linux/mm/z3fold.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * z3fold.c
   4 *
   5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
   6 * Copyright (C) 2016, Sony Mobile Communications Inc.
   7 *
   8 * This implementation is based on zbud written by Seth Jennings.
   9 *
  10 * z3fold is an special purpose allocator for storing compressed pages. It
  11 * can store up to three compressed pages per page which improves the
  12 * compression ratio of zbud while retaining its main concepts (e. g. always
  13 * storing an integral number of objects per page) and simplicity.
  14 * It still has simple and deterministic reclaim properties that make it
  15 * preferable to a higher density approach (with no requirement on integral
  16 * number of object per page) when reclaim is used.
  17 *
  18 * As in zbud, pages are divided into "chunks".  The size of the chunks is
  19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
  20 *
  21 * z3fold doesn't export any API and is meant to be used via zpool API.
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/atomic.h>
  27#include <linux/sched.h>
  28#include <linux/cpumask.h>
  29#include <linux/dcache.h>
  30#include <linux/list.h>
  31#include <linux/mm.h>
  32#include <linux/module.h>
  33#include <linux/page-flags.h>
  34#include <linux/migrate.h>
  35#include <linux/node.h>
  36#include <linux/compaction.h>
  37#include <linux/percpu.h>
  38#include <linux/mount.h>
  39#include <linux/fs.h>
  40#include <linux/preempt.h>
  41#include <linux/workqueue.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/zpool.h>
  45
  46/*
  47 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
  48 * adjusting internal fragmentation.  It also determines the number of
  49 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
  50 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
  51 * in the beginning of an allocated page are occupied by z3fold header, so
  52 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
  53 * which shows the max number of free chunks in z3fold page, also there will
  54 * be 63, or 62, respectively, freelists per pool.
  55 */
  56#define NCHUNKS_ORDER   6
  57
  58#define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
  59#define CHUNK_SIZE      (1 << CHUNK_SHIFT)
  60#define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
  61#define ZHDR_CHUNKS     (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
  62#define TOTAL_CHUNKS    (PAGE_SIZE >> CHUNK_SHIFT)
  63#define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
  64
  65#define BUDDY_MASK      (0x3)
  66#define BUDDY_SHIFT     2
  67#define SLOTS_ALIGN     (0x40)
  68
  69/*****************
  70 * Structures
  71*****************/
  72struct z3fold_pool;
  73struct z3fold_ops {
  74        int (*evict)(struct z3fold_pool *pool, unsigned long handle);
  75};
  76
  77enum buddy {
  78        HEADLESS = 0,
  79        FIRST,
  80        MIDDLE,
  81        LAST,
  82        BUDDIES_MAX = LAST
  83};
  84
  85struct z3fold_buddy_slots {
  86        /*
  87         * we are using BUDDY_MASK in handle_to_buddy etc. so there should
  88         * be enough slots to hold all possible variants
  89         */
  90        unsigned long slot[BUDDY_MASK + 1];
  91        unsigned long pool; /* back link + flags */
  92};
  93#define HANDLE_FLAG_MASK        (0x03)
  94
  95/*
  96 * struct z3fold_header - z3fold page metadata occupying first chunks of each
  97 *                      z3fold page, except for HEADLESS pages
  98 * @buddy:              links the z3fold page into the relevant list in the
  99 *                      pool
 100 * @page_lock:          per-page lock
 101 * @refcount:           reference count for the z3fold page
 102 * @work:               work_struct for page layout optimization
 103 * @slots:              pointer to the structure holding buddy slots
 104 * @cpu:                CPU which this page "belongs" to
 105 * @first_chunks:       the size of the first buddy in chunks, 0 if free
 106 * @middle_chunks:      the size of the middle buddy in chunks, 0 if free
 107 * @last_chunks:        the size of the last buddy in chunks, 0 if free
 108 * @first_num:          the starting number (for the first handle)
 109 * @mapped_count:       the number of objects currently mapped
 110 */
 111struct z3fold_header {
 112        struct list_head buddy;
 113        spinlock_t page_lock;
 114        struct kref refcount;
 115        struct work_struct work;
 116        struct z3fold_buddy_slots *slots;
 117        short cpu;
 118        unsigned short first_chunks;
 119        unsigned short middle_chunks;
 120        unsigned short last_chunks;
 121        unsigned short start_middle;
 122        unsigned short first_num:2;
 123        unsigned short mapped_count:2;
 124};
 125
 126/**
 127 * struct z3fold_pool - stores metadata for each z3fold pool
 128 * @name:       pool name
 129 * @lock:       protects pool unbuddied/lru lists
 130 * @stale_lock: protects pool stale page list
 131 * @unbuddied:  per-cpu array of lists tracking z3fold pages that contain 2-
 132 *              buddies; the list each z3fold page is added to depends on
 133 *              the size of its free region.
 134 * @lru:        list tracking the z3fold pages in LRU order by most recently
 135 *              added buddy.
 136 * @stale:      list of pages marked for freeing
 137 * @pages_nr:   number of z3fold pages in the pool.
 138 * @c_handle:   cache for z3fold_buddy_slots allocation
 139 * @ops:        pointer to a structure of user defined operations specified at
 140 *              pool creation time.
 141 * @compact_wq: workqueue for page layout background optimization
 142 * @release_wq: workqueue for safe page release
 143 * @work:       work_struct for safe page release
 144 * @inode:      inode for z3fold pseudo filesystem
 145 *
 146 * This structure is allocated at pool creation time and maintains metadata
 147 * pertaining to a particular z3fold pool.
