534 *
2535 * Return: pointer to the allocated memory or %NULL on error
2536 */
2537void *vmalloc(unsigned long size)
2538{
2539        return __vmalloc_node_flags(size, NUMA_NO_NODE,
2540                                    GFP_KERNEL);
2541}
2542EXPORT_SYMBOL(vmalloc);
2543
2544/**
2545 * vzalloc - allocate virtually contiguous memory with zero fill
2546 * @size:    allocation size
2547 *
2548 * Allocate enough pages to cover @size from the page level
2549 * allocator and map them into contiguous kernel virtual space.
2550 * The memory allocated is set to zero.
2551 *
2552 * For tight control over page level allocator and protection flags
2553 * use __vmalloc() instead.
2554 *
2555 * Return: pointer to the allocated memory or %NULL on error
2556 */
2557void *vzalloc(unsigned long size)
2558{
2559        return __vmalloc_node_flags(size, NUMA_NO_NODE,
2560                                GFP_KERNEL | __GFP_ZERO);
2561}
2562EXPORT_SYMBOL(vzalloc);
2563
2564/**
2565 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2566 * @size: allocation size
2567 *
2568 * The resulting memory area is zeroed so it can be mapped to userspace
2569 * without leaking data.
2570 *
2571 * Return: pointer to the allocated memory or %NULL on error
2572 */
2573void *vmalloc_user(unsigned long size)
2574{
2575        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2576                                    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2577                                    VM_USERMAP, NUMA_NO_NODE,
2578                                    __builtin_return_address(0));
2579}
2580EXPORT_SYMBOL(vmalloc_user);
2581
2582/**
2583 * vmalloc_node - allocate memory on a specific node
2584 * @size:         allocation size
2585 * @node:         numa node
2586 *
2587 * Allocate enough pages to cover @size from the page level
2588 * allocator and map them into contiguous kernel virtual space.
2589 *
2590 * For tight control over page level allocator and protection flags
2591 * use __vmalloc() instead.
2592 *
2593 * Return: pointer to the allocated memory or %NULL on error
2594 */
2595void *vmalloc_node(unsigned long size, int node)
2596{
2597        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2598                                        node, __builtin_return_address(0));
2599}
2600EXPORT_SYMBOL(vmalloc_node);
2601
2602/**
2603 * vzalloc_node - allocate memory on a specific node with zero fill
2604 * @size:       allocation size
2605 * @node:       numa node
2606 *
2607 * Allocate enough pages to cover @size from the page level
2608 * allocator and map them into contiguous kernel virtual space.
2609 * The memory allocated is set to zero.
2610 *
2611 * For tight control over page level allocator and protection flags
2612 * use __vmalloc_node() instead.
2613 *
2614 * Return: pointer to the allocated memory or %NULL on error
2615 */
2616void *vzalloc_node(unsigned long size, int node)
2617{
2618        return __vmalloc_node_flags(size, node,
2619                         GFP_KERNEL | __GFP_ZERO);
2620}
2621EXPORT_SYMBOL(vzalloc_node);
2622
2623/**
2624 * vmalloc_exec - allocate virtually contiguous, executable memory
2625 * @size:         allocation size
2626 *
2627 * Kernel-internal function to allocate enough pages to cover @size
2628 * the page level allocator and map them into contiguous and
2629 * executable kernel virtual space.
2630 *
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
2633 *
2634 * Return: pointer to the allocated memory or %NULL on error
2635 */
2636void *vmalloc_exec(unsigned long size)
2637{
2638        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2639                        GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2640                        NUMA_NO_NODE, __builtin_return_address(0));
2641}
2642
2643#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2644#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2645#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2646#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2647#else
2648/*
2649 * 64b systems should always have either DMA or DMA32 zones. For others
2650 * GFP_DMA32 should do the right thing and use the normal zone.
2651 */
2652#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2653#endif
2654
2655/**
2656 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2657 * @size:       allocation size
2658 *
2659 * Allocate enough 32bit PA addressable pages to cover @size from the
2660 * page level allocator and map them into contiguous kernel virtual space.
