linux/mm/vmstat.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *              Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
  29#include <linux/page_ext.h>
  30#include <linux/page_owner.h>
  31
  32#include "internal.h"
  33
  34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
  35
  36#ifdef CONFIG_NUMA
  37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  38
  39/* zero numa counters within a zone */
  40static void zero_zone_numa_counters(struct zone *zone)
  41{
  42        int item, cpu;
  43
  44        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
  45                atomic_long_set(&zone->vm_numa_stat[item], 0);
  46                for_each_online_cpu(cpu)
  47                        per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
  48                                                = 0;
  49        }
  50}
  51
  52/* zero numa counters of all the populated zones */
  53static void zero_zones_numa_counters(void)
  54{
  55        struct zone *zone;
  56
  57        for_each_populated_zone(zone)
  58                zero_zone_numa_counters(zone);
  59}
  60
  61/* zero global numa counters */
  62static void zero_global_numa_counters(void)
  63{
  64        int item;
  65
  66        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
  67                atomic_long_set(&vm_numa_stat[item], 0);
  68}
  69
  70static void invalid_numa_statistics(void)
  71{
  72        zero_zones_numa_counters();
  73        zero_global_numa_counters();
  74}
  75
  76static DEFINE_MUTEX(vm_numa_stat_lock);
  77
  78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  79                void __user *buffer, size_t *length, loff_t *ppos)
  80{
  81        int ret, oldval;
  82
  83        mutex_lock(&vm_numa_stat_lock);
  84        if (write)
  85                oldval = sysctl_vm_numa_stat;
  86        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  87        if (ret || !write)
  88                goto out;
  89
  90        if (oldval == sysctl_vm_numa_stat)
  91                goto out;
  92        else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  93                static_branch_enable(&vm_numa_stat_key);
  94                pr_info("enable numa statistics\n");
  95        } else {
  96                static_branch_disable(&vm_numa_stat_key);
  97                invalid_numa_statistics();
  98                pr_info("disable numa statistics, and clear numa counters\n");
  99        }
 100
 101out:
 102        mutex_unlock(&vm_numa_stat_lock);
 103        return ret;
 104}
 105#endif
 106
 107#ifdef CONFIG_VM_EVENT_COUNTERS
 108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 109EXPORT_PER_CPU_SYMBOL(vm_event_states);
 110
 111static void sum_vm_events(unsigned long *ret)
 112{
 113        int cpu;
 114        int i;
 115
 116        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 117
 118        for_each_online_cpu(cpu) {
 119                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 120
 121                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 122                        ret[i] += this->event[i];
 123        }
 124}
 125
 126/*
 127 * Accumulate the vm event counters across all CPUs.
 128 * The result is unavoidably approximate - it can change
 129 * during and after execution of this function.
 130*/
 131void all_vm_events(unsigned long *ret)
 132{
 133        get_online_cpus();
 134        sum_vm_events(ret);
 135        put_online_cpus();
 136}
 137EXPORT_SYMBOL_GPL(all_vm_events);
 138
 139/*
 140 * Fold the foreign cpu events into our own.
 141 *
 142 * This is adding to the events on one processor
 143 * but keeps the global counts constant.
 144 */
 145void vm_events_fold_cpu(int cpu)
 146{
 147        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 148        int i;
 149
 150        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 151                count_vm_events(i, fold_state->event[i]);
 152                fold_state->event[i] = 0;
 153        }
 154}
 155
 156#endif /* CONFIG_VM_EVENT_COUNTERS */
 157
 158/*
 159 * Manage combined zone based / global counters
 160 *
 161 * vm_stat contains the global counters
 162 */
 163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
 165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 166EXPORT_SYMBOL(vm_zone_stat);
 167EXPORT_SYMBOL(vm_numa_stat);
 168EXPORT_SYMBOL(vm_node_stat);
 169
 170#ifdef CONFIG_SMP
 171
 172int calculate_pressure_threshold(struct zone *zone)
 173{
 174        int threshold;
 175        int watermark_distance;
 176
 177        /*
 178         * As vmstats are not up to date, there is drift between the estimated
 179         * and real values. For high thresholds and a high number of CPUs, it
 180         * is possible for the min watermark to be breached while the estimated
 181         * value looks fine. The pressure threshold is a reduced value such
 182         * that even the maximum amount of drift will not accidentally breach
 183         * the min watermark
 184         */
 185        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 186        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 187
 188        /*
 189         * Maximum threshold is 125
 190         */
 191        threshold = min(125, threshold);
 192
 193        return threshold;
 194}
 195
 196int calculate_normal_threshold(struct zone *zone)
 197{
 198        int threshold;
 199        int mem;        /* memory in 128 MB units */
 200
 201        /*
 202         * The threshold scales with the number of processors and the amount
 203         * of memory per zone. More memory means that we can defer updates for
 204         * longer, more processors could lead to more contention.
 205         * fls() is used to have a cheap way of logarithmic scaling.
 206         *
 207         * Some sample thresholds:
 208         *
 209         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 210         * ------------------------------------------------------------------
 211         * 8            1               1       0.9-1 GB        4
 212         * 16           2               2       0.9-1 GB        4
 213         * 20           2               2       1-2 GB          5
 214         * 24           2               2       2-4 GB          6
 215         * 28           2               2       4-8 GB          7
 216         * 32           2               2       8-16 GB         8
 217         * 4            2               2       <128M           1
 218         * 30           4               3       2-4 GB          5
 219         * 48           4               3       8-16 GB         8
 220         * 32           8               4       1-2 GB          4
 221         * 32           8               4       0.9-1GB         4
 222         * 10           16              5       <128M           1
 223         * 40           16              5       900M            4
 224         * 70           64              7       2-4 GB          5
 225         * 84           64              7       4-8 GB          6
 226         * 108          512             9       4-8 GB          6
 227         * 125          1024            10      8-16 GB         8
 228         * 125          1024            10      16-32 GB        9
 229         */
 230
 231        mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 232
 233        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 234
 235        /*
 236         * Maximum threshold is 125
 237         */
 238        threshold = min(125, threshold);
 239
 240        return threshold;
 241}
 242
 243/*
 244 * Refresh the thresholds for each zone.
 245 */
 246void refresh_zone_stat_thresholds(void)
 247{
 248        struct pglist_data *pgdat;
 249        struct zone *zone;
 250        int cpu;
 251        int threshold;
 252
 253        /* Zero current pgdat thresholds */
 254        for_each_online_pgdat(pgdat) {
 255                for_each_online_cpu(cpu) {
 256                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 257                }
 258        }
 259
 260        for_each_populated_zone(zone) {
 261                struct pglist_data *pgdat = zone->zone_pgdat;
 262                unsigned long max_drift, tolerate_drift;
 263
 264                threshold = calculate_normal_threshold(zone);
 265
 266                for_each_online_cpu(cpu) {
 267                        int pgdat_threshold;
 268
 269                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 270                                                        = threshold;
 271
 272                        /* Base nodestat threshold on the largest populated zone. */
 273                        pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 274                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 275                                = max(threshold, pgdat_threshold);
 276                }
 277
 278                /*
 279                 * Only set percpu_drift_mark if there is a danger that
 280                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 281                 * the min watermark could be breached by an allocation
 282                 */
 283                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 284                max_drift = num_online_cpus() * threshold;
 285                if (max_drift > tolerate_drift)
 286                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 287                                        max_drift;
 288        }
 289}
 290
 291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 292                                int (*calculate_pressure)(struct zone *))
 293{
 294        struct zone *zone;
 295        int cpu;
 296        int threshold;
 297        int i;
 298
 299        for (i = 0; i < pgdat->nr_zones; i++) {
 300                zone = &pgdat->node_zones[i];
 301                if (!zone->percpu_drift_mark)
 302                        continue;
 303
 304                threshold = (*calculate_pressure)(zone);
 305                for_each_online_cpu(cpu)
 306                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 307                                                        = threshold;
 308        }
 309}
 310
 311/*
 312 * For use when we know that interrupts are disabled,
 313 * or when we know that preemption is disabled and that
 314 * particular counter cannot be updated from interrupt context.