 148 */
 149struct z3fold_pool {
 150        const char *name;
 151        spinlock_t lock;
 152        spinlock_t stale_lock;
 153        struct list_head *unbuddied;
 154        struct list_head lru;
 155        struct list_head stale;
 156        atomic64_t pages_nr;
 157        struct kmem_cache *c_handle;
 158        const struct z3fold_ops *ops;
 159        struct zpool *zpool;
 160        const struct zpool_ops *zpool_ops;
 161        struct workqueue_struct *compact_wq;
 162        struct workqueue_struct *release_wq;
 163        struct work_struct work;
 164        struct inode *inode;
 165};
 166
 167/*
 168 * Internal z3fold page flags
 169 */
 170enum z3fold_page_flags {
 171        PAGE_HEADLESS = 0,
 172        MIDDLE_CHUNK_MAPPED,
 173        NEEDS_COMPACTING,
 174        PAGE_STALE,
 175        PAGE_CLAIMED, /* by either reclaim or free */
 176};
 177
 178/*****************
 179 * Helpers
 180*****************/
 181
 182/* Converts an allocation size in bytes to size in z3fold chunks */
 183static int size_to_chunks(size_t size)
 184{
 185        return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
 186}
 187
 188#define for_each_unbuddied_list(_iter, _begin) \
 189        for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
 190
 191static void compact_page_work(struct work_struct *w);
 192
 193static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
 194                                                        gfp_t gfp)
 195{
 196        struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
 197                                                            gfp);
 198
 199        if (slots) {
 200                memset(slots->slot, 0, sizeof(slots->slot));
 201                slots->pool = (unsigned long)pool;
 202        }
 203
 204        return slots;
 205}
 206
 207static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
 208{
 209        return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
 210}
 211
 212static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
 213{
 214        return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
 215}
 216
 217static inline void free_handle(unsigned long handle)
 218{
 219        struct z3fold_buddy_slots *slots;
 220        int i;
 221        bool is_free;
 222
 223        if (handle & (1 << PAGE_HEADLESS))
 224                return;
 225
 226        WARN_ON(*(unsigned long *)handle == 0);
 227        *(unsigned long *)handle = 0;
 228        slots = handle_to_slots(handle);
 229        is_free = true;
 230        for (i = 0; i <= BUDDY_MASK; i++) {
 231                if (slots->slot[i]) {
 232                        is_free = false;
 233                        break;
 234                }
 235        }
 236
 237        if (is_free) {
 238                struct z3fold_pool *pool = slots_to_pool(slots);
 239
 240                kmem_cache_free(pool->c_handle, slots);
 241        }
 242}
 243
 244static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
 245                                int flags, const char *dev_name, void *data)
 246{
 247        static const struct dentry_operations ops = {
 248                .d_dname = simple_dname,
 249        };
 250
 251        return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
 252}
 253
 254static struct file_system_type z3fold_fs = {
 255        .name           = "z3fold",
 256        .mount          = z3fold_do_mount,
 257        .kill_sb        = kill_anon_super,
 258};
 259
 260static struct vfsmount *z3fold_mnt;
 261static int z3fold_mount(void)
 262{
 263        int ret = 0;
 264
 265        z3fold_mnt = kern_mount(&z3fold_fs);
 266        if (IS_ERR(z3fold_mnt))
 267                ret = PTR_ERR(z3fold_mnt);
 268
 269        return ret;
 270}
 271
 272static void z3fold_unmount(void)
 273{
 274        kern_unmount(z3fold_mnt);
 275}
 276
 277static const struct address_space_operations z3fold_aops;
 278static int z3fold_register_migration(struct z3fold_pool *pool)
 279{
 280        pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
 281        if (IS_ERR(pool->inode)) {
 282                pool->inode = NULL;
 283                return 1;
 284        }
 285
 286        pool->inode->i_mapping->private_data = pool;
 287        pool->inode->i_mapping->a_ops = &z3fold_aops;
 288        return 0;
 289}
 290
 291static void z3fold_unregister_migration(struct z3fold_pool *pool)
 292{
 293        if (pool->inode)
 294                iput(pool->inode);
 295 }
 296
 297/* Initializes the z3fold header of a newly allocated z3fold page */
 298static struct z3fold_header *init_z3fold_page(struct page *page,
 299                                        struct z3fold_pool *pool, gfp_t gfp)
 300{
 301        struct z3fold_header *zhdr = page_address(page);
 302        struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
 303
 304        if (!slots)
 305                return NULL;
 306
 307        INIT_LIST_HEAD(&page->lru);
 308        clear_bit(PAGE_HEADLESS, &page->private);
 309        clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
 310        clear_bit(NEEDS_COMPACTING, &page->private);
 311        clear_bit(PAGE_STALE, &page->private);
 312        clear_bit(PAGE_CLAIMED, &page->private);
 313
 314        spin_lock_init(&zhdr->page_lock);
 315        kref_init(&zhdr->refcount);
 316        zhdr->first_chunks = 0;
 317        zhdr->middle_chunks = 0;
 318        zhdr->last_chunks = 0;
 319        zhdr->first_num = 0;
 320        zhdr->start_middle = 0;
 321        zhdr->cpu = -1;
 322        zhdr->slots = slots;
 323        INIT_LIST_HEAD(&zhdr->buddy);
 324        INIT_WORK(&zhdr->work, compact_page_work);
 325        return zhdr;
 326}
 327
 328/* Resets the struct page fields and frees the page */
 329static void free_z3fold_page(struct page *page, bool headless)
 330{
 331        if (!headless) {
 332                lock_page(page);
 333                __ClearPageMovable(page);
 334                unlock_page(page);
 335        }
 336        ClearPagePrivate(page);
 337        __free_page(page);
 338}
 339
 340/* Lock a z3fold page */
 341static inline void z3fold_page_lock(struct z3fold_header *zhdr)
 342{
 343        spin_lock(&zhdr->page_lock);
 344}
 345
 346/* Try to lock a z3fold page */
 347static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
 348{
 349        return spin_trylock(&zhdr->page_lock);
 350}
 351
 352/* Unlock a z3fold page */
 353static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
 354{
 355        spin_unlock(&zhdr->page_lock);
 356}
 357
 358/* Helper function to build the index */
 359static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
 360{
 361        return (bud + zhdr->first_num) & BUDDY_MASK;
 362}
 363
 364/*
 365 * Encodes the handle of a particular buddy within a z3fold page
 366 * Pool lock should be held as this function accesses first_num
 367 */
 368static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
 369{
 370        struct z3fold_buddy_slots *slots;
 371        unsigned long h = (unsigned long)zhdr;
 372        int idx = 0;
 373
 374        /*
 375         * For a headless page, its handle is its pointer with the extra
 376         * PAGE_HEADLESS bit set
 377         */
 378        if (bud == HEADLESS)
 379                return h | (1 << PAGE_HEADLESS);
 380
 381        /* otherwise, return pointer to encoded handle */
 382        idx = __idx(zhdr, bud);
 383        h += idx;
 384        if (bud == LAST)
 385                h |= (zhdr->last_chunks << BUDDY_SHIFT);
 386
 387        slots = zhdr->slots;
 388        slots->slot[idx] = h;
 389        return (unsigned long)&slots->slot[idx];
 390}
 391
 392/* Returns the z3fold page where a given handle is stored */
 393static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
 394{
 395        unsigned long addr = h;
 396
 397        if (!(addr & (1 << PAGE_HEADLESS)))
 398                addr = *(unsigned long *)h;
 399
 400        return (struct z3fold_header *)(addr & PAGE_MASK);
 401}
 402
 403/* only for LAST bud, returns zero otherwise */
 404static unsigned short handle_to_chunks(unsigned long handle)
 405{
 406        unsigned long addr = *(unsigned long *)handle;
 407
 408        return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
 409}
 410
 411/*
 412 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
 413 *  but that doesn't matter. because the masking will result in the
 414 *  correct buddy number.