2661 *
2662 * Return: pointer to the allocated memory or %NULL on error
2663 */
2664void *vmalloc_32(unsigned long size)
2665{
2666        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2667                              NUMA_NO_NODE, __builtin_return_address(0));
2668}
2669EXPORT_SYMBOL(vmalloc_32);
2670
2671/**
2672 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2673 * @size:            allocation size
2674 *
2675 * The resulting memory area is 32bit addressable and zeroed so it can be
2676 * mapped to userspace without leaking data.
2677 *
2678 * Return: pointer to the allocated memory or %NULL on error
2679 */
2680void *vmalloc_32_user(unsigned long size)
2681{
2682        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2683                                    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2684                                    VM_USERMAP, NUMA_NO_NODE,
2685                                    __builtin_return_address(0));
2686}
2687EXPORT_SYMBOL(vmalloc_32_user);
2688
2689/*
2690 * small helper routine , copy contents to buf from addr.
2691 * If the page is not present, fill zero.
2692 */
2693
2694static int aligned_vread(char *buf, char *addr, unsigned long count)
2695{
2696        struct page *p;
2697        int copied = 0;
2698
2699        while (count) {
2700                unsigned long offset, length;
2701
2702                offset = offset_in_page(addr);
2703                length = PAGE_SIZE - offset;
2704                if (length > count)
2705                        length = count;
2706                p = vmalloc_to_page(addr);
2707                /*
2708                 * To do safe access to this _mapped_ area, we need
2709                 * lock. But adding lock here means that we need to add
2710                 * overhead of vmalloc()/vfree() calles for this _debug_
2711                 * interface, rarely used. Instead of that, we'll use
2712                 * kmap() and get small overhead in this access function.
2713                 */
2714                if (p) {
2715                        /*
2716                         * we can expect USER0 is not used (see vread/vwrite's
2717                         * function description)
2718                         */
2719                        void *map = kmap_atomic(p);
2720                        memcpy(buf, map + offset, length);
2721                        kunmap_atomic(map);
2722                } else
2723                        memset(buf, 0, length);
2724
2725                addr += length;
2726                buf += length;
2727                copied += length;
2728                count -= length;
2729        }
2730        return copied;
2731}
2732
2733static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2734{
2735        struct page *p;
2736        int copied = 0;
2737
2738        while (count) {
2739                unsigned long offset, length;
2740
2741                offset = offset_in_page(addr);
2742                length = PAGE_SIZE - offset;
2743                if (length > count)
2744                        length = count;
2745                p = vmalloc_to_page(addr);
2746                /*
2747                 * To do safe access to this _mapped_ area, we need
2748                 * lock. But adding lock here means that we need to add
2749                 * overhead of vmalloc()/vfree() calles for this _debug_
2750                 * interface, rarely used. Instead of that, we'll use
2751                 * kmap() and get small overhead in this access function.
2752                 */
2753                if (p) {
2754                        /*
2755                         * we can expect USER0 is not used (see vread/vwrite's
2756                         * function description)
2757                         */
2758                        void *map = kmap_atomic(p);
2759                        memcpy(map + offset, buf, length);
2760                        kunmap_atomic(map);
2761                }
2762                addr += length;
2763                buf += length;
2764                copied += length;
2765                count -= length;
2766        }
2767        return copied;
2768}
2769
2770/**
2771 * vread() - read vmalloc area in a safe way.
2772 * @buf:     buffer for reading data
2773 * @addr:    vm address.
2774 * @count:   number of bytes to be read.
2775 *
2776 * This function checks that addr is a valid vmalloc'ed area, and
2777 * copy data from that area to a given buffer. If the given memory range
2778 * of [addr...addr+count) includes some valid address, data is copied to
2779 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2780 * IOREMAP area is treated as memory hole and no copy is done.
2781 *
2782 * If [addr...addr+count) doesn't includes any intersects with alive
2783 * vm_struct area, returns 0. @buf should be kernel's buffer.
2784 *
2785 * Note: In usual ops, vread() is never necessary because the caller
2786 * should know vmalloc() area is valid and can use memcpy().
2787 * This is for routines which have to access vmalloc area without
2788 * any informaion, as /dev/kmem.