 315 */
 316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 317                           long delta)
 318{
 319        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 320        s8 __percpu *p = pcp->vm_stat_diff + item;
 321        long x;
 322        long t;
 323
 324        x = delta + __this_cpu_read(*p);
 325
 326        t = __this_cpu_read(pcp->stat_threshold);
 327
 328        if (unlikely(x > t || x < -t)) {
 329                zone_page_state_add(x, zone, item);
 330                x = 0;
 331        }
 332        __this_cpu_write(*p, x);
 333}
 334EXPORT_SYMBOL(__mod_zone_page_state);
 335
 336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 337                                long delta)
 338{
 339        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 340        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 341        long x;
 342        long t;
 343
 344        x = delta + __this_cpu_read(*p);
 345
 346        t = __this_cpu_read(pcp->stat_threshold);
 347
 348        if (unlikely(x > t || x < -t)) {
 349                node_page_state_add(x, pgdat, item);
 350                x = 0;
 351        }
 352        __this_cpu_write(*p, x);
 353}
 354EXPORT_SYMBOL(__mod_node_page_state);
 355
 356/*
 357 * Optimized increment and decrement functions.
 358 *
 359 * These are only for a single page and therefore can take a struct page *
 360 * argument instead of struct zone *. This allows the inclusion of the code
 361 * generated for page_zone(page) into the optimized functions.
 362 *
 363 * No overflow check is necessary and therefore the differential can be
 364 * incremented or decremented in place which may allow the compilers to
 365 * generate better code.
 366 * The increment or decrement is known and therefore one boundary check can
 367 * be omitted.
 368 *
 369 * NOTE: These functions are very performance sensitive. Change only
 370 * with care.
 371 *
 372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 373 * However, the code must first determine the differential location in a zone
 374 * based on the processor number and then inc/dec the counter. There is no
 375 * guarantee without disabling preemption that the processor will not change
 376 * in between and therefore the atomicity vs. interrupt cannot be exploited
 377 * in a useful way here.
 378 */
 379void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 380{
 381        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 382        s8 __percpu *p = pcp->vm_stat_diff + item;
 383        s8 v, t;
 384
 385        v = __this_cpu_inc_return(*p);
 386        t = __this_cpu_read(pcp->stat_threshold);
 387        if (unlikely(v > t)) {
 388                s8 overstep = t >> 1;
 389
 390                zone_page_state_add(v + overstep, zone, item);
 391                __this_cpu_write(*p, -overstep);
 392        }
 393}
 394
 395void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 396{
 397        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 398        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 399        s8 v, t;
 400
 401        v = __this_cpu_inc_return(*p);
 402        t = __this_cpu_read(pcp->stat_threshold);
 403        if (unlikely(v > t)) {
 404                s8 overstep = t >> 1;
 405
 406                node_page_state_add(v + overstep, pgdat, item);
 407                __this_cpu_write(*p, -overstep);
 408        }
 409}
 410
 411void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 412{
 413        __inc_zone_state(page_zone(page), item);
 414}
 415EXPORT_SYMBOL(__inc_zone_page_state);
 416
 417void __inc_node_page_state(struct page *page, enum node_stat_item item)
 418{
 419        __inc_node_state(page_pgdat(page), item);
 420}
 421EXPORT_SYMBOL(__inc_node_page_state);
 422
 423void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 424{
 425        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 426        s8 __percpu *p = pcp->vm_stat_diff + item;
 427        s8 v, t;
 428
 429        v = __this_cpu_dec_return(*p);
 430        t = __this_cpu_read(pcp->stat_threshold);
 431        if (unlikely(v < - t)) {
 432                s8 overstep = t >> 1;
 433
 434                zone_page_state_add(v - overstep, zone, item);
 435                __this_cpu_write(*p, overstep);
 436        }
 437}
 438
 439void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 440{
 441        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 442        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 443        s8 v, t;
 444
 445        v = __this_cpu_dec_return(*p);
 446        t = __this_cpu_read(pcp->stat_threshold);
 447        if (unlikely(v < - t)) {
 448                s8 overstep = t >> 1;
 449
 450                node_page_state_add(v - overstep, pgdat, item);
 451                __this_cpu_write(*p, overstep);
 452        }
 453}
 454
 455void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 456{
 457        __dec_zone_state(page_zone(page), item);
 458}
 459EXPORT_SYMBOL(__dec_zone_page_state);
 460
 461void __dec_node_page_state(struct page *page, enum node_stat_item item)
 462{
 463        __dec_node_state(page_pgdat(page), item);
 464}
 465EXPORT_SYMBOL(__dec_node_page_state);
 466
 467#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 468/*
 469 * If we have cmpxchg_local support then we do not need to incur the overhead
 470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 471 *
 472 * mod_state() modifies the zone counter state through atomic per cpu
 473 * operations.
 474 *
 475 * Overstep mode specifies how overstep should handled:
 476 *     0       No overstepping
 477 *     1       Overstepping half of threshold
 478 *     -1      Overstepping minus half of threshold
 479*/
 480static inline void mod_zone_state(struct zone *zone,
 481       enum zone_stat_item item, long delta, int overstep_mode)
 482{
 483        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 484        s8 __percpu *p = pcp->vm_stat_diff + item;
 485        long o, n, t, z;
 486
 487        do {
 488                z = 0;  /* overflow to zone counters */
 489
 490                /*
 491                 * The fetching of the stat_threshold is racy. We may apply
 492                 * a counter threshold to the wrong the cpu if we get
 493                 * rescheduled while executing here. However, the next
 494                 * counter update will apply the threshold again and
 495                 * therefore bring the counter under the threshold again.
 496                 *
 497                 * Most of the time the thresholds are the same anyways
 498                 * for all cpus in a zone.
 499                 */
 500                t = this_cpu_read(pcp->stat_threshold);
 501
 502                o = this_cpu_read(*p);
 503                n = delta + o;
 504
 505                if (n > t || n < -t) {
 506                        int os = overstep_mode * (t >> 1) ;
 507
 508                        /* Overflow must be added to zone counters */
 509                        z = n + os;
 510                        n = -os;
 511                }
 512        } while (this_cpu_cmpxchg(*p, o, n) != o);
 513
 514        if (z)
 515                zone_page_state_add(z, zone, item);
 516}
 517
 518void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 519                         long delta)
 520{
 521        mod_zone_state(zone, item, delta, 0);
 522}
 523EXPORT_SYMBOL(mod_zone_page_state);
 524
 525void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 526{
 527        mod_zone_state(page_zone(page), item, 1, 1);
 528}
 529EXPORT_SYMBOL(inc_zone_page_state);
 530
 531void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 532{
 533        mod_zone_state(page_zone(page), item, -1, -1);
 534}
 535EXPORT_SYMBOL(dec_zone_page_state);
 536
 537static inline void mod_node_state(struct pglist_data *pgdat,
 538       enum node_stat_item item, int delta, int overstep_mode)
 539{
 540        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 541        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 542        long o, n, t, z;
 543
 544        do {
 545                z = 0;  /* overflow to node counters */
 546
 547                /*
 548                 * The fetching of the stat_threshold is racy. We may apply
 549                 * a counter threshold to the wrong the cpu if we get
 550                 * rescheduled while executing here. However, the next
 551                 * counter update will apply the threshold again and
 552                 * therefore bring the counter under the threshold again.
 553                 *
 554                 * Most of the time the thresholds are the same anyways
 555                 * for all cpus in a node.