 415 */
 416static enum buddy handle_to_buddy(unsigned long handle)
 417{
 418        struct z3fold_header *zhdr;
 419        unsigned long addr;
 420
 421        WARN_ON(handle & (1 << PAGE_HEADLESS));
 422        addr = *(unsigned long *)handle;
 423        zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
 424        return (addr - zhdr->first_num) & BUDDY_MASK;
 425}
 426
 427static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
 428{
 429        return slots_to_pool(zhdr->slots);
 430}
 431
 432static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
 433{
 434        struct page *page = virt_to_page(zhdr);
 435        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 436
 437        WARN_ON(!list_empty(&zhdr->buddy));
 438        set_bit(PAGE_STALE, &page->private);
 439        clear_bit(NEEDS_COMPACTING, &page->private);
 440        spin_lock(&pool->lock);
 441        if (!list_empty(&page->lru))
 442                list_del_init(&page->lru);
 443        spin_unlock(&pool->lock);
 444        if (locked)
 445                z3fold_page_unlock(zhdr);
 446        spin_lock(&pool->stale_lock);
 447        list_add(&zhdr->buddy, &pool->stale);
 448        queue_work(pool->release_wq, &pool->work);
 449        spin_unlock(&pool->stale_lock);
 450}
 451
 452static void __attribute__((__unused__))
 453                        release_z3fold_page(struct kref *ref)
 454{
 455        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 456                                                refcount);
 457        __release_z3fold_page(zhdr, false);
 458}
 459
 460static void release_z3fold_page_locked(struct kref *ref)
 461{
 462        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 463                                                refcount);
 464        WARN_ON(z3fold_page_trylock(zhdr));
 465        __release_z3fold_page(zhdr, true);
 466}
 467
 468static void release_z3fold_page_locked_list(struct kref *ref)
 469{
 470        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 471                                               refcount);
 472        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 473        spin_lock(&pool->lock);
 474        list_del_init(&zhdr->buddy);
 475        spin_unlock(&pool->lock);
 476
 477        WARN_ON(z3fold_page_trylock(zhdr));
 478        __release_z3fold_page(zhdr, true);
 479}
 480
 481static void free_pages_work(struct work_struct *w)
 482{
 483        struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
 484
 485        spin_lock(&pool->stale_lock);
 486        while (!list_empty(&pool->stale)) {
 487                struct z3fold_header *zhdr = list_first_entry(&pool->stale,
 488                                                struct z3fold_header, buddy);
 489                struct page *page = virt_to_page(zhdr);
 490
 491                list_del(&zhdr->buddy);
 492                if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
 493                        continue;
 494                spin_unlock(&pool->stale_lock);
 495                cancel_work_sync(&zhdr->work);
 496                free_z3fold_page(page, false);
 497                cond_resched();
 498                spin_lock(&pool->stale_lock);
 499        }
 500        spin_unlock(&pool->stale_lock);
 501}
 502
 503/*
 504 * Returns the number of free chunks in a z3fold page.
 505 * NB: can't be used with HEADLESS pages.
 506 */
 507static int num_free_chunks(struct z3fold_header *zhdr)
 508{
 509        int nfree;
 510        /*
 511         * If there is a middle object, pick up the bigger free space
 512         * either before or after it. Otherwise just subtract the number
 513         * of chunks occupied by the first and the last objects.
 514         */
 515        if (zhdr->middle_chunks != 0) {
 516                int nfree_before = zhdr->first_chunks ?
 517                        0 : zhdr->start_middle - ZHDR_CHUNKS;
 518                int nfree_after = zhdr->last_chunks ?
 519                        0 : TOTAL_CHUNKS -
 520                                (zhdr->start_middle + zhdr->middle_chunks);
 521                nfree = max(nfree_before, nfree_after);
 522        } else
 523                nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
 524        return nfree;
 525}
 526
 527/* Add to the appropriate unbuddied list */
 528static inline void add_to_unbuddied(struct z3fold_pool *pool,
 529                                struct z3fold_header *zhdr)
 530{
 531        if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
 532                        zhdr->middle_chunks == 0) {
 533                struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
 534
 535                int freechunks = num_free_chunks(zhdr);
 536                spin_lock(&pool->lock);
 537                list_add(&zhdr->buddy, &unbuddied[freechunks]);
 538                spin_unlock(&pool->lock);
 539                zhdr->cpu = smp_processor_id();
 540                put_cpu_ptr(pool->unbuddied);
 541        }
 542}
 543
 544static inline void *mchunk_memmove(struct z3fold_header *zhdr,
 545                                unsigned short dst_chunk)
 546{
 547        void *beg = zhdr;
 548        return memmove(beg + (dst_chunk << CHUNK_SHIFT),
 549                       beg + (zhdr->start_middle << CHUNK_SHIFT),
 550                       zhdr->middle_chunks << CHUNK_SHIFT);
 551}
 552
 553#define BIG_CHUNK_GAP   3
 554/* Has to be called with lock held */
 555static int z3fold_compact_page(struct z3fold_header *zhdr)
 556{
 557        struct page *page = virt_to_page(zhdr);
 558
 559        if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
 560                return 0; /* can't move middle chunk, it's used */
 561
 562        if (unlikely(PageIsolated(page)))
 563                return 0;
 564
 565        if (zhdr->middle_chunks == 0)
 566                return 0; /* nothing to compact */
 567
 568        if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 569                /* move to the beginning */
 570                mchunk_memmove(zhdr, ZHDR_CHUNKS);
 571                zhdr->first_chunks = zhdr->middle_chunks;
 572                zhdr->middle_chunks = 0;
 573                zhdr->start_middle = 0;
 574                zhdr->first_num++;
 575                return 1;
 576        }
 577
 578        /*
 579         * moving data is expensive, so let's only do that if
 580         * there's substantial gain (at least BIG_CHUNK_GAP chunks)
 581         */
 582        if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
 583            zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