2789 *
2790 * Return: number of bytes for which addr and buf should be increased
2791 * (same number as @count) or %0 if [addr...addr+count) doesn't
2792 * include any intersection with valid vmalloc area
2793 */
2794long vread(char *buf, char *addr, unsigned long count)
2795{
2796        struct vmap_area *va;
2797        struct vm_struct *vm;
2798        char *vaddr, *buf_start = buf;
2799        unsigned long buflen = count;
2800        unsigned long n;
2801
2802        /* Don't allow overflow */
2803        if ((unsigned long) addr + count < count)
2804                count = -(unsigned long) addr;
2805
2806        spin_lock(&vmap_area_lock);
2807        list_for_each_entry(va, &vmap_area_list, list) {
2808                if (!count)
2809                        break;
2810
2811                if (!(va->flags & VM_VM_AREA))
2812                        continue;
2813
2814                vm = va->vm;
2815                vaddr = (char *) vm->addr;
2816                if (addr >= vaddr + get_vm_area_size(vm))
2817                        continue;
2818                while (addr < vaddr) {
2819                        if (count == 0)
2820                                goto finished;
2821                        *buf = '\0';
2822                        buf++;
2823                        addr++;
2824                        count--;
2825                }
2826                n = vaddr + get_vm_area_size(vm) - addr;
2827                if (n > count)
2828                        n = count;
2829                if (!(vm->flags & VM_IOREMAP))
2830                        aligned_vread(buf, addr, n);
2831                else /* IOREMAP area is treated as memory hole */
2832                        memset(buf, 0, n);
2833                buf += n;
2834                addr += n;
2835                count -= n;
2836        }
2837finished:
2838        spin_unlock(&vmap_area_lock);
2839
2840        if (buf == buf_start)
2841                return 0;
2842        /* zero-fill memory holes */
2843        if (buf != buf_start + buflen)
2844                memset(buf, 0, buflen - (buf - buf_start));
2845
2846        return buflen;
2847}
2848
2849/**
2850 * vwrite() - write vmalloc area in a safe way.
2851 * @buf:      buffer for source data
2852 * @addr:     vm address.
2853 * @count:    number of bytes to be read.
2854 *
2855 * This function checks that addr is a valid vmalloc'ed area, and
2856 * copy data from a buffer to the given addr. If specified range of
2857 * [addr...addr+count) includes some valid address, data is copied from
2858 * proper area of @buf. If there are memory holes, no copy to hole.
2859 * IOREMAP area is treated as memory hole and no copy is done.
2860 *
2861 * If [addr...addr+count) doesn't includes any intersects with alive
2862 * vm_struct area, returns 0. @buf should be kernel's buffer.
2863 *
2864 * Note: In usual ops, vwrite() is never necessary because the caller
2865 * should know vmalloc() area is valid and can use memcpy().
2866 * This is for routines which have to access vmalloc area without
2867 * any informaion, as /dev/kmem.
2868 *
2869 * Return: number of bytes for which addr and buf should be
2870 * increased (same number as @count) or %0 if [addr...addr+count)
2871 * doesn't include any intersection with valid vmalloc area
2872 */
2873long vwrite(char *buf, char *addr, unsigned long count)
2874{
2875        struct vmap_area *va;
2876        struct vm_struct *vm;
2877        char *vaddr;
2878        unsigned long n, buflen;
2879        int copied = 0;
2880
2881        /* Don't allow overflow */
2882        if ((unsigned long) addr + count < count)
2883                count = -(unsigned long) addr;
2884        buflen = count;
2885
2886        spin_lock(&vmap_area_lock);
2887        list_for_each_entry(va, &vmap_area_list, list) {
2888                if (!count)
2889                        break;
2890
2891                if (!(va->flags & VM_VM_AREA))
2892                        continue;
2893
2894                vm = va->vm;
2895                vaddr = (char *) vm->addr;
2896                if (addr >= vaddr + get_vm_area_size(vm))
2897                        continue;
2898                while (addr < vaddr) {
2899                        if (count == 0)
2900                                goto finished;
2901                        buf++;
2902                        addr++;
2903                        count--;
2904                }
2905                n = vaddr + get_vm_area_size(vm) - addr;
2906                if (n > count)
2907                        n = count;
2908                if (!(vm->flags & VM_IOREMAP)) {
2909                        aligned_vwrite(buf, addr, n);
2910                        copied++;
2911                }
2912                buf += n;
2913                addr += n;
2914                count -= n;
2915        }
2916finished:
2917        spin_unlock(&vmap_area_lock);
2918        if (!copied)
2919                return 0;
2920        return buflen;
2921}
2922
2923/**
2924 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2925 * @vma:                vma to cover
2926 * @uaddr:              target user address to start at
2927 * @kaddr:              virtual address of vmalloc kernel memory
2928 * @size:               size of map area
2929 *
2930 * Returns:     0 for success, -Exxx on failure
2931 *
2932 * This function checks that @kaddr is a valid vmalloc'ed area,
2933 * and that it is big enough to cover the range starting at
2934 * @uaddr in @vma. Will return failure if that criteria isn't
2935 * met.