 556                 */
 557                t = this_cpu_read(pcp->stat_threshold);
 558
 559                o = this_cpu_read(*p);
 560                n = delta + o;
 561
 562                if (n > t || n < -t) {
 563                        int os = overstep_mode * (t >> 1) ;
 564
 565                        /* Overflow must be added to node counters */
 566                        z = n + os;
 567                        n = -os;
 568                }
 569        } while (this_cpu_cmpxchg(*p, o, n) != o);
 570
 571        if (z)
 572                node_page_state_add(z, pgdat, item);
 573}
 574
 575void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 576                                        long delta)
 577{
 578        mod_node_state(pgdat, item, delta, 0);
 579}
 580EXPORT_SYMBOL(mod_node_page_state);
 581
 582void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 583{
 584        mod_node_state(pgdat, item, 1, 1);
 585}
 586
 587void inc_node_page_state(struct page *page, enum node_stat_item item)
 588{
 589        mod_node_state(page_pgdat(page), item, 1, 1);
 590}
 591EXPORT_SYMBOL(inc_node_page_state);
 592
 593void dec_node_page_state(struct page *page, enum node_stat_item item)
 594{
 595        mod_node_state(page_pgdat(page), item, -1, -1);
 596}
 597EXPORT_SYMBOL(dec_node_page_state);
 598#else
 599/*
 600 * Use interrupt disable to serialize counter updates
 601 */
 602void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 603                         long delta)
 604{
 605        unsigned long flags;
 606
 607        local_irq_save(flags);
 608        __mod_zone_page_state(zone, item, delta);
 609        local_irq_restore(flags);
 610}
 611EXPORT_SYMBOL(mod_zone_page_state);
 612
 613void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 614{
 615        unsigned long flags;
 616        struct zone *zone;
 617
 618        zone = page_zone(page);
 619        local_irq_save(flags);
 620        __inc_zone_state(zone, item);
 621        local_irq_restore(flags);
 622}
 623EXPORT_SYMBOL(inc_zone_page_state);
 624
 625void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 626{
 627        unsigned long flags;
 628
 629        local_irq_save(flags);
 630        __dec_zone_page_state(page, item);
 631        local_irq_restore(flags);
 632}
 633EXPORT_SYMBOL(dec_zone_page_state);
 634
 635void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 636{
 637        unsigned long flags;
 638
 639        local_irq_save(flags);
 640        __inc_node_state(pgdat, item);
 641        local_irq_restore(flags);
 642}
 643EXPORT_SYMBOL(inc_node_state);
 644
 645void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 646                                        long delta)
 647{
 648        unsigned long flags;
 649
 650        local_irq_save(flags);
 651        __mod_node_page_state(pgdat, item, delta);
 652        local_irq_restore(flags);
 653}
 654EXPORT_SYMBOL(mod_node_page_state);
 655
 656void inc_node_page_state(struct page *page, enum node_stat_item item)
 657{
 658        unsigned long flags;
 659        struct pglist_data *pgdat;
 660
 661        pgdat = page_pgdat(page);
 662        local_irq_save(flags);
 663        __inc_node_state(pgdat, item);
 664        local_irq_restore(flags);
 665}
 666EXPORT_SYMBOL(inc_node_page_state);
 667
 668void dec_node_page_state(struct page *page, enum node_stat_item item)
 669{
 670        unsigned long flags;
 671
 672        local_irq_save(flags);
 673        __dec_node_page_state(page, item);
 674        local_irq_restore(flags);
 675}
 676EXPORT_SYMBOL(dec_node_page_state);
 677#endif
 678
 679/*
 680 * Fold a differential into the global counters.
 681 * Returns the number of counters updated.
 682 */
 683#ifdef CONFIG_NUMA
 684static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
 685{
 686        int i;
 687        int changes = 0;
 688
 689        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 690                if (zone_diff[i]) {
 691                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 692                        changes++;
 693        }
 694
 695        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 696                if (numa_diff[i]) {
 697                        atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
 698                        changes++;
 699        }
 700
 701        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 702                if (node_diff[i]) {
 703                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 704                        changes++;
 705        }
 706        return changes;
 707}
 708#else
 709static int fold_diff(int *zone_diff, int *node_diff)
 710{
 711        int i;
 712        int changes = 0;
 713
 714        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 715                if (zone_diff[i]) {
 716                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 717                        changes++;
 718        }
 719
 720        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 721                if (node_diff[i]) {
 722                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 723                        changes++;
 724        }
 725        return changes;
 726}
 727#endif /* CONFIG_NUMA */
 728
 729/*
 730 * Update the zone counters for the current cpu.
 731 *
 732 * Note that refresh_cpu_vm_stats strives to only access
 733 * node local memory. The per cpu pagesets on remote zones are placed
 734 * in the memory local to the processor using that pageset. So the
 735 * loop over all zones will access a series of cachelines local to
 736 * the processor.
 737 *
 738 * The call to zone_page_state_add updates the cachelines with the
 739 * statistics in the remote zone struct as well as the global cachelines
 740 * with the global counters. These could cause remote node cache line
 741 * bouncing and will have to be only done when necessary.
 742 *
 743 * The function returns the number of global counters updated.
 744 */
 745static int refresh_cpu_vm_stats(bool do_pagesets)
 746{
 747        struct pglist_data *pgdat;
 748        struct zone *zone;
 749        int i;
 750        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 751#ifdef CONFIG_NUMA
 752        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 753#endif
 754        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 755        int changes = 0;
 756
 757        for_each_populated_zone(zone) {
 758                struct per_cpu_pageset __percpu *p = zone->pageset;
 759
 760                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 761                        int v;
 762
 763                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 764                        if (v) {
 765
 766                                atomic_long_add(v, &zone->vm_stat[i]);
 767                                global_zone_diff[i] += v;
 768#ifdef CONFIG_NUMA
 769                                /* 3 seconds idle till flush */
 770                                __this_cpu_write(p->expire, 3);
 771#endif
 772                        }
 773                }
 774#ifdef CONFIG_NUMA
 775                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
 776                        int v;
 777
 778                        v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
 779                        if (v) {
 780
 781                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 782                                global_numa_diff[i] += v;
 783                                __this_cpu_write(p->expire, 3);
 784                        }
 785                }
 786
 787                if (do_pagesets) {
 788                        cond_resched();
 789                        /*
 790                         * Deal with draining the remote pageset of this
 791                         * processor
 792                         *
 793                         * Check if there are pages remaining in this pageset
 794                         * if not then there is nothing to expire.
 795                         */
 796                        if (!__this_cpu_read(p->expire) ||
 797                               !__this_cpu_read(p->pcp.count))
 798                                continue;
 799
 800                        /*
 801                         * We never drain zones local to this processor.
 802                         */
 803                        if (zone_to_nid(zone) == numa_node_id()) {
 804                                __this_cpu_write(p->expire, 0);
 805                                continue;
 806                        }
 807
 808                        if (__this_cpu_dec_return(p->expire))
 809                                continue;
 810
 811                        if (__this_cpu_read(p->pcp.count)) {
 812                                drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 813                                changes++;
 814                        }
 815                }
 816#endif
 817        }
 818
 819        for_each_online_pgdat(pgdat) {
 820                struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 821
 822                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 823                        int v;
 824
 825                        v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 826                        if (v) {
 827                                atomic_long_add(v, &pgdat->vm_stat[i]);
 828                                global_node_diff[i] += v;
 829                        }
 830                }
 831        }
 832
 833#ifdef CONFIG_NUMA
 834        changes += fold_diff(global_zone_diff, global_numa_diff,
 835                             global_node_diff);
 836#else
 837        changes += fold_diff(global_zone_diff, global_node_diff);
 838#endif
 839        return changes;
 840}
 841
 842/*
 843 * Fold the data for an offline cpu into the global array.