 584                        BIG_CHUNK_GAP) {
 585                mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
 586                zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
 587                return 1;
 588        } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
 589                   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
 590                                        + zhdr->middle_chunks) >=
 591                        BIG_CHUNK_GAP) {
 592                unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
 593                        zhdr->middle_chunks;
 594                mchunk_memmove(zhdr, new_start);
 595                zhdr->start_middle = new_start;
 596                return 1;
 597        }
 598
 599        return 0;
 600}
 601
 602static void do_compact_page(struct z3fold_header *zhdr, bool locked)
 603{
 604        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 605        struct page *page;
 606
 607        page = virt_to_page(zhdr);
 608        if (locked)
 609                WARN_ON(z3fold_page_trylock(zhdr));
 610        else
 611                z3fold_page_lock(zhdr);
 612        if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
 613                z3fold_page_unlock(zhdr);
 614                return;
 615        }
 616        spin_lock(&pool->lock);
 617        list_del_init(&zhdr->buddy);
 618        spin_unlock(&pool->lock);
 619
 620        if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
 621                atomic64_dec(&pool->pages_nr);
 622                return;
 623        }
 624
 625        if (unlikely(PageIsolated(page) ||
 626                     test_bit(PAGE_STALE, &page->private))) {
 627                z3fold_page_unlock(zhdr);
 628                return;
 629        }
 630
 631        z3fold_compact_page(zhdr);
 632        add_to_unbuddied(pool, zhdr);
 633        z3fold_page_unlock(zhdr);
 634}
 635
 636static void compact_page_work(struct work_struct *w)
 637{
 638        struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
 639                                                work);
 640
 641        do_compact_page(zhdr, false);
 642}
 643
 644/* returns _locked_ z3fold page header or NULL */
 645static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
 646                                                size_t size, bool can_sleep)
 647{
 648        struct z3fold_header *zhdr = NULL;
 649        struct page *page;
 650        struct list_head *unbuddied;
 651        int chunks = size_to_chunks(size), i;
 652
 653lookup:
 654        /* First, try to find an unbuddied z3fold page. */
 655        unbuddied = get_cpu_ptr(pool->unbuddied);
 656        for_each_unbuddied_list(i, chunks) {
 657                struct list_head *l = &unbuddied[i];
 658
 659                zhdr = list_first_entry_or_null(READ_ONCE(l),
 660                                        struct z3fold_header, buddy);
 661
 662                if (!zhdr)
 663                        continue;
 664
 665                /* Re-check under lock. */
 666                spin_lock(&pool->lock);
 667                l = &unbuddied[i];
 668                if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
 669                                                struct z3fold_header, buddy)) ||
 670                    !z3fold_page_trylock(zhdr)) {
 671                        spin_unlock(&pool->lock);
 672                        zhdr = NULL;
 673                        put_cpu_ptr(pool->unbuddied);
 674                        if (can_sleep)
 675                                cond_resched();
 676                        goto lookup;
 677                }
 678                list_del_init(&zhdr->buddy);
 679                zhdr->cpu = -1;
 680                spin_unlock(&pool->lock);
 681
 682                page = virt_to_page(zhdr);
 683                if (test_bit(NEEDS_COMPACTING, &page->private)) {
 684                        z3fold_page_unlock(zhdr);
 685                        zhdr = NULL;
 686                        put_cpu_ptr(pool->unbuddied);
 687                        if (can_sleep)
 688                                cond_resched();
 689                        goto lookup;
 690                }
 691
 692                /*
 693                 * this page could not be removed from its unbuddied
 694                 * list while pool lock was held, and then we've taken
 695                 * page lock so kref_put could not be called before
 696                 * we got here, so it's safe to just call kref_get()
 697                 */
 698                kref_get(&zhdr->refcount);
 699                break;
 700        }
 701        put_cpu_ptr(pool->unbuddied);
 702
 703        if (!zhdr) {
 704                int cpu;
 705
 706                /* look for _exact_ match on other cpus' lists */
 707                for_each_online_cpu(cpu) {
 708                        struct list_head *l;
 709
 710                        unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
 711                        spin_lock(&pool->lock);
 712                        l = &unbuddied[chunks];
 713
 714                        zhdr = list_first_entry_or_null(READ_ONCE(l),
 715                                                struct z3fold_header, buddy);
 716
 717                        if (!zhdr || !z3fold_page_trylock(zhdr)) {
 718                                spin_unlock(&pool->lock);
 719                                zhdr = NULL;
 720                                continue;
 721                        }
 722                        list_del_init(&zhdr->buddy);
 723                        zhdr->cpu = -1;
 724                        spin_unlock(&pool->lock);
 725
 726                        page = virt_to_page(zhdr);
 727                        if (test_bit(NEEDS_COMPACTING, &page->private)) {
 728                                z3fold_page_unlock(zhdr);
 729                                zhdr = NULL;
 730                                if (can_sleep)
 731                                        cond_resched();
 732                                continue;
 733                        }
 734                        kref_get(&zhdr->refcount);
 735                        break;
 736                }
 737        }
 738
 739        return zhdr;
 740}
 741
 742/*
 743 * API Functions
 744 */
 745
 746/**
 747 * z3fold_create_pool() - create a new z3fold pool
 748 * @name:       pool name
 749 * @gfp:        gfp flags when allocating the z3fold pool structure
 750 * @ops:        user-defined operations for the z3fold pool
 751 *
 752 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
 753 * failed.