2936 *
2937 * Similar to remap_pfn_range() (see mm/memory.c)
2938 */
2939int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2940                                void *kaddr, unsigned long size)
2941{
2942        struct vm_struct *area;
2943
2944        size = PAGE_ALIGN(size);
2945
2946        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2947                return -EINVAL;
2948
2949        area = find_vm_area(kaddr);
2950        if (!area)
2951                return -EINVAL;
2952
2953        if (!(area->flags & VM_USERMAP))
2954                return -EINVAL;
2955
2956        if (kaddr + size > area->addr + get_vm_area_size(area))
2957                return -EINVAL;
2958
2959        do {
2960                struct page *page = vmalloc_to_page(kaddr);
2961                int ret;
2962
2963                ret = vm_insert_page(vma, uaddr, page);
2964                if (ret)
2965                        return ret;
2966
2967                uaddr += PAGE_SIZE;
2968                kaddr += PAGE_SIZE;
2969                size -= PAGE_SIZE;
2970        } while (size > 0);
2971
2972        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2973
2974        return 0;
2975}
2976EXPORT_SYMBOL(remap_vmalloc_range_partial);
2977
2978/**
2979 * remap_vmalloc_range - map vmalloc pages to userspace
2980 * @vma:                vma to cover (map full range of vma)
2981 * @addr:               vmalloc memory
2982 * @pgoff:              number of pages into addr before first page to map
2983 *
2984 * Returns:     0 for success, -Exxx on failure
2985 *
2986 * This function checks that addr is a valid vmalloc'ed area, and
2987 * that it is big enough to cover the vma. Will return failure if
2988 * that criteria isn't met.
2989 *
2990 * Similar to remap_pfn_range() (see mm/memory.c)
2991 */
2992int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2993                                                unsigned long pgoff)
2994{
2995        return remap_vmalloc_range_partial(vma, vma->vm_start,
2996                                           addr + (pgoff << PAGE_SHIFT),
2997                                           vma->vm_end - vma->vm_start);
2998}
2999EXPORT_SYMBOL(remap_vmalloc_range);
3000
3001/*
3002 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3003 * have one.
3004 */
3005void __weak vmalloc_sync_all(void)
3006{
3007}
3008
3009
3010static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
3011{
3012        pte_t ***p = data;
3013
3014        if (p) {
3015                *(*p) = pte;
3016                (*p)++;
3017        }
3018        return 0;
3019}
3020
3021/**
3022 * alloc_vm_area - allocate a range of kernel address space
3023 * @size:          size of the area
3024 * @ptes:          returns the PTEs for the address space
3025 *
3026 * Returns:     NULL on failure, vm_struct on success
3027 *
3028 * This function reserves a range of kernel address space, and
3029 * allocates pagetables to map that range.  No actual mappings
3030 * are created.
3031 *
3032 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3033 * allocated for the VM area are returned.
3034 */
3035struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3036{
3037        struct vm_struct *area;
3038
3039        area = get_vm_area_caller(size, VM_IOREMAP,
3040                                __builtin_return_address(0));
3041        if (area == NULL)
3042                return NULL;
3043
3044        /*
3045         * This ensures that page tables are constructed for this region
3046         * of kernel virtual address space and mapped into init_mm.