 844 * There cannot be any access by the offline cpu and therefore
 845 * synchronization is simplified.
 846 */
 847void cpu_vm_stats_fold(int cpu)
 848{
 849        struct pglist_data *pgdat;
 850        struct zone *zone;
 851        int i;
 852        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 853#ifdef CONFIG_NUMA
 854        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 855#endif
 856        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 857
 858        for_each_populated_zone(zone) {
 859                struct per_cpu_pageset *p;
 860
 861                p = per_cpu_ptr(zone->pageset, cpu);
 862
 863                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 864                        if (p->vm_stat_diff[i]) {
 865                                int v;
 866
 867                                v = p->vm_stat_diff[i];
 868                                p->vm_stat_diff[i] = 0;
 869                                atomic_long_add(v, &zone->vm_stat[i]);
 870                                global_zone_diff[i] += v;
 871                        }
 872
 873#ifdef CONFIG_NUMA
 874                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 875                        if (p->vm_numa_stat_diff[i]) {
 876                                int v;
 877
 878                                v = p->vm_numa_stat_diff[i];
 879                                p->vm_numa_stat_diff[i] = 0;
 880                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 881                                global_numa_diff[i] += v;
 882                        }
 883#endif
 884        }
 885
 886        for_each_online_pgdat(pgdat) {
 887                struct per_cpu_nodestat *p;
 888
 889                p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 890
 891                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 892                        if (p->vm_node_stat_diff[i]) {
 893                                int v;
 894
 895                                v = p->vm_node_stat_diff[i];
 896                                p->vm_node_stat_diff[i] = 0;
 897                                atomic_long_add(v, &pgdat->vm_stat[i]);
 898                                global_node_diff[i] += v;
 899                        }
 900        }
 901
 902#ifdef CONFIG_NUMA
 903        fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
 904#else
 905        fold_diff(global_zone_diff, global_node_diff);
 906#endif
 907}
 908
 909/*
 910 * this is only called if !populated_zone(zone), which implies no other users of
 911 * pset->vm_stat_diff[] exsist.
 912 */
 913void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 914{
 915        int i;
 916
 917        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 918                if (pset->vm_stat_diff[i]) {
 919                        int v = pset->vm_stat_diff[i];
 920                        pset->vm_stat_diff[i] = 0;
 921                        atomic_long_add(v, &zone->vm_stat[i]);
 922                        atomic_long_add(v, &vm_zone_stat[i]);
 923                }
 924
 925#ifdef CONFIG_NUMA
 926        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 927                if (pset->vm_numa_stat_diff[i]) {
 928                        int v = pset->vm_numa_stat_diff[i];
 929
 930                        pset->vm_numa_stat_diff[i] = 0;
 931                        atomic_long_add(v, &zone->vm_numa_stat[i]);
 932                        atomic_long_add(v, &vm_numa_stat[i]);
 933                }
 934#endif
 935}
 936#endif
 937
 938#ifdef CONFIG_NUMA
 939void __inc_numa_state(struct zone *zone,
 940                                 enum numa_stat_item item)
 941{
 942        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 943        u16 __percpu *p = pcp->vm_numa_stat_diff + item;
 944        u16 v;
 945
 946        v = __this_cpu_inc_return(*p);
 947
 948        if (unlikely(v > NUMA_STATS_THRESHOLD)) {
 949                zone_numa_state_add(v, zone, item);
 950                __this_cpu_write(*p, 0);
 951        }
 952}
 953
 954/*
 955 * Determine the per node value of a stat item. This function
 956 * is called frequently in a NUMA machine, so try to be as
 957 * frugal as possible.
 958 */
 959unsigned long sum_zone_node_page_state(int node,
 960                                 enum zone_stat_item item)
 961{
 962        struct zone *zones = NODE_DATA(node)->node_zones;
 963        int i;
 964        unsigned long count = 0;
 965
 966        for (i = 0; i < MAX_NR_ZONES; i++)
 967                count += zone_page_state(zones + i, item);
 968
 969        return count;
 970}
 971
 972/*
 973 * Determine the per node value of a numa stat item. To avoid deviation,
 974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 975 */
 976unsigned long sum_zone_numa_state(int node,
 977                                 enum numa_stat_item item)
 978{
 979        struct zone *zones = NODE_DATA(node)->node_zones;
 980        int i;
 981        unsigned long count = 0;
 982
 983        for (i = 0; i < MAX_NR_ZONES; i++)
 984                count += zone_numa_state_snapshot(zones + i, item);
 985
 986        return count;
 987}
 988
 989/*
 990 * Determine the per node value of a stat item.
 991 */
 992unsigned long node_page_state(struct pglist_data *pgdat,
 993                                enum node_stat_item item)
 994{
 995        long x = atomic_long_read(&pgdat->vm_stat[item]);
 996#ifdef CONFIG_SMP
 997        if (x < 0)
 998                x = 0;
 999#endif
1000        return x;
1001}
1002#endif
1003
1004#ifdef CONFIG_COMPACTION
1005
1006struct contig_page_info {
1007        unsigned long free_pages;
1008        unsigned long free_blocks_total;
1009        unsigned long free_blocks_suitable;
1010};
1011
1012/*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
1020static void fill_contig_page_info(struct zone *zone,
1021                                unsigned int suitable_order,
1022                                struct contig_page_info *info)
1023{
1024        unsigned int order;
1025
1026        info->free_pages = 0;
1027        info->free_blocks_total = 0;
1028        info->free_blocks_suitable = 0;
1029
1030        for (order = 0; order < MAX_ORDER; order++) {
1031                unsigned long blocks;
1032
1033                /* Count number of free blocks */
1034                blocks = zone->free_area[order].nr_free;
1035                info->free_blocks_total += blocks;
1036
1037                /* Count free base pages */
1038                info->free_pages += blocks << order;
1039
1040                /* Count the suitable free blocks */
1041                if (order >= suitable_order)
1042                        info->free_blocks_suitable += blocks <<
1043                                                (order - suitable_order);
1044        }
1045}
1046
1047/*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
1054static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055{
1056        unsigned long requested = 1UL << order;
1057
1058        if (WARN_ON_ONCE(order >= MAX_ORDER))
1059                return 0;
1060
1061        if (!info->free_blocks_total)
1062                return 0;
1063
1064        /* Fragmentation index only makes sense when a request would fail */
1065        if (info->free_blocks_suitable)
1066                return -1000;
1067
1068        /*
1069         * Index is between 0 and 1 so return within 3 decimal places
1070         *
1071         * 0 => allocation would fail due to lack of memory
1072         * 1 => allocation would fail due to fragmentation
1073         */
1074        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075}
1076
1077/* Same as __fragmentation index but allocs contig_page_info on stack */
1078int fragmentation_index(struct zone *zone, unsigned int order)
1079{
1080        struct contig_page_info info;
1081
1082        fill_contig_page_info(zone, order, &info);
1083        return __fragmentation_index(order, &info);
1084}
1085#endif
1086
1087#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1088#ifdef CONFIG_ZONE_DMA