 754 */
 755static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
 756                const struct z3fold_ops *ops)
 757{
 758        struct z3fold_pool *pool = NULL;
 759        int i, cpu;
 760
 761        pool = kzalloc(sizeof(struct z3fold_pool), gfp);
 762        if (!pool)
 763                goto out;
 764        pool->c_handle = kmem_cache_create("z3fold_handle",
 765                                sizeof(struct z3fold_buddy_slots),
 766                                SLOTS_ALIGN, 0, NULL);
 767        if (!pool->c_handle)
 768                goto out_c;
 769        spin_lock_init(&pool->lock);
 770        spin_lock_init(&pool->stale_lock);
 771        pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
 772        if (!pool->unbuddied)
 773                goto out_pool;
 774        for_each_possible_cpu(cpu) {
 775                struct list_head *unbuddied =
 776                                per_cpu_ptr(pool->unbuddied, cpu);
 777                for_each_unbuddied_list(i, 0)
 778                        INIT_LIST_HEAD(&unbuddied[i]);
 779        }
 780        INIT_LIST_HEAD(&pool->lru);
 781        INIT_LIST_HEAD(&pool->stale);
 782        atomic64_set(&pool->pages_nr, 0);
 783        pool->name = name;
 784        pool->compact_wq = create_singlethread_workqueue(pool->name);
 785        if (!pool->compact_wq)
 786                goto out_unbuddied;
 787        pool->release_wq = create_singlethread_workqueue(pool->name);
 788        if (!pool->release_wq)
 789                goto out_wq;
 790        if (z3fold_register_migration(pool))
 791                goto out_rwq;
 792        INIT_WORK(&pool->work, free_pages_work);
 793        pool->ops = ops;
 794        return pool;
 795
 796out_rwq:
 797        destroy_workqueue(pool->release_wq);
 798out_wq:
 799        destroy_workqueue(pool->compact_wq);
 800out_unbuddied:
 801        free_percpu(pool->unbuddied);
 802out_pool:
 803        kmem_cache_destroy(pool->c_handle);
 804out_c:
 805        kfree(pool);
 806out:
 807        return NULL;
 808}
 809
 810/**
 811 * z3fold_destroy_pool() - destroys an existing z3fold pool
 812 * @pool:       the z3fold pool to be destroyed
 813 *
 814 * The pool should be emptied before this function is called.
 815 */
 816static void z3fold_destroy_pool(struct z3fold_pool *pool)
 817{
 818        kmem_cache_destroy(pool->c_handle);
 819        z3fold_unregister_migration(pool);
 820        destroy_workqueue(pool->release_wq);
 821        destroy_workqueue(pool->compact_wq);
 822        kfree(pool);
 823}
 824
 825/**
 826 * z3fold_alloc() - allocates a region of a given size
 827 * @pool:       z3fold pool from which to allocate
 828 * @size:       size in bytes of the desired allocation
 829 * @gfp:        gfp flags used if the pool needs to grow
 830 * @handle:     handle of the new allocation
 831 *
 832 * This function will attempt to find a free region in the pool large enough to
 833 * satisfy the allocation request.  A search of the unbuddied lists is
 834 * performed first. If no suitable free region is found, then a new page is
 835 * allocated and added to the pool to satisfy the request.
 836 *
 837 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
 838 * as z3fold pool pages.
 839 *
 840 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
 841 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
 842 * a new page.
 843 */
 844static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
 845                        unsigned long *handle)
 846{
 847        int chunks = size_to_chunks(size);
 848        struct z3fold_header *zhdr = NULL;
 849        struct page *page = NULL;
 850        enum buddy bud;
 851        bool can_sleep = gfpflags_allow_blocking(gfp);
 852
 853        if (!size || (gfp & __GFP_HIGHMEM))
 854                return -EINVAL;
 855
 856        if (size > PAGE_SIZE)
 857                return -ENOSPC;
 858
 859        if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
 860                bud = HEADLESS;
 861        else {
 862retry:
 863                zhdr = __z3fold_alloc(pool, size, can_sleep);
 864                if (zhdr) {
 865                        if (zhdr->first_chunks == 0) {
 866                                if (zhdr->middle_chunks != 0 &&
 867                                    chunks >= zhdr->start_middle)
 868                                        bud = LAST;
 869                                else
 870                                        bud = FIRST;
 871                        } else if (zhdr->last_chunks == 0)
 872                                bud = LAST;
 873                        else if (zhdr->middle_chunks == 0)
 874                                bud = MIDDLE;
 875                        else {
 876                                if (kref_put(&zhdr->refcount,
 877                                             release_z3fold_page_locked))
 878                                        atomic64_dec(&pool->pages_nr);
 879                                else
 880                                        z3fold_page_unlock(zhdr);
 881                                pr_err("No free chunks in unbuddied\n");
 882                                WARN_ON(1);
 883                                goto retry;
 884                        }
 885                        page = virt_to_page(zhdr);
 886                        goto found;
 887                }
 888                bud = FIRST;
 889        }
 890
 891        page = NULL;
 892        if (can_sleep) {
 893                spin_lock(&pool->stale_lock);
 894                zhdr = list_first_entry_or_null(&pool->stale,
 895                                                struct z3fold_header, buddy);
 896                /*
 897                 * Before allocating a page, let's see if we can take one from
 898                 * the stale pages list. cancel_work_sync() can sleep so we
 899                 * limit this case to the contexts where we can sleep
 900                 */
 901                if (zhdr) {
 902                        list_del(&zhdr->buddy);
 903                        spin_unlock(&pool->stale_lock);
 904                        cancel_work_sync(&zhdr->work);
 905                        page = virt_to_page(zhdr);
 906                } else {
 907                        spin_unlock(&pool->stale_lock);
 908                }
 909        }
 910        if (!page)
 911                page = alloc_page(gfp);
 912
 913        if (!page)
 914                return -ENOMEM;
 915
 916        zhdr = init_z3fold_page(page, pool, gfp);
 917        if (!zhdr) {
 918                __free_page(page);
 919                return -ENOMEM;
 920        }
 921        atomic64_inc(&pool->pages_nr);
 922
 923        if (bud == HEADLESS) {
 924                set_bit(PAGE_HEADLESS, &page->private);
 925                goto headless;
 926        }
 927        __SetPageMovable(page, pool->inode->i_mapping);
 928        z3fold_page_lock(zhdr);
 929
 930found:
 931        if (bud == FIRST)
 932                zhdr->first_chunks = chunks;
 933        else if (bud == LAST)
 934                zhdr->last_chunks = chunks;
 935        else {
 936                zhdr->middle_chunks = chunks;
 937                zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
 938        }
 939        add_to_unbuddied(pool, zhdr);
 940
 941headless:
 942        spin_lock(&pool->lock);
 943        /* Add/move z3fold page to beginning of LRU */
 944        if (!list_empty(&page->lru))
 945                list_del(&page->lru);
 946
 947        list_add(&page->lru, &pool->lru);
 948
 949        *handle = encode_handle(zhdr, bud);
 950        spin_unlock(&pool->lock);
 951        if (bud != HEADLESS)
 952                z3fold_page_unlock(zhdr);
 953
 954        return 0;
 955}
 956
 957/**
 958 * z3fold_free() - frees the allocation associated with the given handle
 959 * @pool:       pool in which the allocation resided
 960 * @handle:     handle associated with the allocation returned by z3fold_alloc()
 961 *
 962 * In the case that the z3fold page in which the allocation resides is under
 963 * reclaim, as indicated by the PG_reclaim flag being set, this function
 964 * only sets the first|last_chunks to 0.  The page is actually freed
 965 * once both buddies are evicted (see z3fold_reclaim_page() below).