3047         */
3048        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3049                                size, f, ptes ? &ptes : NULL)) {
3050                free_vm_area(area);
3051                return NULL;
3052        }
3053
3054        return area;
3055}
3056EXPORT_SYMBOL_GPL(alloc_vm_area);
3057
3058void free_vm_area(struct vm_struct *area)
3059{
3060        struct vm_struct *ret;
3061        ret = remove_vm_area(area->addr);
3062        BUG_ON(ret != area);
3063        kfree(area);
3064}
3065EXPORT_SYMBOL_GPL(free_vm_area);
3066
3067#ifdef CONFIG_SMP
3068static struct vmap_area *node_to_va(struct rb_node *n)
3069{
3070        return rb_entry_safe(n, struct vmap_area, rb_node);
3071}
3072
3073/**
3074 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3075 * @addr: target address
3076 *
3077 * Returns: vmap_area if it is found. If there is no such area
3078 *   the first highest(reverse order) vmap_area is returned
3079 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3080 *   if there are no any areas before @addr.
3081 */
3082static struct vmap_area *
3083pvm_find_va_enclose_addr(unsigned long addr)
3084{
3085        struct vmap_area *va, *tmp;
3086        struct rb_node *n;
3087
3088        n = free_vmap_area_root.rb_node;
3089        va = NULL;
3090
3091        while (n) {
3092                tmp = rb_entry(n, struct vmap_area, rb_node);
3093                if (tmp->va_start <= addr) {
3094                        va = tmp;
3095                        if (tmp->va_end >= addr)
3096                                break;
3097
3098                        n = n->rb_right;
3099                } else {
3100                        n = n->rb_left;
3101                }
3102        }
3103
3104        return va;
3105}
3106
3107/**
3108 * pvm_determine_end_from_reverse - find the highest aligned address
3109 * of free block below VMALLOC_END
3110 * @va:
3111 *   in - the VA we start the search(reverse order);
3112 *   out - the VA with the highest aligned end address.
3113 *
3114 * Returns: determined end address within vmap_area
3115 */
3116static unsigned long
3117pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3118{
3119        unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3120        unsigned long addr;
3121
3122        if (likely(*va)) {
3123                list_for_each_entry_from_reverse((*va),
3124                                &free_vmap_area_list, list) {
3125                        addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3126                        if ((*va)->va_start < addr)
3127                                return addr;
3128                }
3129        }
3130
3131        return 0;
3132}
3133
3134/**
3135 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3136 * @offsets: array containing offset of each area
3137 * @sizes: array containing size of each area
3138 * @nr_vms: the number of areas to allocate
3139 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3140 *
3141 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3142 *          vm_structs on success, %NULL on failure
3143 *
3144 * Percpu allocator wants to use congruent vm areas so that it can
3145 * maintain the offsets among percpu areas.  This function allocates
3146 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3147 * be scattered pretty far, distance between two areas easily going up
3148 * to gigabytes.  To avoid interacting with regular vmallocs, these
3149 * areas are allocated from top.
3150 *
3151 * Despite its complicated look, this allocator is rather simple. It
3152 * does everything top-down and scans free blocks from the end looking
3153 * for matching base. While scanning, if any of the areas do not fit the
3154 * base address is pulled down to fit the area. Scanning is repeated till
3155 * all the areas fit and then all necessary data structures are inserted
3156 * and the result is returned.