1089#define TEXT_FOR_DMA(xx) xx "_dma",
1090#else
1091#define TEXT_FOR_DMA(xx)
1092#endif
1093
1094#ifdef CONFIG_ZONE_DMA32
1095#define TEXT_FOR_DMA32(xx) xx "_dma32",
1096#else
1097#define TEXT_FOR_DMA32(xx)
1098#endif
1099
1100#ifdef CONFIG_HIGHMEM
1101#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1102#else
1103#define TEXT_FOR_HIGHMEM(xx)
1104#endif
1105
1106#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1107                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108
1109const char * const vmstat_text[] = {
1110        /* enum zone_stat_item countes */
1111        "nr_free_pages",
1112        "nr_zone_inactive_anon",
1113        "nr_zone_active_anon",
1114        "nr_zone_inactive_file",
1115        "nr_zone_active_file",
1116        "nr_zone_unevictable",
1117        "nr_zone_write_pending",
1118        "nr_mlock",
1119        "nr_page_table_pages",
1120        "nr_kernel_stack",
1121        "nr_bounce",
1122#if IS_ENABLED(CONFIG_ZSMALLOC)
1123        "nr_zspages",
1124#endif
1125        "nr_free_cma",
1126
1127        /* enum numa_stat_item counters */
1128#ifdef CONFIG_NUMA
1129        "numa_hit",
1130        "numa_miss",
1131        "numa_foreign",
1132        "numa_interleave",
1133        "numa_local",
1134        "numa_other",
1135#endif
1136
1137        /* Node-based counters */
1138        "nr_inactive_anon",
1139        "nr_active_anon",
1140        "nr_inactive_file",
1141        "nr_active_file",
1142        "nr_unevictable",
1143        "nr_slab_reclaimable",
1144        "nr_slab_unreclaimable",
1145        "nr_isolated_anon",
1146        "nr_isolated_file",
1147        "workingset_nodes",
1148        "workingset_refault",
1149        "workingset_activate",
1150        "workingset_restore",
1151        "workingset_nodereclaim",
1152        "nr_anon_pages",
1153        "nr_mapped",
1154        "nr_file_pages",
1155        "nr_dirty",
1156        "nr_writeback",
1157        "nr_writeback_temp",
1158        "nr_shmem",
1159        "nr_shmem_hugepages",
1160        "nr_shmem_pmdmapped",
1161        "nr_anon_transparent_hugepages",
1162        "nr_unstable",
1163        "nr_vmscan_write",
1164        "nr_vmscan_immediate_reclaim",
1165        "nr_dirtied",
1166        "nr_written",
1167        "nr_kernel_misc_reclaimable",
1168
1169        /* enum writeback_stat_item counters */
1170        "nr_dirty_threshold",
1171        "nr_dirty_background_threshold",
1172
1173#ifdef CONFIG_VM_EVENT_COUNTERS
1174        /* enum vm_event_item counters */
1175        "pgpgin",
1176        "pgpgout",
1177        "pswpin",
1178        "pswpout",
1179
1180        TEXTS_FOR_ZONES("pgalloc")
1181        TEXTS_FOR_ZONES("allocstall")
1182        TEXTS_FOR_ZONES("pgskip")
1183
1184        "pgfree",
1185        "pgactivate",
1186        "pgdeactivate",
1187        "pglazyfree",
1188
1189        "pgfault",
1190        "pgmajfault",
1191        "pglazyfreed",
1192
1193        "pgrefill",
1194        "pgsteal_kswapd",
1195        "pgsteal_direct",
1196        "pgscan_kswapd",
1197        "pgscan_direct",
1198        "pgscan_direct_throttle",
1199
1200#ifdef CONFIG_NUMA
1201        "zone_reclaim_failed",
1202#endif
1203        "pginodesteal",
1204        "slabs_scanned",
1205        "kswapd_inodesteal",
1206        "kswapd_low_wmark_hit_quickly",
1207        "kswapd_high_wmark_hit_quickly",
1208        "pageoutrun",
1209
1210        "pgrotated",
1211
1212        "drop_pagecache",
1213        "drop_slab",
1214        "oom_kill",
1215
1216#ifdef CONFIG_NUMA_BALANCING
1217        "numa_pte_updates",
1218        "numa_huge_pte_updates",
1219        "numa_hint_faults",
1220        "numa_hint_faults_local",
1221        "numa_pages_migrated",
1222#endif
1223#ifdef CONFIG_MIGRATION
1224        "pgmigrate_success",
1225        "pgmigrate_fail",
1226#endif
1227#ifdef CONFIG_COMPACTION
1228        "compact_migrate_scanned",
1229        "compact_free_scanned",
1230        "compact_isolated",
1231        "compact_stall",
1232        "compact_fail",
1233        "compact_success",
1234        "compact_daemon_wake",
1235        "compact_daemon_migrate_scanned",
1236        "compact_daemon_free_scanned",
1237#endif
1238
1239#ifdef CONFIG_HUGETLB_PAGE
1240        "htlb_buddy_alloc_success",
1241        "htlb_buddy_alloc_fail",
1242#endif
1243        "unevictable_pgs_culled",
1244        "unevictable_pgs_scanned",
1245        "unevictable_pgs_rescued",
1246        "unevictable_pgs_mlocked",
1247        "unevictable_pgs_munlocked",
1248        "unevictable_pgs_cleared",
1249        "unevictable_pgs_stranded",
1250
1251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1252        "thp_fault_alloc",
1253        "thp_fault_fallback",
1254        "thp_collapse_alloc",
1255        "thp_collapse_alloc_failed",
1256        "thp_file_alloc",
1257        "thp_file_mapped",
1258        "thp_split_page",
1259        "thp_split_page_failed",
1260        "thp_deferred_split_page",
1261        "thp_split_pmd",
1262#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1263        "thp_split_pud",
1264#endif
1265        "thp_zero_page_alloc",
1266        "thp_zero_page_alloc_failed",
1267        "thp_swpout",
1268        "thp_swpout_fallback",
1269#endif
1270#ifdef CONFIG_MEMORY_BALLOON
1271        "balloon_inflate",
1272        "balloon_deflate",
1273#ifdef CONFIG_BALLOON_COMPACTION
1274        "balloon_migrate",
1275#endif
1276#endif /* CONFIG_MEMORY_BALLOON */
1277#ifdef CONFIG_DEBUG_TLBFLUSH
1278        "nr_tlb_remote_flush",
1279        "nr_tlb_remote_flush_received",
1280        "nr_tlb_local_flush_all",
1281        "nr_tlb_local_flush_one",
1282#endif /* CONFIG_DEBUG_TLBFLUSH */
1283
1284#ifdef CONFIG_DEBUG_VM_VMACACHE
1285        "vmacache_find_calls",
1286        "vmacache_find_hits",
1287#endif
1288#ifdef CONFIG_SWAP
1289        "swap_ra",
1290        "swap_ra_hit",
1291#endif
1292#endif /* CONFIG_VM_EVENTS_COUNTERS */
1293};
1294#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1295
1296#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1297     defined(CONFIG_PROC_FS)
1298static void *frag_start(struct seq_file *m, loff_t *pos)
1299{
1300        pg_data_t *pgdat;
1301        loff_t node = *pos;
1302
1303        for (pgdat = first_online_pgdat();
1304             pgdat && node;
1305             pgdat = next_online_pgdat(pgdat))
1306                --node;
1307
1308        return pgdat;
1309}
1310
1311static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1312{
1313        pg_data_t *pgdat = (pg_data_t *)arg;
1314
1315        (*pos)++;
1316        return next_online_pgdat(pgdat);
1317}
1318
1319static void frag_stop(struct seq_file *m, void *arg)
1320{
1321}
1322
1323/*
1324 * Walk zones in a node and print using a callback.
1325 * If @assert_populated is true, only use callback for zones that are populated.
1326 */
1327static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1328                bool assert_populated, bool nolock,
1329                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1330{
1331        struct zone *zone;
1332        struct zone *node_zones = pgdat->node_zones;
1333        unsigned long flags;
1334
1335        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1336                if (assert_populated && !populated_zone(zone))
1337                        continue;
1338
1339                if (!nolock)
1340                        spin_lock_irqsave(&zone->lock, flags);
1341                print(m, pgdat, zone);
1342                if (!nolock)
1343                        spin_unlock_irqrestore(&zone->lock, flags);
1344        }
1345}
1346#endif
1347
1348#ifdef CONFIG_PROC_FS
1349static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1350                                                struct zone *zone)
1351{
1352        int order;
1353
1354        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1355        for (order = 0; order < MAX_ORDER; ++order)
1356                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1357        seq_putc(m, '\n');
1358}
1359
1360/*
1361 * This walks the free areas for each zone.