 966 */
 967static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
 968{
 969        struct z3fold_header *zhdr;
 970        struct page *page;
 971        enum buddy bud;
 972
 973        zhdr = handle_to_z3fold_header(handle);
 974        page = virt_to_page(zhdr);
 975
 976        if (test_bit(PAGE_HEADLESS, &page->private)) {
 977                /* if a headless page is under reclaim, just leave.
 978                 * NB: we use test_and_set_bit for a reason: if the bit
 979                 * has not been set before, we release this page
 980                 * immediately so we don't care about its value any more.
 981                 */
 982                if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
 983                        spin_lock(&pool->lock);
 984                        list_del(&page->lru);
 985                        spin_unlock(&pool->lock);
 986                        free_z3fold_page(page, true);
 987                        atomic64_dec(&pool->pages_nr);
 988                }
 989                return;
 990        }
 991
 992        /* Non-headless case */
 993        z3fold_page_lock(zhdr);
 994        bud = handle_to_buddy(handle);
 995
 996        switch (bud) {
 997        case FIRST:
 998                zhdr->first_chunks = 0;
 999                break;
1000        case MIDDLE:
1001                zhdr->middle_chunks = 0;
1002                break;
1003        case LAST:
1004                zhdr->last_chunks = 0;
1005                break;
1006        default:
1007                pr_err("%s: unknown bud %d\n", __func__, bud);
1008                WARN_ON(1);
1009                z3fold_page_unlock(zhdr);
1010                return;
1011        }
1012
1013        free_handle(handle);
1014        if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1015                atomic64_dec(&pool->pages_nr);
1016                return;
1017        }
1018        if (test_bit(PAGE_CLAIMED, &page->private)) {
1019                z3fold_page_unlock(zhdr);
1020                return;
1021        }
1022        if (unlikely(PageIsolated(page)) ||
1023            test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1024                z3fold_page_unlock(zhdr);
1025                return;
1026        }
1027        if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1028                spin_lock(&pool->lock);
1029                list_del_init(&zhdr->buddy);
1030                spin_unlock(&pool->lock);
1031                zhdr->cpu = -1;
1032                kref_get(&zhdr->refcount);
1033                do_compact_page(zhdr, true);
1034                return;
1035        }
1036        kref_get(&zhdr->refcount);
1037        queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1038        z3fold_page_unlock(zhdr);
1039}
1040
1041/**
1042 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1043 * @pool:       pool from which a page will attempt to be evicted
1044 * @retries:    number of pages on the LRU list for which eviction will
1045 *              be attempted before failing
1046 *
1047 * z3fold reclaim is different from normal system reclaim in that it is done
1048 * from the bottom, up. This is because only the bottom layer, z3fold, has
1049 * information on how the allocations are organized within each z3fold page.
1050 * This has the potential to create interesting locking situations between
1051 * z3fold and the user, however.
1052 *
1053 * To avoid these, this is how z3fold_reclaim_page() should be called:
1054 *
1055 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1056 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1057 * call the user-defined eviction handler with the pool and handle as
1058 * arguments.
1059 *
1060 * If the handle can not be evicted, the eviction handler should return
1061 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1062 * appropriate list and try the next z3fold page on the LRU up to
1063 * a user defined number of retries.
1064 *
1065 * If the handle is successfully evicted, the eviction handler should
1066 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1067 * contains logic to delay freeing the page if the page is under reclaim,
1068 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1069 *
1070 * If all buddies in the z3fold page are successfully evicted, then the
1071 * z3fold page can be freed.
1072 *
1073 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1074 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1075 * the retry limit was hit.
1076 */
1077static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1078{
1079        int i, ret = 0;
1080        struct z3fold_header *zhdr = NULL;
1081        struct page *page = NULL;
1082        struct list_head *pos;
1083        unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1084
1085        spin_lock(&pool->lock);
1086        if (!pool->ops || !pool->ops->evict || retries == 0) {
1087                spin_unlock(&pool->lock);
1088                return -EINVAL;
1089        }
1090        for (i = 0; i < retries; i++) {
1091                if (list_empty(&pool->lru)) {
1092                        spin_unlock(&pool->lock);
1093                        return -EINVAL;
1094                }
1095                list_for_each_prev(pos, &pool->lru) {
1096                        page = list_entry(pos, struct page, lru);
1097
1098                        /* this bit could have been set by free, in which case
1099                         * we pass over to the next page in the pool.