3157 */
3158struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3159                                     const size_t *sizes, int nr_vms,
3160                                     size_t align)
3161{
3162        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3163        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3164        struct vmap_area **vas, *va;
3165        struct vm_struct **vms;
3166        int area, area2, last_area, term_area;
3167        unsigned long base, start, size, end, last_end;
3168        bool purged = false;
3169        enum fit_type type;
3170
3171        /* verify parameters and allocate data structures */
3172        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3173        for (last_area = 0, area = 0; area < nr_vms; area++) {
3174                start = offsets[area];
3175                end = start + sizes[area];
3176
3177                /* is everything aligned properly? */
3178                BUG_ON(!IS_ALIGNED(offsets[area], align));
3179                BUG_ON(!IS_ALIGNED(sizes[area], align));
3180
3181                /* detect the area with the highest address */
3182                if (start > offsets[last_area])
3183                        last_area = area;
3184
3185                for (area2 = area + 1; area2 < nr_vms; area2++) {
3186                        unsigned long start2 = offsets[area2];
3187                        unsigned long end2 = start2 + sizes[area2];
3188
3189                        BUG_ON(start2 < end && start < end2);
3190                }
3191        }
3192        last_end = offsets[last_area] + sizes[last_area];
3193
3194        if (vmalloc_end - vmalloc_start < last_end) {
3195                WARN_ON(true);
3196                return NULL;
3197        }
3198
3199        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3200        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3201        if (!vas || !vms)
3202                goto err_free2;
3203
3204        for (area = 0; area < nr_vms; area++) {
3205                vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3206                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3207                if (!vas[area] || !vms[area])
3208                        goto err_free;
3209        }
3210retry:
3211        spin_lock(&vmap_area_lock);
3212
3213        /* start scanning - we scan from the top, begin with the last area */
3214        area = term_area = last_area;
3215        start = offsets[area];
3216        end = start + sizes[area];
3217
3218        va = pvm_find_va_enclose_addr(vmalloc_end);
3219        base = pvm_determine_end_from_reverse(&va, align) - end;
3220
3221        while (true) {
3222                /*
3223                 * base might have underflowed, add last_end before
3224                 * comparing.
3225                 */
3226                if (base + last_end < vmalloc_start + last_end)
3227                        goto overflow;
3228
3229                /*
3230                 * Fitting base has not been found.
3231                 */
3232                if (va == NULL)
3233                        goto overflow;
3234
3235                /*
3236                 * If this VA does not fit, move base downwards and recheck.
3237                 */
3238                if (base + start < va->va_start || base + end > va->va_end) {
3239                        va = node_to_va(rb_prev(&va->rb_node));
3240                        base = pvm_determine_end_from_reverse(&va, align) - end;
3241                        term_area = area;
3242                        continue;
3243                }
3244
3245                /*
3246                 * This area fits, move on to the previous one.  If
3247                 * the previous one is the terminal one, we're done.
3248                 */
3249                area = (area + nr_vms - 1) % nr_vms;
3250                if (area == term_area)
3251                        break;
3252
3253                start = offsets[area];
3254                end = start + sizes[area];
3255                va = pvm_find_va_enclose_addr(base + end);
3256        }
3257
3258        /* we've found a fitting base, insert all va's */
3259        for (area = 0; area < nr_vms; area++) {
3260                int ret;
3261
3262                start = base + offsets[area];
3263                size = sizes[area];
3264
3265                va = pvm_find_va_enclose_addr(start);
3266                if (WARN_ON_ONCE(va == NULL))
3267                        /* It is a BUG(), but trigger recovery instead. */
3268                        goto recovery;
3269
3270                type = classify_va_fit_type(va, start, size);
3271                if (WARN_ON_ONCE(type == NOTHING_FIT))
3272                        /* It is a BUG(), but trigger recovery instead. */
3273                        goto recovery;
3274
3275                ret = adjust_va_to_fit_type(va, start, size, type);
3276                if (unlikely(ret))
3277                        goto recovery;
3278
3279                /* Allocated area. */
3280                va = vas[area];
3281                va->va_start = start;
3282                va->va_end = start + size;
3283
3284                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3285        }
3286
3287        spin_unlock(&vmap_area_lock);
3288
3289        /* insert all vm's */
3290        for (area = 0; area < nr_vms; area++)
3291                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3292                                 pcpu_get_vm_areas);