1362 */
1363static int frag_show(struct seq_file *m, void *arg)
1364{
1365        pg_data_t *pgdat = (pg_data_t *)arg;
1366        walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1367        return 0;
1368}
1369
1370static void pagetypeinfo_showfree_print(struct seq_file *m,
1371                                        pg_data_t *pgdat, struct zone *zone)
1372{
1373        int order, mtype;
1374
1375        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1376                seq_printf(m, "Node %4d, zone %8s, type %12s ",
1377                                        pgdat->node_id,
1378                                        zone->name,
1379                                        migratetype_names[mtype]);
1380                for (order = 0; order < MAX_ORDER; ++order) {
1381                        unsigned long freecount = 0;
1382                        struct free_area *area;
1383                        struct list_head *curr;
1384
1385                        area = &(zone->free_area[order]);
1386
1387                        list_for_each(curr, &area->free_list[mtype])
1388                                freecount++;
1389                        seq_printf(m, "%6lu ", freecount);
1390                }
1391                seq_putc(m, '\n');
1392        }
1393}
1394
1395/* Print out the free pages at each order for each migatetype */
1396static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1397{
1398        int order;
1399        pg_data_t *pgdat = (pg_data_t *)arg;
1400
1401        /* Print header */
1402        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1403        for (order = 0; order < MAX_ORDER; ++order)
1404                seq_printf(m, "%6d ", order);
1405        seq_putc(m, '\n');
1406
1407        walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1408
1409        return 0;
1410}
1411
1412static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1413                                        pg_data_t *pgdat, struct zone *zone)
1414{
1415        int mtype;
1416        unsigned long pfn;
1417        unsigned long start_pfn = zone->zone_start_pfn;
1418        unsigned long end_pfn = zone_end_pfn(zone);
1419        unsigned long count[MIGRATE_TYPES] = { 0, };
1420
1421        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1422                struct page *page;
1423
1424                page = pfn_to_online_page(pfn);
1425                if (!page)
1426                        continue;
1427
1428                /* Watch for unexpected holes punched in the memmap */
1429                if (!memmap_valid_within(pfn, page, zone))
1430                        continue;
1431
1432                if (page_zone(page) != zone)
1433                        continue;
1434
1435                mtype = get_pageblock_migratetype(page);
1436
1437                if (mtype < MIGRATE_TYPES)
1438                        count[mtype]++;
1439        }
1440
1441        /* Print counts */
1442        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1443        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1444                seq_printf(m, "%12lu ", count[mtype]);
1445        seq_putc(m, '\n');
1446}
1447
1448/* Print out the number of pageblocks for each migratetype */
1449static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1450{
1451        int mtype;
1452        pg_data_t *pgdat = (pg_data_t *)arg;
1453
1454        seq_printf(m, "\n%-23s", "Number of blocks type ");
1455        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1456                seq_printf(m, "%12s ", migratetype_names[mtype]);
1457        seq_putc(m, '\n');
1458        walk_zones_in_node(m, pgdat, true, false,
1459                pagetypeinfo_showblockcount_print);
1460
1461        return 0;
1462}
1463
1464/*
1465 * Print out the number of pageblocks for each migratetype that contain pages
1466 * of other types. This gives an indication of how well fallbacks are being
1467 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1468 * to determine what is going on
1469 */
1470static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1471{
1472#ifdef CONFIG_PAGE_OWNER
1473        int mtype;
1474
1475        if (!static_branch_unlikely(&page_owner_inited))
1476                return;
1477
1478        drain_all_pages(NULL);
1479
1480        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1481        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1482                seq_printf(m, "%12s ", migratetype_names[mtype]);
1483        seq_putc(m, '\n');
1484
1485        walk_zones_in_node(m, pgdat, true, true,
1486                pagetypeinfo_showmixedcount_print);
1487#endif /* CONFIG_PAGE_OWNER */
1488}
1489
1490/*
1491 * This prints out statistics in relation to grouping pages by mobility.
1492 * It is expensive to collect so do not constantly read the file.
1493 */
1494static int pagetypeinfo_show(struct seq_file *m, void *arg)
1495{
1496        pg_data_t *pgdat = (pg_data_t *)arg;
1497
1498        /* check memoryless node */
1499        if (!node_state(pgdat->node_id, N_MEMORY))
1500                return 0;
1501
1502        seq_printf(m, "Page block order: %d\n", pageblock_order);
1503        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1504        seq_putc(m, '\n');
1505        pagetypeinfo_showfree(m, pgdat);
1506        pagetypeinfo_showblockcount(m, pgdat);
1507        pagetypeinfo_showmixedcount(m, pgdat);
1508
1509        return 0;
1510}
1511
1512static const struct seq_operations fragmentation_op = {
1513        .start  = frag_start,
1514        .next   = frag_next,
1515        .stop   = frag_stop,
1516        .show   = frag_show,
1517};
1518
1519static const struct seq_operations pagetypeinfo_op = {
1520        .start  = frag_start,
1521        .next   = frag_next,
1522        .stop   = frag_stop,
1523        .show   = pagetypeinfo_show,
1524};
1525
1526static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1527{
1528        int zid;
1529
1530        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1531                struct zone *compare = &pgdat->node_zones[zid];
1532
1533                if (populated_zone(compare))
1534                        return zone == compare;
1535        }
1536
1537        return false;
1538}
1539
1540static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1541                                                        struct zone *zone)
1542{
1543        int i;
1544        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1545        if (is_zone_first_populated(pgdat, zone)) {
1546                seq_printf(m, "\n  per-node stats");
1547                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1548                        seq_printf(m, "\n      %-12s %lu",
1549                                vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1550                                NR_VM_NUMA_STAT_ITEMS],
1551                                node_page_state(pgdat, i));
1552                }
1553        }
1554        seq_printf(m,
1555                   "\n  pages free     %lu"
1556                   "\n        min      %lu"
1557                   "\n        low      %lu"
1558                   "\n        high     %lu"
1559                   "\n        spanned  %lu"
1560                   "\n        present  %lu"
1561                   "\n        managed  %lu",
1562                   zone_page_state(zone, NR_FREE_PAGES),
1563                   min_wmark_pages(zone),
1564                   low_wmark_pages(zone),
1565                   high_wmark_pages(zone),
1566                   zone->spanned_pages,
1567                   zone->present_pages,
1568                   zone_managed_pages(zone));
1569
1570        seq_printf(m,
1571                   "\n        protection: (%ld",
1572                   zone->lowmem_reserve[0]);
1573        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1574                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1575        seq_putc(m, ')');
1576
1577        /* If unpopulated, no other information is useful */
1578        if (!populated_zone(zone)) {
1579                seq_putc(m, '\n');
1580                return;
1581        }
1582
1583        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1584                seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1585                                zone_page_state(zone, i));
1586
1587#ifdef CONFIG_NUMA
1588        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1589                seq_printf(m, "\n      %-12s %lu",
1590                                vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1591                                zone_numa_state_snapshot(zone, i));
1592#endif
1593
1594        seq_printf(m, "\n  pagesets");
1595        for_each_online_cpu(i) {
1596                struct per_cpu_pageset *pageset;
1597
1598                pageset = per_cpu_ptr(zone->pageset, i);
1599                seq_printf(m,
1600                           "\n    cpu: %i"
1601                           "\n              count: %i"
1602                           "\n              high:  %i"
1603                           "\n              batch: %i",
1604                           i,
1605                           pageset->pcp.count,