1100                         */
1101                        if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1102                                continue;
1103
1104                        if (unlikely(PageIsolated(page)))
1105                                continue;
1106                        if (test_bit(PAGE_HEADLESS, &page->private))
1107                                break;
1108
1109                        zhdr = page_address(page);
1110                        if (!z3fold_page_trylock(zhdr)) {
1111                                zhdr = NULL;
1112                                continue; /* can't evict at this point */
1113                        }
1114                        kref_get(&zhdr->refcount);
1115                        list_del_init(&zhdr->buddy);
1116                        zhdr->cpu = -1;
1117                        break;
1118                }
1119
1120                if (!zhdr)
1121                        break;
1122
1123                list_del_init(&page->lru);
1124                spin_unlock(&pool->lock);
1125
1126                if (!test_bit(PAGE_HEADLESS, &page->private)) {
1127                        /*
1128                         * We need encode the handles before unlocking, since
1129                         * we can race with free that will set
1130                         * (first|last)_chunks to 0
1131                         */
1132                        first_handle = 0;
1133                        last_handle = 0;
1134                        middle_handle = 0;
1135                        if (zhdr->first_chunks)
1136                                first_handle = encode_handle(zhdr, FIRST);
1137                        if (zhdr->middle_chunks)
1138                                middle_handle = encode_handle(zhdr, MIDDLE);
1139                        if (zhdr->last_chunks)
1140                                last_handle = encode_handle(zhdr, LAST);
1141                        /*
1142                         * it's safe to unlock here because we hold a
1143                         * reference to this page
1144                         */
1145                        z3fold_page_unlock(zhdr);
1146                } else {
1147                        first_handle = encode_handle(zhdr, HEADLESS);
1148                        last_handle = middle_handle = 0;
1149                }
1150
1151                /* Issue the eviction callback(s) */
1152                if (middle_handle) {
1153                        ret = pool->ops->evict(pool, middle_handle);
1154                        if (ret)
1155                                goto next;
1156                }
1157                if (first_handle) {
1158                        ret = pool->ops->evict(pool, first_handle);
1159                        if (ret)
1160                                goto next;
1161                }
1162                if (last_handle) {
1163                        ret = pool->ops->evict(pool, last_handle);
1164                        if (ret)
1165                                goto next;
1166                }
1167next:
1168                if (test_bit(PAGE_HEADLESS, &page->private)) {
1169                        if (ret == 0) {
1170                                free_z3fold_page(page, true);
1171                                atomic64_dec(&pool->pages_nr);
1172                                return 0;
1173                        }
1174                        spin_lock(&pool->lock);
1175                        list_add(&page->lru, &pool->lru);
1176                        spin_unlock(&pool->lock);
1177                } else {
1178                        z3fold_page_lock(zhdr);
1179                        clear_bit(PAGE_CLAIMED, &page->private);
1180                        if (kref_put(&zhdr->refcount,
1181                                        release_z3fold_page_locked)) {
1182                                atomic64_dec(&pool->pages_nr);
1183                                return 0;
1184                        }
1185                        /*
1186                         * if we are here, the page is still not completely
1187                         * free. Take the global pool lock then to be able
1188                         * to add it back to the lru list
1189                         */
1190                        spin_lock(&pool->lock);
1191                        list_add(&page->lru, &pool->lru);
1192                        spin_unlock(&pool->lock);
1193                        z3fold_page_unlock(zhdr);
1194                }
1195
1196                /* We started off locked to we need to lock the pool back */
1197                spin_lock(&pool->lock);
1198        }
1199        spin_unlock(&pool->lock);
1200        return -EAGAIN;
1201}
1202
1203/**
1204 * z3fold_map() - maps the allocation associated with the given handle
1205 * @pool:       pool in which the allocation resides
1206 * @handle:     handle associated with the allocation to be mapped
1207 *
1208 * Extracts the buddy number from handle and constructs the pointer to the
1209 * correct starting chunk within the page.
1210 *
1211 * Returns: a pointer to the mapped allocation
1212 */
1213static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1214{
1215        struct z3fold_header *zhdr;
1216        struct page *page;
1217        void *addr;
1218        enum buddy buddy;
1219
1220        zhdr = handle_to_z3fold_header(handle);
1221        addr = zhdr;
1222        page = virt_to_page(zhdr);
1223
1224        if (test_bit(PAGE_HEADLESS, &page->private))
1225                goto out;
1226
1227        z3fold_page_lock(zhdr);
1228        buddy = handle_to_buddy(handle);
1229        switch (buddy) {
1230        case FIRST:
1231                addr += ZHDR_SIZE_ALIGNED;
1232                break;
1233        case MIDDLE:
1234                addr += zhdr->start_middle << CHUNK_SHIFT;
1235                set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1236                break;
1237        case LAST:
1238                addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1239                break;
1240        default:
1241                pr_err("unknown buddy id %d\n", buddy);
1242                WARN_ON(1);
1243                addr = NULL;
1244                break;
1245        }
1246
1247        if (addr)
1248                zhdr->mapped_count++;
1249        z3fold_page_unlock(zhdr);
1250out:
1251        return addr;
1252}
1253
1254/**
1255 * z3fold_unmap() - unmaps the allocation associated with the given handle
1256 * @pool:       pool in which the allocation resides
1257 * @handle:     handle associated with the allocation to be unmapped
1258 */
1259static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1260{
1261        struct z3fold_header *zhdr;
1262        struct page *page;
1263        enum buddy buddy;
1264
1265        zhdr = handle_to_z3fold_header(handle);
1266        page = virt_to_page(zhdr);
1267
1268        if (test_bit(PAGE_HEADLESS, &page->private))
1269                return;
1270
1271        z3fold_page_lock(zhdr);
1272        buddy = handle_to_buddy(handle);
1273        if (buddy == MIDDLE)
1274                clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1275        zhdr->mapped_count--;
1276        z3fold_page_unlock(zhdr);
1277}
1278
1279/**
1280 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1281 * @pool:       pool whose size is being queried
1282 *
1283 * Returns: size in pages of the given pool.