3293
3294        kfree(vas);
3295        return vms;
3296
3297recovery:
3298        /* Remove previously inserted areas. */
3299        while (area--) {
3300                __free_vmap_area(vas[area]);
3301                vas[area] = NULL;
3302        }
3303
3304overflow:
3305        spin_unlock(&vmap_area_lock);
3306        if (!purged) {
3307                purge_vmap_area_lazy();
3308                purged = true;
3309
3310                /* Before "retry", check if we recover. */
3311                for (area = 0; area < nr_vms; area++) {
3312                        if (vas[area])
3313                                continue;
3314
3315                        vas[area] = kmem_cache_zalloc(
3316                                vmap_area_cachep, GFP_KERNEL);
3317                        if (!vas[area])
3318                                goto err_free;
3319                }
3320
3321                goto retry;
3322        }
3323
3324err_free:
3325        for (area = 0; area < nr_vms; area++) {
3326                if (vas[area])
3327                        kmem_cache_free(vmap_area_cachep, vas[area]);
3328
3329                kfree(vms[area]);
3330        }
3331err_free2:
3332        kfree(vas);
3333        kfree(vms);
3334        return NULL;
3335}
3336
3337/**
3338 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3339 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3340 * @nr_vms: the number of allocated areas
3341 *
3342 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3343 */
3344void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3345{
3346        int i;
3347
3348        for (i = 0; i < nr_vms; i++)
3349                free_vm_area(vms[i]);
3350        kfree(vms);
3351}
3352#endif  /* CONFIG_SMP */
3353
3354#ifdef CONFIG_PROC_FS
3355static void *s_start(struct seq_file *m, loff_t *pos)
3356        __acquires(&vmap_area_lock)
3357{
3358        spin_lock(&vmap_area_lock);
3359        return seq_list_start(&vmap_area_list, *pos);
3360}
3361
3362static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3363{
3364        return seq_list_next(p, &vmap_area_list, pos);
3365}
3366
3367static void s_stop(struct seq_file *m, void *p)
3368        __releases(&vmap_area_lock)
3369{
3370        spin_unlock(&vmap_area_lock);
3371}
3372
3373static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3374{
3375        if (IS_ENABLED(CONFIG_NUMA)) {
3376                unsigned int nr, *counters = m->private;
3377
3378                if (!counters)
3379                        return;
3380
3381                if (v->flags & VM_UNINITIALIZED)
3382                        return;
3383                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3384                smp_rmb();
3385
3386                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3387
3388                for (nr = 0; nr < v->nr_pages; nr++)
3389                        counters[page_to_nid(v->pages[nr])]++;
3390
3391                for_each_node_state(nr, N_HIGH_MEMORY)
3392                        if (counters[nr])
3393                                seq_printf(m, " N%u=%u", nr, counters[nr]);
3394        }
3395}
3396
3397static int s_show(struct seq_file *m, void *p)
3398{
3399        struct vmap_area *va;
3400        struct vm_struct *v;
3401
3402        va = list_entry(p, struct vmap_area, list);
3403
3404        /*
3405         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3406         * behalf of vmap area is being tear down or vm_map_ram allocation.
3407         */
3408        if (!(va->flags & VM_VM_AREA)) {
3409                seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3410                        (void *)va->va_start, (void *)va->va_end,
3411                        va->va_end - va->va_start,
3412                        va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3413
3414                return 0;
3415        }
3416
3417        v = va->vm;
3418
3419        seq_printf(m, "0x%pK-0x%pK %7ld",
3420                v->addr, v->addr + v->size, v->size);
3421
3422        if (v->caller)
3423                seq_printf(m, " %pS", v->caller);
3424
3425        if (v->nr_pages)
3426                seq_printf(m, " pages=%d", v->nr_pages);
3427
3428        if (v->phys_addr)
3429                seq_printf(m, " phys=%pa", &v->phys_addr);
3430
3431        if (v->flags & VM_IOREMAP)
3432                seq_puts(m, " ioremap");
3433
3434        if (v->flags & VM_ALLOC)
3435                seq_puts(m, " vmalloc");
3436
3437        if (v->flags & VM_MAP)
3438                seq_puts(m, " vmap");
3439
3440        if (v->flags & VM_USERMAP)
3441                seq_puts(m, " user");
3442
3443        if (is_vmalloc_addr(v->pages))
3444                seq_puts(m, " vpages");
3445
3446        show_numa_info(m, v);
3447        seq_putc(m, '\n');
3448        return 0;
3449}
3450
3451static const struct seq_operations vmalloc_op = {
3452        .start = s_start,
3453        .next = s_next,
3454        .stop = s_stop,
3455        .show = s_show,
3456};
3457
3458static int __init proc_vmalloc_init(void)
3459{
3460        if (IS_ENABLED(CONFIG_NUMA))
3461                proc_create_seq_private("vmallocinfo", 0400, NULL,
3462                                &vmalloc_op,
3463                                nr_node_ids * sizeof(unsigned int), NULL);
3464        else
3465                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3466        return 0;
3467}
3468module_init(proc_vmalloc_init);
3469
3470#endif
3471