1606                           pageset->pcp.high,
1607                           pageset->pcp.batch);
1608#ifdef CONFIG_SMP
1609                seq_printf(m, "\n  vm stats threshold: %d",
1610                                pageset->stat_threshold);
1611#endif
1612        }
1613        seq_printf(m,
1614                   "\n  node_unreclaimable:  %u"
1615                   "\n  start_pfn:           %lu",
1616                   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1617                   zone->zone_start_pfn);
1618        seq_putc(m, '\n');
1619}
1620
1621/*
1622 * Output information about zones in @pgdat.  All zones are printed regardless
1623 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1624 * set of all zones and userspace would not be aware of such zones if they are
1625 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1626 */
1627static int zoneinfo_show(struct seq_file *m, void *arg)
1628{
1629        pg_data_t *pgdat = (pg_data_t *)arg;
1630        walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1631        return 0;
1632}
1633
1634static const struct seq_operations zoneinfo_op = {
1635        .start  = frag_start, /* iterate over all zones. The same as in
1636                               * fragmentation. */
1637        .next   = frag_next,
1638        .stop   = frag_stop,
1639        .show   = zoneinfo_show,
1640};
1641
1642enum writeback_stat_item {
1643        NR_DIRTY_THRESHOLD,
1644        NR_DIRTY_BG_THRESHOLD,
1645        NR_VM_WRITEBACK_STAT_ITEMS,
1646};
1647
1648static void *vmstat_start(struct seq_file *m, loff_t *pos)
1649{
1650        unsigned long *v;
1651        int i, stat_items_size;
1652
1653        if (*pos >= ARRAY_SIZE(vmstat_text))
1654                return NULL;
1655        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1656                          NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1657                          NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1658                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1659
1660#ifdef CONFIG_VM_EVENT_COUNTERS
1661        stat_items_size += sizeof(struct vm_event_state);
1662#endif
1663
1664        BUILD_BUG_ON(stat_items_size !=
1665                     ARRAY_SIZE(vmstat_text) * sizeof(unsigned long));
1666        v = kmalloc(stat_items_size, GFP_KERNEL);
1667        m->private = v;
1668        if (!v)
1669                return ERR_PTR(-ENOMEM);
1670        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1671                v[i] = global_zone_page_state(i);
1672        v += NR_VM_ZONE_STAT_ITEMS;
1673
1674#ifdef CONFIG_NUMA
1675        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1676                v[i] = global_numa_state(i);
1677        v += NR_VM_NUMA_STAT_ITEMS;
1678#endif
1679
1680        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1681                v[i] = global_node_page_state(i);
1682        v += NR_VM_NODE_STAT_ITEMS;
1683
1684        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1685                            v + NR_DIRTY_THRESHOLD);
1686        v += NR_VM_WRITEBACK_STAT_ITEMS;
1687
1688#ifdef CONFIG_VM_EVENT_COUNTERS
1689        all_vm_events(v);
1690        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1691        v[PGPGOUT] /= 2;
1692#endif
1693        return (unsigned long *)m->private + *pos;
1694}
1695
1696static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1697{
1698        (*pos)++;
1699        if (*pos >= ARRAY_SIZE(vmstat_text))
1700                return NULL;
1701        return (unsigned long *)m->private + *pos;
1702}
1703
1704static int vmstat_show(struct seq_file *m, void *arg)
1705{
1706        unsigned long *l = arg;
1707        unsigned long off = l - (unsigned long *)m->private;
1708
1709        seq_puts(m, vmstat_text[off]);
1710        seq_put_decimal_ull(m, " ", *l);
1711        seq_putc(m, '\n');
1712        return 0;
1713}
1714
1715static void vmstat_stop(struct seq_file *m, void *arg)
1716{
1717        kfree(m->private);
1718        m->private = NULL;
1719}
1720
1721static const struct seq_operations vmstat_op = {
1722        .start  = vmstat_start,
1723        .next   = vmstat_next,
1724        .stop   = vmstat_stop,
1725        .show   = vmstat_show,
1726};
1727#endif /* CONFIG_PROC_FS */
1728
1729#ifdef CONFIG_SMP
1730static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1731int sysctl_stat_interval __read_mostly = HZ;
1732
1733#ifdef CONFIG_PROC_FS
1734static void refresh_vm_stats(struct work_struct *work)
1735{
1736        refresh_cpu_vm_stats(true);
1737}
1738
1739int vmstat_refresh(struct ctl_table *table, int write,
1740                   void __user *buffer, size_t *lenp, loff_t *ppos)
1741{
1742        long val;
1743        int err;
1744        int i;
1745
1746        /*
1747         * The regular update, every sysctl_stat_interval, may come later
1748         * than expected: leaving a significant amount in per_cpu buckets.
1749         * This is particularly misleading when checking a quantity of HUGE
1750         * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1751         * which can equally be echo'ed to or cat'ted from (by root),
1752         * can be used to update the stats just before reading them.
1753         *
1754         * Oh, and since global_zone_page_state() etc. are so careful to hide
1755         * transiently negative values, report an error here if any of
1756         * the stats is negative, so we know to go looking for imbalance.
1757         */
1758        err = schedule_on_each_cpu(refresh_vm_stats);
1759        if (err)
1760                return err;
1761        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1762                val = atomic_long_read(&vm_zone_stat[i]);
1763                if (val < 0) {
1764                        pr_warn("%s: %s %ld\n",
1765                                __func__, vmstat_text[i], val);
1766                        err = -EINVAL;
1767                }
1768        }
1769#ifdef CONFIG_NUMA
1770        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1771                val = atomic_long_read(&vm_numa_stat[i]);
1772                if (val < 0) {
1773                        pr_warn("%s: %s %ld\n",
1774                                __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1775                        err = -EINVAL;
1776                }
1777        }
1778#endif
1779        if (err)
1780                return err;
1781        if (write)
1782                *ppos += *lenp;
1783        else
1784                *lenp = 0;
1785        return 0;
1786}
1787#endif /* CONFIG_PROC_FS */
1788
1789static void vmstat_update(struct work_struct *w)
1790{
1791        if (refresh_cpu_vm_stats(true)) {
1792                /*
1793                 * Counters were updated so we expect more updates
1794                 * to occur in the future. Keep on running the
1795                 * update worker thread.
1796                 */
1797                queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1798                                this_cpu_ptr(&vmstat_work),
1799                                round_jiffies_relative(sysctl_stat_interval));
1800        }
1801}
1802
1803/*
1804 * Switch off vmstat processing and then fold all the remaining differentials
1805 * until the diffs stay at zero. The function is used by NOHZ and can only be
1806 * invoked when tick processing is not active.
1807 */
1808/*
1809 * Check if the diffs for a certain cpu indicate that
1810 * an update is needed.
1811 */
1812static bool need_update(int cpu)
1813{
1814        struct zone *zone;
1815
1816        for_each_populated_zone(zone) {
1817                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1818
1819                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1820#ifdef CONFIG_NUMA
1821                BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1822#endif
1823
1824                /*
1825                 * The fast way of checking if there are any vmstat diffs.
1826                 */
1827                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1828                               sizeof(p->vm_stat_diff[0])))
1829                        return true;
1830#ifdef CONFIG_NUMA
1831                if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1832                               sizeof(p->vm_numa_stat_diff[0])))
1833                        return true;
1834#endif
1835        }
1836        return false;
1837}
1838
1839/*
1840 * Switch off vmstat processing and then fold all the remaining differentials
1841 * until the diffs stay at zero. The function is used by NOHZ and can only be
1842 * invoked when tick processing is not active.
1843 */
1844void quiet_vmstat(void)
1845{
1846        if (system_state != SYSTEM_RUNNING)
1847                return;
1848
1849        if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1850                return;
1851
1852        if (!need_update(smp_processor_id()))
1853                return;
1854
1855        /*
1856         * Just refresh counters and do not care about the pending delayed
1857         * vmstat_update. It doesn't fire that often to matter and canceling
1858         * it would be too expensive from this path.