1284 */
1285static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1286{
1287        return atomic64_read(&pool->pages_nr);
1288}
1289
1290static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1291{
1292        struct z3fold_header *zhdr;
1293        struct z3fold_pool *pool;
1294
1295        VM_BUG_ON_PAGE(!PageMovable(page), page);
1296        VM_BUG_ON_PAGE(PageIsolated(page), page);
1297
1298        if (test_bit(PAGE_HEADLESS, &page->private))
1299                return false;
1300
1301        zhdr = page_address(page);
1302        z3fold_page_lock(zhdr);
1303        if (test_bit(NEEDS_COMPACTING, &page->private) ||
1304            test_bit(PAGE_STALE, &page->private))
1305                goto out;
1306
1307        pool = zhdr_to_pool(zhdr);
1308
1309        if (zhdr->mapped_count == 0) {
1310                kref_get(&zhdr->refcount);
1311                if (!list_empty(&zhdr->buddy))
1312                        list_del_init(&zhdr->buddy);
1313                spin_lock(&pool->lock);
1314                if (!list_empty(&page->lru))
1315                        list_del(&page->lru);
1316                spin_unlock(&pool->lock);
1317                z3fold_page_unlock(zhdr);
1318                return true;
1319        }
1320out:
1321        z3fold_page_unlock(zhdr);
1322        return false;
1323}
1324
1325static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1326                               struct page *page, enum migrate_mode mode)
1327{
1328        struct z3fold_header *zhdr, *new_zhdr;
1329        struct z3fold_pool *pool;
1330        struct address_space *new_mapping;
1331
1332        VM_BUG_ON_PAGE(!PageMovable(page), page);
1333        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1334
1335        zhdr = page_address(page);
1336        pool = zhdr_to_pool(zhdr);
1337
1338        if (!trylock_page(page))
1339                return -EAGAIN;
1340
1341        if (!z3fold_page_trylock(zhdr)) {
1342                unlock_page(page);
1343                return -EAGAIN;
1344        }
1345        if (zhdr->mapped_count != 0) {
1346                z3fold_page_unlock(zhdr);
1347                unlock_page(page);
1348                return -EBUSY;
1349        }
1350        new_zhdr = page_address(newpage);
1351        memcpy(new_zhdr, zhdr, PAGE_SIZE);
1352        newpage->private = page->private;
1353        page->private = 0;
1354        z3fold_page_unlock(zhdr);
1355        spin_lock_init(&new_zhdr->page_lock);
1356        new_mapping = page_mapping(page);
1357        __ClearPageMovable(page);
1358        ClearPagePrivate(page);
1359
1360        get_page(newpage);
1361        z3fold_page_lock(new_zhdr);
1362        if (new_zhdr->first_chunks)
1363                encode_handle(new_zhdr, FIRST);
1364        if (new_zhdr->last_chunks)
1365                encode_handle(new_zhdr, LAST);
1366        if (new_zhdr->middle_chunks)
1367                encode_handle(new_zhdr, MIDDLE);
1368        set_bit(NEEDS_COMPACTING, &newpage->private);
1369        new_zhdr->cpu = smp_processor_id();
1370        spin_lock(&pool->lock);
1371        list_add(&newpage->lru, &pool->lru);
1372        spin_unlock(&pool->lock);
1373        __SetPageMovable(newpage, new_mapping);
1374        z3fold_page_unlock(new_zhdr);
1375
1376        queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1377
1378        page_mapcount_reset(page);
1379        unlock_page(page);
1380        put_page(page);
1381        return 0;
1382}
1383
1384static void z3fold_page_putback(struct page *page)
1385{
1386        struct z3fold_header *zhdr;
1387        struct z3fold_pool *pool;
1388
1389        zhdr = page_address(page);
1390        pool = zhdr_to_pool(zhdr);
1391
1392        z3fold_page_lock(zhdr);
1393        if (!list_empty(&zhdr->buddy))
1394                list_del_init(&zhdr->buddy);
1395        INIT_LIST_HEAD(&page->lru);
1396        if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1397                atomic64_dec(&pool->pages_nr);
1398                return;
1399        }
1400        spin_lock(&pool->lock);
1401        list_add(&page->lru, &pool->lru);
1402        spin_unlock(&pool->lock);
1403        z3fold_page_unlock(zhdr);
1404}
1405
1406static const struct address_space_operations z3fold_aops = {
1407        .isolate_page = z3fold_page_isolate,
1408        .migratepage = z3fold_page_migrate,
1409        .putback_page = z3fold_page_putback,
1410};
1411
1412/*****************
1413 * zpool
1414 ****************/
1415
1416static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1417{
1418        if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1419                return pool->zpool_ops->evict(pool->zpool, handle);
1420        else
1421                return -ENOENT;
1422}
1423
1424static const struct z3fold_ops z3fold_zpool_ops = {
1425        .evict =        z3fold_zpool_evict
1426};
1427
1428static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1429                               const struct zpool_ops *zpool_ops,
1430                               struct zpool *zpool)
1431{
1432        struct z3fold_pool *pool;
1433
1434        pool = z3fold_create_pool(name, gfp,
1435                                zpool_ops ? &z3fold_zpool_ops : NULL);
1436        if (pool) {
1437                pool->zpool = zpool;
1438                pool->zpool_ops = zpool_ops;
1439        }
1440        return pool;
1441}
1442
1443static void z3fold_zpool_destroy(void *pool)
1444{
1445        z3fold_destroy_pool(pool);
1446}
1447
1448static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1449                        unsigned long *handle)
1450{
1451        return z3fold_alloc(pool, size, gfp, handle);
1452}
1453static void z3fold_zpool_free(void *pool, unsigned long handle)
1454{
1455        z3fold_free(pool, handle);
1456}
1457
1458static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1459                        unsigned int *reclaimed)
1460{
1461        unsigned int total = 0;
1462        int ret = -EINVAL;
1463
1464        while (total < pages) {
1465                ret = z3fold_reclaim_page(pool, 8);
1466                if (ret < 0)
1467                        break;
1468                total++;
1469        }
1470
1471        if (reclaimed)
1472                *reclaimed = total;
1473
1474        return ret;
1475}
1476
1477static void *z3fold_zpool_map(void *pool, unsigned long handle,
1478                        enum zpool_mapmode mm)
1479{
1480        return z3fold_map(pool, handle);
1481}
1482static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1483{
1484        z3fold_unmap(pool, handle);
1485}
1486
1487static u64 z3fold_zpool_total_size(void *pool)
1488{
1489        return z3fold_get_pool_size(pool) * PAGE_SIZE;
1490}
1491
1492static struct zpool_driver z3fold_zpool_driver = {
1493        .type =         "z3fold",
1494        .owner =        THIS_MODULE,
1495        .create =       z3fold_zpool_create,
1496        .destroy =      z3fold_zpool_destroy,
1497        .malloc =       z3fold_zpool_malloc,
1498        .free =         z3fold_zpool_free,
1499        .shrink =       z3fold_zpool_shrink,
1500        .map =          z3fold_zpool_map,
1501        .unmap =        z3fold_zpool_unmap,
1502        .total_size =   z3fold_zpool_total_size,
1503};
1504
1505MODULE_ALIAS("zpool-z3fold");
1506
1507static int __init init_z3fold(void)
1508{
1509        int ret;
1510
1511        /* Make sure the z3fold header is not larger than the page size */
1512        BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1513        ret = z3fold_mount();
1514        if (ret)
1515                return ret;
1516
1517        zpool_register_driver(&z3fold_zpool_driver);
1518
1519        return 0;
1520}
1521
1522static void __exit exit_z3fold(void)
1523{
1524        z3fold_unmount();
1525        zpool_unregister_driver(&z3fold_zpool_driver);
1526}
1527
1528module_init(init_z3fold);
1529module_exit(exit_z3fold);
1530
1531MODULE_LICENSE("GPL");
1532MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1533MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1534