1859         * vmstat_shepherd will take care about that for us.
1860         */
1861        refresh_cpu_vm_stats(false);
1862}
1863
1864/*
1865 * Shepherd worker thread that checks the
1866 * differentials of processors that have their worker
1867 * threads for vm statistics updates disabled because of
1868 * inactivity.
1869 */
1870static void vmstat_shepherd(struct work_struct *w);
1871
1872static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1873
1874static void vmstat_shepherd(struct work_struct *w)
1875{
1876        int cpu;
1877
1878        get_online_cpus();
1879        /* Check processors whose vmstat worker threads have been disabled */
1880        for_each_online_cpu(cpu) {
1881                struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1882
1883                if (!delayed_work_pending(dw) && need_update(cpu))
1884                        queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1885        }
1886        put_online_cpus();
1887
1888        schedule_delayed_work(&shepherd,
1889                round_jiffies_relative(sysctl_stat_interval));
1890}
1891
1892static void __init start_shepherd_timer(void)
1893{
1894        int cpu;
1895
1896        for_each_possible_cpu(cpu)
1897                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1898                        vmstat_update);
1899
1900        schedule_delayed_work(&shepherd,
1901                round_jiffies_relative(sysctl_stat_interval));
1902}
1903
1904static void __init init_cpu_node_state(void)
1905{
1906        int node;
1907
1908        for_each_online_node(node) {
1909                if (cpumask_weight(cpumask_of_node(node)) > 0)
1910                        node_set_state(node, N_CPU);
1911        }
1912}
1913
1914static int vmstat_cpu_online(unsigned int cpu)
1915{
1916        refresh_zone_stat_thresholds();
1917        node_set_state(cpu_to_node(cpu), N_CPU);
1918        return 0;
1919}
1920
1921static int vmstat_cpu_down_prep(unsigned int cpu)
1922{
1923        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1924        return 0;
1925}
1926
1927static int vmstat_cpu_dead(unsigned int cpu)
1928{
1929        const struct cpumask *node_cpus;
1930        int node;
1931
1932        node = cpu_to_node(cpu);
1933
1934        refresh_zone_stat_thresholds();
1935        node_cpus = cpumask_of_node(node);
1936        if (cpumask_weight(node_cpus) > 0)
1937                return 0;
1938
1939        node_clear_state(node, N_CPU);
1940        return 0;
1941}
1942
1943#endif
1944
1945struct workqueue_struct *mm_percpu_wq;
1946
1947void __init init_mm_internals(void)
1948{
1949        int ret __maybe_unused;
1950
1951        mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1952
1953#ifdef CONFIG_SMP
1954        ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1955                                        NULL, vmstat_cpu_dead);
1956        if (ret < 0)
1957                pr_err("vmstat: failed to register 'dead' hotplug state\n");
1958
1959        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1960                                        vmstat_cpu_online,
1961                                        vmstat_cpu_down_prep);
1962        if (ret < 0)
1963                pr_err("vmstat: failed to register 'online' hotplug state\n");
1964
1965        get_online_cpus();
1966        init_cpu_node_state();
1967        put_online_cpus();
1968
1969        start_shepherd_timer();
1970#endif
1971#ifdef CONFIG_PROC_FS
1972        proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
1973        proc_create_seq("pagetypeinfo", 0444, NULL, &pagetypeinfo_op);
1974        proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1975        proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
1976#endif
1977}
1978
1979#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1980
1981/*
1982 * Return an index indicating how much of the available free memory is
1983 * unusable for an allocation of the requested size.
1984 */
1985static int unusable_free_index(unsigned int order,
1986                                struct contig_page_info *info)
1987{
1988        /* No free memory is interpreted as all free memory is unusable */
1989        if (info->free_pages == 0)
1990                return 1000;
1991
1992        /*
1993         * Index should be a value between 0 and 1. Return a value to 3
1994         * decimal places.
1995         *
1996         * 0 => no fragmentation
1997         * 1 => high fragmentation
1998         */
1999        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2000
2001}
2002
2003static void unusable_show_print(struct seq_file *m,
2004                                        pg_data_t *pgdat, struct zone *zone)
2005{
2006        unsigned int order;
2007        int index;
2008        struct contig_page_info info;
2009
2010        seq_printf(m, "Node %d, zone %8s ",
2011                                pgdat->node_id,
2012                                zone->name);
2013        for (order = 0; order < MAX_ORDER; ++order) {
2014                fill_contig_page_info(zone, order, &info);
2015                index = unusable_free_index(order, &info);
2016                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2017        }
2018
2019        seq_putc(m, '\n');
2020}
2021
2022/*
2023 * Display unusable free space index
2024 *
2025 * The unusable free space index measures how much of the available free
2026 * memory cannot be used to satisfy an allocation of a given size and is a
2027 * value between 0 and 1. The higher the value, the more of free memory is
2028 * unusable and by implication, the worse the external fragmentation is. This
2029 * can be expressed as a percentage by multiplying by 100.
2030 */
2031static int unusable_show(struct seq_file *m, void *arg)
2032{
2033        pg_data_t *pgdat = (pg_data_t *)arg;
2034
2035        /* check memoryless node */
2036        if (!node_state(pgdat->node_id, N_MEMORY))
2037                return 0;
2038
2039        walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2040
2041        return 0;
2042}
2043
2044static const struct seq_operations unusable_op = {
2045        .start  = frag_start,
2046        .next   = frag_next,
2047        .stop   = frag_stop,
2048        .show   = unusable_show,
2049};
2050
2051static int unusable_open(struct inode *inode, struct file *file)
2052{
2053        return seq_open(file, &unusable_op);
2054}
2055
2056static const struct file_operations unusable_file_ops = {
2057        .open           = unusable_open,
2058        .read           = seq_read,
2059        .llseek         = seq_lseek,
2060        .release        = seq_release,
2061};
2062
2063static void extfrag_show_print(struct seq_file *m,
2064                                        pg_data_t *pgdat, struct zone *zone)
2065{
2066        unsigned int order;
2067        int index;
2068
2069        /* Alloc on stack as interrupts are disabled for zone walk */
2070        struct contig_page_info info;
2071
2072        seq_printf(m, "Node %d, zone %8s ",
2073                                pgdat->node_id,
2074                                zone->name);
2075        for (order = 0; order < MAX_ORDER; ++order) {
2076                fill_contig_page_info(zone, order, &info);
2077                index = __fragmentation_index(order, &info);
2078                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2079        }
2080
2081        seq_putc(m, '\n');
2082}
2083
2084/*
2085 * Display fragmentation index for orders that allocations would fail for
2086 */
2087static int extfrag_show(struct seq_file *m, void *arg)
2088{
2089        pg_data_t *pgdat = (pg_data_t *)arg;
2090
2091        walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2092
2093        return 0;
2094}
2095
2096static const struct seq_operations extfrag_op = {
2097        .start  = frag_start,
2098        .next   = frag_next,
2099        .stop   = frag_stop,
2100        .show   = extfrag_show,
2101};
2102
2103static int extfrag_open(struct inode *inode, struct file *file)
2104{
2105        return seq_open(file, &extfrag_op);
2106}
2107
2108static const struct file_operations extfrag_file_ops = {
2109        .open           = extfrag_open,
2110        .read           = seq_read,
2111        .llseek         = seq_lseek,
2112        .release        = seq_release,
2113};
2114
2115static int __init extfrag_debug_init(void)
2116{
2117        struct dentry *extfrag_debug_root;
2118
2119        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2120
2121        debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2122                            &unusable_file_ops);
2123
2124        debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2125                            &extfrag_file_ops);
2126
2127        return 0;
2128}
2129
2130module_init(extfrag_debug_init);
2131#endif
2132